
PHYSICAL REVIEW A, VOLUME 63, 032714
Distorted-wave reaction theory with long-range multipole potentials

Leonard Rosenberg
Department of Physics, New York University, New York, New York 10003

~Received 11 September 2000; published 13 February 2001!

A distorted-wave theory is developed in which the effect of long-range multipole potentials, having off-
diagonal elements in channel space, is accounted for in the construction of asymptotic states. The theory may
be applied to the scattering of an electron by a polarizable atomic system carrying a net positive charge and a
permanent quadrupole moment. The current treatment is confined to such a system, though greater generality
is possible. Asymptotic states are introduced in the form of a superposition of Coulomb wave functions with
expansion coefficients determined by means of a modified perturbation theory. Analytic properties of the basis
functions are preserved in this expansion and this allows, in the spirit of effective-range theory, for the
determination of the energy dependence of the scattering matrix in the neighborhood of reaction thresholds. In
particular, the Rydberg series of resonances that appears just below the energy for the opening of a new
channel, well described by standard quantum-defect theory, is exhibited for the extended model scattering
system considered here.

DOI: 10.1103/PhysRevA.63.032714 PACS number~s!: 34.80.Kw, 03.65.Nk, 34.80.2i
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I. INTRODUCTION

In one of the early versions of quantum-defect theo
Gailitis @1# considered the scattering of an electron by a
drogenic ion at an energy near the threshold for target e
tation. Owing to the angular momentum degeneracy of
excited levels, a long-range dipole interaction is presen
the effective potential. Distorted incoming and outgoi
waves that account for this additional inverse-square po
tial were constructed rather simply with the introduction
an appropriate shift in the orbital quantum number. T
known analytic properties of such basis states were use
the formulation of a modified effective-range theory; th
allowed, in particular, for the analytic continuation of th
scattering matrix from an energy just above the excitat
threshold to the resonance region just below the threshol
generalization of this analysis is developed here, one
allows for the presence of a superposition of long-range m
tipole potentials forming a matrix in channel spac
Asymptotic states are introduced in the form of a sum
Coulombic basis states with shifted orbital quantum nu
bers; this follows a method first presented by Cavagnero@2#
and developed further in subsequent papers@3,4#. The
method, based on a modified form of perturbation theo
differs from that used in standard quantum-defect the
@5,6# in that the basis functions are defined only in a reg
r .r 0 , where the effective potential may be considered
have taken on its long-range power-law form. This proced
has certain limitations; the asymptotic solutions are obtai
in an approximate form, showing slow convergence for
lowest partial waves in the presence of the Coulomb po
tial @7#. On the positive side, the perturbation approa
serves a useful formal role in establishing the general st
ture and analyticity properties of the asymptotic solutio
thus providing the basis for an effective-range formulatio
Since the treatment of a general class of multipole poten
within the context of the standard quantum-defect theory
presented some difficulties@8#, the procedure outlined her
should provide a useful alternative.
1050-2947/2001/63~3!/032714~7!/$15.00 63 0327
,
-
i-
e
in

n-
f
e
in

n
A
at
l-
.
f
-

,
y
n
o
e
d
e
n-
h
c-
,
.
ls
s

A description of the perturbation theory for the constru
tion of the asymptotic states is taken up in Sec. II. Only
lowest two orders are examined in detail. This will suffice
illustrate those features of the method not encountered
earlier treatments in which the target was taken to be neu
@3# or charged but spherically symmetric@4#. A distorted-
wave scattering formalism is developed in Sec. III. The p
Coulomb asymptotic waves may be thought of as be
modified by a unitary wave operator that accounts for
effect of the inverse-cube and inverse fourth-power pot
tials present in the model scattering system. The unita
property, not readily verified in finite orders of perturbatio
theory, is arrived at formally and used as the basis for es
lishing the symmetry of the reaction matrix and for setti
up a variational principle for its approximate evaluation.
Sec. IV a representation of the scattering matrix is obtain
providing for an effective-range analysis in which the ener
dependence of scattering parameters just above the rea
threshold and just below the resonance region are exhib
For ease of reference, an Appendix is included summariz
properties of Coulomb solutions that are used in the text

II. CONSTRUCTION OF ASYMPTOTIC STATES

The radial Schro¨dinger equation considered here takes
matrix formLC50, representing coupled equations with~in
atomic units!

L ji 52
1

2 F d3

dr2
1kj

22
l j~ l j11!

r 2
1

2Z

r Gd j i 1Vji . ~2.1!

where only a finite number of channels are accounted
Our attention is focused on scattering energies near the h
est reaction threshold, taken to correspond to two coup
degenerate channels labeled 1 and 2, withk15k2[k and
orbital quantum numbersl 1 and l 25 l 112. In the external
regionr .r 0 the non-Coulombic contribution to the effectiv
potential takes the formV5VL, with
©2001 The American Physical Society14-1
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VL52
1

2 S r 24b4
~1!2

r 23b31r 24b48
2

r 23b31r 24b48
2

r 24b4
~2!2 D . ~2.2!

We look for a pair of linearly independent 232 matrix so-
lutions of the wave equation in the regionr .r 0 in the form
Ci(pz/2)1/2mji (z), with z5kr andCi a normalization factor
to be determined, as described below. In terms of the op
tor

L~ l j !5z2
d2

dz2
1z

d

dz
1z222hz2~ l j1

1
2 !2, ~2.3!

with h52Z/k, the equation to be solved is

L~ l j !mji ~z!52S D3

z
1

D4

z2 D mj̄i~z!2
D j

z2
mji ~z!. ~2.4!

We have defined the dimensionless parametersD35b3k,
D45(b48k)2, andD j5(b4

( j )k)2, and we have let the symbo

j̄ take on the values 2 forj 51 and 1 forj 52. We seek an
approximate solution of Eq.~2.4! in the form of an expan-
sion

mji 5(
s50

`

mji
~s! , ~2.5!

with D3 treated as a parameter of first order andD4 andD j
as quantities of second order. The successive approxima
procedure employed here differs from the usual perturba
approach in that the addition of a new term to an exist
sum is accompanied by an updating of terms previously
troduced in a manner explained below.@Note that in the
transformation to the form~2.3! the term containing the or
bital quantum number has had its radial dependence
moved, thus allowing for this term to play the role of a
eigenvalue.#

Solutions of the unperturbed Coulomb wave equat
with nonintegral orbital quantum numbersg, behaving at
great distances as outgoing or incoming traveling waves
unit amplitude, are well known@5,9#; we denote them here
in an abbreviated notation, asO(g) and I (g), respectively.
The outgoing wave has the asymptotic form

O~g!;expi @kr2gp/22h ln 2kr1sg#, ~2.6!

with sg5argG(11g1ih) and I g5Og* . Then H(g)
[(pz/2)21/2O(g) satisfiesL(g)H(g)50. The lowest-order
term in the expansion~2.5! is taken to bemji

(0)5aji H(g j i ),
where we have anticipated@3# the appearance of a solutio
with a shifted orbital quantum numberg j i 5 l j2(2/p)d i ,
with the phased i and the matrixaji to be determined@10#.
From the relation

L~ l j !mji
~0!5@~g j i 1

1
2 !22~ l j1

1
2 !2#aji H~g j i !, ~2.7!

we see that in lowest orderd i50 and thataji may be taken
to be d j i . The structure of the higher-order terms is det
mined by the recursion relations
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z
H~g!5 (

p521

1

dp
~1!~g!H~g1p!,

~2.8!
1

z2 H~g!5 (
p522

2

dp
~2!~g!H~g1p!;

the coefficients appearing in these sums are listed in the
pendix. One sees that a general termmji

(s) in the expansion
~2.5! will take the form of a sum of functionsH(g j i 1p)
with coefficientsa j i ;p

(s) . These may be determined at any
nite stage by inserting the form of the approximate solut
into Eq.~2.4! and requiring that the coefficient of each fun
tion H(g j i 1p) must vanish. Setting the coefficient o
H(g j i ) equal to zero, we arrive at a relation of the form

@~g j i 1
1
2 !22~ l j1

1
2 !2#aji 1 (

j 851

2

G j j 8aj 8 i50, j 51,2,

~2.9!

with the functionsG j j 8 , free of near singularities, determine
from the solution obtained in lower orders. One th
searches for values of the two phase parametersd1 and d2
allowing for a solution of Eq.~2.9! and providing values for
the ratiosa2i /a1i . The matrixaji is then fixed by imposing
the normalization conditiona1i

2 1a2i
2 51. @The constantCi

introduced earlier, below Eq.~2.2!, remains available to fix
the overall normalization of the asymptotic solution.# Nu-
merical methods are required in general to determine
phases, though approximate analytical procedures can
used if the phases are small compared to unity. Both
proaches have been illustrated in earlier treatments of s
pler models@3,4#, providing solutions with smooth energ
dependence near threshold, a property assumed to hold i
more general case studied here.

For the purpose of illustration we summarize results o
tained in first and second orders. With second-order te
ignored, the differential equation takes the form

@~g j i 1
1
2 !22~ l j1

1
2 !2#aji H~g j i !1L~ l j !mji

~1!

52D3aj̄i (
p521

1

dp
~1!~g j̄i !H~g j̄i1p!. ~2.10!

This suggests that we setmji
(1)5(p521

1 a j i ;p
(1) H(g j̄i1p). An-

ticipating that the coefficients will have second-order corr
tions, we writea j i ;p

(1) >a j i ;p
(1,1)1a j i ;p

(1,2) and find from Eq.~2.10!
that the first-order contribution is

a j i ;p
~1,1!5aj̄iD3@~ l j1

1
2 !22~g j̄i1

1
2 1p!2#21dp

~1!~g j̄i !.
~2.11!

To this order, theG matrix vanishes, leaving the phasesd1
and d2 and matrixaji unchanged from their lowest orde
values. At the next level of approximation we setmji

>mji
(0)1mji

(1)1mji
(2) and retain only terms of first and secon

order on the right-hand side of Eq.~2.4!. By examining the
coefficient of aji H(g j i ) in the resultant equation, we fin
that in second order
4-2
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G j j 5D jd0
~2!~g j i !1D3

2 (
p521

1

dp
~1!~g j i 2p!@~ l j̄1

1
2 !2

2~g j i 1
1
2 1p!2#21dp

~1!~g j̄i !, ~2.12!

and from the form of the coefficient ofaji H(g j̄i) we find that

G215D4d2
~2!~g1i !, G125D4d22

~2! ~g2i !. ~2.13!

We now record the second-order contribution toa j i ;p
(1) ; to

reduce notational complexity we specify thatj 52 and write
a2i ;p

(1,2)5@( l 21 1
2 )22(g1i1

1
2 1p)2#21b2i ;p

(1,2) . The relation
H(g2i21)5H(g1i11), which follows from l 25 l 112, is
used to obtain

b2i ;1
~1,2!5D3@a1i ;0

~1,1!d21
~1! ~g2i !1a1i ;21

~1,1! d0
~1!~g2i21!#

1D4a1id1
~2!~g1i !1D2a2id21

~2! ~g2i !. ~2.14a!

In addition, it is found that

b2i ;0
~1,2!5D3a1i ;21

~1,1! d21
~1! ~g2i !1D4a1id0

~2!~g1i !,
~2.14b!

andb2i ;21
(1,2) 50. Using these results we may identify the su

viving terms to be canceled by suitable choice ofm2i
(2) . Ac-

cordingly, we setj 52 andm2i
(2)5(pa2i ;p

(2) H(g2i1p) with

a2i ;p
~2! 5@~ l 21 1

2 !22~g2i1
1
2 1p!2#21b2i ;p

~2! .

The nonvanishing contributions corresponding top524,
22, 1, and 2 are determined as

b2i ;2
~2! 5D3a1i ;1

~1,1!d1
~1!~g2i11!1D2a2id2

~2!~g2i !,
~2.15a!

b2i ;1
~2! 5D3a1i ;0

~1,1!d1
~1!~g2i !1D3a1i ;1

~1,1!d0
~1!~g2i11!

1D2a2id1
~2!~g2i !, ~2.15b!

b2i ;22
~2! 5D2a2id22

~2! ~g2i !, ~2.15c!

b2i ;24
~2! 5D4a1id22

~2! ~g1i !. ~2.15d!

Results forj 51 are found in a similar way. We remark th
~as described in Ref.@3# for the special case of a neutr
target! a systematic, graphical treatment of this proced
may be formulated; the introduction of partial summations
the perturbation series leads to level-shift corrections to
denominators that appear in the expansion coefficients.

III. DISTORTED-WAVE FORMALISM

The procedure described above may be used to cons
asymptotic solutions of the Schro¨dinger equation in the form
of outgoing or incoming waves, denoted, respectively, asŌji

and Ī j i . From these, standing-wave solutions are obtaine
the form F̄ j i 5(Ōji 2 Ī j i )/2i and Ḡji 52(Ōji 1 Ī j i )/2. In the
limit r→`, these functions behave as
03271
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F̄ j i ;cji sinu j i 1dji cosu j i , ~3.1a!

Ḡji ;2cji cosu j i 1dji sinu j i , ~3.1b!

with u j i 5kr2h ln 2kr2gjip/21s l j
. Actually, it is the phase

u j i 1sg j i
2s l j

that first appears but for our later purposes
find it convenient, using the appropriate trigonometric ide
tities, accompanied by a redefinition of the expansion co
ficients by means of a simple linear transformation, to e
press the result in the equivalent form shown above.

A reaction matrix may be defined by expressing t
standing-wave solution of the scattering problem in the
gion r .r 0 , where the potential has taken on its long-ran
form, as

U ji 5~2/k!1/2F F̄ j i 2(
j 8

Ḡj j 8K j 8 i G . ~3.2!

~The sum runs over all channels; but with the assumpt
that only the two degenerate channels 1 and 2 experience
effect of the long-range potential for energies close to th
threshold, we focus our attention on those.! We suppose tha
a trial functionU ji ,t has been formed, regular at the origin
is U ji , and taking the form~3.2! for r .r 0 but with the exact
reaction matrix replaced by a trial matrixK ji ,t . A variational
identity for K ji may be derived by consideration of the int
gral expression

Ri 8 i5(
j , j 8

E
0

r 0
@U j 8 i 8~L j 8 jU ji ,t!2~L j j 8U j 8 i 8!U ji ,t#dr.

~3.3!

SinceLU vanishes we have

Ri 8 i5(
j , j 8

E
0

r 0
@U j 8 i 8~L j 8 jU ji ,t!dr. ~3.4!

Alternatively, integration by parts and use of the bounda
conditions lead to the relation

Ri 8 i5
1
2 (

j
~U ji 8

8 U ji ,t2U ji 8U ji ,t8 !ur 5r 0
, ~3.5!

with the prime on the wave function denoting differentiatio
with respect tor.

Wronskian relations satisfied by the asymptotic states
required for the evaluation of this surface term. Since clo
analytic forms for these states are not available, we reso
a somewhat indirect argument. We introduce the notatio

W@a,b# i 8 i5(
j

~aji 8
8 bji 2aji 8bji8 !.

The fact thatW@ F̄,F̄# i 8 i is independent ofr for r .r 0 is
verified directly by repeating the discussion leading from E
~3.3! to Eq.~3.5! but with the true and trial wave functionsU
andUt each being replaced byF̄ and the integration running
from r 0 to r. Similarly, the Wronskians ofF̄ with Ḡ andḠ
4-3
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LEONARD ROSENBERG PHYSICAL REVIEW A63 032714
with itself are seen to be independent ofr for r .r 0 . Accord-
ingly, they may each be evaluated in the limitr→` as will
be done below.

To derive the expected relationW@ F̄,F̄# i 8 i50 we setUt
5U and observe that the conditionRii 850 is equivalent to
W@U,U# i 8 i ur 5r 0

50. With U replaced by the form shown in
Eq. ~3.2! we obtain a sum of terms, each a multiple of one
the Wronskians, adding to zero. One term isW@ F̄,F̄# i 8 i , the
only one not involving a coefficient containing the reacti
matrix K. Since this term is independent ofK it cannot can-
cel against the remaining terms and therefore must van
When evaluated for larger with the aid of Eq.~3.1a! the
relation

(
j

$~cji 8cji 1dji 8dji !sin~d i2d i 8!

1~cji 8dji 2dji 8cji !cos~d i2d i 8!%50 ~3.6!

is obtained. If this is to be satisfied in general, independe
of the particular values of the polarization phasesd i , the
coefficient of the cosine function must vanish, that is,

(
j

~cji 8dji 2dji 8cji !50, ~3.7a!

and the coefficient of the sine function must vanish fori 8
Þ i . Its value fori 85 i may be adjusted, by suitable choice
the overall normalization constant~denoted asCi in Sec. II!,
to give

(
j

~cji 8cji 1dji 8dji !5d i 8 i . ~3.7b!

It may now be verified with the aid of Eqs.~3.1b! and ~3.7!
that W@Ḡ,Ḡ# i 8 i vanishes. In a similar way one finds th
W@Ḡ,F̄# i 8 i5kd i 8 i . With these results in hand, the relatio
W@U,U# i 8 i ur 5r 0

50 is seen to reduce to the symmetry sta

mentKii 82Ki 8 i50. As a final step in this analysis we ma
combine Eqs.~3.4! and~3.5!, along with the symmetry prop
erty just obtained, to arrive at the identity

Ki 8 i5Ki 8 i ,t2(
j , j 8

E
0

r 0
U j 8 i 8L j 8 jU ji ,tdr. ~3.8!

A variational approximation for theK matrix is obtained by
replacing the exact solution on the right by a trial functio

A scattering matrix is introduced by writing the wav
function in the regionr .r 0 , expressed in terms of distorte
incoming and outgoing waves, as

C j i 5 Ī j i 2 (
j 851

2

Ōj j 8Sj 8 i . ~3.9!

With the T matrix defined by the relationS5112iT, we
have
03271
f

h.

ly

-

~ i /2!C j i 5F̄ j i 1(
j 8

Ōj j 8Tj 8 i , r .r 0 . ~3.10!

Comparison of the two forms~3.2! and ~3.10! leads to the
connectionT215K212 i and from this, along with the sym
metry of theK matrix, the unitarity property ofT follows.
Returning to Eq.~3.9!, we may take the limitr→` and
make use of Eqs.~3.1! to find that, with the superscriptT
denoting matrix transpose,

C j i ;e2 iv jB†
j i 2eiv j~BTS! j i . ~3.11!

Here we definev j5kr2h ln 2kr2l jp/21s l j
, and

~BT! j i 5~cji 1 id ji !e
id i. ~3.12!

Using Eqs.~3.7! we verify thatc1 id is a unitary matrix and
henceBB†51; assuming thatB has an inverse we also hav
B†B51. Then the wave functionC0, defined in terms of
undistorted incoming and outgoing waves, satisfies

C j i
0 ;e2 iv jd j i 2eiv jSji

0 , r→`, ~3.13!

with C05CB andS05BTSB. From the last relation and th
unitarity properties of the matricesB andS it follows thatS0

is unitary.

IV. THRESHOLD BEHAVIOR

The identification of those scattering parameters w
smooth energy dependence near a reaction threshold req
an analysis of the analytic properties of the asymptotic w
functions. For a purely Coulombic long-range potential th
analysis is well known; a brief review, reproducing in
somewhat different manner some results obtained in Ref.@1#,
will be included here in preparation for generalizations to
wider class of multipole potentials.

Two Coulomb wave functions that are analytic in ener
and sinusoidal at great distances have been identified@9#.
They are denoted here asJ(g) and Q(g), the first regular
and the second irregular at the origin, each correspondin
nonintegral orbital quantum numberg. ~In the absence of
channel-changing asymptotic interactions each of these fu
tions may be considered as an element of a diagonal ma
in channel space.! The outgoing-wave solutionO(g) intro-
duced earlier may be represented~the argumentg is sup-
pressed temporarily! as the linear combination

O5~c31c4G!J1c4Q. ~4.1!

The functionsc3 , c4 , and G are defined in the Appendix
One writesJ5AF, where the diagonal elements of the m
trix function F have the asymptotic behaviorF;sin@kr
2gp/22h ln 2kr1sg#; the coefficientA is defined in the Ap-
pendix as is the matrix functionf 52(c4A)21.

In the regionr .r 0 the effective potential is~as we have
temporarily assumed! purely Coulombic and the wave func
tion may be expressed in the matrix formC5F1OT. By
means of a straightforward transformation a renormaliz
wave function is arrived at, behaving forr .r 0 as
4-4
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u5JM2Q. ~4.2!

The analyticity of the matrixM in the energy variable may
be shown to follow from the analytic properties of the wa
functionsJ andQ @1#. The matricesM andT are related by

T5 f 1/2@M2~h1 i f !#21f 1/2, ~4.3!

where the functionsh andf are the real and imaginary part
respectively, of 2(c4

21c31G). From the relationT21

5K212 i one finds that the real, symmetric matricesM and
K are related by

M5 f 1/2K21f 1/21h, ~4.4!

a relation that may be taken as the basis for effective-ra
theory.

We now consider the extension of the preceding result
allow for distortion effects arising from the inclusion of th
long-range potentialVL. Distorted versions,Ō and Ī , of the
purely Coulombic outgoing and incoming waves are o
tained directly from the modified perturbation procedure
scribed above in Sec. II along with the normalization p
scription defined in Sec. III. In a somewhat schematic for
omitting channel subscripts, we have, for example, the
pansion

Ō~g!5(
p

apO~g1p!. ~4.5!

The standing waveF̄[(Ō2 Ī )/2i is then defined as well an
is constructed in the form

F̄~g!5(
p

apF~g1p!. ~4.6!

We seek a distorted version of the functionJ that retains its
analytic property. The simplest candidate is the formJ̄(g)
5A(g)F̄(g). The analyticity of this solution, rewritten as

J̄~g!5(
r

ap

A~g!

A~g1p!
J~g1p!, ~4.7!

may be examined in perturbation theory. The ra
A(g)/A(g1p), evaluated in the Appendix, contains branc
point singularities on the negativek2 axis but is analytic in
the neighborhood of the threshold. The expansion coe
cientsap in Eq. ~4.7! are formed from the coefficientsa j i :p

(s)

generated in the perturbation procedure~so designed as to b
free of singularities!; these coefficients are analytic as we
neark250; this is seen explicitly in the first- and secon
order calculations of Sec. II. Thus the perturbation se
provides a functionJ̄(g)5A(g)F̄(g) with smooth energy
dependence near the threshold. As shown in the Appen
the irregular Coulomb solutionQ(g), analytic ink2, may be
expressed as a linear combination ofJ(g) andJ(2g21). It
then follows that a distorted versionQ̄(g) that preserves this
analytic property may be defined by replacingJ(g) and
J(2g21) by their distorted versions in Eq.~A6!. The deri-
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vation of Eq.~4.3! may now be repeated, with wave func
tions J and Q in Eq. ~4.2! being replaced byJ̄ and Q̄, re-
spectively, and with the matricesT andM now modified by
the distorting potential.

The fact that theM matrix has no singularity below the
threshold for channels 1 and 2 may be used to study the f
of the T matrix, for scattering in channels that are open b
low threshold, at energies just below threshold. In the no
tion of Ref. @1#, the initial and final states of these ‘‘old’
channels are denoted asi and f, respectively, while the pair
of channels 1 and 2 that open at the threshold are referre
as ‘‘new,’’ and are denoted collectively by the symbolt. We
assume that close to the threshold the valuesMa andMb of
theM matrix, evaluated just above and just below thresho
may be taken to be approximately equal. Then, defin
X215 f 1/2T21f 1/2 andt5h1 i f , we have

Mb2tb>Ma2tb5~X21!a1ta2tb. ~4.8!

The matrix equationXb5Xa2XaYXb, with Y[ta2tb, is
derived from the preceding relations. The solution of th
equation is simplified by the assumption that elements of
matrix Y corresponding to ‘‘old’’ channels are small enoug
to be neglected; only ‘‘new’’ channels contribute by virtue
the discontinuity oft at threshold. The solution, reexpress
in terms of theT matrix, provides us with the representatio

Tf i
b 5Tf i

a 2(
t,t8

Tf t
a @~ T̂2Y21!21# t,t8Tt8 i

a , ~4.9!

where T̂ contains matrix elements ofTa connecting new
channels only. We approximateta by its near-threshold
value i ~obtained from the limiting behaviorf→1 and h
→0! and evaluatetb52(c4

21c31G) using Eqs.~A2! to
determine the ratioc4

21c3 and to verify thatG vanishes as
the energy approaches the threshold value from below.
then havetb52cotp(Z/k2g), where we have replacedk by
ik, with k real. ThenY5 i 1cotp(Z/k2g) and Eq.~4.9! be-
comes, when written in terms of the matrixS5112iT,

Sf i
b 5Sf i

a 2(
t,t8

Sf t
a F 1

Ŝ2exp$2p i ~g2Z/k!%
G

tt8

St8 i
a .

~4.10!

The rapid energy dependence of the scattering matrix
below threshold, corresponding to a Rydberg series of re
nances, is described in this representation. The result is o
standard form@5#, here modified by the renormalization o
the orbital quantum number, and involving matrix eleme
for scattering in the presence of both the monopole and m
tipole long-range potentials.

V. SUMMARY

The analytic continuation of theS matrix below an exci-
tation threshold, in the form shown in Eq.~4.10!, represents
an extension of a result obtained in Ref.@1# and in later
developments of quantum-defect theory@5,6# as well, in that
it allows a wider class of long-range potentials, includi
4-5
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those that are nondiagonal in channel space. A key elem
in the present analysis is the development, in Sec. II, o
modified perturbation procedure for determining t
asymptotic states; exact analytic solutions are unavailable
potentials of this type. There are indications from earlier c
culations@4# that the rate of convergence of this procedu
may in many cases be unsatisfactory for the lowest pa
waves; it may then be necessary to supplement the me
with a more direct numerical approach. In any event
perturbation method provides guidance regarding the st
ture and analytic properties of the asymptotic solutions.
integral identity for the reaction matrix was derived in Se
III—this was done formally, independent of any specific r
sults of the perturbation calculation—that can be usefu
developing variational approximations of theK matrix. Uni-
tarity properties of the scattering matrix were established
the course of this discussion. The analysis of threshold
havior given in Sec. IV was based on the representation
the distorted-wave version of Eq.~4.3!, of the T matrix in
terms of a matrixM that has a smooth energy dependence
the neighborhood of the threshold for the opening of one
more new channels. Such a representation may be use
the basis for a modified effective-range theory, starting w
the replacement of theM matrix by the first two terms in an
expansion in powers of the energy above~or below! a reac-
tion threshold. While the representation~4.10! for the S ma-
trix is restricted to the immediate neighborhood of t
threshold, that energy range is of considerable interest s
it includes the accumulation point of a Rydberg series
resonances.

As remarked in Ref.@2#, alternative methods, based o
asymptotic expansions, for solving close-coupled rad
equations in the presence of long-range multipole poten
were proposed some time ago@11,12# and improved versions
@13# are now widely used in accurate variationalR-matrix
calculations. The close relationship between those alterna
methods and the modified perturbation theory introduced
Cavagnero was discussed briefly in Ref.@2#. Similar com-
ments may be made in the context of the present extensio
the modified perturbation theory. Specifically, the introdu
tion of a modified orbital quantum number in Ref.@12# has
its counterpart here, accompanied by a clear criterion for
choice, namely, the avoidance of spurious singularities. T
modification has the effect of building into the asympto
solution the phase shifts that accumulate in the long-ra
field. In more general terms, the distinctive feature of
method lies in the directness of its description of long-ran
effects in near-threshold reactions using a relatively sim
and algebraically generated perturbation expansion. T
should lead to benefits in numerical applications at ener
near thresholds though no extensive computations base
this method have yet been performed.
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APPENDIX

Here we record some of the properties of Coulomb wa
functions that entered into the discussion in the text. T
recursion relations shown in Eq.~2.8! involve the coeffi-
cients

d1
~1!~g!5

@~g11!21h2#1/2

~2g11!~g11!
, d21

~1! ~g!5d1
~1!~2g21!,

d0
~1!~g!52

h

g~g11!
,

d0
~2!~g!5d1

~1!~g!d21
~1! ~g11!1d21

~1! ~g!d1
~1!~g21!

1d0
~1!~g!2,

d1
~2!~g!5d1

~1!~g!@d0
~1!~g11!1d0

~1!~g!#,

d21
~2! ~g!5d21

~1! ~g!@d0
~1!~g!1d0

~1!~g21!#,

d2
~2!~g!5d1

~1!~g!d1
~1!~g11!,

d22
2 ~g!5d21

~1! ~g!d21
~1! ~g21!. ~A1!

The coefficients appearing in Eq.~4.1! are defined, withn
52 ih5 iZ/k, as

c3~g!5exp@~h2 ig!p/21 isg#G~g111n!n2~g11!

3cosp~2g211n!,

c4~g!5exp@~h2 ig!p/21 isg#G~n2g!ng

3sinp~2g211n!. ~A2!

The analytic solutionQ(g) in Eq. ~4.1! is defined as

Q~g!5N~g!2G~g!J~g!. ~A3!

where

N~g!5
G~g111n!

n~2g11!G~n2g!
cotp~2g11!J~g!

2
1

sinp~2g11!
J~2g21! ~A4!

and

G~g!5F G~g111n!

n~2g11!G~n2g!
2 (

p50

l
bp~g!

n2p Gcotp~2g11!.

~A5!

Herebp(g) are polynomials ing with b0(g)51; the proce-
dure for calculation of these parameters is given by Ham@9#.
The integerl is the orbital quantum number of interest in th
limit VL50. By combining Eqs.~A3!–~A5! we obtain the
form, more convenient for our present purposes,
4-6
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Q~g!5F (
p50

l
bp~g!

n2p
cotp~2g11!GJ~g!

2
1

sinp~2g11!
J~2g21!. ~A6!

The functionA(g), first appearing just below Eq.~4.1!, is
defined as

A~g!5
2uhug11ehp/2

uG~g111n!u
. ~A7!

We note that the functionf 52(c4A)21 is evaluated as

f ~g!5~2p!21e2hpuG~g111 ih!u2uh2~2g11!u, ~A8!

which may be identified as the imaginary part of2(c4
21c3

1G), its real part being
s
co
ls

03271
h52ReG~g!1 f e2ph sin 2pg. ~A9!

From Eq.~A7! we find that the ratioA(g)/A(g1p), en-
tering into the discussion in Sec. IV, is evaluated forp.0 as

A~g!/A~g1p!5@~g111p21!2~k/Z!211#1/2

3@~g111p22!2~k/Z!211#1/2
¯

3@~g11!2~k/Z!211#1/2, ~A10!

while for p,0

A~g!/A~g1p!5@g2~k/Z!211#21/2@~g21!2~k/Z!2

11#21/2
¯@~g111p!2~k/Z!211#21/2.

~A11!
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