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Ground-state properties of a one-dimensional system of hard-core bosons in a harmonic trap
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The exactN-particle ground-state wave function for a one-dimensional condensate of hard-core bosons in a
harmonic trap is employed to obtain accurate numerical results for the one-particle density matrix, occupation
number distribution of the natural orbitals, and momentum distribution. Our results show that the occupation of
the lowest orbital varies a®%® in contrast toN®® for a spatially uniform system, anid for a true Bose-
Einstein condensate.
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[. INTRODUCTION known[8,12,1§ that for a spatially uniform system of hard-
core bosons in 1D, the momentum distribution is strongly
Recent advances in atom de Broglie waveguide technolpeaked in the neighborhood of zero momentum, whereas that
ogy [1-5] and its potential applicability to atom interferom- of the corresponding Fermi system is merely a filled Fermi
etry [6] and integrated atom optid$,7] create a need for Sea. In the case of hard-core bosons in a 1D harmonic trap, it
accurate theoretical modeling of such systems in the lowiS an interesting and previously unanswered question
temperature, tight waveguide regime, where transverse excivhether the system undergoes true BEC or merely an attenu-
tations are frozen out and the quantum dynamics becomeded one such as that in the uniform system. Ketterle and
essentially one-dimensiondllD). It has been shown by Van Druten[19] have shown that true BEC occurs for a
Olshanii[8], and also recently by Petrost al. [9], that at  finite number of atoms in a 1D harmonic oscillatétO) for
sufficiently low temperatures, densities, and large positivedn ideal gas. We examine the question for hard-core bosons
scattering length, a Bose-Einstein condengBfC) in athin  in a 1D HO by using the Fermi-Bose mapping theorem to
cigar-shaped trap has dynamics that approach those of a 1@enerate the exact many-body ground state. The most funda-
gas of hard-core, or impenetrable, point bosons. This is &ental definition of BEC and the condensate orbital is based
model for which the exact many-body energy eigensolution®n the large distance behavior of the one-particle reduced
were found in 1960 using an exact mapping from the Hilbertdensity matrix p;(x,x’). If off-diagonal long-range order
space of energy eigenstates ofideal gas of fictitious spin- (ODLRO) is present and hence the largest eigenvalug;of
less fermions to that of many-body eigenstates of hard-cords macroscopig¢proportional toN) then the system is said to
and thereforestrongly interacting bosons[10,11]. In this  exhibit true BEC and the corresponding eigenfunction, the
limit there are strong short-range pair correlations, which ar€ondensate orbital, plays the role of an order parameter
omitted in the Gross-PitaevskiGP) approximation. In the [20,21]. Although the precise definition of ODLRO requires
absence of a trap potential it is knowh?2] that the occupa- a thermodynamic limit not strictly applicable to mesoscopic
tion of the lowest orbital is of ordeyN, whereN is the total ~ traps, the GP approximation assumes from the start that
number of atoms, in contrast dfor the ideal Bose gas and ODLRO and macroscopic occupation of a single orbital are
GP approximation. Nevertheless, this system exhibits som@ood approximations in a trap, so examination of this as-
BEC-like behavior such as Talbot recurrences following arsumption in the Olshanii limi{8] is important. In the re-
optical lattice pulsg[13] and dark solitonlike behavior in mainder of this paper we shall determine the many-body
response to a phase-imprinting puldd]. ground state and its salient features, including the one-
The case of harmonically trapped, hard-core bosons in 1article reduced density matrix and its eigenval(@=upa-
is more relevant to recent atom waveguide experimgiis  tion number distribution functionand eigenfunctiongnatu-
The spatial density profile of the single-particle density isral orbitalg, as well as the momentum distribution function.
expressible in closed form, and has recently been s@éin

to be well approximated by a modified 1D effective-field Il. EXACT GROUND-STATE WAVE FUNCTION
theory, although we have recently shown in a numerically o ) ) _
accurate time-dependent calculat[d7] that spatial interfer- The Hamiltonian ofN bosons in a 1D harmonic trap is
ence of separated and recombined condensates is much N 52 21

weaker than that predicted by the corresponding time- sz T Tmeddl. 1)

dependent mean-field theof¥6]. Although the Fermi-Bose i
mapping theorem10,11] implies that all physical properties

expressible in terms of spatial configurational probabilitieswe assume that the two-body interaction potential consists
are the same for the actual bosonic system and the fictitiousnly of a hard core of 1D diametex This is conveniently
“spinless fermion” system used for the mapping, the mo-treated as a constraint on allowed wave functions

1| 2mge 2 j

mentum distribution of the bosonic system, or more genery(x,, ... x,) such that
ally its occupation distribution over the relevant orbitals for a
given geometry, is very different in the bosonic system. It is =0 if |xj—xk|<a, 1<sj<k=N, 2
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rather than as an infinite interaction potential. It follows from
the Fermi-Bose mapping theorefh0,11,14 that the exact
N-boson ground statég, of the Hamiltonian(1) with the
constraint(2) is

. 1XN)|1 (3)

Ppo(X1,s - - Xn)=|ro(Xy, - .

where i is the ground state of a fictitious system Mf
spinless fermions with the same Hamiltoniél) and con-
straint. At low densities it is sufficier]8,9] to consider the
case of impenetrable point particles, the zero-range lamit
—0 of Eq.(2). Since wave functions of “spinless fermions”

are antisymmetric under coordinate exchanges, their wave

functions vanish automatically whenever ary=x,, the
constraint has no effect, and the corresponding fermioni
ground state is the ground state of fdeal gas of fermions,

a Slater determinant of the lowebt single-particle eigen-
functions ¢,, of the HO

1 (N=1,N)
Uro(X1, ... Xy)=—=— det dy(X;). (4)
FO\AL N \/m ()= (0.1) n{Aj
The HO orbitals are
(X)= — e % (Q) (5)
M NI "

with H,(Q) the Hermite polynomials an@=x/Xysc, With
Xosc= VA/Mw being the ground-state width of the harmonic

trap for a single atom. By factoring the Gaussians out of thé? (X1,

C
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related wave functions for bosons with weak repulsive delta-
function interactions in a harmonic trap in 2D found recently
by Smith and Wilkin[24].

Ill. GROUND-STATE PROPERTIES

In this section we numerically evaluate the ground-state
properties of a 1D condensate Nf hard-core bosons in a
harmonic trap using the exact many-body wave function of
the previous section.

A. Single-particle density and pair distribution function

Both the single-particle density and pair distribution func-
tion depend only on the absolute square of the many-body
wave function, and sindelgo|?>=|¥ro|? they reduce to stan-
dard ideal Fermi gas expressions. The single-particle density,
normalized toN, is

p00=N [ 1waotxxz, . 30l
N—1
:nzo lon(X)]2. (9)

We shall not exhibit it here since it has recently been calcu-
lated by Kolomeiskyet al. [16]; see also our recent discus-
sion of the time-dependent cafk7]. The pair distribution
function, normalized toN(N—1), is

Xz):N(N_l)f [o(Xa, - - - Xn)|PdXg -~ dxy

determinant and carrying out elementary row and column

operations, one can cancel all terms in e&thexcept the
one of highest degree, with the res{2e]

(N—=1,N) (N—1,N)
det Hp(x;)=2"N"D2 det (x)"
(n.j)=(0,1) (n,j)=(0,1)
= oN(N-1)/2 H (Xk_xj)- (6)
1<j<k=N

Substitution into Eq(3) then yields a simple but exact ana-
lytical expression of the Bijl-Jastrow pair product form for
the N-boson ground state:

N
H e—Qf/z
=1

eo(X1, ... Xn)=Cy H |Xk_Xj|
1<j<k=N
(7)
with Q;=X; /X,sc @nd normalization constant
N/2 N—1 —-1/2
Cp=2NN-1)/4 N T nt e (8)
Xosc n=0

>

0=n<n’=N-1

| @n(X1) @i (X2) = @n(X2) @pr (X1)]%.

(10

Physically, the pair distribution function is the joint probabil-
ity density that if one atom is measuredxat then a second
measurement immediately following the first, finds an atom
at X,. Noting that terms wittm=n’, which vanish by anti-
symmetry, can be formally added to the summati®n one
can rewrite the pair distribution function in terms of the
single-particle density and a correlation functién

D (X1,X2) = p(X1) p(Xa) = |A(X1,Xp) |,
- (11

A(Xq,X2)= nzo en(X1) @n(X2).

Although the Hermite polynomials have disappeared from
the expression(7) for the many-body wave function, they
reappear upon integratinggo|? over (N— 1) coordinates to
get the single-particle densiiy(x) and over N—2) to get
the pair distribution functiod (x,,X,), and the expressions

It is interesting to note the strong similarity between thisin terms of the HO orbitalgp,, are the most convenient for
exact 1DN-boson wave function and the famous Laughlin evaluation.

variational wave function of the 2D ground state for the

quantized fractional Hall effed23], as well as the closely

Figure 1 shows a gray scale plot of the dimensionless pair
distribution functionxgsc- D(Q1,Q,) versus the normalized
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(a) the density and varies a¢'2 [16].

B. Reduced single-particle density matrix

The reduced single-particle density matrix with normal-
ization [ p1(x,x)dx=N is given by

P1(XyX’):Nf PBo(X, X2, - . . XN)

X hgo(X Xa, « oo Xn)OXo- - - dXy

N
—_02/2__(0")2 A2
=N ye QP2 Q)72 i[[2e Q- Q|lQi—-Q’|

X

I1 <Qk—Qi>2}sz---dQN, (12)

2<j<k=N

with

-1
(13

Normalized Distance Q

N—1
Ny= NZN(N‘”’ZXJJE[ NUTT niyar
n=0

Although the multidimensional integrél2) cannot be evalu-
ated analytically, it can be evaluated numerically by Monte
Carlo integration for not too large values Nf(the comput-
ing time scales adl*). Figure 2 shows a gray scale plot of
the dimensionless reduced single-particle density matrix
Xose21(Q,Q") versus the normalized coordinat®sand Q'
for (a) N=2, (b) N=6, and(c) N=10. We verified that
along the diagonalp1(Q,Q'=Q)=p(Q) reproduced the
single-particle densitj16]. The off-diagonal elements of the
_§5 0 5 reduced density rrr:atrif):c :jelate toIOIDLRO, and itdis clear that
: : as N increases, the off-diagonal elements are decreasing in
Normalized Distance Q1 contrast to the diagonal. This is a first indication that
ODLRO vanishes for a system of hard-core bosons in a 1D

FIG. 1. Gray-scale plots of the dimensionless pair dlstrlbutlonHO in the thermodynamic limit.

function xgscD(Ql,Qz) as a function of the dimensionless coordi-
natesQ; andQ,, for (8 N=2, (b) N=6, and(c) N=10.
C. ODLRO, natural orbitals and their occupation

coordinates ;=X »/Xosc for (@ N=2, (b) N=6, and(c) In a macroscopic system, the presence or absence of BEC
N=10. Some qualitative features of the pair distributionis determined by the behavior @fi(x,x") as|x—x'|—o.
function are apparent: In the first place it follows either from Off-diagonal long-range order is present if the largest eigen-
the original expressiort9) or from Egs.(8) and (10) that  value of p; is macroscopidproportional toN), in which
D(x;,X5) vanishes at contact;=X,, as it must because of case the system exhibits BEC and the corresponding eigen-
impenetrability of the particles, and we see this to be true irfunction, the condensate orbital, plays the role of an order
Fig. 1. Furthermore, the correlation teri{x, ,x,) is a trun- ~ parametef20,21]. Although this criterion is not strictly ap-
cated closure sum and approaches the Dirac delta functigplicable to mesoscopic systems, if the largest eigenvalue of
8(x;—x,) asN—x, as is to be expected since the healingp, is much larger than one, then it is reasonable to expect
length in a spatially uniform 1D hard-core Bose gas varieghat the system will exhibit some BEC-like coherence ef-
inversely with particle numbdi4]. As a result the width of ~fects. Thus we examine here the spectrum of eigenvalyes
the null around the diagona; = Q, decreases with increas- and associated eigenfunctiogig(x) (“natural orbitals”) of

ing N, and vanishes in the limit. Away from the diagonal p;. Although natural orbitals are a much-used tool in theo-
alongQ,= —Q4, the pair distribution function rises, exhibits retical chemistry, they have only recently been applied to
modulations forN>2, due to the oscillatory nature of the mesoscopic atomic condensafes]. The relevant eigensys-
HO orbitals, before decreasing back to zero at large distem equation is

tances. Fotx;—X,| much larger than the healing lengt,

reduces to the uncorrelated density produet;)p(x,), s f p1(X,X") dj(X")dX" =\ ;(x), (14)
the spatial extent of the pair distribution function is that of o
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FIG. 2. Gray-scale plots of the dimensionless reduced
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FIG. 3. Occupation of the natural orbitals) fraction of atoms
in the lowest orbitalfo=X\o/N versusN, and(b) \; versus orbital
numberj for N=2 (circles, N=6 (starg, andN= 10 (squares

decreases with increasing, and thus do not correspond to
true condensates for whidiy=1. Nevertheless, the occupa-
tion of the lowest orbital may still be large,~N%°° and is
larger than the spatially uniform case~N®% so macro-
scopic quantum coherence effects reminiscent of BEC can
still result[8,12-14,16,1]

Figure 3b) shows the distribution of occupations ver-
sus orbital numbey (the orbitals are ordered according to
eigenvalue magnitude, the largest eigenvalue bging) for
N=2 (circles, N=6 (starg, andN=10 (squares This fig-
ure shows that as the lowest orbital occupafignncreases
with increasingN, so does the range of significantly occu-
pied higher-order orbitals with>0. This means that the
dominance of the lowest orbital decreases with increalling

densit$0 singling outpy(x) as a macroscopic wave function for the

matrix X,s01(Q,Q’) as a function of the dimensionless coordinateswhole system becomes more problematic with increaslng

QandQ’, for (a) N=2, (bh) N=6, and(c) N=10.

where \; represents the occupation of the orbital, and 02
one hasz;\j=N. Numerical evaluation of the integrél3)

by discretization yields a readily solved matrix eigensystem | /v\ |
equation, which yields accurate numerical results for the

largest eigenvalues and associated eigenvectors. We rema . , . . ,

that for the corresponding problem bf free fermions in a
1D HO, in which casep(x,x’) is evaluated using the fer-
mion wave functionggo(X4, ... Xy), the natural orbitals
are simply the HO orbitals, antlj=1,j=0---(N—1), all
higher eigenvalues being zero. However, Nioson wave
function in Eq.(3) is the modulus of the fermion wave func-
tion, and this leads to significant differences in the spectrum
of natural orbitals and eigenvalues for the hard-core gas of

bosons.

In Fig. 3(a) we show a log-log plot of the fractional oc-
cupation of the lowest orbitdl,=\,/N versus the total par-

[17,16.
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Normalized Distance Q

case of a spatially uniform system of hard-core bosons for FIG. 4. Lowest natural orbitalg,(Q) versus normalized coor-
which fo=N~%5[12]. In both cases the fractional occupation dinateQ for (8) N=2, (b) N=6, and(c) N=10.
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FIG. 5. Higher-order natural orbitg;(Q) versus normalized

coordinateQ for N=10 and(a) j =1, (b) j=2, and(c) j=3. FIG. 6. Dimensionless momentum distributikg () versus

normalized momentunx =k/k,. for (a) N=2, (b) N=6, and(c)
. . N=10.
The numerically computed lowest orbitals,(Q) are

shown in Fig. 4 for@ N=2, (b) N=6, and(c) N=10, and ;.0 6 shows the numerically calculated dimensionless
they show the expected broadening due to many-body repul; omentum spectrunk,.N(«) versus normalized momen-
sion asN increases. We remark that these lowest orbitals are - = KlKogo, With Kow=27/Xgee, for (@ N=2, (b) N

not simply the square root of the corresponding smgle-:6, and(c) N=10. The key features are that the momentum

spectrum maintains the sharp peaked structure reminiscent of
the spatially uniform casg8,12] for the 1D HO, and that the
peak becomes sharper with increasing atom numbd@rhis

is to be expected since as the number of atoms increase the
al'ﬂany-body repulsion causes the system to become more spa-
tially uniform within the trap interior.

particle densitiep(Q) [16] as would be the case for a true
condensate. Figure 5 shows the higher-order orbita{®)
versusQ for j=1,2,3 and\= 10. Although the higher-order
orbitals differ in detail from the HO orbitals they share the
features that the orbitals can be chosen real by removal of
overall phase, and that th¢h orbital hag zeros.

IV. MOMENTUM DISTRIBUTION V. SUMMARY AND CONCLUSIONS

For a spatially uniform systertno trap the natural orbit- In summary. we have investioated the around-state prop-
als are plane waves, so the occupation distribution of the v, g 9 prop

natural orbitals is the same as the momentum distributions LSS of a system of hard-core bosons in a 1D HO using the
Although this is not the case here due to the effect of th exact many-body wave function obtained using the Fermi-

harmonic trap potential, the momentum distribution is stiIIeBose mapping theorem..Speuﬂca}lly, we h_ave nu_merlcally
evaluated the reduced single-particle density matrix for the

physically important, so we study it here. In terms of thes stem using Monte Carlo integration for particle numbers
boson annihilation and creation operators in position repre—y 9 9 P

sentation(quantized Bose field operatdprthe one-particle up t.o.N=10,.and (_extracted several quantities of physical
reduced density matrix is significance, including the natural orbitals and momentum

spectrum. Our main finding is that the lowest orbital occu-
N ~ s pation scales as,~N°%, so that the system does not ex-
P10 X") = (Weol ' (x") (X)W go). 19 hibit true BEC, counter to the case of an ideal gas in a 1D
HO [19]. Furthermore, this makes the introduction of an

. - ~ order-parameter or macroscopic wave function for the whole
= = - t

{—wn_(k)dk_N’_ _'S_ n(k)=(¥gola (k)a(k)N’E}O) where system more problematic for largd. We have started to
a(k) is the annihilation operator for a boson with momentumseek analytic approaches to derive the observed scaling of
fik. Then the lowest orbital with particle with no success so far. We
hope that these numerical results may motivate others to ap-
proach this challenging problem.

The momentum distribution function(k), normalized to

n(k)=(27-r)’1f dxf dx’ py(x,x’)e  k&x=x),
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