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Instabilities and self-oscillations in atomic four-wave mixing
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The development of integrated, waveguide-based atom optical devices requires a thorough understanding of
nonlinear matter-wave mixing processes in confined geometries. This paper analyzes the stability of counter-
propagating two-component Bose-Einstein condensates in such a geometry. The steady-state field equations of
this system are solved analytically, predicting a multivalued relation between the input and output field inten-
sities. The spatiotemporal linear stability of these solutions is investigated numerically, leading to the predic-
tion of a self-oscillation threshold that can be expressed in terms of a matter-wave analog of the Fresnel
number in optics.
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[. INTRODUCTION ization bistability were experimentally observed in sodium
vapor[38,39.

The recent development of narrow atomic microfabricated Bistability and nonlinear instability are typically related to
waveguideq 1-7] has raised the exciting possibility of the four-wave-mixing phenomena in systems that exhibit a cubic
design and manufacture of integrated atom-interferometrynonlinearity. In ultracold atomic systems it is readily shown
based sensing devices. With the inclusion of an “atom lathat in thes-wave scattering approximation the form of the
ser” [8—11] as a high-brightness source of coherent atomicself-interaction is that of a cubic nonlinearity. A recent paper
matter waves, it is possible to imagine “practical” devices, by Law and co-workerd40] analyzed four-wave-mixing
which could compete with or out perform conventional op-processes between the hyperfine ground-state components of
tical interferometric sensors. The use of high-density atomicomponents of &Na spinor condensate confined in an op-
fields comes at a price, however, as atomic matter waves atial dipole trap. Goldstein and Meystré1] presented a full
subject to nonlinear wave mixing due to atom-atom interac-quantum-mechanical theory of four-wave mixing in a system
tions. It is of crucial importance, therefore, to understand thavhere two mg=0 momentum side modes were counter-
effects of nonlinear wave mixing on wave-guide based atompropagating while then.= =1 states were at rest.
optics devices so that they may eventually be controlled or In the present paper we investigate a collinear four-wave-
even exploited. In this spirit, the present paper is a first atmixing geometry as sketched in Fig. 1, where each of the
tempt at an analysis of wave-mixing instabilities in quasi-counterpropagating matter waves can be in one of two dif-
one-dimensional ultracold atomic samples. ferent atomic states, for example two hyperfine state levels of

The observation of atomic four-wave mixifig2—18 and  8’Rb. This situation is closely analogous to the optical case,
solitons [19-25 in Bose-Einstein condensates of dilute the two internal atomic states taking the place of the polar-
atomic vaporg26—29 clearly demonstrate both the signifi- izations of the field. As such, this system is formally equiva-
cance of nonlinear effects in quantum degenerate atomilent to the case of counterpropagating light fields in an Kerr
fields, as well as the benefits of exploiting the mathematicamedium.
analogy between the nonlinear equations describing self- In contrast to the exact quantum treatment of Rp46]
interacting Schrdinger fields and those describing the and[41], our analysis is based on a mean-field approach, the
propagation of light in nonlinear media. Nonlinear wave- matter-wave equivalent of treating the electromagnetic field
mixing instabilities have been studied extensively in nonlin-classically. We investigate both the steady-state and dynami-
ear optics, and many of the techniques and results develope@l behavior of the system by a combination of analytical
here can readily be adapted to the problem at hand. and numerical methods. The output fields are found to gen-

Focusing on effective one-dimensional geometries, therally exhibit a multivalued dependence on the inputs, char-
question of stable and unstable steady-state configuratior@teristic of bistable and multistable systems. The stability
has long been a topic of optical research. Winful and Mar-analysis for this particular configuration, however, shows
burger[29] first proposed that bistability could occur in col- that only the upper branch of the steady-state curve is stable
linear degenerate four-wave mixing and shortly thereaftemgainst small perturbations. More interesting is the occur-
Silberberg and Bar-Josefd80] showed that even for the rence of a threshold behavior in the output fields indicating
rather simple case of equally polarized counterpropagatinthe onset of self-oscillations in the system. The feedback
laser beams, instabilities and even chaos may occur in th@echanism leading to this effect is the grating established in
dynamical behavior. Multibranched steady-state solutionshe medium by the interference between the various fields.
were first derived by Kaplan and LayB1], however the We note that matter-wave bistability was recently pre-
stability of the steady-state field configurations were not dedicted in a simple model of a driven nonlinear Gross-
termined. Considerable work on the spatial or temporal staPitaevskii equatiori42], which neglected, however, the ef-
bility of such systems was subsequently carried out by manfects of collisions between the strong driving field and the
others[32-37. In particular, optical instabilities and polar- condensate. In contrast, the present system includes both the
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1f = ] -1 and similarly for®, with 12, where the total atomic den-
nonlinear sity is normalized to 1 by factoring out the number of atoms
2f — mnteraction <= 2b N. Quantum fluctuations about this solution can be analyzed
: —> by introducing the mean-field approximation
0 L
FIG. 1. Four matter waves incident into a region of nonlinear ﬁ/i(r't)ZQi(r,t).q. 51}i(r,t). (4)

interaction. The two forward moving and the two backward propa-
?ha;:p?ng;i?s;tavtvgh opposite wave vectors, are distinguished b%//vhere the bosonic operaté{[/i(r,t) describes small fluctua-
tions about the mean field,(r,t) =<‘i’i(r,t)>. This analysis

effect of two-body collisions, and fully accounts for propa- will be the subject of future work.

gation effects. We assume that the atomic fields are tightly confined in
This paper is organized as follows: Section Il introducesthe transverse dimension but free to move in the third one

our model and derives the nonlinear partial differential equasuch that the motional degrees of freedom inxhey plane

tions describing the propagation of the interacting atomicare frozen, a situation that could be realized in atomic

beams. Section 1l solves these equations analytically irwaveguides. In that case, we may factorize the ground-state

steady state and shows the appearance of multistable solbartree wave function into a parallel and a transverse part as

tions and threshold behavior. The stability of the steady-state

solutions is investigated in Sec. IV using numerical methods, @(r,t)= ¢£J)(X,y)¢j(z,t)efiwjt, (5)

while Sec. V discusses the onset of self-oscillations. Finally,

Sec. VI is a summary and conclusion. i . .
y where$V(x,y) is taken to be the normalized ground state of

the transverse potenti&l (x,y) with energy% ;. The prob-
lem is then reduced to an effective one-dimensional geom-

We consider an ultracold two-component Salinger  ©try, with the longitudinal condensate wave function satisfy-
field \i'(r,t)=[‘i’1(r,t),‘if2(r,t)]T, the indices 1 and 2 la- N9 the one-dimensional nonlinear Sctiilmger equation

beling the internal state of the atoms of masse.g., two
hyperfine ground states. These fields consist of two counter- . )
propagating plane waves that interact propagating along the 17 ¢1(z0)=—5_ E‘ﬁl(ziHhN[ﬂlgﬂ $1(z.1)]
axis in an interaction region9z=<L, the nonlinear interac-
tion outside this region being turned off, e.g., by tuning a + 7,9x] D2(2,1) |21 1 (2,1) (6)
magnetic field to a Feshbach resonance.
Our starting point for the description of this system is the, similarly foré,(z) with 1+2. Here
many-body Hamiltonian describing the evolution of a two-
component condensate, the effects of collisions being de-
scribed in thes-wave scattering approximation, ”j:f dx dy|¢D|4,  j=1,2

Il. MODEL

2(92

"2

P A
ﬁ'ﬁ‘vl ‘I’J(r,t)

H=2> | dr¥(rp)
e 7= J dx dy (V|7 ()2, M

+ 5 [ (@ i o _ - _
2 We consider the situation where two counterpropagating
beams of matter waves are moving along the axis of the

+2g, VW0, W), (1) waveguide, with
where the scattering strengtgsare related to their respec- B ikz ik i ot
tive swave scattering lengths; by $i(z)=[j ()€™ F pjp(z)e e, 8)
_Amha; wherej=1,2, the subscripts§ andb stand for forward- and

9i= m 2) backward-propagating waves, af#?/2m=w. We assume
that the spatial envelopes of these beams vary slowly over a
For T—0, the condensate is well described by a two-de Broglie wavelength, the atom optics version of the slowly
component Hartree condensate wave functidn(r,t) varying envelope approximation,
=[d4(r,1),®,(r,t)]", governed by the coupled Gross-

Pitaevskii nonlinear Schdinger equations 2

J
<Kl— <k?2
2 <K/ dm| <K? . ©

.k
|ﬁq)1= %Vz'f'vl

72"
O, +7N[gg| D]+ gy D] 1D,

(3)  With Egs.(8) and(9), Eqg. (6) yields
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| d [hk) 9 R(2)=¢11b1nt+ b2t 93 17
'{EJF(E)E $11=01(| ba1l*+ 2| f1|) s b
allows us to decouple the evolution of the two internal com-
+ 0, (| b2t ?+| bap|?) ponents of the field for two condensate species 1 and 2. This
. can be seen from the observation that
X 11+ dordopdap] (10
dR d¢ys , doi, deos désp

and

FERT ¢1b+¢1fﬁ+ 4z ¢2b+¢2f¥

o [k a
"ot ' m)az

B10=02(| b1l + 2] b2 b - laor, (18

+0uL (| anl?+ | b2rl®)
X 10+ Ganbordit] (11

as well as two additional equations with—12. In these
equations we have scaled the nonlinear coupling constants We can therefore determine the steady state for the two in-
the overlap integraly and the total particle numbét as ternal states of the condensate separately.

Substituting the new rotating field amplitudes

which yields

R(z)=Rgpe w3z, (19

gji—nNg;, =12, y
Pri=pr€" €7,
9x— 7xN Oy (12 _
I
The factors of 2 appearing in Eq4.0) and (11) result from P1p= 108 v %% (20

the nonlinear nonreciprocity familiar in nonlinear optics. . . . . .
P y P into Egs.(15) yields the second-order differential equation

Ill. STEADY STATE -

d?ys e dyyg |Ro|? 21)
To find the steady state of the system, we proceed by first dz =~ v dz L

observing that the total atomic density

v

which shows that the propagation @f; is characterized by

is a constant of motion. For simplicity we takg=g,=0y o 1

=g (this can be achieved by tuning the scattering lengths Ke=———*=—J0°—4|Ry|% (22
via, e.g., Feshbach resonance and/or by adjusting the trans- 2v2v

verse potentiaV); in the optical analog this corresponds to
a purely electrostrictive Kerr medium. Dropping the time
derivatives from Eqs(10) and (11) and introducing the M2=p2—4|R,|2=0 (23
scaled velocity

It can be shown that

so thati¢(z) satisfies

fik (14
D= —
mg Yri(2)=e" /2027 A 0 sin 55 2|+ Bus COS{ZMZ) , (24
gives then v v
dob the constant#\; andB,; being determined by the boundary
iy — = 0 bri+ Ry, conditions. We observe that ; depend_s_on botk,(0) an_d
dz Rg, and hence on the boundary conditions for all four fields,
$11(0), d1p(L), #2:(0), and¢,p(L). Therefore the equa-
v déyp —0bt R (15) tions of motion of all four fields need to be solved and used
dz 1b i to calculate the respective coefficients for any one field. The
explicit forms of the coefficient#,; and B,;, where u
and =1,2 andi=f,b, are given in Appendix A.
dé Further analytical progress can be achieved by decompos-
iy —2 =0+ Ry, ing the field ¢4; into a real amplitude and phase following
dz Ref. [31],
10 4t R, (16) = oy eXB(i D), (25
and concentrating on the field amplitudes only. One finds
where the introduction of the new variable readily
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M
p1t(2)=B= \/|a|2_[P1f(0)_/3]25in(72)

M
+(p1f(0)—B)cos(72). (26)

pis(L)/ps

where

1
a= 5 (A}+B}),

p17(0)/ oy

1
B= §(|A1f|2+|Blf|2)’ 27 FIG. 2. Normalized output intensity,¢(L) versus normalized
input intensityp;¢(0) from Eq.(35). Curve(l) L/L.=0, Curve(2)
and the sign in front of the square root in E86) is deter- L/L.=27, Curve(3) L/L.=4m, and Curve(4) L/L.=8, with
mined by the sign ofA,;B7;+ Aj;By;. Similar relations hold L. as defined in Eq(39).
for the other field components.

One advantage of concentrating on the amplitudgs la|=pB=py(L)/2. (34)
only is that it is sufficient to know one of them to determine
the others. This follows from the fact that With Egs.(33) and(34), Eq. (26) reduces to the remarkably
simple form
dpyr  dpap dpas dpap
d = d == d == dz ’ (28) p17(0)
z z z z =cog(kL/2), (35
pas(L)
which allows us to introduce the three conserved quantities
where
pi=p11(2) + p2t(2),
=M/v= 2mg V14— pis(L)/2 (36)
Po=p16(2)+ pav(2), k=Mlv=| Z5 " |eNa=pi(L)/2e.
px=p1t(2) + pop(2), (29 1/« defines a characteristic length. Equati@®) predicts a
multivalued relationship between the input and output inten-
so that sities py;. The longer thex, the higher the order of “mul-
o tistability” predicted by Eq(35). Fig. 2 illustrates the input-
P16(2)= Po= Pyt P1i(2), output relationship op; .

Alternatively, and recalling Eq$12) and(14) we observe
that the argumenkL/2 of the cosine function in Eq35) is
also proportional to the total density of atoms. This leads us

P2p(2)=px= P1(2). (30 to exzec[i some interesting behavioyr when varying the num-
The existence of these conservation laws was previously€r of particles involved, a scheme whose optical analog has
pointed out in the context on nonlinear optics in R¢&L] een the object of considerable wqil,33-35. However,
and[35]. we do not further investigate these questions in the present

For concreteness, we now consider the specific exampl@aPer, which is limited to the case of fixed total atomic den-
where the intensities of the forward- and backward-SIY-

p21(2)=ps—p11(2),

propagating fields are equal, Returning from the scaled versidi2) of the coupling
constantg to its original definition(2) via Egs.(7), we ob-
Pt=Pb, (3D serve that for a transversely homogeneous sample, the factor
go in Eq. (36) becomegp,, wherep,, is the volumetric
and density of the atomic systefas opposed to its linear density

p1s(L)=p=0/2 0). Eq. (36) becomes then
1b —Pb— Il

2m
pap(L)=0. (32) sz(ﬁ>hgg\,\/ll4— 2p1¢(L)120

Under these conditions, one finds readily that

Emf
1 =k E V1/4—pqs(L)120, (37)
|Ro|?= ppp1s(L) = EQplf(L) (33 ke
where we have introduced the kinetic enerdy,e
and =#2k?/2m and the mean-field enerdy,;=%goy .
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Introducing the healing length

™
'"= N 2mgey, (38)

and the de Broglie wavelengthy,=27/k shows that the
multistable properties of the system are fully determined by
the characteristic length

In[616(L,8)]

Eve , 1 2 3 4 5
Lempg. =475 (39) .

FIG. 3. I (L, 7)] for pys (L)=0.2p¢. 63¢(L,7) is scaled to
IV. STABILITY ANALYSIS the intensityp; of the forward moving field and the time is in

. . . units of the round-trip time through the interaction region. Cugye
In this section, we analyze the stability of the steady-stats 5y example of unstable behaviorlat =4 («L/2~0.89r)

solution (35) against small classical perturbations. For sim-yile curve(b) shows stability at./L,=1.67 (xL/2~0.36m).
plicity, we assume that the fields at the boundaries of the

interaction region are real, V. SELF-OSCILLATIONS
$11(0)=p1s, An important consequence of the stability analysis is the
prediction of a self-oscillation threshold in the system, as can
a0 =70 e e e o)t o
$1(L)=0, p1i(L)co2(kLi2)=0. 43)
ban(L)=py. (40 Hence in the stable region given by E42), p;;(L) must be

while in the unstable regiom;(L) may take finite val-
s, which results from the amplification of fluctuations. The
onset of instability is given by

V14— pis(L) /20 = . (44)

Since the argument of the square root is always less than 1/4,
and linearizing the equations of motigfh0) and (11), and  we have that
similarly for the other field components. The spectrum of
eigenvalues. can be found by discretizing the resulting sys- _ KL [ Emt
tem of equations witlN points along the axis, which yields Kl<— Ee)
a sparse BIX8N eigenvalue problem that can be solved
numerically using standard techniques. The steady-state sblence the threshold conditidd4) cannot be met unless

lution is then unstable only if eigenvalues with positive

The first approach proceeds by expressing the condensq(gté
wave functiong,¢(z,t) and its complex conjugate as

¢1f(Z,t):¢1fSS(Z,t)+51f(Z)e_iM, Emf

KL:kL(—
Eke

¢If(zlt):¢IfSS(Z!t)+61f(Z)e_iM! (41)

(45)

imaginary parts appear in the spectrum. (E) - 2_77 (46)
In addition to this temporal stability, we have also carried Exe/ kL’
out a full spatio-temporal analysis by solving directly the
linearized form of Eqs(10) and(11) for small perturbations Of
about the steady state of the fields. 5
Both approaches indicate that the only stable branch of Ih _ 1 47
the solution(35) is the “uppermost branch,” i.e., the branch Lhgp 873
corresponding to the highept(L) for a givenp4:(0) that
corresponds to the condition which can be recast as
kL L
0= —<m/2. (42 — =21, (48
2 Lc

Figure 3 shows a typical result for the temporal evolutionlf this threshold condition is satisfied, the fielth; under-
of 6,¢ atz=L in both an unstable and a stable branch. Aftergoes a second-order-like phase transition to self-oscillations,
some short-time transients, the unstable dynamics becomes illustrated in Fig. 4.
completely dominated by the largest positive eigenvalue and The physical origin of the self-oscillations is the distrib-
the growth of the small perturbation becomes exponential. uted feedback resulting from the cross-phase modulation
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FIG. 4. Self-oscillation threshold of the intensipy(L), nor- FIG. 5. py¢(L,7), normalized top;, for p;¢(0)=0.01¢. The

malized tOPf, as a function of the interaction |engm Above time is in units of the round-trip time through the interaction me-
threshold, this field spontaneously builds up from fluctuations everlium. Curve(a) is in the regime with only one high-output stable

in the absence of inpupy;(0)=0. branch atL/L.=4; curve (b) is atL/L.=1.6r where for every
(low) output intensity there exists a stable steady-state field con-
with the other fields present. In order to lead to gain at thef'gurat'on'

wavelength of¢q¢, this grating must itself be modulated . o . )

with period 2/k. But the mean-field energy of the conden- the input and the output field intensities. Through a linear
sate fights against the creation of such spatial modulatiorPerturbation analysis as well as a full numerical study, we
The healing length, whose associated momenitiifnyields have found that one and only one branch of solutions is
a kinetic-energy contribution equal to the mean-field energyStable for a given input configuration. The onset of the insta-

is the smallest length scale over which the required change@.Iity depends on a parameter in close analogy with the
Fresnel number in optics.

can occur. Hence, it is not surprising that the threshold con* )
dition should be related to the healing length, the length of We remark that these results were obtained under the as-
sumption that all the effective scattering lengths are the same
(9:=9,=g9,). In future work, we plan to investigate the
case of unequal scattering lengths, which will make our sys-

tem formally equivalent to the case of counterpropagating

distance of propagation. The Fresnel number is a measure tht f|_e|ds in-a n_onelectrostrlcnve Kerr med|um._The anal-
the number of transverse modes that can be excited in af9Y. with the optical system aIsp suggests that it would be
optical system. For very large Fresnel numbers, the wave Cat%eswable tq allow for d'ﬁefe'ﬁ“ intensities of the two coun-
well be approximated as a plane wave, while diffraction ef- erpropagating matter-wave f|¢|ds. It has b‘?e” show_n that bi-
fects and multiple transverse modes become important fo,?r mullttlste_ll?ls s_oltutlonts_ eXJESt n th_fese r;]onllneiltr optical sys-
small . The present situation is different in that we now tgmsc;anvglsoi;r;]izzte?nlglﬁs;giel}i? I such a matier-wave sys-
consider the longitudinal stability of the system. Still, the Einallv. it will b thwhil ty. tend th Vsi ¢
analogy is rather telling. For samples of length short or com- inafly, it wit be worthwhiié fo extend the analysis pas

parable to the healing length, the condensate is so stiff as ttge Hartree mean-field theory in order to _study the onset O.f
prevent the generation of higher-longitudinal modes, henc onclassical effects, such as the squeezing associated with

the instability requires a condensate much larger tharis e_l_?]go;nxalg'r“:;gﬁ?;'?egriztggosgsgfTHiS svstem is certainl
such,lﬁ/)\dbL can be thought of as tHengitudinal Fresnel P Y y

berof th d ¢ ith the healing lenath plavi challenging, but we see no fundamental problems using
numberor the condensate, wi € healing length playing apresent day technology. Indeed, the question of stability in
role similar to that of the system apertuaen optics.

- - g ., wave-mixing pr will most likely arise naturally in th
The onset of self-oscillations is illustrated in Fig. 5, which ave g processes ost likely arise naturally in the

) . next generation of atom interferometry experiments.
shows the evolution ofp4¢(L,t) for p1:(0t)=0.01p/2, this g y &xp
small value simulating some small fluctuation about

the sample, and the atomic de Broglie wavelength.

It is interesting to note that the quantit§/\ 4,L is remi-
niscent of the Fresnel numbgf=a?/\L in optics, wherea
is the aperture of the system, the wavelength, and the

p1:(0,t)=0. This simulation assume that all field amplitudes ACKNOWLEDGMENTS
inside the interaction region (0z=<L) are initially equal to
zero. This work was supported in part by Office of Naval Re-

search Contract No. 14-91-J1205, National Science Founda-
tion Grant PHY98-01099, the Army Research Office, and the
VI. SUMMARY AND CONCLUSION Joint Services Optics Program. J.H. gratefully acknowledges

In summary, we have studied a system of counterpropa§Upport by the “Konrad Adenauer Stiftung.”

gating two-component Bose-Einstein condensates in a wave-

guide configuration. This system exhibits interesting nonlin- APPENDIX A

ear behavior such as four-wave mixing and self-oscillations.

We have presented an analytical solution of the steady-state Solving Eq. (21) and its counterpart for the backward
field equations and found a multivalued relationship betweemoving field and inserting the results into E420) gives
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M
+ByfcCo ZZ

+ B
1b co 2 z y

) M
dr11(2)= e"(39’2”)2[ A sin( 22

) M
D1p(2)= e'(SQ’ZU)Z[ A1 sin( 552

and similarly for X-2. The boundary conditions are

$1:(0), d1p(L), ¢2¢(0), andp,,(L). Since the four fields
are coupled byRy,=B1;B],+ByB3, it is necessary to con-
sider all fields to determine the coefficierts; andB ;. We
start from Egs.(Al), and derive expressions fap;;(0),
d¢;:(0)/dz, ¢j,(L), andd¢;,(0)/dz, j=1,2 in terms of
these coefficients and use the relatioh6) to close this set
of equations.
For sinML/2v), $1¢(0), and¢,:(0)#0 we find

Bit=#1:(0),
Bt = ¢2:(0),

e VM (Gap(L) + han(L)/9(|Bo1] )
Si(ML/20)[g(|B1*) +4|By|*|B2rl 7 9(|B2e|)]’

Bip=

PHYSICAL REVIEW A63 033605

i2B)B1pBo—e e M ¢, (L) /sin(ML/2v)

Bop=
g(|Bzf|2)
A $ap(L)e et —B) cog(M/2v)L)
b sin((M/2v)L) :
A2b: - sz/tar( M L/ZU),
i
A1f=M[QBlf_ 2(B1¢BJ,+ B2B3y)Bip],
i * *
Azfzm[QBzf_ 2(B1tB1,+B2iBoy) B,  (A2)
where
g(x)=i(0—2x)— M/tan( ML/2v). (A3)

These equations simplify considerably in the specific case
¢-p(L)=0 that we have analyzed in detail. Similar, but sim-
pler equations are easily derived if one of the input fields is
equal to zero or for sidiL/2v) # 0.
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