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Instabilities and self-oscillations in atomic four-wave mixing
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The development of integrated, waveguide-based atom optical devices requires a thorough understanding of
nonlinear matter-wave mixing processes in confined geometries. This paper analyzes the stability of counter-
propagating two-component Bose-Einstein condensates in such a geometry. The steady-state field equations of
this system are solved analytically, predicting a multivalued relation between the input and output field inten-
sities. The spatiotemporal linear stability of these solutions is investigated numerically, leading to the predic-
tion of a self-oscillation threshold that can be expressed in terms of a matter-wave analog of the Fresnel
number in optics.
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I. INTRODUCTION

The recent development of narrow atomic microfabrica
waveguides@1–7# has raised the exciting possibility of th
design and manufacture of integrated atom-interferome
based sensing devices. With the inclusion of an ‘‘atom
ser’’ @8–11# as a high-brightness source of coherent atom
matter waves, it is possible to imagine ‘‘practical’’ device
which could compete with or out perform conventional o
tical interferometric sensors. The use of high-density ato
fields comes at a price, however, as atomic matter waves
subject to nonlinear wave mixing due to atom-atom inter
tions. It is of crucial importance, therefore, to understand
effects of nonlinear wave mixing on wave-guide based ato
optics devices so that they may eventually be controlled
even exploited. In this spirit, the present paper is a first
tempt at an analysis of wave-mixing instabilities in qua
one-dimensional ultracold atomic samples.

The observation of atomic four-wave mixing@12–18# and
solitons @19–25# in Bose-Einstein condensates of dilu
atomic vapors@26–28# clearly demonstrate both the signifi
cance of nonlinear effects in quantum degenerate ato
fields, as well as the benefits of exploiting the mathemat
analogy between the nonlinear equations describing s
interacting Schro¨dinger fields and those describing th
propagation of light in nonlinear media. Nonlinear wav
mixing instabilities have been studied extensively in nonl
ear optics, and many of the techniques and results develo
here can readily be adapted to the problem at hand.

Focusing on effective one-dimensional geometries,
question of stable and unstable steady-state configura
has long been a topic of optical research. Winful and M
burger@29# first proposed that bistability could occur in co
linear degenerate four-wave mixing and shortly therea
Silberberg and Bar-Joseph@30# showed that even for the
rather simple case of equally polarized counterpropaga
laser beams, instabilities and even chaos may occur in
dynamical behavior. Multibranched steady-state soluti
were first derived by Kaplan and Law@31#, however the
stability of the steady-state field configurations were not
termined. Considerable work on the spatial or temporal
bility of such systems was subsequently carried out by m
others@32–37#. In particular, optical instabilities and pola
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ization bistability were experimentally observed in sodiu
vapor @38,39#.

Bistability and nonlinear instability are typically related
four-wave-mixing phenomena in systems that exhibit a cu
nonlinearity. In ultracold atomic systems it is readily show
that in thes-wave scattering approximation the form of th
self-interaction is that of a cubic nonlinearity. A recent pap
by Law and co-workers@40# analyzed four-wave-mixing
processes between the hyperfine ground-state componen
components of a23Na spinor condensate confined in an o
tical dipole trap. Goldstein and Meystre@41# presented a full
quantum-mechanical theory of four-wave mixing in a syst
where two mF50 momentum side modes were counte
propagating while themF561 states were at rest.

In the present paper we investigate a collinear four-wa
mixing geometry as sketched in Fig. 1, where each of
counterpropagating matter waves can be in one of two
ferent atomic states, for example two hyperfine state level
87Rb. This situation is closely analogous to the optical ca
the two internal atomic states taking the place of the po
izations of the field. As such, this system is formally equiv
lent to the case of counterpropagating light fields in an K
medium.

In contrast to the exact quantum treatment of Refs.@40#
and@41#, our analysis is based on a mean-field approach,
matter-wave equivalent of treating the electromagnetic fi
classically. We investigate both the steady-state and dyna
cal behavior of the system by a combination of analyti
and numerical methods. The output fields are found to g
erally exhibit a multivalued dependence on the inputs, ch
acteristic of bistable and multistable systems. The stab
analysis for this particular configuration, however, sho
that only the upper branch of the steady-state curve is st
against small perturbations. More interesting is the occ
rence of a threshold behavior in the output fields indicat
the onset of self-oscillations in the system. The feedb
mechanism leading to this effect is the grating establishe
the medium by the interference between the various field

We note that matter-wave bistability was recently p
dicted in a simple model of a driven nonlinear Gros
Pitaevskii equation@42#, which neglected, however, the e
fects of collisions between the strong driving field and t
condensate. In contrast, the present system includes bot
©2000 The American Physical Society05-1
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effect of two-body collisions, and fully accounts for prop
gation effects.

This paper is organized as follows: Section II introduc
our model and derives the nonlinear partial differential eq
tions describing the propagation of the interacting atom
beams. Section III solves these equations analytically
steady state and shows the appearance of multistable
tions and threshold behavior. The stability of the steady-s
solutions is investigated in Sec. IV using numerical metho
while Sec. V discusses the onset of self-oscillations. Fina
Sec. VI is a summary and conclusion.

II. MODEL

We consider an ultracold two-component Schro¨dinger

field Ĉ(r ,t)5@Ĉ1(r ,t),Ĉ2(r ,t)#T, the indices 1 and 2 la
beling the internal state of the atoms of massm, e.g., two
hyperfine ground states. These fields consist of two coun
propagating plane waves that interact propagating along tz
axis in an interaction region 0<z<L, the nonlinear interac-
tion outside this region being turned off, e.g., by tuning
magnetic field to a Feshbach resonance.

Our starting point for the description of this system is t
many-body Hamiltonian describing the evolution of a tw
component condensate, the effects of collisions being
scribed in thes-wave scattering approximation,

H5 (
j 51,2

E d3r Ĉ j
†~r ,t !S p̂2

2m
1Vj D Ĉ j~r ,t !

1
\

2E d3r ~g1Ĉ1
†Ĉ1

†Ĉ1Ĉ11g2Ĉ2
†Ĉ2

†Ĉ2Ĉ2

12gxĈ1
†Ĉ2

†Ĉ1Ĉ2!, ~1!

where the scattering strengthsgi are related to their respec
tive s-wave scattering lengthsai by

gi5
4p\ai

m
. ~2!

For T→0, the condensate is well described by a tw
component Hartree condensate wave functionF(r ,t)
5@F1(r ,t),F2(r ,t)#T, governed by the coupled Gros
Pitaevskii nonlinear Schro¨dinger equations

i\Ḟ15S \2

2m
¹21V1DF11\N@gsuF1u21gxuF2u2#F1 ,

~3!

FIG. 1. Four matter waves incident into a region of nonline
interaction. The two forward moving and the two backward pro
gating modes, with opposite wave vectors, are distinguished
their internal state.
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and similarly forF2 with 1↔2, where the total atomic den
sity is normalized to 1 by factoring out the number of atom
N. Quantum fluctuations about this solution can be analy
by introducing the mean-field approximation

Ĉ i~r ,t !.F i~r ,t !1dĉ i~r ,t !, ~4!

where the bosonic operatordĉ i(r ,t) describes small fluctua

tions about the mean fieldF i(r ,t)5^Ĉ i(r ,t)&. This analysis
will be the subject of future work.

We assume that the atomic fields are tightly confined
the transverse dimension but free to move in the third o
such that the motional degrees of freedom in thex2y plane
are frozen, a situation that could be realized in atom
waveguides. In that case, we may factorize the ground-s
Hartree wave function into a parallel and a transverse par

F j~r ,t !5f'
( j )~x,y!f j~z,t !e2 iv j t, ~5!

wheref'
( j )(x,y) is taken to be the normalized ground state

the transverse potentialVj (x,y) with energy\v j . The prob-
lem is then reduced to an effective one-dimensional geo
etry, with the longitudinal condensate wave function satis
ing the one-dimensional nonlinear Schro¨dinger equation

i\ḟ1~z,t !52
\2

2m

]2

]z2
f1~z,t !1\N@h1g1uf1~z,t !u2

1hxgxuf2~z,t !u2#f1~z,t ! ~6!

and similarly forf2(z) with 1↔2. Here

h j5E dx dyuf'
( j )u4, j 51,2

hx5E dx dyuf'
(1)u2uf'

(2)u2. ~7!

We consider the situation where two counterpropagat
beams of matter waves are moving along the axis of
waveguide, with

f j~z,t !5@f j f ~z,t !eikz1f jb~z,t !e2 ikz#e2 ivt, ~8!

where j 51,2, the subscriptsf andb stand for forward- and
backward-propagating waves, and\k2/2m5v. We assume
that the spatial envelopes of these beams vary slowly ov
de Broglie wavelength, the atom optics version of the slow
varying envelope approximation,

U ]2

]z2
fmU!kU ]

]z
fmU!k2ufmu. ~9!

With Eqs.~8! and ~9!, Eq. ~6! yields

r
-
y

5-2
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i F ]

]t
1S \k

m D ]

]zGf1 f5g1~ uf1 f u212uf1bu2!f1 f

1gx@~ uf2 f u21uf2bu2!

3f1 f1f2 ff2b
! f1b# ~10!

and

i F ]

]t
2S \k

m D ]

]zGf1b5g2~ uf1bu212uf1 f u2!f1b

1gx@~ uf2bu21uf2 f u2!

3f1b1f2bf2 f
! f1 f # ~11!

as well as two additional equations with 1↔2. In these
equations we have scaled the nonlinear coupling constan
the overlap integralh and the total particle numberN as

gj→h jNgj , j 51,2,

gx→hxNgx . ~12!

The factors of 2 appearing in Eqs.~10! and ~11! result from
the nonlinear nonreciprocity familiar in nonlinear optics.

III. STEADY STATE

To find the steady state of the system, we proceed by
observing that the total atomic density

%5uf1 f u21uf1bu21uf2 f u21uf2bu2 ~13!

is a constant of motion. For simplicity we takeg15g25gx
[g ~this can be achieved by tuning the scattering leng
via, e.g., Feshbach resonance and/or by adjusting the tr
verse potentialVj ); in the optical analog this corresponds
a purely electrostrictive Kerr medium. Dropping the tim
derivatives from Eqs.~10! and ~11! and introducing the
scaled velocity

v5
\k

mg
~14!

gives then

iv
df1 f

dz
5%f1 f1Rf1b ,

2 iv
df1b

dz
5%f1b1R!f1 f , ~15!

and

iv
df2 f

dz
5%f2 f1Rf2b ,

2 iv
df2b

dz
5%f2b1R!f2 f , ~16!

where the introduction of the new variable
03360
to

st

s
ns-

R~z![f1 ff1b
! 1f2 ff2b

! ~17!

allows us to decouple the evolution of the two internal co
ponents of the field for two condensate species 1 and 2. T
can be seen from the observation that

dR

dz
5

df1 f

dz
f1b

! 1f1 f

df1b
!

dz
1

df2 f

dz
f2b

! 1f2 f

df2b
!

dz

52
i

v
3%R, ~18!

which yields

R~z!5R0e2 i /v3%z. ~19!

We can therefore determine the steady state for the two
ternal states of the condensate separately.

Substituting the new rotating field amplitudes

c1 f5f1 fe
i /v %z,

c1b5f1be2
i
v %z, ~20!

into Eqs.~15! yields the second-order differential equation

d2c1 f

dz
52

i%

v
dc1 f

dz
1

uR0u2

v2
c1 f , ~21!

which shows that the propagation ofc1 f is characterized by
the spatial frequencies

k652
%

2v
6

1

2v
A%224uR0u2. ~22!

It can be shown that

M2[%224uR0u2>0 ~23!

so thatc1 f(z) satisfies

c1 f~z!5e2( i%/2v)zFA1 f sinS M

2v
zD1B1 f cosS M

2v
zD G , ~24!

the constantsA1 f andB1 f being determined by the boundar
conditions. We observe thatA1 f depends on bothc1b(0) and
R0, and hence on the boundary conditions for all four fiel
f1 f(0), f1b(L), f2 f(0), andf2b(L). Therefore the equa
tions of motion of all four fields need to be solved and us
to calculate the respective coefficients for any one field. T
explicit forms of the coefficientsAm i and Bm i , where m
51,2 andi 5 f ,b, are given in Appendix A.

Further analytical progress can be achieved by decom
ing the fieldc1 f into a real amplitude and phase followin
Ref. @31#,

c1 f5Ar1 f exp~ iq1 f !, ~25!

and concentrating on the field amplitudes only. One fin
readily
5-3
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r1 f~z!5b6Auau22@r1 f~0!2b#2sinS M

v
zD

1~r1 f~0!2b!cosS M

v
zD , ~26!

where

a5
1

2
~A1 f

2 1B1 f
2 !,

b5
1

2
~ uA1 f u21uB1 f u2!, ~27!

and the sign in front of the square root in Eq.~26! is deter-
mined by the sign ofA1 fB1 f

! 1A1 f
! B1 f . Similar relations hold

for the other field components.
One advantage of concentrating on the amplitudesrm i

only is that it is sufficient to know one of them to determi
the others. This follows from the fact that

dr1 f

dz
5

dr1b

dz
52

dr2 f

dz
52

dr2b

dz
, ~28!

which allows us to introduce the three conserved quantit

r f[r1 f~z!1r2 f~z!,

rb[r1b~z!1r2b~z!,

rx[r1 f~z!1r2b~z!, ~29!

so that

r1b~z!5rb2rx1r1 f~z!,

r2 f~z!5r f2r1 f~z!,

r2b~z!5rx2r1 f~z!. ~30!

The existence of these conservation laws was previo
pointed out in the context on nonlinear optics in Refs.@31#
and @35#.

For concreteness, we now consider the specific exam
where the intensities of the forward- and backwa
propagating fields are equal,

r f5rb , ~31!

and

r1b~L !5rb5%/2,

r2b~L !50. ~32!

Under these conditions, one finds readily that

uR0u25rbr1 f~L !5
1

2
%r1 f~L ! ~33!

and
03360
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uau5b5r1 f~L !/2. ~34!

With Eqs.~33! and~34!, Eq. ~26! reduces to the remarkabl
simple form

r1 f~0!

r1 f~L !
5cos2~kL/2!, ~35!

where

k5M /v5S 2mg

\k D%A1/42r1 f~L !/2%. ~36!

1/k defines a characteristic length. Equation~35! predicts a
multivalued relationship between the input and output int
sitiesr1 f . The longer thek, the higher the order of ‘‘mul-
tistability’’ predicted by Eq.~35!. Fig. 2 illustrates the input-
output relationship ofr1 f .

Alternatively, and recalling Eqs.~12! and~14! we observe
that the argumentkL/2 of the cosine function in Eq.~35! is
also proportional to the total density of atoms. This leads
to expect some interesting behavior when varying the nu
ber of particles involved, a scheme whose optical analog
been the object of considerable work@31,33–35#. However,
we do not further investigate these questions in the pre
paper, which is limited to the case of fixed total atomic de
sity.

Returning from the scaled version~12! of the coupling
constantg to its original definition~2! via Eqs.~7!, we ob-
serve that for a transversely homogeneous sample, the fa
g% in Eq. ~36! becomesg%V , where%V is the volumetric
density of the atomic system~as opposed to its linear densit
%). Eq. ~36! becomes then

k5kS 2m

\2k2D \g%VA1/422r1 f~L !/2%

5kS Em f

Eke
DA1/42r1 f~L !/2%, ~37!

where we have introduced the kinetic energyEke
5\2k2/2m and the mean-field energyEm f5\g%V .

FIG. 2. Normalized output intensityr1 f(L) versus normalized
input intensityr1 f(0) from Eq.~35!. Curve~1! L/Lc50, Curve~2!
L/Lc52p, Curve ~3! L/Lc54p, and Curve~4! L/Lc58p, with
Lc as defined in Eq.~39!.
5-4
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Introducing the healing length

l h5A \

2mg%V
~38!

and the de Broglie wavelengthldb52p/k shows that the
multistable properties of the system are fully determined
the characteristic length

Lc5
Eke

kEm f
54p2

l h
2

ldb
. ~39!

IV. STABILITY ANALYSIS

In this section, we analyze the stability of the steady-st
solution ~35! against small classical perturbations. For si
plicity, we assume that the fields at the boundaries of
interaction region are real,

f1 f~0!5Ar1 f ,

f2 f~0!5Ar f2r1 f ,

f1b~L !50,

f2b~L !5Arb. ~40!

The first approach proceeds by expressing the conden
wave functionf1 f(z,t) and its complex conjugate as

f1 f~z,t !5f1 f ss
~z,t !1d1 f~z!e2 ilt,

f1 f
! ~z,t !5f1 f ss

! ~z,t !1e1 f~z!e2 ilt, ~41!

and linearizing the equations of motion~10! and ~11!, and
similarly for the other field components. The spectrum
eigenvaluesl can be found by discretizing the resulting sy
tem of equations withN points along thez axis, which yields
a sparse 8N38N eigenvalue problem that can be solv
numerically using standard techniques. The steady-state
lution is then unstable only if eigenvalues with positi
imaginary parts appear in the spectrum.

In addition to this temporal stability, we have also carri
out a full spatio-temporal analysis by solving directly t
linearized form of Eqs.~10! and~11! for small perturbations
about the steady state of the fields.

Both approaches indicate that the only stable branch
the solution~35! is the ‘‘uppermost branch,’’ i.e., the branc
corresponding to the highestr1 f(L) for a givenr1 f(0) that
corresponds to the condition

0<
kL

2
,p/2. ~42!

Figure 3 shows a typical result for the temporal evoluti
of d1 f at z5L in both an unstable and a stable branch. Af
some short-time transients, the unstable dynamics beco
completely dominated by the largest positive eigenvalue
the growth of the small perturbation becomes exponentia
03360
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V. SELF-OSCILLATIONS

An important consequence of the stability analysis is
prediction of a self-oscillation threshold in the system, as c
be seen by considering the caser1 f(0)50, that is, no input
field in mode ‘‘1f . ’’ In that case, Eq.~35! reduces to

r1 f~L !cos2~kL/2!50. ~43!

Hence in the stable region given by Eq.~42!, r1 f(L) must be
0; while in the unstable region,r1 f(L) may take finite val-
ues, which results from the amplification of fluctuations. T
onset of instability is given by

kL5kLS Em f

Eke
DA1/42r1 f~L !/2%5p. ~44!

Since the argument of the square root is always less than
we have that

kL<
kL

2 S Em f

Eke
D . ~45!

Hence the threshold condition~44! cannot be met unless

S Em f

Eke
D>

2p

kL
, ~46!

or

l h
2

Lldb
<

1

8p3
, ~47!

which can be recast as

L

Lc
>2p. ~48!

If this threshold condition is satisfied, the fieldf1 f under-
goes a second-order-like phase transition to self-oscillatio
as illustrated in Fig. 4.

The physical origin of the self-oscillations is the distri
uted feedback resulting from the cross-phase modula

FIG. 3. ln@d1f(L,t)# for r1 f ss
(L)50.2r f . d1 f(L,t) is scaled to

the intensityr f of the forward moving field and the timet is in
units of the round-trip time through the interaction region. Curve~a!
is an example of unstable behavior atL/Lc54p (kL/2'0.89p),
while curve~b! shows stability atL/Lc51.6p (kL/2'0.36p).
5-5



th
d
n-
io

g
g
on
o

re

c
ef
f

w
he
m
s
nc

ch

u
es

p
av
lin
n
ta

ee

ar
we

is
ta-
the

as-
me

e
ys-
ing
l-
be
n-
t bi-
ys-
ys-

st
t of
with

ly
ing
in

he

e-
da-

the
ges

d

ve

e-
le

on-

J. HEURICH, H. PU, M. G. MOORE, AND P. MEYSTRE PHYSICAL REVIEW A63 033605
with the other fields present. In order to lead to gain at
wavelength off1 f , this grating must itself be modulate
with period 2p/k. But the mean-field energy of the conde
sate fights against the creation of such spatial modulat
The healing length, whose associated momentuml h

21 yields
a kinetic-energy contribution equal to the mean-field ener
is the smallest length scale over which the required chan
can occur. Hence, it is not surprising that the threshold c
dition should be related to the healing length, the length
the sample, and the atomic de Broglie wavelength.

It is interesting to note that the quantityl h
2/ldbL is remi-

niscent of the Fresnel numberF5a2/lL in optics, wherea
is the aperture of the system,l the wavelength, andL the
distance of propagation. The Fresnel number is a measu
the number of transverse modes that can be excited in
optical system. For very large Fresnel numbers, the wave
well be approximated as a plane wave, while diffraction
fects and multiple transverse modes become important
small F. The present situation is different in that we no
consider the longitudinal stability of the system. Still, t
analogy is rather telling. For samples of length short or co
parable to the healing length, the condensate is so stiff a
prevent the generation of higher-longitudinal modes, he
the instability requires a condensate much larger thanl h . As
such,l h

2/ldbL can be thought of as thelongitudinal Fresnel
numberof the condensate, with the healing length playing
role similar to that of the system aperturea in optics.

The onset of self-oscillations is illustrated in Fig. 5, whi
shows the evolution ofr1 f(L,t) for r1 f(0,t)50.01%/2, this
small value simulating some small fluctuation abo
r1 f(0,t)50. This simulation assume that all field amplitud
inside the interaction region (0,z<L) are initially equal to
zero.

VI. SUMMARY AND CONCLUSION

In summary, we have studied a system of counterpro
gating two-component Bose-Einstein condensates in a w
guide configuration. This system exhibits interesting non
ear behavior such as four-wave mixing and self-oscillatio
We have presented an analytical solution of the steady-s
field equations and found a multivalued relationship betw

FIG. 4. Self-oscillation threshold of the intensityr1 f(L), nor-
malized tor f , as a function of the interaction lengthL. Above
threshold, this field spontaneously builds up from fluctuations e
in the absence of input,r1 f(0)50.
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the input and the output field intensities. Through a line
perturbation analysis as well as a full numerical study,
have found that one and only one branch of solutions
stable for a given input configuration. The onset of the ins
bility depends on a parameter in close analogy with
Fresnel number in optics.

We remark that these results were obtained under the
sumption that all the effective scattering lengths are the sa
(g15g25gx). In future work, we plan to investigate th
case of unequal scattering lengths, which will make our s
tem formally equivalent to the case of counterpropagat
light fields in a nonelectrostrictive Kerr medium. The ana
ogy with the optical system also suggests that it would
desirable to allow for different intensities of the two cou
terpropagating matter-wave fields. It has been shown tha
or multistable solutions exist in these nonlinear optical s
tems. It will be interesting to see if such a matter-wave s
tem can also exhibit multistability.

Finally, it will be worthwhile to extend the analysis pa
the Hartree mean-field theory in order to study the onse
nonclassical effects, such as the squeezing associated
the anomalous density of the system.

The experimental realization of this system is certain
challenging, but we see no fundamental problems us
present day technology. Indeed, the question of stability
wave-mixing processes will most likely arise naturally in t
next generation of atom interferometry experiments.
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APPENDIX A

Solving Eq. ~21! and its counterpart for the backwar
moving field and inserting the results into Eqs.~20! gives

n

FIG. 5. r1 f(L,t), normalized tor f , for r1 f(0)50.01%. The
time is in units of the round-trip time through the interaction m
dium. Curve~a! is in the regime with only one high-output stab
branch atL/Lc54p; curve ~b! is at L/Lc51.6p where for every
~low! output intensity there exists a stable steady-state field c
figuration.
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f1 f~z!5e2 i (3%/2v)zFA1 f sinS M

2v
zD1B1 f cosS M

2v
zD G ,

f1b~z!5ei (3%/2v)zFA1b sinS M

2v
zD1B1b cosS M

2v
zD G ,

~A1!

and similarly for 1↔2. The boundary conditions ar
f1 f(0), f1b(L), f2 f(0), andf2b(L). Since the four fields
are coupled byR05B1 fB1b

! 1B2 fB2b
! it is necessary to con

sider all fields to determine the coefficientsAm i andBm i . We
start from Eqs.~A1!, and derive expressions forf j f (0),
df j f (0)/dz, f jb(L), and df jb(0)/dz, j 51,2 in terms of
these coefficients and use the relations~10! to close this set
of equations.

For sin(ML/2v),f1 f(0), andf2 f(0)Þ0 we find

B1 f5f1 f~0!,

B2 f5f2 f~0!,

B1b52
e23i%L/2vM ~f1b~L !1f2b~L !/g~ uB2 f u2!!

sin~ML/2v !@g~ uB1 f u2!14uB1 f u2uB2 f u2/g~ uB2 f u2!#
,

s-

t.

s

.

ev

03360
B2b5
i2B1 f

! B1bB2 f2e23i%L/2vMf2b~L !/sin~ML/2v !

g~ uB2 f u2!
,

A1b5
f1b~L !e23i%L/2v2B1bcos~~M /2v !L !

sin~~M /2v !L !
,

A2b52B2b /tan~ML/2v !,

A1 f5
i

M
@%B1 f22~B1 fB1b

! 1B2 fB2b
! !B1b#,

A2 f5
i

M
@%B2 f22~B1 fB1b

! 1B2 fB2b
! !B2b#, ~A2!

where

g~x!5 i ~%22x!2M /tan~ML/2v !. ~A3!

These equations simplify considerably in the specific c
f2b(L)50 that we have analyzed in detail. Similar, but sim
pler equations are easily derived if one of the input fields
equal to zero or for sin(ML/2v)Þ0.
v.

ys.
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