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Semiclassical theory of trapped fermionic dipoles
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We investigate the properties of a degenerate dilute gas of neutral fermionic particles in a harmonic trap that
interact via dipole-dipole forces. We employ the semiclassical Thomas-Fermi method and discuss the Dirac
correction to the interaction energy. A nearly analytic as well as an exact numerical minimization of the
Thomas-Fermi-Dirac energy functional are performed in order to obtain the density distribution. We determine
the stability of the system as a function of the interaction strength, the particle number, and the trap geometry.
We find that there are interaction strengths and particle numbers for which the gas cannot be trapped stably in
a spherically symmetric trap, but both prolate and oblate traps will work successfully.
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I. INTRODUCTION

The experimental achievement of quantum degenerac
a dilute trapped gas of cold fermionic atoms@1# has stimu-
lated theoretical interest in the properties of this fundame
system. Attention has focused on the critical temperature@2#
and the detection@3# of Cooper pairing as well as on th
properties of mixtures of various fermionic and bosonic s
cies @4,5#. Another important problem concerns the intera
tions between ultracold fermions@5–7#. Owing to the exclu-
sion principle, spin-polarized Fermi atoms do not interact
s-wave collisions, whereas they dominate in the low-ene
regime for bosons and have pronounced effects on the st
and dynamical properties of cold boson gases@8#. Hence, in
the absence of low-energy collisions other types of for
come into play.

A good candidate is a dipole-dipole interaction betwe
atoms or molecules, not analyzed so far in the contex
cold trapped fermions. Some atoms possess permanent
netic dipole moments of considerable magnitude~chromium,
for instance, hasm56mB). It was also proposed to induc
electric dipoles in atoms@9,10#. Huge permanent electric di
pole moments occur naturally in diatomic polar molecu
@11#. The behavior of atomic bosonic dipoles in traps h
been investigated in@12,13#, which addressed the question
instabilities in the system caused by an attractive compon
of dipolar interactions. The conclusion drawn was tha
large enough positive scattering length~providing repulsive
interactions! can stabilize a system of bosonic dipoles. F
strong~e.g. molecular! dipoles, when supposedly the scatte
ing length can be neglected, it is the trap geometry that p
a crucial role@10#—the system is stable provided the tra
assures the domination of repulsive interactions in the g

A full quantum mechanical description of the system
many interacting fermions is of course very complex. But
lessons of semiclassical atomic physics can be applied
particular the Thomas-Fermi approach@14,15# and its refine-
ments~see, e.g.,@16#!. Its success in describing static pro
erties of atoms is well known, and we note that, in rec
years, these methods were also used successfully for st
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ing dynamical processes of atoms and molecules in su
strong light pulses@17#.

Our paper is organized as follows: in Sec. II, the Thom
Fermi model is revisited with an eye on the dipole-dipo
forces. The Dirac correction to the interaction energy term
discussed and scaling properties derived with the help of
virial theorem. In Sec. III the results of approximate~nearly
analytic! and numerical minimizations of the Thomas-Ferm
Dirac energy functional are presented. Unexpectedly, we
that the system may withstand larger dipolar forces both
very flat and for highly elongated traps.

II. THOMAS-FERMI MODEL

A. General considerations

Let us begin by recalling some basic things, mainly c
lected from Refs.@16,18,19#, with due attention to the
changed situation: here fully spin-polarized fermions—th
fermions with no net spin. The spatial one-particle density
denoted byn(rW) and is normalized to the total particle num
ber N,

N5E ~drW !n~rW !, ~1!

where (drW)[dxdydzdenotes the volume element. The sp
tial one-particle density matrixn(1)(rW8;rW9) and the one-
particle Wigner functionn(rW,pW ) are related by

n(1)~rW8;rW9!5E ~dpW !

~2p\!3
n„1

2 ~rW81rW9!,pW …eipW •(rW82rW9)/\.

~2!

The spatial and momental one-particle densities are obta
by integratingn(rW,pW ) over the other variable,
©2001 The American Physical Society06-1
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n~rW !5n(1)~rW;rW !5E ~dpW !

~2p\!3
n~rW,pW !,

r~pW !5E ~drW !

~2p\!3
n~rW,pW !. ~3!

They are needed for the calculation of the kinetic energy

Ekin5E ~dpW !
pW 2

2M
r~pW !, ~4!

and the external potential energy~of the harmonic trap!,

Etrap5E ~drW ! 1
2 Mv2@x21y21~bz!2#n~rW !, ~5!

whereM is the mass of the atom species considered,v is the
~transverse! trap frequency, andb is the aspect ratio of the
cylindrical trap. The trap is spherically symmetric forb
51; for b,1, the equipotential surfaces are prolate~‘‘cigar
shaped’’! ellipsoids; for b.1, they are oblate~‘‘lentil
shaped’’! ellipsoids.

For the dipole-dipole interaction energy,Edd, we need
~the diagonal part of! the two-particle density matrix
n(2)(rW18 ,rW28 ;rW19 ,rW29),

Edd5
1

2E ~drW8!~drW9!Vdd~rW82rW9!n(2)~rW8,rW9;rW8,rW9!, ~6!

where

Vdd~rW !5
m0

4p FmW 2

r 3
23

~mW •rW !2

r 5
2

8p

3
mW 2d~rW !G . ~7!

We note that the contact term, proportional tod(rW), is re-
quired by the condition that the magnetic field made by
point dipole be divergence-free@20#. An alternative way of
presentingVdd is

Vdd~rW !5
m0

4p
mW •F2¹W ¹W

1

r
24p 1J d~rW !G•mW , ~8!

which is a particularly convenient starting point for evalu
ing the Fourier transform

E ~drW !eikW•rWVdd~rW !5
m0

4p
mW •F4p

kWkW

k2
24p1JG•mW . ~9!

The vanishing divergence just mentioned is here imme
ately recognized, inasmuch askW•@•••#50.

B. Thomas-Fermi-Dirac functionals

The semiclassical approximation now employed—in
spirit of what the TFD trio~Thomas@14#, Fermi @15#, and
Dirac @21#! did, although in a technically differen
manner—is twofold: We approximaten(2) by products of
n(1) factors~Dirac!,
03360
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n(2)~rW18 ,rW28 ;rW19 ,rW29!5n(1)~rW18 ;rW19!n(1)~rW28 ;rW29!

2n(1)~rW18 ;rW29!n(1)~rW28 ;rW19!, ~10!

andn(1) by a brutally simple Wigner function~Thomas and
Fermi!,

n~rW,pW !5h~$\2@6p2n~rW !#2/32pW 2%!, ~11!

whereh() is Heaviside’s unit step function. This gives th
density functional of the kinetic energy as

Ekin@n#5E ~drW !
\2

M

1

20p2
@6p2n~rW !#5/3, ~12!

and the density functional for the potential energy in the t
is Etrap of Eq. ~5!.

The dipole-dipole interaction energy consists of two pa
corresponding to the two summands in Eq.~10!,

Edd@n#5Edd
(dir)@n#1Edd

(ex)@n# ~13!

with the direct term

Edd
(dir)@n#5

1

2E ~drW8!~drW9!n~rW8!Vdd~rW82rW9!n~rW9! ~14!

and the exchange term

Edd
(ex)@n#52

1

2E ~drW8!~drW9!n(1)~rW8;rW9!n(1)~rW9;rW8!

3Vdd~rW82rW9!

52
1

2E ~drW !E ~dsW !Vdd~sW !

3n(1)~rW1 1
2 sW;rW2 1

2 sW !n(1)~rW2 1
2 sW;rW1 1

2 sW !.

~15!

Now we note that

n(1)~rW1 1
2 sW;rW2 1

2 sW !n(1)~rW2 1
2 sW;rW1 1

2 sW !

5E ~dpW 8!~dpW 9!

~2p\!6
n~rW,pW 8!n~rW,pW 9!ei (pW 82pW 9)•sW/\ ~16!

depends only on the lengths5usWu of vector sW, not on its
direction sW/s, because—in the TF approximation~11!—the
product n(rW,pW 8)n(rW,pW 9) involves only p85upW 8u and p9

5upW 9u. As a consequence, it is permissible to replace, in
~15!, Vdd(sW) by its average over the solid angle associa
with sW,

Vdd~sW !→ m0

4p F2
8p

3
mW 2d~sW !G . ~17!

We thus arrive at
6-2
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Edd
(ex)@n#5

1

2E ~drW !@n~rW !#2
m0

4p

8p

3
mW 2

5
1

2E ~drW !~drW8!n~rW !
m0

4p F8p

3
mW 2d~rW2rW8!Gn~rW8!,

~18!

and accordingly

Edd@n#5
1

2E ~drW !~drW8!n~rW !V̄dd~rW2rW8!n~rW8! ~19!

with

V̄dd~rW !5
m0

4p FmW 2

r 3
23

~mW •rW !2

r 5 G , ~20!

which isVdd(rW) of Eq. ~7! with the contact term removed. I
Eqs.~8! and~9! this corresponds to multiplying the unit dy
adic 1J by 1

3 @13#.
The rotational symmetry of the trap potential in Eq.~5!

distinguishes thez axis, and we take for granted that this
also the direction of spin polarization,

mW 5meW z . ~21!

Then

V̄dd~rW !5
m0

4p
m2

123~z/r !2

r 3
, ~22!

and the whole system is invariant under rotations around
z axis.

The total TFD energy functional is then given by the su
of the kinetic energy~12!, the potential energy in the trap~5!,
and the dipole-dipole interaction energy~19!,

E(TFD)@n#5E ~drW !F\2

M

1

20p2
@6p2n~rW !#5/31 1

2 Mv2r 2n~rW !G
1

1

2E ~drW !~drW8!n~rW !V̄dd~rW2rW8!n~rW8!. ~23!

The density that minimizesE(TFD) under the constraint~1!
obeys the nonlinear integral equation

\2

2M
@6p2n~rW !#2/31 1

2 Mv2@x21y21~bz!2#

1E ~drW8!V̄dd~rW2rW8!n~rW8!5 1
2 Mv2R2, ~24!

where1
2 Mv2R2 is a convenient way of writing the Lagrang

multiplier for the constraint.
03360
e

C. Virial theorems

Scaling transformations of the form

n~rW !→l31an~lrW !, N→laN ~25!

are consistent with the constraint~1!. They affect the various
pieces ofE(TFD) in accordance with

Ekin→l21(5/3)aEkin ,

Etrap→l221aEtrap,

Edd→l312aEdd, ~26!

so that (E[E(TFD))

E5Ekin1Etrap1Edd→l21 ~5/3! aEkin1l221aEtrap

1l312aEdd. ~27!

In the infinitesimal vicinity ofl51, all first-order changes
of E originate in the explicit change ofN, dN5dlaN, and
therefore

aN
]E

]N
5~21 5

3 a!Ekin1~221a!Etrap1~312a!Edd

~28!

must hold irrespective of the value of parametera. In view
of the lineara dependence, we get two independent sta
ments,

a50: 2Ekin22Etrap13Edd50,

a52 3
2 : Ekin17Etrap53N

]E

]N
. ~29!

They enable us to expressEkin , Etrap, andEdd in terms ofE
andN]E/]N,

Ekin5
21

2
E2

15

2
N

]E

]N
,

Etrap52
3

2
E1

3

2
N

]E

]N
,

Edd528E16N
]E

]N
. ~30!

In conjunction with (m5umW u)

m
]

]m
E52Edd,

v
]

]v
E52Etrap,

M
]

]M
E5Etrap2Ekin , ~31!
6-3
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they imply that the ground-state energyE(M ,v,m,N) is of
the form ~we leave theb dependence implicit!

E~M ,v,m,N!5\vN4/3e~N1/6«! ~32!

with

«5~vM3/\5!1/2
m0

4p
m2. ~33!

Clearly, the dimensionless number« measures the relativ
strength of the dipole-dipole interaction. The universal fun
tion e() is to be found numerically~for eachb value of
interest!. For «50, we can solve Eq.~24! immediately,

n~rW !5
1

6p2
~Mv/\!3@R22x22y22~bz!2#3/2, ~34!

where, by convention,@•••#3/250 for negative arguments
and

R5~48bN!1/6~Mv/\!21/2 ~35!

as a consequence of Eq.~1!, and so we find

e0[e~0!5 3
4 ~6b!1/351.363b1/3. ~36!

For the spherically symmetric caseb51, Edd vanishes in
first-order perturbation theory, so that

b51: e~N1/6«!5225/334/31e2N1/3«21O~N1/2«3!
~37!

with e2,0.

D. Dimensionless variables

These scaling laws invite the use of correspondingly c
sen dimensionless variables, such as

xW5rW/a with a5N1/6A \

Mv
~38!

for the position and

g~xW !5
a3

N
n~axW ! or n~rW !5

N

a3
g~rW/a! ~39!

for the density. The constraint~1! then appears as

E ~dxW !g~xW !51, ~40!

and the TFD energy acquires the form
03360
-
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E(TFD)

\vN4/3
@g#5

3

10
~6p2!2/3E ~dxW !@g~xW !#5/3

1
1

2E ~dxW !~x1
21x2

21b2x3
2!g~xW !

1
1

2
N1/6«E ~dxW !~dxW8!g~xW !

123 cos2u

uxW2xW8u3
g~xW8!,

~41!

whereu is the angle between the polarization direction~the
x3 direction! and the relative position vectorxW2xW8,

~xW2xW8!•mW 5uxW2xW8um cosu5~x32x38!m. ~42!

The minimum of the scaled TFD energy ise(N1/6«) of Eq.
~32! ~with its implicit b dependence!; it is obtained for the
g(xW ) that obeys the dimensionless analog of Eq.~24!,

1
2 @6p2g~xW !#2/31 1

2 ~x1
21x2

21b2x3
2!

1N1/6«E ~dxW8!
123 cos2 u

uxW2xW8u3
g~xW8!5 1

2 X2, ~43!

where the value ofX5R/a is determined by the constrain
~40!.

III. RESULTS

Owing to its intrinsic semiclassical approximations, o
expects a few-percent deviation of the TFD energy from
true ground-state energy. It is, therefore, not really neces
to solve the nonlinear integral equation~43!. A reasonable
variational estimate, in conjunction with a few full-blow
numerical solutions for comparison, will do.

A. Gaussian variational ansatz

The Gaussian ansatz

g~xW !5~2p!23/2k3g exp@2 1
2 k2~x1

21x2
21g2x3

2!# ~44!

is convenient. In addition to its aspect ratiog, the shape
parameter, it contains the scale parameterk, so that the virial
theorems of Sec. II C will be obeyed for the optimal choi
of k. For this scaled density, the scaled kinetic energy
given by

Ekin

\vN4/3
5224/3319/6525/2p1/3k2g2/3, ~45!

and the scaled value ofEtrap is

Etrap

\vN4/3
5

1

k2 S 11
b2

2g2D . ~46!

They exhibit the anticipated dependence on the scale pa
eterk, and so does the dipole-dipole interaction energy,
6-4
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Edd

\vN4/3
5

k3

4Ap
N1/6«g~g221!E

0

1

dz
z22z4

12z21g2z2
.

~47!

This integral can, of course, be evaluated in terms of elem
tary functions, but as it stands we see immediately that
integrand, and thus the integral, is positive for 0,g,`, so
that
te

rr
ifi

lly
n
in

pe
d
a

t

ro

ro
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Edd.0 for g.1 ~oblate Gaussian!,

Edd50 for g51 ~spherical Gaussian!,

Edd,0 for g,1 ~prolate Gaussian!, ~48!

consistent with the expectation that an oblate density ha
larger magnetic interaction energy than a prolate dens
More explicitly, then, we have
Edd

\vN4/3
5

k3

4Ap
N1/6«g5

12qcotq

sin2 q
2

1

3
for g5

1

cosq
.1

qcothq21

sinh2 q
2

1

3
for g5

1

coshq
,1.

~49!
ne
and
d

ur.

s

The Gaussian density~44! cannot mimic the«50 solu-
tion ~34! very well. But nevertheless, the resulting estima
of the «50 energy,

Gaussian:e05221/6325/12525/4p1/6b1/351.42b1/3 ~50!

is only 4.4% in excess of the correct value~36!. This accu-
racy is sufficient for our purposes; and, in any case, an e
of a few percent is a small price for the enormous simpl
cation that the Gaussian ansatz brings about.

Dipolar interactions are partially attractive and partia
repulsive, depending on the configuration of the dipoles. O
should keep in mind the simple situation of two dipoles
the plane perpendicular to their polarization, which re
each other, as opposed to the situation of two attracting
polar particles placed along the direction of their polariz

FIG. 1. Stability diagram. The dots, connected by a solid line
guide the eye, define the border between system parametersb,
aspect ratio of the trap;N1/6«, effective interaction strength! for
which E(TFD) is bounded from below~stable! or not bounded~un-
stable!. The inset shows an enlargement of the region of p
nouncedly prolate traps (b,0.5). For oblate traps withb55.2 or
larger, the system is always stable, irrespective of the value
N1/6«. This figure presents results obtained in the Gaussian app
mation, and so do all the other figures.
or
-

e

l
i-
-

tion. Extending this picture to a cloud of trapped dipoles o
would expect that attraction dominates in prolate traps,
repulsion in oblate traps~provided the dipoles are polarize
along the trap axis as is the case here!. In the case of pre-
dominant attraction one may surmise that instabilities occ
By varying the two system parameters (N1/6« and b) we
have investigated the issue of stability, see Fig. 1.

o
(

-

of
xi-

FIG. 2. Dependence of cloud parametersk ~cloud size; top! and
g ~cloud shape; bottom! on b, the aspect ratio of the trap. The line
refer to different values of the interaction strength:N1/6«50 ~solid
lines!, N1/6«51 ~dashed lines!, N1/6«52 ~dash-dotted lines!, and
N1/6«52.4 ~dotted lines!.
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From this stability diagram one concludes that, for obl
traps (b.1), the bigger the trap aspect ratio, the bigg
values of the dipole parameterN1/6« can be stabilized. In
fact, we found numerically that fermions form stable co
figurations forb.5.2 irrespective of the strength of the
dipole interaction~an analogous effect was observed for
polar bosons by Santoset al. @10#!. On the other hand, on
might naively expect an exactly opposite effect in prola
traps (b,1) where attractive interactions should domina
This is not quite true, indeed for moderate trap aspect ra
(1.b.0.5) the critical value of the dipole parameter
smaller, but in traps that are very soft (b,0.5) in the z
direction of rotational symmetry, we observe an increase
the critical value ofN1/6« ~see the inset in Fig. 1!. This can
be understood with the help of the following argument. W
note that the dipole-dipole energy term vanishes for a u
form density distribution. As the trap is made softer in t
polarization direction, the shape of the cloud along the s
axis becomes more and more uniform, contributing to
interaction energy to a lesser extent~this argument was also
used to interpret our earlier results for bosons interacting
contact and dipole-dipole forces, see@13#!.

The dependence ofg and k on b, shown in Fig. 2, is
consistent with this argument. We see thatg decreases with
decreasingb whereask increases. Accordingly, the clou
gets stretched along thez axis of symmetry, and the diamete
of the circular cross section in thex,y plane (}k21) is re-
duced. At the center of the cloud, we thus have a relativ
large volume of~almost! constant density, and the inhomo
geneous parts of the cloud are relatively far apart. Ta
together, these geometric features lead to a rather s
dipole-dipole interaction energy.

Whereas the stability of the system considered can
well understood, the spatial behavior of the fermionic clo
especially near the collapse, seems to be much less intu
As we approach the critical parameter values, the aspect
g of the cloud decreases and the cloud becomes elongat
the attractivez direction. This type of behavior is general
the sense that it does not depend on the trap aspect ratio
Fig. 3. It is only for traps withb.5.2 that g reaches an

FIG. 3. Aspect ratiog of the cloud as a function of the interac
tion strengthN1/6«, for various values of the aspect ratiob of the
trap. Note thatg5b for N1/6«50. The dashed line is forb55.2,
for which the cloud is stable for all values ofN1/6«.
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asymptotic value~dependent onb) for extremely large val-
ues ofN1/6«.

The dependence of the dipolar energyEdd on the dipole
parameterN1/6« and the trap geometry is also of interest as
is the quantity responsible for the~in!stability of the system,
see Fig. 4. For all prolate traps,Edd remains negative ap
proaching some critical value at the collapse point. Forb
,5.2, the dipolar energy can be positive for moderate dip
parameters, but if their values are large enough,Edd turns
negative indicating the collapse. Forb.5.2, Edd is always
positive and increases as a function ofN1/6«.

Finally, we take a look at the total TFD energy, see Fig.
For b,5.2, the system becomes unstable at the critical va
of N1/6«. Consistent with Fig. 1, we observe that larger v
ues ofN1/6« are supported forb50.1 andb51 than forb
50.5.

Let us now discuss the dipole parameterN1/6« and give
some typical values for it. Owing to theN dependence, one
can locate the experimental system in various regions of
stability diagram of Fig. 1 not only by choosing~or inducing,
as proposed for bosons@9,10#! a specific value ofm, but

FIG. 4. Dipole-dipole interaction energyEdd as a function of the
interaction strengthN1/6«. The solid lines are for trap aspect ratio
b50.5,1,1.5, . . . ,4.5; the dashed line is forb55.2.

FIG. 5. Normalized TFD energy as a function of the interacti
strength for various trap shapes. The universal functione(N1/6«) of
Eq. ~32!, normalized to its initial valuee05e(0), is shown for trap
aspect ratiosb50.1,0.5,1,1.5, . . . ,4 ~solid lines! and b55.2
~dashed line!. Note the horizontal slope of theb51 line ~spherical
trap!, as required by Eq.~37!.
6-6
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also, to some extent, by varyingN. One could also exploit
the v dependence of«}Av, which is particularly relevant
for optical traps with tight confinement@22#.

For the parameters of the fermionic chromium isoto
v5300 Hz andN5106, one obtainsN1/6«50.012, which is
a very small value. Therefore, the conclusion for atoms p
sessing even relatively large magnetic dipole moments is
irrespective of their number and the trap frequency they w
always remain stable against collapse. The following am
ing analogy offers a good reason for this observation@6#. Let
us compare the characteristic sizes of the noninterac
Fermi gas and the Bose-condensed atomic gas interactin
a repulsive contact potential. In the Thomas-Fermi appro
mation, the appropriate quantities, in units ofA\/(Mv),
read RFermi5(48N)1/6 for fermions andRBose5(15Na0)1/5

for bosons, wherea0 is the scattering length. By equating th
two sizes one can calculate the effective,N dependent, scat
tering length due to the exclusion-principle-induced rep
sion: a0'1.68N21/6. For typical numbers of atoms,N
5103–106, this a0 is huge on the scale set by typical sca
tering lengths for bosonic atoms (a0'1023). Once we real-
ize how strong is the repulsion that originates in the Fe
statistics, we understand that small atomic magnetic dip
can hardly have a noticeable effect on the behavior of dip
fermionic gases. However, for polar molecules the situat
is different. For a trap frequency ofv5300Hz andN5106

molecules of massm'100 a.m.u.~the typical mass of an
alkaline dimer! and a typical electric dipole moment o
1 Debye unit, one reachesN1/6«'11.5, which may very well
put the system into the unstable regime, see Fig. 1. In
situation, a sufficiently largeb value will stabilize the sys-
tem.

In order to assess the quality of our variational results
have computed exact numerical solutions of Eq.~43!. This
equation was solved for the density distributiong(xW ) self-
consistently starting from the known analytical result~34!
for a noninteracting («50) Fermi gas in a trap@6# and
slowly increasing the dipole parameterN1/6«. For each value
of N1/6« the solution was iterated until convergence w
reached. Then, the value of the dipole parameter was slig
increased. In order to compute the dipole~integral! term we
note that it has the form of a convolution. Thus, it can
conveniently evaluated in the Fourier space where it i
simple product of the Fourier transforms of the density~com-
puted numerically with the aid of an FFT! and the interaction
potential, the latter being known analytically@13#:
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~123 cos2 a!, ~51!

wherea is the angle between the Fourier variableqW and the
z direction. In order to assure that the integral term is eva
ated accurately we used a Gaussian distribution for comp
son and chose the grid parameters accordingly.

Our numerical calculations, performed in three dime
sions, were quite demanding so we limited their use to
check of the main features of the stability diagram in Fig.
The solutions obtained satisfy the virial relations~29! very
well, and total energies obtained numerically are always
low the corresponding values from the variational analys
The critical value of the dipole parameter for a spherical t
is N1/6«52.29 as compared to 2.55 obtained by the var
tional calculation. We also confirmed the effect of increa
of the critical interaction strength that we found, in th
Gaussian approximation, for prolate traps: forb50.07 the
critical value of N1/6« is 2.75(.1.96) as compared to
2.81(.2.55) obtained analytically in the Gaussian appro
mation.

Now two remarks about possible extensions of our wo
are in order. First, the results presented in this paper desc
the situation of a dipolar fermionic gas at the temperat
T50. An interesting subject of study would be extension
our theory to finite temperatures. Second, there exists a
allel approach in the Thomas-Fermi model, namely the o
in the momentum space@18,19#. As many experiments with
cold gases yield their momental characteristics, investiga
of this alternative approach also presents an attractive th
retical task.
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