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Photodesorption of charged impurities from a transparent crystal surface
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Photodesorption of impurity ions is studied in the framework of a truncated harmonic oscillator model and
is considered as a direct photon absorption process without substrate heating. The desorption rate is found by
methods of quantum statistics, using the system’s evolution operator. The desorption rates estimates appear
realistic. Our results predict a series of new physical effects in desorption processes.
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[. INTRODUCTION the main weakness of this model is the following. It is very
mathematically difficult to find the eigenfunctions and en-

Virtually any significant impact on a solid surface causesergy eigenvalues for any realistic system and to solve the
various nonequilibrium transport processes. Many such proquantum problem completely. In addition, a real “particle on
cesses have been studied for more than a decade, e.g., thaisurface” system has various oscillation degrees of freedom
modesorption of impurities, evaporation and sublimation[7] notincluded in the Lennard-Jones potential. Taking these
surface chemical reaction, and others. Other surface prdfguments into consideration we choose a truncated har-
cesses have been studied only recently, such as nonequiliflonic oscillator model which will allow us to completely
rium processes caused by hot and cold plasma, by higtolve the quantum problem analytically.
energy partic'es beamsl or by Strong laser fields. Current An essential diﬁerence Of our mOde| from the one Studied
interest to the later processes is due to their great significandtefore[5] is that we do not introduce the concept of a ran-
for many directions in the theoretical and experimental physdom force acting on a particle from the crystal and causing
iCS, as well as in Chemistry and bio'ogy, and also for Creatindhermodesorption: InSteaq, We.use the standard descr.iptiO!’] of
foundations for modern high technology. a bound particle interacting with a random phonon field in

Experimental study of stimulated transport processes offfms of the phonon creation and annihilation operators.
solid surfaces is an especially active area, e.g., R&fs4],
while the theoretical description of experimental results usu-
ally has Heuristic or phenomenological character. Many
purely theoretical works are also based on phenomenological Consider desorption of an impurity ion bound on a solid
methods. The reason for this is that it is hard to build asurface. Let us take into account a laser field and thermal
“calculatable” physical model for a nonequilibrium process vibration of the lattice acting on the ion. Three subsystems
on a solid surface. Therefore constructing of an adequatereakly coupled to each other are relevant: the laser field, the
theoretical modele.g., building a model of thermal desorp- ion in the surface potential well, and the phonon ensemble
tion [5]) attracts great interest. causing random displacements of the well.

In this paper, we would like to discuss the photodesorp- The laser field is off-resonance with all of the phonon
tion occurring with direct absorption of light quanta. This frequencies, the frequency of the ion oscillation in the poten-
process does not rely on heating of the sample by laser lightial well, and with any atomic electron transition frequencies.
which distinguishes our treatment from the standard conceptVe will use the dipolar approximation for laser field inter-
of photodesorption. We will use a truncated harmonic oscil-action with ions. The crystal will be considered a clear trans-
lator model(see, e.g., the publications quoted in R&i) for ~ parent dielectric. This means that the energy band gap is
a impurity ion bound on a transparent crystal surface. Thidarger than the photon energy and the light does not create
model will be applied for the nonequilibrium transport pro- excitons and electron-hole pairs, which is a good approxima-
cess of photostimulated ion desorption in laser fields with theion for a large class of materials.
photon energies that are greatgror less(ii) than the bind- Consider an impurity ion in the surface potential well.
ing energy of the charged impurity on the surface. The ion has an effective chargee whereZ is a positive or

Atomic and molecular desorption, as well as other surfaceegative number which can be noninteger, ansl the elec-
chemical reactions, is often studied by modeling the particletron charge. Let us use the truncated harmonic oscillator ap-
surface interaction using the Lennard-Jones pote@i&l in ~ proximation to describe the potential well, see Fig. 1. Fol-
one or another form. In addition to the fact that the paramlowing the approach in Ref[5], we consider a one-
eters determining the potential cannot be found theoreticallydimensional well with the coordinate perpendicular to the

sample surface.
The harmonic oscillator is truncated at the energy level
*Email address: stvn@sec.ru equal to the ion-to-surface binding energy. Therefore the
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' wherep andV, are the crystal density and volume, respec-

I Ty tively, andw, is the phonon frequency.

. . ) Using the relation(7), we can clearly see the physical
_FIG. 1. Tr_uncated ha}rnjonlc po_tt_entlal for a particle on a S“rfacemeaning of the term neglected in E@). This term is pro-

Fo is the particle’s equilibrium position. portional to¢? and hence takes into account the much less

likely processes of two-phonon creation and annihilation

(arising from the terms*.)glbg2 and bdlbdz) as well as the

U(x)= 3 Kx? (1) processes of pThonon scatteTring from the impufayising
from the terms‘oalba2 andbdlbaz). The longitudinal acoustic

phonons are not charged and do not generate distributed di-

elastic constanK of the quadratic potential

can be defined by the following condition:

1K|2=¢,, 2) pole mqmenta in crystal, so there is no direct photon-phonon
interaction.
where 2=a, anda is the width of the surface potential well ~ In our model, phonons are considered a thermal bath
which is about the lattice period, see Fig. 1. whose temperaturg, is the same as the crystal temperature.
The energy spectrum of the bound ion & Possible deviations from the equilibrium distribution of
phonons under the influence of a strong laser light will not be
en=—¢eat(N+12hwy, Nn=0,12..., (3 discussed in this work. We escape these complications by
considering a transparent dielectric.
where, taking Eq(2) into account, Summarizing the above discussion we write a complete

Hamiltonian for the considered system

2e,
*0= Va2 (4) A=+ Fon+ A+ Ay, 9

. . . where the following terms are included. The unperturbed en-
The potential(1) corresponds to an immovable potential ergy operator for an ion in the potential well) with the

well, when the energy minimum corresponds to the zero co-" 2 ~
ordinate. Thermal fluctuations result in the random displacekinetic energy operataK:
ments{ of the potential well, so the ion coordinateis
replaced byi*x+Z, wherei is the unit vector in the direc-

tion. It is known that the displacemetitis small compared The unperturbed energy operator for phonons:
to the lattice period and to the potential well width up to the

melting temperature. Therefore we assume that the displace-

Hi=K+U(X). (10)

2 Aon=> hwgbibg. 11
ment{ does not alter the shape of the potential, only chang- ph Eq: wqbqbq (1D
ing the origin;
The operator of dipole interaction of an ion with laser wave:
U(x,0) =3 K(ix+)*~U)+Kx(i-0). (5

H,=Zexi-Egy)coswt. (12
Small displacements in a crystal can be represented as a ) ) ) )
superposition of normal oscillatiorf®]. Each modew of The interaction operator_of _the ion bound_ in the potential
such oscillations corresponds to phonons with quasi momenV€ll with the random oscillations of the lattice:
tum g and with unitary polarization vecta; ,, . Introduc-

- - - Gr L nt iar
ing the phonon creation and annihilation operatmh and Ho=Kx(I-O)=KxX, {©(bge'd "+be ). (13
’ q

bg,,.. the displacement operatgrcan be put in the formo]
In the following we will only consider the displacements
= = iq-r L wt o amiger is, i i )
522 ei,uf(c)(b&,ue'q rJFba,,ﬁ ia-ry (6) algng thgx §X|s, i.e., the phonons with t.he wave vectors
q.p =iq. This will allow us to use the scalar indepin Egs.(11)
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and (13). The operatorg12) and (13) are considered small A A , ,

perturbations added to operatdf®) and(11) which allows V1= 2, {N(k,mBIA+1* (k,nAIB (et +e @)+ .. .,

us to use perturbation theory. nk (18)
Note that the quantum mechanical problem that has been

formulated above uses the coordinate representation for an

ion and the second quantization representation for phononsV2: 2 BlAn[,u(q.k,n)bqtu(—q,k,n)b;]

This is not convenient for applying methods of quantum sta- nKk.q

tistics. Therefore we need to introduce a secondary quantiza-

tion representation for the ion. + ABIw* (—akmbe+ u*(akmbii+ ...
In the energy spectrum of the ion, we select the negative n%q Bl 47 (= kimbg + 47 (k)b '

discrete energy levels,= —&,+&(n)<0 [the energys(n)
is measured from the bottom of the well whose depth,is

corresponding to the bound states of the ion, and the positive . L
continuous energies, >0 corresponding to a desorbed ion. In expressiong18) and (19), only the terms describing ion

Indicesn and k span a full set of exact orthogonal and desorption(and the reverse procgsare shown explicitly.

normalized ion wave functions. For the bound states, thes(e.})ther higher order terms, including those describing transi-

X , o
are the harmonic oscillator eigenfunctiolg(x). A des- tions betwe‘?” d|ff§rent Ievelsﬂln and_resu_ltmg into lev-
els broadening, will not be considered in this work.

orbed ion will be considered free, neglecting its residual in- L X .
teraction with the surface. Then, its wave functign$x) are The transitions matrix elements in Eq$8) and (19) are

plane waves. For this choice gf(x) ,

(19

1 -~ =
o2 A(k,n)zEZe(iEo)f dx g (X) X ¢n(x),  (20)
k

:No’ (14

€k

K, =K(°)fd . iax : 21
wherep, is the ion momentum along theaxis. m(a,k,n)=K¢ X e (X) X€P ¢fp(X) (21

Note that transitions of an ion from the state to thek
state do not conserve momentymhose excess is taken up OperatorV, (18) describes photodesorption accompanied
by the crystal, which is similar to momentum nonconserva- by direct absorption of light by a particle, without heating of
tion for an electron in the process of atomic photoionizationthe sample or exciting of additional degrees of freedom, such
Now we can introduce the ion field operator as emission of phonons, excitation or re-charging of the de-
sorbed particle, and so on. Operaity in Eqg. (19), on the
“ - A contrary, describes thermal desorption. The latter may in-
\If(x)=§ An‘/fn(X)JFEk Bihi(X), (19 clude the type of photodesorption which depends on heating
of the sample by light, in which case the light intensity indi-

. . rectly entersV, via the temperature. This is a “traditional”
WhereAn and B, are the annihilation operators of the ion in approach to photoassociation' In this work, however, we
then andk states, respectively. would like to study the effects related ¥,, so we will

We do not know the ion statistics, and hence we do nokxcludeV, from consideration in this framework, and return
know the commutation relations of the operatéfsandB . to it elsewhere. Therefore we will discuss a particular de-
But for the discussed problem it has no practical importancesorption mechanism that contributes to desorption together
because eventually we will consider the ions to be heavywith other mechanisms that may exist.
quasiclassical particles adequately described by Boltzmann
statistics. Mathematically, however, it is more convenient to
assume at this stage that the ions are fermions.

Applying operator(15) in a usual second quantization  The complete Hamiltonian of our systdfi), (17) — (19)
procedure allows us to write the Schrodinger equation and solve it

within some approximation. Then, probabilities of various
B S kinds of desorption can be found. This is a standard quantum
V—f dx W X)HW (%), (160 mechanical way of handling the problem. This way, how-
ever, is not adequate if the external fields are strong enough
we find, instead of Eq(10), to allt'er_the distributions of the considered subsystems from
equilibrium.
In order to have a universal method for describing various
Vimzz snAEAnjLz Skélgk_ (17) specific featu_res of the nonequilibrig_m_ desorption, we will
K use the density operator method utilizing the evolution op-
eratoru(t,ty) (e.g., see Ref.10]).
Operator(11) will not change, while Eqs(12) and (13) will We transform the Schrodinger equation with perturbation
take on the form (19) to the interaction representation, arriving at

Ill. SOLUTION METHOD
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J IV. THE WAVE FUNCTION, TRANSITION MATRIX
oY
if Y =V (1), (22 ELEMENTS, AND THE INITIAL DISTRIBUTION
FUNCTION
where To derive equations that would be practically useful for

analytical study of the desorption processes we need to know
_ L A (iR Bt the transition matrix elements and the initial distribution
Vl‘(t)_nzk [A (k) BRAR! At N (ko) AgBye (1] function fo(n) of the impurity ions. The energy spectrum of
(23)  the bound ions is given by E@3). It can be shown that the
number of the potential well levels .1, the frequency
and g lies in the range of acoustic phonons frequencigs and
the ratioTy/fwg is equal to 2 - -4 for the temperature§,
Bi=er—en—ho. (29 =0.025--0.05 eV (300--600 K). Therefore the function
fo(n) cannot be considered as a continuous Boltzmann dis-
In the operato23) all irrelevant terms have been omitted. tribution over energies. The discrete charactee pfshould
Now, let us define the evolution operalfa)(‘t,to) as[10] be taken into account, and instead of integration over the
initial distribution one should take a sum. In this sum we can
P(t) = Cl(t,to) W(to), (25) put n,a—° because of a large number of levels in the well,
the strong inequality ,>T,, and rapid decrease of tlig(n)

where yg(t,) is the initial wave function of the system. Sub- for largen. The initial distribution function of ions is
stituting Eq.(25) into the Schrodinger equatid22), we ob-

. . 1 1
tain an operator equation - _8nl_ e —Z
fo(n)=C exp{ To] Cexp{ To(sa Zﬁwo)]
au(t,to) . o
h =g = Vuu(tto) (26) Xexp[ - T—OOnJ (31)
with an initial conditionu(to,to) =1. ~ whereC is found from the normalization condition
Solving Eq.(26) we will be able to compute the statistical
operator{10] *
2 fo(m=Nip (32
p(t)=U(t,to) poll’(t, o), (27)

) o o and N;,, is the number of the impurity ions on the sample
wherepy is the equilibrium(unperturbegistatistical operator, g rface

to find the distribution function of the desorbed particles over

the k states: 1 1 hwg
C=Njpexp —=—|ea—showg|({1—exp ——=|;.
- faia e To 2 To
f(k,t)=(B/By)=tr(u'B/Bupy), (29 (33
and to find the part of the kinetic equation collision integral ~ To calculate the matrix elements of the desorption transi-
which corresponds to desorption: tions the wave functiong,(x) and ¢, (x) should be given
explicitly. Taking into account the above notes on the trun-
af(k,t) 9 cated harmonic oscillator properties, we can put
Ja(k)=— =—tr(U"B/ByUpo). (29)
J scatter at 1
P (X)=NOH (ax) exp — Eozzx2 , (34)

Averaging the collision integra29) over the initial
states, and summation over the final states of ions will resulf;ore 4
into the total desorption ratey which is what we look for.
In all following expressions foRy we will assume the initial MK
Boltzmann distribution of ions. To conclude this section, let NO= A [ @ . a= o (35)
us point out that to find the nonvanishing contributions to the Jm2™n! h?
mean desorption rate it is sufficient to evaluate the evolution

n(ax) are Hermitian polynomials and

operator in the first order of perturbation theory The final states of the ion are represented by plane waves
- - i
U(t,to) =1+ U (t.to), wk(x>=exp{gpkx], (36)
i t
Uy(t,tg)=— I—j dt Vy(t). (30) Where we put all sizes of the quantization volume equal to
h i unity. Let us now express(k,n) introduced in Eq(18) as
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N(©)

1
A(k, n)——Ze(| Eo) 2 lkn, 37

where

ln= f dy yer@ e @2 H (y),  z(k)
(39

Using properties of Hermitian polynomialg.g. Ref.[11])
we find

—2jn-1g —(1/2)23(k)

Ak,n)= 3 Ze(i-Eg)V27NO@«

X{2nH,_i[z(k)]-z(k)H [z(K)]}. (39

V. PHOTODESORPTION RATE

From the perturbation equatidB0) we find

Uy= —27i 2k Nk, BIA+M* (k,n)ATB Y 8(81)
’ (40)

PHYSICAL REVIEW&S 032901

the laser light, that is, the cumulative desorption rate from all
initial n states to a finak state:

2
30=5 Z Mk PintG s, (@3

If we wish to find the statistical average photodesorption
rate(which is measured by the total flux of desorbed matter
we need to integrate E§43) over all final statek and nor-
malize the result to the total numbidy,, of the impurity ions
capable of desorption.

As a result, we find the mean rate of the photoinduced
desorption

ph

2

1
_2

1
Nim
B 1
_N_

o<n>f dpe npiIN (ko) 28(0By),

(44)

where the unitary step function| p,] is introduced to em-
phasize that only the desorbed ions are accounted for, i.e.,

for the photostimulated desorption process. This is true in théhe ones that fllaway from the surface.

approximation of the long timedXt>1), where() is any of
the frequencies characterizing the studied subsystems.
Now taking into consideration expressig@8) we can

Integration over the momentupy yields the final expres-
sion

write the nor_lequilibrium distrib_ution function of the des- 1 y2™ 2 ,nlenthow]
orbed ions with respect to the finklistates Ron=y—" N, 252 2 fo(n) [\ (ko,n)| eihe
(k) = (08B o=~ (1 +UDBIBUL+ 3o, (4D 49
wherek, is defined by
The index 0 here emphasizes that the averaging is done with
respect to the initial statistical operatpg, or more gener- Pk, = Po= P2My(e,+hw). (46)

ally, with respect to a statistical operator which is diagonal

similar tOPO Each term of the sung45) represents the photodesorption
Since Ul contains two Hermitian Conjugate terms, the mean rate from a leveal and is equa| to

right-hand part of Eq(41) consists of nine terms represent-

ing various multiparticle distribution functions. We can split . V2mM hwg
a multiparticle distribution function into single-particle ones  Rpn(n)=[Ze&(i-Eo)]" -7 ———|1—exp — ——
using Wick’s theorenfi12]. Skipping the calculational detail, 2" h an! 0
we derive from Eq(41) to y ;{ ﬁwo) p( p(z) ) yleptho]
exg —n— |exp —
2w T 2k2) e+
D =f(kto) + 12 (k)] ° G et e
2
o 2] BB
2 ah| ah ah
<2 INKPHN (B, (42
In Egs.(45) and(47) the step function[ e, + % w] selects
where “+” corresponds to Bose-statistics and-*' corre- ~ only those levels for which &,+%»>0 and momentum

sponds to Fermi-statistics. As it has been pointed out earlief46) is physically meaningful, when photodesorption transi-
we will have to switch to the quasiclassical statistics type ations are allowed by the energy conservation law. In particu-
some point in our calculations. Let us do it now, assumingar, 7le,*%w] demands that foriw>e, photodesorption
that f(k,t,) is a quasi-Boltzmann distribution anfdk,to) occurs from all levels of the oscillator, while féro<e, it
<1. occurs only from sufficiently high levelsy=n,,, where
Returning to expressiof®9) and differentiating Eq(42)
with respect to time, we find the collision integral which

. . o . Int| ——
describes the desorption transitions of bound ions caused by

, (48)

Npin=
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FIG. 2. Photodesorption ratés,,(n) as functions of the laser
wavelength fom=0,1,2,3 atT=300 K. The leftmost vertical line
marks the wavelength corresponding to the binding energy
other lines represent levets EachR,(n) turns to zero for wave-
lengths “redder than thath level.”

Int[ v] denoting the integer part of the

It is interesting to model photodesorption rates for differ-
ent levels(47), as well as the total rate, for various param-
eters. Let us choose the impurity charge to be equal to th

charge of an electroryly=50m,=8.35x10"* g, £,=2.5
eV, 21=a=3%x10 8 cm, E,=3x10° V/cm. Temperature

dependence of the rates is given by Boltzmann distributio
function (31). Their dependence on the laser light wave-
length is shown in Fig. 2. We see that desorption rates dr

matically increase as we approach the binding energy

from the blue part of the spectra, reaching the first maximu
in vicinity of the bottom of the binding potential. Then each
rate R,n(n) oscillates between zero and some peak value

and turns to zero when we pass tité level (and the photon
energy is no longer sufficient to desorb a particle bound
this leve).

This behavior of desorption rates is determined by th
transition matrix elements. In particular, the nodes in the

Hermitian polynomials in Eq47), specific for the harmonic

oscillator wavefunctions. So the photodesorption rates in the
“red” part of spectrum, when the photon energy is less than
the binding energy, may be expected to strongly depend o

n

S
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FIG. 3. Total photodesorption rai,, as a function of the laser
wavelength different temperature¥:=100 (highest peak valye
300, 700 K(lowest peak value

VI. DISCUSSION OF RESULTS

The following conclusions can be derived from describing
the photoinduced desorption in the framework of the trun-
cated harmonic oscillator model. Expressiof7) yields

ualitatively similar dependencies of the rate on the light

ave frequency and intensity as the expression for probabil-
ity of photoionization of atoms in the external photoelectric
effect[8].

First, the rateg47) decrease rapidly with the increase of
the photon energyiw>¢,, just us in the photoelectric ef-

Sect. It follows from Eq.(47) that if hw>e,, expZ2)~0

(disregarding the umklap procesgethat is this type of

rrbhotoinduced desorption is practically absent. The maximum

of photodesorption rate is reached whea~¢,.

This sort of frequency dependency of the effect suggests
hat it can be useful for selective cleaning of substrates sur-
aces: tuning the laser frequency to the binding energy of an

impurity one will be able to cause photodesorption of that
articular impurity. Sweeping the frequendwhile Az w

=hw, hw<e,) should cause jumps in the desorption rate

'?a%d emerging of new groups in the desorbed particles energy

distribution.

Second, the factorf( EO)2 in Eq. (47) provides an angu-
|ar dependency, typical for the photoinduced processes. It is

the exact shape of the binding potential. In addition, in a reayVell known [9] that the photoelectrons emerge from atoms

system the energy levels will be broadenede.g., due to

multiphonon transitions—n’; this will be discussed else-

wherd. Therefore the peak values of the rates may in realif 0mally, the | _
9 P y )4:0r normal incidence of light on the sample surface, when

be lower.

mostly in the directions perpendicular to the direction of
light propagation, which is determined by the same factor.
the photodesorption effect would be impossible

However, this should not significantly affect the behavior(i-Eq)=0. This is a consequence of using a one-
of rates in the “blue” part of spectrum, i.e., just below the dimensional model. Considering a spherical potential well
bottom of the well, so we may consider our estimates in thatnstead of the one-dimensional one described by(Eqand

region more reliable. Adding up all rates given by E4j7)
we find the total photodesorption rai,,. It is plotted in

studying an impurity atom on the surface as a semispherical

rotator, should result in the averaging over angles and replac-

Fig. 3 as a function of wavelength for three different tem-ing (ﬂ EO)Z by approximaterES. Validity of the rotator
peratures 100, 300, and 700 K. Notice that the temperatureodel can be verified in experiment if the light incidence

dependence of the total rate is not very signifid@rs given
by equilibrium population of the lowest levels in the well

angle and its polarization plane are varied. If the rotator

model is valid, the variation of desorption rate in such ex-

while the numerical values of the rates are large enough tperiments will be insignificant.

make the effect observable in experiment.

Speaking of possible experimental verifications of our re-
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sults, we would like to point out that experiments have been Obtaining laser fields of the order ob310° V/cm is not
carried out[13,14] in support of our theoretical treatment. difficult. Transparent dielectrics such as considered here can
However, even more specialized experiments are desirablesually withstand even stronger fields. Our res@@ee Fig.

In particular, our results show that each lewein the well  3) suggest that we may get a desorption rate of the order of
contributes a distinct input into the mean rate of photodes10 us . It means that during a 30 ns laser pulse of the right
orption, producing particles with a certain momeipig(n) wavelength, some 30% of all impurity ions will be removed
(46). It is easy to show that the particles’ velocitiegn) lie from the surface. This is a significant fraction which can be
in the range of 320 to 410 m{$or n<5) and vary by steps easily measured in a time-of-flight experiment. The nonther-
of Av~18 m/s. Detection of the discrete structurev¢h) in mal desorption considered here has a property of accumula-
experiment could confirm correctness of the truncated hartion. Therefore a series of a few laser pulses should result in
monic oscillator model. Numerical comparison of the experi-a virtually perfect cleaning of the surface of the impurity
mental data on velocity distribution with the predicted valuesions, which raises hopes for other experimental methods to
of v(n) and Av, and verifying predicted independence of test our theory, and for its practical use.

these parameters of the sample temperafyrecould prove

correctness of our approach and calculations. An even more ACKNOWLEDGMENTS

dramatic test of our theory would be a measurement of the

flux of desorbed ions from various levels and comparing V.N.S. thanks the program “Integration” of the Russian
their ratio to the result47). This test is feasible as a time- Ministry of Education and the Russian Academy of Science

of-flight experiment. for financial suppor{Grant No. AO080.
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