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Photodesorption of charged impurities from a transparent crystal surface

Vladimir N. Strekalov*
Department of Physics, Moscow State University of Technology ‘‘STANKIN,’’ 3a Vadkovsky per., Moscow 101472, Russia

Dmitry V. Strekalov
Jet Propulsion Laboratory, MS 300-123, 4800 Oak Grove Drive, Pasadena, California 91109

~Received 3 June 2000; revised manuscript received 19 October 2000; published 12 February 2001!

Photodesorption of impurity ions is studied in the framework of a truncated harmonic oscillator model and
is considered as a direct photon absorption process without substrate heating. The desorption rate is found by
methods of quantum statistics, using the system’s evolution operator. The desorption rates estimates appear
realistic. Our results predict a series of new physical effects in desorption processes.
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I. INTRODUCTION

Virtually any significant impact on a solid surface caus
various nonequilibrium transport processes. Many such p
cesses have been studied for more than a decade, e.g.,
modesorption of impurities, evaporation and sublimati
surface chemical reaction, and others. Other surface
cesses have been studied only recently, such as noneq
rium processes caused by hot and cold plasma, by h
energy particles beams, or by strong laser fields. Cur
interest to the later processes is due to their great significa
for many directions in the theoretical and experimental ph
ics, as well as in chemistry and biology, and also for creat
foundations for modern high technology.

Experimental study of stimulated transport processes
solid surfaces is an especially active area, e.g., Refs.@1–4#,
while the theoretical description of experimental results u
ally has Heuristic or phenomenological character. Ma
purely theoretical works are also based on phenomenolog
methods. The reason for this is that it is hard to build
‘‘calculatable’’ physical model for a nonequilibrium proce
on a solid surface. Therefore constructing of an adequ
theoretical model~e.g., building a model of thermal desorp
tion @5#! attracts great interest.

In this paper, we would like to discuss the photodeso
tion occurring with direct absorption of light quanta. Th
process does not rely on heating of the sample by laser li
which distinguishes our treatment from the standard conc
of photodesorption. We will use a truncated harmonic os
lator model~see, e.g., the publications quoted in Ref.@5#! for
a impurity ion bound on a transparent crystal surface. T
model will be applied for the nonequilibrium transport pr
cess of photostimulated ion desorption in laser fields with
photon energies that are greater~i! or less~ii ! than the bind-
ing energy of the charged impurity on the surface.

Atomic and molecular desorption, as well as other surf
chemical reactions, is often studied by modeling the partic
surface interaction using the Lennard-Jones potential@6,7# in
one or another form. In addition to the fact that the para
eters determining the potential cannot be found theoretica
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the main weakness of this model is the following. It is ve
mathematically difficult to find the eigenfunctions and e
ergy eigenvalues for any realistic system and to solve
quantum problem completely. In addition, a real ‘‘particle
a surface’’ system has various oscillation degrees of freed
@7# not included in the Lennard-Jones potential. Taking th
arguments into consideration we choose a truncated
monic oscillator model which will allow us to completel
solve the quantum problem analytically.

An essential difference of our model from the one stud
before@5# is that we do not introduce the concept of a ra
dom force acting on a particle from the crystal and caus
thermodesorption. Instead, we use the standard descriptio
a bound particle interacting with a random phonon field
terms of the phonon creation and annihilation operators.

II. PHYSICAL MODEL

Consider desorption of an impurity ion bound on a so
surface. Let us take into account a laser field and ther
vibration of the lattice acting on the ion. Three subsyste
weakly coupled to each other are relevant: the laser field,
ion in the surface potential well, and the phonon ensem
causing random displacements of the well.

The laser field is off-resonance with all of the phon
frequencies, the frequency of the ion oscillation in the pot
tial well, and with any atomic electron transition frequencie
We will use the dipolar approximation for laser field inte
action with ions. The crystal will be considered a clear tra
parent dielectric. This means that the energy band ga
larger than the photon energy and the light does not cre
excitons and electron-hole pairs, which is a good approxim
tion for a large class of materials.

Consider an impurity ion in the surface potential we
The ion has an effective chargeZe whereZ is a positive or
negative number which can be noninteger, ande is the elec-
tron charge. Let us use the truncated harmonic oscillator
proximation to describe the potential well, see Fig. 1. F
lowing the approach in Ref.@5#, we consider a one-
dimensional well with the coordinatex perpendicular to the
sample surface.

The harmonic oscillator is truncated at the energy le
equal to the ion-to-surface binding energy. Therefore
©2001 The American Physical Society01-1
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elastic constantK of the quadratic potential

U~x!5 1
2 Kx2 ~1!

can be defined by the following condition:

1
2 Kl 25«a , ~2!

where 2l 5a, anda is the width of the surface potential we
which is about the lattice period, see Fig. 1.

The energy spectrum of the bound ion is@8#

«n52«a1~n11/2!\v0 , n50,1,2, . . . , ~3!

where, taking Eq.~2! into account,

v05A 2«a

M0l 2
. ~4!

The potential~1! corresponds to an immovable potent
well, when the energy minimum corresponds to the zero
ordinate. Thermal fluctuations result in the random displa
ments zW of the potential well, so the ion coordinatex is
replaced byiWx1zW , whereiW is the unit vector in thex direc-
tion. It is known that the displacementz is small compared
to the lattice period and to the potential well width up to t
melting temperature. Therefore we assume that the displ
mentzW does not alter the shape of the potential, only cha
ing the origin:

U~x,zW !5 1
2 K~ iWx1zW !2'U~x!1Kx~ iW•zW !. ~5!

Small displacements in a crystal can be represented
superposition of normal oscillations@9#. Each modem of
such oscillations corresponds to phonons with quasi mom
tum \qW and with unitary polarization vectoreWqW ,m . Introduc-
ing the phonon creation and annihilation operatorsbqW ,m

† and

bqW ,m , the displacement operatorzW can be put in the form@9#

zW5(
qW ,m

eWqW ,mz (C)~bqW ,meiqW •rW1bqW ,m
†

e2 iqW •rW! ~6!

FIG. 1. Truncated harmonic potential for a particle on a surfa
r 0 is the particle’s equilibrium position.
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zW5 iW(
qW

z (C)~bqW ,meiqW •rW1bqW ,m
†

e2 iqW •rW! ~7!

for a longitudinal acoustic mode polarized along thex axis.
The normalization constantz (C) is

z (C)5A \

3rV0vqW ,m

, ~8!

wherer andV0 are the crystal density and volume, respe
tively, andvq is the phonon frequency.

Using the relation~7!, we can clearly see the physica
meaning of the term neglected in Eq.~5!. This term is pro-
portional toz2 and hence takes into account the much le
likely processes of two-phonon creation and annihilat
~arising from the termsbqW 1

†
bqW 2

† and bqW 1
bqW 2

) as well as the

processes of phonon scattering from the impurity~arising
from the termsbqW 1

†
bqW 2

andbqW 1
bqW 2

† ). The longitudinal acoustic

phonons are not charged and do not generate distribute
pole momenta in crystal, so there is no direct photon-pho
interaction.

In our model, phonons are considered a thermal b
whose temperatureT0 is the same as the crystal temperatu
Possible deviations from the equilibrium distribution
phonons under the influence of a strong laser light will not
discussed in this work. We escape these complications
considering a transparent dielectric.

Summarizing the above discussion we write a compl
Hamiltonian for the considered system

Ĥ5Ĥ im1Ĥph1Ĥ11Ĥ2 , ~9!

where the following terms are included. The unperturbed
ergy operator for an ion in the potential well~1! with the
kinetic energy operatorK̂:

Ĥ im5K̂1U~x!. ~10!

The unperturbed energy operator for phonons:

Ĥph5(
qW

\vqbqW
†
bqW . ~11!

The operator of dipole interaction of an ion with laser wav

Ĥ15Zex~ iW•EW 0!cosvt. ~12!

The interaction operator of the ion bound in the poten
well with the random oscillations of the lattice:

Ĥ25Kx~ iW•zW !5Kx(
qW

z (C)~bqWe
iqW •rW1bqW

†
e2 iqW •rW!. ~13!

In the following we will only consider the displacemen
along thex axis, i.e., the phonons with the wave vectorsqW

5 iWq. This will allow us to use the scalar indexq in Eqs.~11!

.

1-2
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PHOTODESORPTION OF CHARGED IMPURITIES FROM . . . PHYSICAL REVIEW A63 032901
and ~13!. The operators~12! and ~13! are considered sma
perturbations added to operators~10! and ~11! which allows
us to use perturbation theory.

Note that the quantum mechanical problem that has b
formulated above uses the coordinate representation fo
ion and the second quantization representation for phon
This is not convenient for applying methods of quantum s
tistics. Therefore we need to introduce a secondary quan
tion representation for the ion.

In the energy spectrum of the ion, we select the nega
discrete energy levels«n52«a1«(n),0 @the energy«(n)
is measured from the bottom of the well whose depth is«a]
corresponding to the bound states of the ion, and the pos
continuous energies«k.0 corresponding to a desorbed io

Indices n and k span a full set of exact orthogonal an
normalized ion wave functions. For the bound states, th
are the harmonic oscillator eigenfunctionscn(x). A des-
orbed ion will be considered free, neglecting its residual
teraction with the surface. Then, its wave functionsck(x) are
plane waves. For this choice ofck(x) ,

«k5
pk

2

2M0
, ~14!

wherepk is the ion momentum along thex axis.
Note that transitions of an ion from then state to thek

state do not conserve momentum~whose excess is taken u
by the crystal!, which is similar to momentum nonconserv
tion for an electron in the process of atomic photoionizati

Now we can introduce the ion field operator

Ĉ~x!5(
n

Âncn~x!1(
k

B̂kck~x!, ~15!

whereÂn andB̂k are the annihilation operators of the ion
the n andk states, respectively.

We do not know the ion statistics, and hence we do
know the commutation relations of the operatorsÂn andB̂k .
But for the discussed problem it has no practical importan
because eventually we will consider the ions to be hea
quasiclassical particles adequately described by Boltzm
statistics. Mathematically, however, it is more convenien
assume at this stage that the ions are fermions.

Applying operator~15! in a usual second quantizatio
procedure

V5E dx Ĉ†~x!ĤĈ†~x!, ~16!

we find, instead of Eq.~10!,

Vim5(
n

«nÂn
†Ân1(

k
«kB̂k

†B̂k . ~17!

Operator~11! will not change, while Eqs.~12! and~13! will
take on the form
03290
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V15(
n,k

$l~k,n!B̂k
†Ân1l* ~k,n!Ân

†B̂k%~eivt1e2 ivt!1•••,

~18!

V25 (
n,k,q

B̂k
†Ân@m~q,k,n!bq1m~2q,k,n!bq

†#

1 (
n,k,q

Ân
†B̂k@m* ~2q,k,n!bq1m* ~q,k,n!bq

†#1•••.

~19!

In expressions~18! and ~19!, only the terms describing ion
desorption~and the reverse process! are shown explicitly.
Other higher order terms, including those describing tran
tions between different levelsn → n8 and resulting into lev-
els broadening, will not be considered in this work.

The transitions matrix elements in Eqs.~18! and ~19! are

l~k,n!5
1

2
Ze~ iW•EW 0!E dx ck* ~x! x cn~x!, ~20!

m~q,k,n!5Kz (c)E dx ck* ~x! xeiqx cn~x!. ~21!

OperatorV1 ~18! describes photodesorption accompan
by direct absorption of light by a particle, without heating
the sample or exciting of additional degrees of freedom, s
as emission of phonons, excitation or re-charging of the
sorbed particle, and so on. OperatorV2 in Eq. ~19!, on the
contrary, describes thermal desorption. The latter may
clude the type of photodesorption which depends on hea
of the sample by light, in which case the light intensity ind
rectly entersV2 via the temperature. This is a ‘‘traditional’
approach to photoassociation. In this work, however,
would like to study the effects related toV1, so we will
excludeV2 from consideration in this framework, and retu
to it elsewhere. Therefore we will discuss a particular d
sorption mechanism that contributes to desorption toge
with other mechanisms that may exist.

III. SOLUTION METHOD

The complete Hamiltonian of our system~11!, ~17! – ~19!
allows us to write the Schrodinger equation and solve
within some approximation. Then, probabilities of vario
kinds of desorption can be found. This is a standard quan
mechanical way of handling the problem. This way, ho
ever, is not adequate if the external fields are strong eno
to alter the distributions of the considered subsystems fr
equilibrium.

In order to have a universal method for describing vario
specific features of the nonequilibrium desorption, we w
use the density operator method utilizing the evolution o
eratorû(t,t0) ~e.g., see Ref.@10#!.

We transform the Schrodinger equation with perturbat
~18! to the interaction representation, arriving at
1-3
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i\
]c

]t
5V1i~ t !c, ~22!

where

V1i~ t !5(
n,k

@l~k,n!B̂k
†Âne~ i /\!b1t1l* ~k,n!Ân

†B̂ke
2( i /\)b1t#

~23!

and

b15«k2«n2\v. ~24!

In the operator~23! all irrelevant terms have been omitted
Now, let us define the evolution operatorû(t,t0) as @10#

c~ t !5û~ t,t0!c~ t0!, ~25!

wherec(t0) is the initial wave function of the system. Sub
stituting Eq.~25! into the Schrodinger equation~22!, we ob-
tain an operator equation

i\
]û~ t,t0!

]t
5V1i~ t !û~ t,t0! ~26!

with an initial conditionu(t0 ,t0)51.
Solving Eq.~26! we will be able to compute the statistic

operator@10#

r~ t !5û~ t,t0!r0û†~ t,t0!, ~27!

wherer0 is the equilibrium~unperturbed! statistical operator,
to find the distribution function of the desorbed particles o
the k states:

f ~k,t ![^B̂k
†B̂k& t5tr~ û†B̂k

†B̂kûr0!, ~28!

and to find the part of the kinetic equation collision integ
which corresponds to desorption:

Jd~k![
] f ~k,t !

]t U
scatter

5
]

]t
tr~ û†B̂k

†B̂kûr0!. ~29!

Averaging the collision integral~29! over the initial
states, and summation over the final states of ions will re
into the total desorption rateRd which is what we look for.
In all following expressions forRd we will assume the initial
Boltzmann distribution of ions. To conclude this section,
us point out that to find the nonvanishing contributions to
mean desorption rate it is sufficient to evaluate the evolu
operator in the first order of perturbation theory

û~ t,t0!511û1~ t,t0!,

û1~ t,t0!52
i

\Et0

t

dt V1i~ t !. ~30!
03290
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IV. THE WAVE FUNCTION, TRANSITION MATRIX
ELEMENTS, AND THE INITIAL DISTRIBUTION

FUNCTION

To derive equations that would be practically useful f
analytical study of the desorption processes we need to k
the transition matrix elements and the initial distributio
function f 0(n) of the impurity ions. The energy spectrum o
the bound ions is given by Eq.~3!. It can be shown that the
number of the potential well levelsnmax@1, the frequency
v0 lies in the range of acoustic phonons frequenciesvq , and
the ratioT0 /\v0 is equal to 2•••4 for the temperaturesT0
50.025•••0.05 eV (300•••600 K!. Therefore the function
f 0(n) cannot be considered as a continuous Boltzmann
tribution over energies. The discrete character of«n should
be taken into account, and instead of integration over
initial distribution one should take a sum. In this sum we c
put nmax→` because of a large number of levels in the we
the strong inequality«a@T0, and rapid decrease of thef 0(n)
for largen. The initial distribution function of ions is

f 0~n!5C expH 2
«n

T0
J 5C expH 1

T0
S «a2

1

2
\v0D J

3expH 2
\v0

T0
nJ , ~31!

whereC is found from the normalization condition

(
n50

`

f 0~n!5Nim ~32!

and Nim is the number of the impurity ions on the samp
surface

C5Nim expH 2
1

T0
S «a2

1

2
\v0D J H 12expS 2

\v0

T0
D J .

~33!

To calculate the matrix elements of the desorption tran
tions the wave functionscn(x) and ck(x) should be given
explicitly. Taking into account the above notes on the tru
cated harmonic oscillator properties, we can put

cn~x!5N(0)Hn~ax! expH 2
1

2
a2x2J , ~34!

whereHn(ax) are Hermitian polynomials and

N(0)5A a

Ap2nn!
, a5A4 M0K

\2
. ~35!

The final states of the ion are represented by plane wa

ck~x!5expH i

\
pkxJ , ~36!

where we put all sizes of the quantization volume equa
unity. Let us now expressl(k,n) introduced in Eq.~18! as
1-4
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l~k,n!5
1

2
Ze~ iW•EW 0!

N(0)

a2
I kn , ~37!

where

I kn5E
2`

`

dy yeiyz(k)e2(1/2)y2
Hn~y!, z~k!52

pk

a\
.

~38!

Using properties of Hermitian polynomials~e.g. Ref.@11#!
we find

l~k,n!5 1
2 Ze~ iW•EW 0!A2pN(0)a22i n21e2(1/2)z2(k)

3$2nHn21@z~k!#2z~k!Hn@z~k!#%. ~39!

V. PHOTODESORPTION RATE

From the perturbation equation~30! we find

û1522p i(
n,k

$l~k,n!B̂k
†Ân1l* ~k,n!Ân

†B̂k%d~b1!

~40!

for the photostimulated desorption process. This is true in
approximation of the long times (Vt@1), whereV is any of
the frequencies characterizing the studied subsystems.

Now taking into consideration expression~28! we can
write the nonequilibrium distribution function of the de
orbed ions with respect to the finalk states

f ~k,t !5^û†B̂k
†B̂kû&0'^~11û1

†!B̂k
†B̂k~11û1!&0 . ~41!

The index 0 here emphasizes that the averaging is done
respect to the initial statistical operatorr0, or more gener-
ally, with respect to a statistical operator which is diago
similar to r0.

Since û1 contains two Hermitian conjugate terms, th
right-hand part of Eq.~41! consists of nine terms represen
ing various multiparticle distribution functions. We can sp
a multiparticle distribution function into single-particle on
using Wick’s theorem@12#. Skipping the calculational detai
we derive from Eq.~41! to

f ~k,t !5 f ~k,t0!1
2p

\
t@16 f ~k,t0!#

3(
n

ul~k,n!u2f ~n,t0!d~b1!, ~42!

where ‘‘1 ’’ corresponds to Bose-statistics and ‘‘2 ’’ corre-
sponds to Fermi-statistics. As it has been pointed out ear
we will have to switch to the quasiclassical statistics type
some point in our calculations. Let us do it now, assum
that f (k,t0) is a quasi-Boltzmann distribution andf (k,t0)
!1.

Returning to expression~29! and differentiating Eq.~42!
with respect to time, we find the collision integral whic
describes the desorption transitions of bound ions cause
03290
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the laser light, that is, the cumulative desorption rate from
initial n states to a finalk state:

Jd~k!5
2p

\ (
n

ul~k,n!u2f ~n,t0!d~b1!. ~43!

If we wish to find the statistical average photodesorpt
rate~which is measured by the total flux of desorbed matte!,
we need to integrate Eq.~43! over all final statesk and nor-
malize the result to the total numberNim of the impurity ions
capable of desorption.

As a result, we find the mean rate of the photoinduc
desorption

Rph5
1

Nim
(

k
Jd~k!

5
1

Nim

1

\2 (
n

f 0~n!E
2`

1`

dpk h@pk#ul~k,n!u2d~b1!,

~44!

where the unitary step functionh@pk# is introduced to em-
phasize that only the desorbed ions are accounted for,
the ones that flyaway from the surface.

Integration over the momentumpk yields the final expres-
sion

Rph5
1

Nim

A2M0

2\2 (
n

f 0~n!ul~k0 ,n!u2
h@«n1\v#

A«n1\v
,

~45!

wherek0 is defined by

pk0
5p0[A2M0~«n1\v!. ~46!

Each term of the sum~45! represents the photodesorptio
mean rate from a leveln and is equal to

Rph~n!5@Ze~ iW•EW 0!#2
A2pM0

2n12\2a3n!
F12expS 2

\v0

T0
D G

3expS 2n
\v0

T0
DexpS 2

p0
2

a2\2D h@«n1\v#

A«n1\v

3F2nHn21S 2
p0

a\ D1
p0

a\
HnS 2

p0

a\ D G2

. ~47!

In Eqs.~45! and~47! the step functionh@«n1\v# selects
only those levelsn for which «n1\v.0 and momentum
~46! is physically meaningful, when photodesorption tran
tions are allowed by the energy conservation law. In parti
lar, h@«n1\v# demands that for\v.«a photodesorption
occurs from all levels of the oscillator, while for\v,«a it
occurs only from sufficiently high levels,n>nmin , where

nmin5IntF «a

\v0
2

1

2G , ~48!
1-5
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Int@g# denoting the integer part of theg.
It is interesting to model photodesorption rates for diffe

ent levels~47!, as well as the total rate, for various param
eters. Let us choose the impurity charge to be equal to
charge of an electron,M0550mp58.35310223 g, «a52.5
eV, 2l 5a5331028 cm, E0533105 V/cm. Temperature
dependence of the rates is given by Boltzmann distribu
function ~31!. Their dependence on the laser light wav
length is shown in Fig. 2. We see that desorption rates
matically increase as we approach the binding energy«a
from the blue part of the spectra, reaching the first maxim
in vicinity of the bottom of the binding potential. Then eac
rate Rph(n) oscillates between zero and some peak val
and turns to zero when we pass thenth level ~and the photon
energy is no longer sufficient to desorb a particle bound
this level!.

This behavior of desorption rates is determined by
transition matrix elementsl. In particular, the nodes in th
rates’ dependence on wavelength are related to zeros o
Hermitian polynomials in Eq.~47!, specific for the harmonic
oscillator wavefunctions. So the photodesorption rates in
‘‘red’’ part of spectrum, when the photon energy is less th
the binding energy, may be expected to strongly depend
the exact shape of the binding potential. In addition, in a r
system the energy levelsn will be broadened~e.g., due to
multiphonon transitionsn→n8; this will be discussed else
where!. Therefore the peak values of the rates may in rea
be lower.

However, this should not significantly affect the behav
of rates in the ‘‘blue’’ part of spectrum, i.e., just below th
bottom of the well, so we may consider our estimates in t
region more reliable. Adding up all rates given by Eq.~47!
we find the total photodesorption rateRph . It is plotted in
Fig. 3 as a function of wavelength for three different te
peratures 100, 300, and 700 K. Notice that the tempera
dependence of the total rate is not very significant~it is given
by equilibrium population of the lowest levels in the wel!,
while the numerical values of the rates are large enoug
make the effect observable in experiment.

FIG. 2. Photodesorption ratesRph(n) as functions of the lase
wavelength forn50,1,2,3 atT5300 K. The leftmost vertical line
marks the wavelength corresponding to the binding energy«a ;
other lines represent levelsn. EachRph(n) turns to zero for wave-
lengths ‘‘redder than thenth level.’’
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VI. DISCUSSION OF RESULTS

The following conclusions can be derived from describi
the photoinduced desorption in the framework of the tru
cated harmonic oscillator model. Expression~47! yields
qualitatively similar dependencies of the rate on the lig
wave frequency and intensity as the expression for proba
ity of photoionization of atoms in the external photoelect
effect @8#.

First, the rates~47! decrease rapidly with the increase
the photon energy\v.«a , just us in the photoelectric ef
fect. It follows from Eq.~47! that if \v@«a , exp(2Z2)'0
~disregarding the umklap processes!, that is this type of
photoinduced desorption is practically absent. The maxim
of photodesorption rate is reached when\v'«a .

This sort of frequency dependency of the effect sugge
that it can be useful for selective cleaning of substrates
faces: tuning the laser frequency to the binding energy of
impurity one will be able to cause photodesorption of th
particular impurity. Sweeping the frequency~while D\v
>\v, \v,«a) should cause jumps in the desorption ra
and emerging of new groups in the desorbed particles en
distribution.

Second, the factor (iW•EW 0)2 in Eq. ~47! provides an angu-
lar dependency, typical for the photoinduced processes.
well known @9# that the photoelectrons emerge from atom
mostly in the directions perpendicular to the direction
light propagation, which is determined by the same fac
Formally, the photodesorption effect would be impossib
for normal incidence of light on the sample surface, wh
( iW•EW 0)50. This is a consequence of using a on
dimensional model. Considering a spherical potential w
instead of the one-dimensional one described by Eq.~1!, and
studying an impurity atom on the surface as a semispher
rotator, should result in the averaging over angles and rep
ing ( iW•EW 0)2 by approximatelyE0

2. Validity of the rotator
model can be verified in experiment if the light inciden
angle and its polarization plane are varied. If the rota
model is valid, the variation of desorption rate in such e
periments will be insignificant.

Speaking of possible experimental verifications of our

FIG. 3. Total photodesorption rateRph as a function of the lase
wavelength different temperatures:T5100 ~highest peak value!,
300, 700 K~lowest peak value!.
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sults, we would like to point out that experiments have be
carried out@13,14# in support of our theoretical treatmen
However, even more specialized experiments are desira
In particular, our results show that each leveln in the well
contributes a distinct input into the mean rate of photod
orption, producing particles with a certain momentap0(n)
~46!. It is easy to show that the particles’ velocitiesv(n) lie
in the range of 320 to 410 m/s~for n<5) and vary by steps
of Dv'18 m/s. Detection of the discrete structure ofv(n) in
experiment could confirm correctness of the truncated h
monic oscillator model. Numerical comparison of the expe
mental data on velocity distribution with the predicted valu
of v(n) and Dv, and verifying predicted independence
these parameters of the sample temperatureT0, could prove
correctness of our approach and calculations. An even m
dramatic test of our theory would be a measurement of
flux of desorbed ions from various levels and compar
their ratio to the result~47!. This test is feasible as a time
of-flight experiment.
-

do
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Obtaining laser fields of the order of 33105 V/cm is not
difficult. Transparent dielectrics such as considered here
usually withstand even stronger fields. Our results~see Fig.
3! suggest that we may get a desorption rate of the orde
10 ms21. It means that during a 30 ns laser pulse of the rig
wavelength, some 30% of all impurity ions will be remove
from the surface. This is a significant fraction which can
easily measured in a time-of-flight experiment. The nonth
mal desorption considered here has a property of accum
tion. Therefore a series of a few laser pulses should resu
a virtually perfect cleaning of the surface of the impuri
ions, which raises hopes for other experimental method
test our theory, and for its practical use.
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