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Ground-state properties of a one-dimensional system of hard-core bosons in a harmonic trap
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The exactN-particle ground-state wave function for a one-dimensional condensate of hard-core bosons in a
harmonic trap is employed to obtain accurate numerical results for the one-particle density matrix, occupation
number distribution of the natural orbitals, and momentum distribution. Our results show that the occupation of
the lowest orbital varies asN0.59, in contrast toN0.5 for a spatially uniform system, andN for a true Bose-
Einstein condensate.
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I. INTRODUCTION

Recent advances in atom de Broglie waveguide tech
ogy @1–5# and its potential applicability to atom interferom
etry @6# and integrated atom optics@3,7# create a need fo
accurate theoretical modeling of such systems in the l
temperature, tight waveguide regime, where transverse e
tations are frozen out and the quantum dynamics beco
essentially one-dimensional~1D!. It has been shown by
Olshanii @8#, and also recently by Petrovet al. @9#, that at
sufficiently low temperatures, densities, and large posi
scattering length, a Bose-Einstein condensate~BEC! in a thin
cigar-shaped trap has dynamics that approach those of
gas of hard-core, or impenetrable, point bosons. This
model for which the exact many-body energy eigensoluti
were found in 1960 using an exact mapping from the Hilb
space of energy eigenstates of anideal gas of fictitious spin-
less fermions to that of many-body eigenstates of hard-c
and thereforestrongly interacting, bosons@10,11#. In this
limit there are strong short-range pair correlations, which
omitted in the Gross-Pitaevskii~GP! approximation. In the
absence of a trap potential it is known@12# that the occupa-
tion of the lowest orbital is of orderAN, whereN is the total
number of atoms, in contrast toN for the ideal Bose gas an
GP approximation. Nevertheless, this system exhibits so
BEC-like behavior such as Talbot recurrences following
optical lattice pulse@13# and dark solitonlike behavior in
response to a phase-imprinting pulse@14#.

The case of harmonically trapped, hard-core bosons in
is more relevant to recent atom waveguide experiments@15#.
The spatial density profile of the single-particle density
expressible in closed form, and has recently been shown@16#
to be well approximated by a modified 1D effective-fie
theory, although we have recently shown in a numerica
accurate time-dependent calculation@17# that spatial interfer-
ence of separated and recombined condensates is m
weaker than that predicted by the corresponding tim
dependent mean-field theory@16#. Although the Fermi-Bose
mapping theorem@10,11# implies that all physical propertie
expressible in terms of spatial configurational probabilit
are the same for the actual bosonic system and the fictit
‘‘spinless fermion’’ system used for the mapping, the m
mentum distribution of the bosonic system, or more gen
ally its occupation distribution over the relevant orbitals fo
given geometry, is very different in the bosonic system. I
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known @8,12,18# that for a spatially uniform system of hard
core bosons in 1D, the momentum distribution is stron
peaked in the neighborhood of zero momentum, whereas
of the corresponding Fermi system is merely a filled Fer
sea. In the case of hard-core bosons in a 1D harmonic tra
is an interesting and previously unanswered ques
whether the system undergoes true BEC or merely an att
ated one such as that in the uniform system. Ketterle
Van Druten @19# have shown that true BEC occurs for
finite number of atoms in a 1D harmonic oscillator~HO! for
an ideal gas. We examine the question for hard-core bos
in a 1D HO by using the Fermi-Bose mapping theorem
generate the exact many-body ground state. The most fu
mental definition of BEC and the condensate orbital is ba
on the large distance behavior of the one-particle redu
density matrix r1(x,x8). If off-diagonal long-range order
~ODLRO! is present and hence the largest eigenvalue ofr1
is macroscopic~proportional toN) then the system is said t
exhibit true BEC and the corresponding eigenfunction,
condensate orbital, plays the role of an order param
@20,21#. Although the precise definition of ODLRO require
a thermodynamic limit not strictly applicable to mesoscop
traps, the GP approximation assumes from the start
ODLRO and macroscopic occupation of a single orbital
good approximations in a trap, so examination of this
sumption in the Olshanii limit@8# is important. In the re-
mainder of this paper we shall determine the many-bo
ground state and its salient features, including the o
particle reduced density matrix and its eigenvalues~occupa-
tion number distribution function! and eigenfunctions~natu-
ral orbitals!, as well as the momentum distribution functio

II. EXACT GROUND-STATE WAVE FUNCTION

The Hamiltonian ofN bosons in a 1D harmonic trap is

Ĥ5(
j 51

N F2
\2

2m

]2

]xj
2

1
1

2
mv2xj

2G . ~1!

We assume that the two-body interaction potential cons
only of a hard core of 1D diametera. This is conveniently
treated as a constraint on allowed wave functio
c(x1 , . . . ,xN) such that

c50 if uxj2xku,a, 1< j ,k<N, ~2!
©2001 The American Physical Society01-1
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rather than as an infinite interaction potential. It follows fro
the Fermi-Bose mapping theorem@10,11,14# that the exact
N-boson ground statecB0 of the Hamiltonian~1! with the
constraint~2! is

cB0~x1 , . . . ,xN!5ucF0~x1 , . . . ,xN!u, ~3!

where cF0 is the ground state of a fictitious system ofN
spinless fermions with the same Hamiltonian~1! and con-
straint. At low densities it is sufficient@8,9# to consider the
case of impenetrable point particles, the zero-range lima
→0 of Eq.~2!. Since wave functions of ‘‘spinless fermions
are antisymmetric under coordinate exchanges, their w
functions vanish automatically whenever anyxj5xk , the
constraint has no effect, and the corresponding fermio
ground state is the ground state of theideal gas of fermions,
a Slater determinant of the lowestN single-particle eigen-
functionsfn of the HO

cF0~x1 , . . . ,xN!5
1

AN!
det

~n, j !5~0,1!

~N21,N!

fn~xj !. ~4!

The HO orbitals are

wn~x!5
1

p1/4xosc
1/2A2nn!

e2Q2/2Hn~Q! ~5!

with Hn(Q) the Hermite polynomials andQ5x/xosc, with
xosc5A\/mv being the ground-state width of the harmon
trap for a single atom. By factoring the Gaussians out of
determinant and carrying out elementary row and colu
operations, one can cancel all terms in eachHn except the
one of highest degree, with the result@22#

det
~n, j !5~0,1!

~N21,N!

Hn~xj !52N(N21)/2 det
~n, j !5~0,1!

~N21,N!

~xj !
n

52N(N21)/2 )
1< j ,k<N

~xk2xj !. ~6!

Substitution into Eq.~3! then yields a simple but exact an
lytical expression of the Bijl-Jastrow pair product form f
the N-boson ground state:

cB0~x1 , . . . ,xN!5CNF)
i 51

N

e2Qi
2/2G )

1< j ,k<N
uxk2xj u

~7!

with Qi5xi /xosc and normalization constant

CN52N(N21)/4S 1

xosc
D N/2FN! )

n50

N21

n!ApG21/2

. ~8!

It is interesting to note the strong similarity between th
exact 1DN-boson wave function and the famous Laugh
variational wave function of the 2D ground state for t
quantized fractional Hall effect@23#, as well as the closely
03360
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related wave functions for bosons with weak repulsive de
function interactions in a harmonic trap in 2D found recen
by Smith and Wilkin@24#.

III. GROUND-STATE PROPERTIES

In this section we numerically evaluate the ground-st
properties of a 1D condensate ofN hard-core bosons in a
harmonic trap using the exact many-body wave function
the previous section.

A. Single-particle density and pair distribution function

Both the single-particle density and pair distribution fun
tion depend only on the absolute square of the many-b
wave function, and sinceucB0u25ucF0u2 they reduce to stan
dard ideal Fermi gas expressions. The single-particle den
normalized toN, is

r~x!5NE ucB0~x,x2 , . . . ,xN!u2dx2•••dxN

5 (
n50

N21

uwn~x!u2. ~9!

We shall not exhibit it here since it has recently been cal
lated by Kolomeiskyet al. @16#; see also our recent discus
sion of the time-dependent case@17#. The pair distribution
function, normalized toN(N21), is

D~x1 ,x2!5N~N21!E ucB0~x1 , . . . ,xN!u2dx3•••dxN

5 (
0<n,n8<N21

uwn~x1!wn8~x2!2wn~x2!wn8~x1!u2.

~10!

Physically, the pair distribution function is the joint probab
ity density that if one atom is measured atx1, then a second
measurement immediately following the first, finds an ato
at x2. Noting that terms withn5n8, which vanish by anti-
symmetry, can be formally added to the summation~9!, one
can rewrite the pair distribution function in terms of th
single-particle density and a correlation functionD:

D~x1 ,x2!5r~x1!r~x2!2uD~x1 ,x2!u2,
~11!

D~x1 ,x2!5 (
n50

N21

wn* ~x1!wn~x2!.

Although the Hermite polynomials have disappeared fr
the expression~7! for the many-body wave function, the
reappear upon integratingucB0u2 over (N21) coordinates to
get the single-particle densityr(x) and over (N22) to get
the pair distribution functionD(x1 ,x2), and the expression
in terms of the HO orbitalswn are the most convenient fo
evaluation.

Figure 1 shows a gray scale plot of the dimensionless
distribution functionxosc

2
•D(Q1 ,Q2) versus the normalized
1-2
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coordinatesQ1,25x1,2/xosc for ~a! N52, ~b! N56, and~c!
N510. Some qualitative features of the pair distributi
function are apparent: In the first place it follows either fro
the original expression~9! or from Eqs.~8! and ~10! that
D(x1 ,x2) vanishes at contactx15x2, as it must because o
impenetrability of the particles, and we see this to be true
Fig. 1. Furthermore, the correlation termD(x1 ,x2) is a trun-
cated closure sum and approaches the Dirac delta func
d(x12x2) as N→`, as is to be expected since the heali
length in a spatially uniform 1D hard-core Bose gas var
inversely with particle number@14#. As a result the width of
the null around the diagonal,Q15Q2 decreases with increas
ing N, and vanishes in the limit. Away from the diagon
alongQ252Q1, the pair distribution function rises, exhibit
modulations forN.2, due to the oscillatory nature of th
HO orbitals, before decreasing back to zero at large
tances. Forux12x2u much larger than the healing length,D
reduces to the uncorrelated density productr(x1)r(x2), so
the spatial extent of the pair distribution function is that

FIG. 1. Gray-scale plots of the dimensionless pair distribut
function xosc

2 D(Q1 ,Q2) as a function of the dimensionless coord
natesQ1 andQ2, for ~a! N52, ~b! N56, and~c! N510.
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the density and varies asN1/2 @16#.

B. Reduced single-particle density matrix

The reduced single-particle density matrix with norm
ization *r1(x,x)dx5N is given by

r1~x,x8!5NE cB0~x,x2 , . . . ,xN!

3cB0~x8,x2 , . . . ,xN!dx2•••dxN

5N Ne2Q2/2e2(Q8)2/2E )
i 52

N

e2Qi
2
uQi2QuuQi2Q8u

3F )
2< j ,k<N

~Qk2Qj !
2GdQ2•••dQN , ~12!

with

NN5N2N(N21)/2xosc
21FN! )

n50

N21

n!ApG21

. ~13!

Although the multidimensional integral~12! cannot be evalu-
ated analytically, it can be evaluated numerically by Mon
Carlo integration for not too large values ofN ~the comput-
ing time scales asN4). Figure 2 shows a gray scale plot o
the dimensionless reduced single-particle density ma
xoscr1(Q,Q8) versus the normalized coordinatesQ andQ8
for ~a! N52, ~b! N56, and ~c! N510. We verified that
along the diagonalr1(Q,Q85Q)5r(Q) reproduced the
single-particle density@16#. The off-diagonal elements of th
reduced density matrix relate to ODLRO, and it is clear th
as N increases, the off-diagonal elements are decreasin
contrast to the diagonal. This is a first indication th
ODLRO vanishes for a system of hard-core bosons in a
HO in the thermodynamic limit.

C. ODLRO, natural orbitals and their occupation

In a macroscopic system, the presence or absence of
is determined by the behavior ofr1(x,x8) as ux2x8u→`.
Off-diagonal long-range order is present if the largest eig
value of r1 is macroscopic~proportional toN), in which
case the system exhibits BEC and the corresponding ei
function, the condensate orbital, plays the role of an or
parameter@20,21#. Although this criterion is not strictly ap-
plicable to mesoscopic systems, if the largest eigenvalu
r1 is much larger than one, then it is reasonable to exp
that the system will exhibit some BEC-like coherence
fects. Thus we examine here the spectrum of eigenvaluel j
and associated eigenfunctionsf j (x) ~‘‘natural orbitals’’! of
r1. Although natural orbitals are a much-used tool in the
retical chemistry, they have only recently been applied
mesoscopic atomic condensates@25#. The relevant eigensys
tem equation is

E
2`

`

r1~x,x8!f j~x8!dx85l jf j~x!, ~14!

n

1-3
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where l j represents the occupation of the orbitalf j , and
one has( jl j5N. Numerical evaluation of the integral~13!
by discretization yields a readily solved matrix eigensyst
equation, which yields accurate numerical results for
largest eigenvalues and associated eigenvectors. We re
that for the corresponding problem ofN free fermions in a
1D HO, in which caser1(x,x8) is evaluated using the fer
mion wave functioncF0(x1 , . . . ,xN), the natural orbitals
are simply the HO orbitals, andl j51, j 50•••(N21), all
higher eigenvalues being zero. However, theN-boson wave
function in Eq.~3! is the modulus of the fermion wave func
tion, and this leads to significant differences in the spectr
of natural orbitals and eigenvalues for the hard-core ga
bosons.

In Fig. 3~a! we show a log-log plot of the fractional oc
cupation of the lowest orbitalf 05l0 /N versus the total par
ticle numberN ~solid line!, along with a best-fit power-law
f 0'N20.41 ~dashed line!. This is to be contrasted with th
case of a spatially uniform system of hard-core bosons
which f 0'N20.5 @12#. In both cases the fractional occupatio

FIG. 2. Gray-scale plots of the dimensionless reduced den
matrix xoscr1(Q,Q8) as a function of the dimensionless coordina
Q andQ8, for ~a! N52, ~b! N56, and~c! N510.
03360
e
ark

m
of

r

decreases with increasingN, and thus do not correspond t
true condensates for whichf 051. Nevertheless, the occupa
tion of the lowest orbital may still be largel0'N0.59, and is
larger than the spatially uniform casel0'N0.5, so macro-
scopic quantum coherence effects reminiscent of BEC
still result @8,12–14,16,17#.

Figure 3~b! shows the distribution of occupationsl j ver-
sus orbital numberj ~the orbitals are ordered according
eigenvalue magnitude, the largest eigenvalue beingj 50) for
N52 ~circles!, N56 ~stars!, andN510 ~squares!. This fig-
ure shows that as the lowest orbital occupationl0 increases
with increasingN, so does the range of significantly occ
pied higher-order orbitals withj .0. This means that the
dominance of the lowest orbital decreases with increasingN,
so singling outf0(x) as a macroscopic wave function for th
whole system becomes more problematic with increasinN
@17,16#.

FIG. 4. Lowest natural orbitalsf0(Q) versus normalized coor
dinateQ for ~a! N52, ~b! N56, and~c! N510.

ty

FIG. 3. Occupation of the natural orbitals:~a! fraction of atoms
in the lowest orbitalf 05l0 /N versusN, and~b! l j versus orbital
numberj for N52 ~circles!, N56 ~stars!, andN510 ~squares!.
1-4
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The numerically computed lowest orbitalsf0(Q) are
shown in Fig. 4 for~a! N52, ~b! N56, and~c! N510, and
they show the expected broadening due to many-body re
sion asN increases. We remark that these lowest orbitals
not simply the square root of the corresponding sing
particle densitiesr(Q) @16# as would be the case for a tru
condensate. Figure 5 shows the higher-order orbitalsf j (Q)
versusQ for j 51,2,3 andN510. Although the higher-orde
orbitals differ in detail from the HO orbitals they share t
features that the orbitals can be chosen real by removal o
overall phase, and that thej th orbital hasj zeros.

IV. MOMENTUM DISTRIBUTION

For a spatially uniform system~no trap! the natural orbit-
als are plane waves, so the occupation distribution of
natural orbitals is the same as the momentum distribut
Although this is not the case here due to the effect of
harmonic trap potential, the momentum distribution is s
physically important, so we study it here. In terms of t
boson annihilation and creation operators in position rep
sentation~quantized Bose field operators! the one-particle
reduced density matrix is

r1~x,x8!5^CB0uĉ†~x8!ĉ~x!uCB0&. ~15!

The momentum distribution functionn(k), normalized to
*2`

` n(k)dk5N, is n(k)5^CB0uâ†(k)â(k)uCB0& where

â(k) is the annihilation operator for a boson with momentu
\k. Then

n~k!5~2p!21E
2`

`

dxE
2`

`

dx8r1~x,x8!e2 ik(x2x8).

~16!

The spectral representation of the density matrix then le
to n(k)5( jl j um j (k)u2, where them j are Fourier transforms
of the natural orbitals:m j (k)5(2p)21/2*2`

` fn(x)e2 ikxdx.

FIG. 5. Higher-order natural orbitsf j (Q) versus normalized
coordinateQ for N510 and~a! j 51, ~b! j 52, and~c! j 53.
03360
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Figure 6 shows the numerically calculated dimensionl
momentum spectrumkoscn(k) versus normalized momen
tum k5k/kosc, with kosc52p/xosc, for ~a! N52, ~b! N
56, and~c! N510. The key features are that the momentu
spectrum maintains the sharp peaked structure reminisce
the spatially uniform case@8,12# for the 1D HO, and that the
peak becomes sharper with increasing atom numberN. This
is to be expected since as the number of atoms increase
many-body repulsion causes the system to become more
tially uniform within the trap interior.

V. SUMMARY AND CONCLUSIONS

In summary, we have investigated the ground-state pr
erties of a system of hard-core bosons in a 1D HO using
exact many-body wave function obtained using the Fer
Bose mapping theorem. Specifically, we have numerica
evaluated the reduced single-particle density matrix for
system using Monte Carlo integration for particle numb
up to N510, and extracted several quantities of physi
significance, including the natural orbitals and moment
spectrum. Our main finding is that the lowest orbital occ
pation scales asl0'N0.59, so that the system does not e
hibit true BEC, counter to the case of an ideal gas in a
HO @19#. Furthermore, this makes the introduction of
order-parameter or macroscopic wave function for the wh
system more problematic for largeN. We have started to
seek analytic approaches to derive the observed scalin
the lowest orbital with particle with no success so far. W
hope that these numerical results may motivate others to
proach this challenging problem.
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FIG. 6. Dimensionless momentum distributionkoscn(k) versus
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