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Semiclassical theory of trapped fermionic dipoles
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We investigate the properties of a degenerate dilute gas of neutral fermionic particles in a harmonic trap that
interact via dipole-dipole forces. We employ the semiclassical Thomas-Fermi method and discuss the Dirac
correction to the interaction energy. A nearly analytic as well as an exact numerical minimization of the
Thomas-Fermi-Dirac energy functional are performed in order to obtain the density distribution. We determine
the stability of the system as a function of the interaction strength, the particle number, and the trap geometry.
We find that there are interaction strengths and particle numbers for which the gas cannot be trapped stably in
a spherically symmetric trap, but both prolate and oblate traps will work successfully.
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[. INTRODUCTION ing dynamical processes of atoms and molecules in super-
strong light pulse$17].

The experimental achievement of quantum degeneracy in Our paper is organized as follows: in Sec. Il, the Thomas-
a dilute trapped gas of cold fermionic atofii§ has stimu- Fermi model is revisited with an eye on the dipole-dipole
lated theoretical interest in the properties of this fundamentaforces. The Dirac correction to the interaction energy term is
system. Attention has focused on the critical temperdt2fe discussed and scaling properties derived with the help of the
and the detectio3] of Cooper pairing as well as on the virial theorem. In Sec. Il the results of approximédtearly
properties of mixtures of various fermionic and bosonic speanalytio and numerical minimizations of the Thomas-Fermi-
cies[4,5]. Another important problem concerns the interac-Dirac energy functional are presented. Unexpectedly, we find
tions between ultracold fermio§—7]. Owing to the exclu- that the system may withstand larger dipolar forces both for
sion principle, spin-polarized Fermi atoms do not interact viavery flat and for highly elongated traps.
swave collisions, whereas they dominate in the low-energy
regime for bosons and have pronounced effects on the statics
and dynamical properties of cold boson gasds Hence, in Il. THOMAS-FERMI MODEL
the absence of low-energy collisions other types of forces
come into play.

A good candidate is a dipole-dipole interaction between Let us begin by recalling some basic things, mainly col-
atoms or molecules, not analyzed so far in the context ofected from Refs.[16,18,19, with due attention to the
cold trapped fermions. Some atoms possess permanent mé‘d’langed situation: here fU”y Spin-polarized fermions—there
netic dipole moments of considerable magnit¢cieromium, fermions withano net spin. The spatial one-particle density is
for instance, hagt=6ug). It was also proposed to induce denoted byn(r) and is normalized to the total particle num-
electric dipoles in atomf9,10]. Huge permanent electric di- berN,
pole moments occur naturally in diatomic polar molecules
[11]. The behavior of atomic bosonic dipoles in traps has N:f (dryn(r), (1)
been investigated ifl2,13, which addressed the question of
instabilities in the system caused by an attractive component
of dipolar interactions. The conclusion drawn was that a R
large enough positive scattering lendpiroviding repulsive  Where dr)=dxdydzdenotes the volume element. The spa-
interaction$ can stabilize a system of bosonic dipoles. Fortial one-particle density matrim(l)(F’;F”) and the one-
strong(e.g. moleculardipoles, when supposedly the scatter- particle Wigner functiom(ﬁ ,5) are related by
ing length can be neglected, it is the trap geometry that plays
a crucial role[10]—the system is stable provided the trap

A. General considerations

assures the domination of repulsive interactions in the gas. (dp) o
A full quantum mechanical description of the system of  n()(r7:r")= 3 p((r' +17),p)dP- (=,
many interacting fermions is of course very complex. But the (2mh

lessons of semiclassical atomic physics can be applied, in 2
particular the Thomas-Fermi approdda,15 and its refine-

ments(see, e.g.[16]). Its success in describing static prop- _ _ N _
erties of atoms is well known, and we note that, in recentThe Spatlal and momental one-partlcle densities are obtained

years, these methods were also used successfully for studyy integratingv(F , 5) over the other variable,
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nA(ry,rgir i) =n®rHn®rgry

() =N (F:) = j : SIS

3 . -
2mh) —n(rir)nMryr)), (10
- (dr) _. andn® by a brutally simple Wigner functiofifhomas and
p()= | — i (3 gndn by y simple Wig ‘
(27h) ermi,
They are needed for the calculation of the kinetic energy, v(r,p)= n({A6m2n(r)]%3-p2), (12)

p? where 7() is Heaviside’s unit step function. This gives the

Ekin:f (dp) P(p) (4)  density functional of the kinetic energy as

and the external potential ener¢yf the harmonic trap

Ewnln]= (12

Eyap= | (dN)iMe[x2+y2+(B2)2]n(r), 5
rap f( JZM Xy (B2)7In(r) ® and the density functional for the potential energy in the trap

iS Eqap Of EQ. (5).
The dipole-dipole interaction energy consists of two parts,
corresponding to the two summands in EtD),

whereM is the mass of the atom species consideeet the
(transversgtrap frequency, ang is the aspect ratio of the
cylindrical trap. The trap is spherically symmetric f@

=1; for B<1, the equipotential surfaces are proléteigar Esdn]=E (dlr)[n]+ E(ex)[n] (13)
shaped’) ellipsoids; for 8>1, they are oblate(“lentil
shaped’) ellipsoids. with the direct term

For the dipole-dipole interaction energkyy, We need
(the diagonal part of the two-particle density matrix

n@(r ey,

Efi’In]=> J (dr')(dr)n(r")Vadr' =r")n(r") (14)

1 s s 2, - e s o and the exchange term
Eddzzf (dr")(dr")\Vodr" —r"n@’ r":r' 1", (6)

where (ex)[n]———f (dr")(dryn®rrmn@ e

XVadr'—r")

- ..
. po|u® _(mer)? 8.
Vyd(r) = —

-~ _ 2
in| 535 g HenD ] @)

=3[ @) [ @vud

We note that the contact term, proportional &(f), is re-

quired by the condition that the magnetic field made by the XnO(F+ 187 —15)nMW(F - Ls:F+13).
point dipole be divergence-frd@0]. An alternative way of 2= 2 220 T2
presentingVyq is (15)
T ! PR Now we note that
Vad )= 4| ~VV-—4m lﬁ(f)}p«, )

nA(r+is;r—is)n@(r—1is;r+1is)

which is a particularly convenient starting point for evaluat- 4 ) (de

ing the Fourier transform :f (dp)(dp )V(F’b’/)y(li”ﬁu)ei(ﬁ’—;5”)-5/1’1 (16)
(27h)8

- >

kk
k /J’O - - > -
f (dr)e rVdd(r)_ 47Tk ani ©) depends only on the length=|s| of vectors, not on its

direction s/s, because—in the TF approximatighl)—the
The vanishing divergence Just mentioned is here immediproduct »(r,p’)»(r,p”) involves only p’=|p’| and p”

ately recognized, inasmuch &s - - - ]=0. =|p”|. As a consequence, it is permissible to replace, in Eq.

(15), Vdd(§) by its average over the solid angle associated
B. Thomas-Fermi-Dirac functionals with s
The semiclassical approximation now employed—in the

spirit of what the TFD trio(Thomas[14], Fermi[15], and Mo| 8-,

Dirac [21]) did, although in a technically different Vdd(s)_’_w 3 3(s)|. (17

manner—is twofold: We approximate’® by products of

n®) factors(Dirac), We thus arrive at
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1 - - oMo 8T
B = 5 | (@) 12ee

n(r'),

(oL po[8m., .
=§f (dr)(dr')n(r)—ﬁ[—;mm—r')
(18

and accordingly
1 e a— L
Ed({n]=§J(dr)(dr’)n(r)Vdd(r—r’)n(r’) (19
with

w2 (uer)?
r3 5

Ko
4

V()= : (20)

r

which isVg4(r) of Eq.(7) with the contact term removed. In
Egs.(8) and(9) this corresponds to multiplying the unit dy-
adic 1 by % [13].

The rotational symmetry of the trap potential in E§)

distinguishes the axis, and we take for granted that this is

also the direction of spin polarization,

m=ue,. (21)

Then

1-3(z/r)?
3 ’

= > Mo
Vadr) = E,U«Z ; (22
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C. Virial theorems

Scaling transformations of the form

n(r)—A3*en(ar), N—A°N (25)

are consistent with the constraiid). They affect the various
pieces ofE(TFD) in accordance with

Ekin_) N 2+ (SIS)QEkin ,

-2+
Etrap_’ A aEtrapv

Eqr— A" ?*Eqa, (26)
so that E=E(T™D)
E=Eyn+ Etrap+ Eddﬂ)\z-'— (513 “Byint A2 aEtrap
+N\3P20E 4. (27

In the infinitesimal vicinity ofA =1, all first-order changes
of E originate in the explicit change &, SN= 6\ aN, and
therefore

JE
aN——=(2+3a)Eyn+(—2+ @)Eyapt (3+2a)Eqgq

N
(28)

must hold irrespective of the value of parameterin view
of the lineara dependence, we get two independent state-
ments,

a=0: 2Ekin_2Etrap+ 3Edd: 0,

JE
Exint 7Etrap= 3N——

N (29

3.
a=—3:

and the whole system is invariant under rotations around the

Z axis.

They enable us to expregg;,, Eyap, andEyg in terms ofE

The total TFD energy functional is then given by the sumandNJE/dN,

of the kinetic energy12), the potential energy in the trap),
and the dipole-dipole interaction energy9),

h2

i 24(r\15/3L 1 2.2
M 20772[677 n(r) "+ s;Meron(r)

E(O)[n]= f (dr)

1 .. e 4 o -
+§f (dr)(dr’")n(r)Vgqr—r’)n(r’). (23
The density that minimize&(™™) under the constraintl)
obeys the nonlinear integral equation
2

h -
W[GWZH(F)]Z’?’Jr IM?[X*+y?+(B2)]

+f(dF’)Vdd(F—F’)n(F’)z%szRz, (24)

whereiM w?R? is a convenient way of writing the Lagrange

multiplier for the constraint.

21 15 JE
Bin=% E= 5 N-g

3 3 JE
Etrapz_EE"_ ENm,

In cor junction witl QL—',LLD

d
M@EZZEdd,

7
w(}—wE=2Etrap,

0
M——E= Etrap_ Exin

oM (3D
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they imply that the ground-state energyM,w,u,N) is of E(TFD)
the form(we leave the3 dependence impligit

= lal= i (6m) | @irg

ﬁwN4/3
E(M,w,u,N)=%oN*3e(NVe%) (32 1 ) ]
+§f (dX) (X3 + x5+ B?x3)g(X)
with
1.6 - . .1-3cods .
3551240 2 +5N sf(dx)(dx’)g(x)wg(x’),
= (oM™/h2) 75— u. (33

(41)

Clearly, the dimensionless numbermeasures the relative where ¢ is the angle between the polar|zat|on directitime
strength of the dipole-dipole interaction. The universal func- x5 direction and the relative position vector— X',

tion e() is to be found numericallyfor each g value of

interesj. For e =0, we can solve Eq24) immediately, (X—X')- |x X "| 1w COSO= (X3—X5) . (42)

1 The minimum of the scaled TFD energyééN%) of Eq.
n(r)= —2(Mw/ﬁ)3[R2—x2—y2—(,82)2]3’2, (34) (32 (with its implicit 3 dependendeit is obtained for the
6 g(x) that obeys the dimensionless analog of Exf),

\év:éare, by convention]- - -1¥?=0 for negative arguments, %[67729()2)]2’3+%(x§+x§+,82x§
U6 . 1-3cog 9 X2
R=(48BN)1/6(Mw/ﬁ)_1/2 (35) +N~% | (dx’ )—| |3 g(X )= , (43

as a consequence of E(d.), and so we find where the value oK=R/a is determined by the constraint

(40).
eo=e(0)= 3% (683)°=1.363". 36
0=e(0)=1(64) ¥ 36 lll. RESULTS

For the spherically symmetric cagg=1, Ey4q vanishes in Owing to its intrinsic semiclassical approximations, one

first-order perturbation theory, so that expects a few-percent deviation of the TFD energy from the
true ground-state energy. It is, therefore, not really necessary

B=1: e(NY0)=2"533431 e N¥3:2+ O(NY2%3) to solve the nonlinear integral equatiof3). A reasonable

(37)  Vvariational estimate, in conjunction with a few full-blown
numerical solutions for comparison, will do.

with e,<0.
A. Gaussian variational ansatz

D. Dimensionless variables The Gaussian ansatz

These scaling laws invite the use of correspondingly cho- 2y = (9.-322, 3., eyl — £ k2(x2+ X2+ v2x2 a4
sen dimensionless variables, such as 900 =(2m) Ty expl — (ot yxa) ] (44
5 is convenient. In addition to its aspect ratjg the shape
X=r/a with a= N6+ [ (39) parameter, it contains the scale parameteso that the virial
Mo theorems of Sec. Il C will be obeyed for the optimal choice
of «. For this scaled density, the scaled kinetic energy is

for the position and given by
.oad . . N . Exin _ 413319065512, 13,2, 213 (45)
g(x)= Wn(ax) or n(r)= —Sg(r/a) (39 7 wN43 Yo
a
and the scaled value &, is
for the density. The constraifil) then appears as
Etrap :i(l_‘_ﬁ_z) (46)
f (dx)g(x)=1, (40) hoN*® k2 242)"

They exhibit the anticipated dependence on the scale param-
and the TFD energy acquires the form eter x, and so does the dipole-dipole interaction energy,
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Eqq Eq>0 for y>1 (oblate Gaussian

— Nl/GS,y(,y J' g
AoNY3 4\/— 1- g + 2 g “n Eq=0 for y=1 (spherical Gaussian

This integral can, of course, be evaluated in terms of elemen-
tary functions, but as it stands we see immediately that theonsistent with the expectation that an oblate density has a
integrand, and thus the integral, is positive for §<e, so  larger magnetic interaction energy than a prolate density.

Eqq<0 for y<1 (prolate Gaussian (48)

that More explicitly, then, we have
|
1-9Ycotd 1 ¢ 1 o1
Edd K3 16 S|n2 19 3 4 COSﬁ ( 9)
= ——=N"% 4
hoN 4z 7| dcotho—1 1

sinffg 3 for v=Cosho 1

The Gaussian densitid4) cannot mimic thes=0 solu-  tion. Extending this picture to a cloud of trapped dipoles one
tion (34) very well. But nevertheless, the resulting estimatewould expect that attraction dominates in prolate traps, and
of the e=0 energy, repulsion in oblate trapgrovided the dipoles are polarized

along the trap axis as is the case hete the case of pre-
Gaussiane,=2"103251%-54716518=1 42813 (50)  dominant attraction one may surmise that instabilities occur.
_ _ i By varying the two system parametersl’(®s and B) we
is only 4.4% in excess of the correct val(86). This accu-  pave investigated the issue of stability, see Fig. 1.
racy is sufficient for our purposes; and, in any case, an error

of a few percent is a small price for the enormous simplifi- 291
cation that the Gaussian ansatz brings about. e
Dipolar interactions are partially attractive and partially ’
repulsive, depending on the configuration of the dipoles. One
should keep in mind the simple situation of two dipoles in
the plane perpendicular to their polarization, which repel 19 1
each other, as opposed to the situation of two attracting di-
polar particles placed along the direction of their polariza-

14 +
30
95 : 0.9 "
T .9 0 1 2 3 4 5
4 ﬂ
201 lb..
2+ > N
w© L =] 51
o 15 T 0 ”
Z 0.0 01 02 03 04 05 Q.
10 1 a4t
unstable
5 j = 2
0 : 51
0 1 2 3 4 5 6
B |
FIG. 1. Stability diagram. The dots, connected by a solid line to
guide the eye, define the border between system paramegers ( 0 0 . ) 3 4 5

aspect ratio of the trap\N*%, effective interaction strengtHor 8

which E(TF®) is bounded from belowistable or not boundedun-

stablg. The inset shows an enlargement of the region of pro- FIG. 2. Dependence of cloud parameter&loud size; topand
nouncedly prolate traps3<0.5). For oblate traps witlB=5.2 or v (cloud shape; bottojron B, the aspect ratio of the trap. The lines
larger, the system is always stable, irrespective of the value ofefer to different values of the interaction strengtt’®z =0 (solid
N8 . This figure presents results obtained in the Gaussian approxlines), N¥®: =1 (dashed linegs N¥®¢ =2 (dash-dotted lings and

mation, and so do all the other figures. NY6g = 2.4 (dotted lines.
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FIG. 4. Dipole-dipole interaction enerdgyyq as a function of the
interaction strengtiN'%. The solid lines are for trap aspect ratios
B=0.5,1,1.5...,4.5; the dashed line is fg8=>5.2.

FIG. 3. Aspect ratioy of the cloud as a function of the interac-
tion strengthN%, for various values of the aspect rajioof the
trap. Note thaty= 8 for NY6:=0. The dashed line is fo8=5.2,
for which the cloud is stable for all values bf*s.

asymptotic valugdependent orB) for extremely large val-

. . ues of N6
From this stability diagram one concludes that, for oblate The dependence of the dipolar eneiiy on the dipole

traps (5>1), th_e bigger the tr?,% aspect ratio, .t.h © biggerparameteNl’Ge and the trap geometry is also of interest as it
;/alues Off theddlpole Parﬁmege* fs can b? stablllzsld. In is the quantity responsible for th@)stability of the system,
f?‘Ctv we OL;” numerically that errplcrzns orm srt]a fe r::O,n'see Fig. 4. For all prolate trap&,y remains negative ap-
igurations for 5>5.2 irrespective of the strength of their oo, hing some critical value at the collapse point. Bor
dipole interaction(an analogous effect was observed for di- <5.2, the dipolar energy can be positive for moderate dipole
polar bosons by Santax al.[10]). On the other hand, one o ameters, but if their values are large enougly turns
might naively expect an (_exac_:tly opposne effect in p.mlatenegative indicating the collapse. FBr>5.2, Eqq is always
traps (3<<1) where attractive interactions should dominate. i e and increases as a functionNsf6s

This is not quite true, indeed for moderate trap aspect ratiog Finally, we take a look at the total TFD énergy see Fig. 5.
(1>5>0.5) the critical value of the dipole parameter is por 355 the system becomes unstable at the critical value
smaller, but in traps that are very sofB€0.5) in thez o \ve; consistent with Fig. 1, we observe that larger val-

direction of rotational symmetry, we observe an increase o 1/6 — —
o ' o . es ofN are supported fop=0.1 andg=1 than for
the critical value ofN'% (see the inset in Fig.)LThis can  _ ¢ ¢ PP P A p

be understood with the help of the following argument. We
note that the dipole-dipole energy term vanishes for a uni
form density distribution. As the trap is made softer in the

Let us now discuss the dipole paramei&¥®s and give
some typical values for it. Owing to thé dependence, one
can locate the experimental system in various regions of the
Etability diagram of Fig. 1 not only by choosirigr inducing,

axis becomes more and more uniform, contributing to th s proposed for bosor9,10)) a specific value ofu, but

interaction energy to a lesser extétitis argument was also
used to interpret our earlier results for bosons interacting via
contact and dipole-dipole forces, s€e)]).

The dependence of and « on B, shown in Fig. 2, is
consistent with this argument. We see thatlecreases with
decreasingB8 whereask increases. Accordingly, the cloud
gets stretched along tlzeaxis of symmetry, and the diameter
of the circular cross section in they plane (<« 1) is re-
duced. At the center of the cloud, we thus have a relatively
large volume of(almos} constant density, and the inhomo-
geneous parts of the cloud are relatively far apart. Taken
together, these geometric features lead to a rather small
dipole-dipole interaction energy.

Whereas the stability of the system considered can be :
well understood, the spatial behavior of the fermionic cloud,

especially near the collapse, seems to be much less intuitive. g1 5. Normalized TFD energy as a function of the interaction

As we approach the critical parameter values, the aspect ratiQrength for various trap shapes. The universal funaiw®s) of
y of the cloud decreases and the cloud becomes elongated i, (32), normalized to its initial value,=e(0), is shown for trap

the attractivez direction. This type of behavior is general in aspect ratios5=0.1,0.5,1,1.5...,4 (solid liney and B=5.2
the sense that it does not depend on the trap aspect ratio, S@@shed ling Note the horizontal slope of the=1 line (spherical
Fig. 3. It is only for traps with3>5.2 thaty reaches an trap), as required by Eq:37).

=
=

-
—
-

-
-
-

b=
a
}

—
8]
'

t

b=
(=}

unstable

E(TFD) (N% E)/E(TFD) (0)
=
o
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also, to some extent, by varyifd. One could also exploit . .1-3coge A
the  dependence of = \/w, which is particularly relevant (dx)e'q'xa—az - ?(1—3 cog a), (51)
for optical traps with tight confinemef22]. x|

For the parameters of the fermionic chromium isotope,
=300 Hz andN=10P, one obtain\*®% =0.012, which is R
a very small value. Therefore, the conclusion for atoms poswherea is the angle between the Fourier variagland the
sessing even relatively large magnetic dipole moments is thatdirection. In order to assure that the integral term is evalu-
irrespective of their number and the trap frequency they willated accurately we used a Gaussian distribution for compari-
always remain stable against collapse. The following amusson and chose the grid parameters accordingly.
ing analogy offers a good reason for this observanLet Our numerical calculations, performed in three dimen-
us compare the characteristic sizes of the noninteractingjons, were quite demanding so we limited their use to a
Fermi gas and the Bose-condensed atomic gas interacting Vijeck of the main features of the stability diagram in Fig. 1.
a repulsive contact potential. In the Thomas-Fermi approxiThe solutions obtained satisfy the virial relatiof29) very
mation, the appropriate quantities, in units oh/(M @), well, and total energies obtained numerically are always be-
read Reermi= (48N)™" for fermions andRgose= (15N ap) low the corresponding values from the variational analysis.
for bo_sons, wherg, is the scattering Iength. By equating the The critical value of the dipole parameter for a spherical trap
two sizes one can calculate the effectiedependent, scat- 5 N6, =2 29 a5 compared to 2.55 obtained by the varia-
tering length due to the exclusion-principle-induced repuljo o cajculation. We also confirmed the effect of increase

SRS ~1/6 ;
sion: ap~1.68N""" For typical numbers of atomsi of the critical interaction strength that we found, in the

t:e &r?;_lé%t;g'i;ogzsgﬁfacigr:;e&fcl%%?et()?])::éy\?\;ecarlezfat'Gaussian approxim?tion, for prolate traps: +0.07 the
— . - .y 1 6 .
ize how strong is the repulsion that originates in the FermFrgfilzvggue kc))tf N dg IS |2'.75§|>1.'9?r)] aGs compared to_
statistics, we understand that small atomic magnetic dipole&-81(>2.55) obtained analytically in the Gaussian approxi-
can hardly have a noticeable effect on the behavior of dipolaf?ation- _ ,
Now two remarks about possible extensions of our work

fermionic gases. However, for polar molecules the situation ' ) =1 o1 .
is different. For a trap frequency @§=300Hz andN=10° &€ in order. First, the results presented in this paper describe

molecules of massn~100 a.m.u.(the typical mass of an the situation of a dipolar fermionic gas at the temperature
alkaline dimey and a typical electric dipole moment of T=0. An intergs_ting subject of study would be extension of
1 Debye unit, one reach&/®s ~11.5, which may very well our theory to finite temperatures. Second, there exists a par-
put the system into the unstable regime, see Fig. 1. In thigllerll approach in the Thomas-Fermi model, ngmely th? r?ne
situation, a sufficiently larggs value will stabilize the sys- In the momentum spac[el_8,l9]. As many experiments with
tem. cold gases ylel_d their momental characteristics, investigation

In order to assess the quality of our variational results Wepf Fh's alternative approach also presents an attractive theo-
have computed exact numerical solutions of EB). This retical task.

equation was solved for the density distributigtx) self-

consistent_ly starti_ng from the kn_own a_nalytical res(@y) ACKNOWLEDGMENTS
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