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Distorted-wave reaction theory with long-range multipole potentials
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A distorted-wave theory is developed in which the effect of long-range multipole potentials, having off-
diagonal elements in channel space, is accounted for in the construction of asymptotic states. The theory may
be applied to the scattering of an electron by a polarizable atomic system carrying a net positive charge and a
permanent quadrupole moment. The current treatment is confined to such a system, though greater generality
is possible. Asymptotic states are introduced in the form of a superposition of Coulomb wave functions with
expansion coefficients determined by means of a modified perturbation theory. Analytic properties of the basis
functions are preserved in this expansion and this allows, in the spirit of effective-range theory, for the
determination of the energy dependence of the scattering matrix in the neighborhood of reaction thresholds. In
particular, the Rydberg series of resonances that appears just below the energy for the opening of a new
channel, well described by standard quantum-defect theory, is exhibited for the extended model scattering
system considered here.
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I. INTRODUCTION A description of the perturbation theory for the construc-

tion of the asymptotic states is taken up in Sec. Il. Only the

In one of the early versions of quantum-defect theory,Jowest two orders are examined in detail. This will suffice to
Gailitis [1] considered the scattering of an electron by a hydllustrate those features of the method not encountered in

drogenic ion at an energy near the threshold for target exciearlier treatments in which the target was taken to be neutral
tation. Owing to the angular momentum degeneracy of thé3] or charged but spherically symmetiid]. A distorted-
excited levels, a long-range dipole interaction is present iwvave scattering formalism is developed in Sec. lll. The pure
the effective potential. Distorted incoming and outgoingCoulomb asymptotic waves may be thought of as being
waves that account for this additional inverse-square potermodified by a unitary wave operator that accounts for the
tial were constructed rather simply with the introduction of €ffect of the inverse-cube and inverse fourth-power poten-
an appropriate shift in the orbital quantum number. Thelials present in the model scattering system. The unitarity
known analytic properties of such basis states were used iroperty, not readily verified in finite orders of perturbation
the formulation of a modified effective-range theory; thistheory, is arrived at formally and used as the basis for estab-
allowed, in particular, for the analytic continuation of the lishing the symmetry of the reaction matrix and for setting
scattering matrix from an energy just above the excitatiorHp @ variational principle for its approximate evaluation. In
threshold to the resonance region just below the threshold. &ec. IV a representation of the scattering matrix is obtained,
generalization of this analysis is developed here, one thatroviding for an effective-range analysis in which the energy
allows for the presence of a superposition of long-range muldependence of scattering parameters just above the reaction
tipole potentials forming a matrix in channel space.threshold and just below the resonance region are exhibited.
Asymptotic states are introduced in the form of a sum offor ease of reference, an Appendix is included summarizing
Coulombic basis states with shifted orbital quantum num-{roperties of Coulomb solutions that are used in the text.
bers; this follows a method first presented by Cavagp2fo

and developed further in_ 'subsequent papE334}. The Il. CONSTRUCTION OF ASYMPTOTIC STATES

method, based on a modified form of perturbation theory,

differs from that used in standard quantum-defect theory The radial Schrdinger equation considered here takes the
[5,6] in that the basis functions are defined only in a regionmatrix formLW¥ =0, representing coupled equations wJifn
r>r,, where the effective potential may be considered toatomic unitg

have taken on its long-range power-law form. This procedure

has certain limitations; the asymptotic solutions are obtained 1[ g3
in an approximate form, showing slow convergence for the Lji= 5|53 ]2 5
lowest partial waves in the presence of the Coulomb poten- dr r
tial [7]. On the positive side, the perturbation approach

serves a useful formal role in establishing the general struoahere only a finite number of channels are accounted for.
ture and analyticity properties of the asymptotic solutions,Our attention is focused on scattering energies near the high-
thus providing the basis for an effective-range formulation.est reaction threshold, taken to correspond to two coupled
Since the treatment of a general class of multipole potentialdegenerate channels labeled 1 and 2, vtk k,=k and
within the context of the standard quantum-defect theory hasrbital quantum numberk, andl,=1,+2. In the external
presented some difficultig8], the procedure outlined here regionr>r, the non-Coulombic contribution to the effective
should provide a useful alternative. potential takes the foriv=V", with

I,(1,+1) 2z
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We look for a pair of linearly independentx2 matrix so- 1 B @ _
lutions of the wave equation in the regiot-rq in the form ?H(V)_pzz_z dp” (v H(y+p);

Ci(wz/2)"m;;(2), with z=kr andC; a normalization factor
to be determined, as described below. In terms of the operahe coefficients appearing in these sums are listed in the Ap-
tor pendix. One sees that a general temﬁ) in the expansion
. g (2.5 will take the form of a sum of functionsi(y;; +p)
. - s . ,
L(Ij)=22—+z—+22—2772—(lj+%)2, 2.3 Wlth coefﬁmen_ts:)z}i )p These may be determlqed at any fl—
dz2 dz nite stage by inserting the form of the approximate solution
into Eq. (2.4) and requiring that the coefficient of each func-
with »=—2Z/k, the equation to be solved is tion H(y;;+p) must vanish. Setting the coefficient of
H(y;) equal to zero, we arrive at a relation of the form

A A, D;
L(lj)m“(Z):— 74‘? mji(Z)_;mji(Z). (24) 2
[('in+%)2_(|j+%)2]aji+_z I'japi=0, j=1.2,
We have defined the dimensionless parametess: 83k, ret (2.9
A,=(B4k)?, andD;=(B{k)?, and we have let the symbol
j_take on the values 2 fgr=1 and 1 forj=2. We seek an with the functiond’;; ., free of near singularities, determined

from the solution obtained in lower orders. One then
searches for values of the two phase parameterand &,
allowing for a solution of Eq(2.9) and providing values for
the ratiosa,; /a;; . The matrixa;; is then fixed by imposing
m;= 2> m, (2.9  the normalization conditiora3, +a5,=1. [The constantC;
=0 introduced earlier, below Ed2.2), remains available to fix

with A treated as a parameter of first order angdandD; the .overaII normalization o_f the_ asymptotic squthnN.u—

as quantities of second order. The successive approximatigherical methods are required in general to determine the

procedure employed here differs from the usual perturbatioRhases, though approximate analytical procedures can be

approach in that the addition of a new term to an existing'Sed if the phases are small compared to unity. Both ap-

sum is accompanied by an updating of terms previously inProaches have been illustrated in earlier treatments of sim-

troduced in a manner explained belofiNote that in the pler models[3,4], providing solutions with smooth energy

transformation to the forni2.3) the term containing the or- dependence near threshpld, a property assumed to hold in the

bital quantum number has had its radial dependence rdlore general case studied here. _

moved, thus allowing for this term to play the role of an _For t_he purpose of illustration we summarize results ob-

eigenvalud, tained in first and second orders. With second-order terms
Solutions of the unperturbed Coulomb wave equatiorf9nored, the differential equation takes the form

with nonintegral orbital quantum numberg behaving at 1.2 112 1

great distances as outgoing or incoming traveling waves of [Cyii2)7= (5 +2)"Ja H () + LA m;

approximate solution of Eg2.4) in the form of an expan-
sion

%

unit amplitude, are well knowf5,9]; we denote them here, 1
in an abbreviated notation, &(y) and|(y), respectively. =— Az 2 dg)(ﬁ)H(ﬁjL p). (2.10
The outgoing wave has the asymptotic form p=-1

O(y)~expi[kr—ym/2—pIn2kr+o,], (2.6  This suggests that we seti)=51__;afH(y;+p). An-
ticipating that the coefficients will have second-order correc-

with o, =argl'(1+y+in) and 1,=0}. Then H(y) tions, we writea(),=a{tY+ of:? and find from Eq(2.10
=(mz/2)"Y?0() satisfies(y)H(y)=0. The lowest-order that the first-order contribution is
term in the expansiof2.5) is taken to bem({?=a;H(y;),
where we have anticipatd®] the appearance of a solution affd=agAs[(1j+3)2 = (v +3+p)? 7 HdY (7).
with a shifted orbital quantum numbey;;=1;—(2/m)5;, (2.11
with the phases; and the matrixa;; to be determined10].

From the relation To this order, thd™ matrix vanishes, leaving the phasés

and , and matrixa;; unchanged from their lowest order
LANMO=[(yi+3)2=(I;+3)2a;H(y;), (7 Vvalues. At the next level of approximation we set;
e e Poan nA =m{?+m{+m(? and retain only terms of first and second
we see that in lowest ordef;=0 and thata; may be taken order on the right-hand side of E(.4). By examining the
to be &;; . The structure of the higher-order terms is deter-coefficient ofa;H(y;;) in the resultant equation, we find
mined by the recursion relations that in second order
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Fi.~cj sing; +d; cosd
Fjj:DjdE)Z)(')’ji)‘f‘A%pEl d”(yji—p)[(I7+3)? S -

i (3.13
L 1 EjiN_Cji Cosﬂji-l-dji Sinﬁji ) (3lb)
—(yi+3+p)2 P (), 212 N
with 6;; =kr— 7 In 2kr—y; m/2+ i, Actually, it is the phase
and from the form of the coefficient af;H(;) we find that ¢+ o, — o), that first appears but for our later purposes we
_ @y _ @) find it convenient, using the appropriate trigonometric iden-
Pa1= 84057 (y2i), T12= 8405 (y2). (213 tities, accompanied by a redefinition of the expansion coef-
ficients by means of a simple linear transformation, to ex-
press the result in the equivalent form shown above.
A reaction matrix may be defined by expressing the
standing-wave solution of the scattering problem in the re-
gionr>rq, where the potential has taken on its long-range

We now record the second-order contributiornd@), ; to
reduce notational complexity we specify that2 and write
a5 2=[(12+3)2— (v +5+p)? 857, The relation
H(y,—1)=H(vy4+1), which follows froml,=1,+2, is
used to obtain

form, as
%;'?ZAs[a(l}E%))d(}i( Yai) + a(l}slzldg)l)(VZi_ 1] _ _
(2) 2) Uji:(Z/k)llz F”_E GJJ!KJIl . (32)
+ A2y (y1) + Doagdfy(y2).  (2.143 j’
In addition, it is found that (The sum runs over all channels; but with the assumption
that only the two degenerate channels 1 and 2 experience the
B5:5 = Azeii? 1d N (ya) + Agagdy (yr), effect of the long-range potential for energies close to their

(2.14h  threshold, we focus our attention on thos&/e suppose that
12 ) ) ) a trial functionUj;; ; has been formed, regular at the origin as
and 852, =0. Using these results we may identify the sur-ig U;;, and taking the fornt3.2) for r>r, but with the exact
viving terms to be canceled by suitable choicendf). Ac-  reaction matrix replaced by a trial mati; .. A variational
cordingly, we sef=2 andm{ =3 a5 H(y,+p) with identity for K;; may be derived by consideration of the inte-
2 - ) 21 a2) gral expression
azip=[(l2+2) = (y2it2+P)] " Baip-

"o
The nonvanishing contributions corresponding pge — 4, Ri’i:_z, fo [Ujrir (LU ) = (L Ui ) Ui c]dr
—2,1, and 2 are determined as o
(3.3
B%)y=AzaiTdP (v + 1) +Doaydy (va), SincelLU vanishes we have
(2.153
3, [ 1000500 3.4
R'r': iri iri i r. .
:3(2?:)1:A3“§L}5%)d(11)(72i)+A3a%&)dg)l)(72i+1) o i; Jo FIREIEIN
+D,ad (72), (2.15D  Alternatively, integration by parts and use of the boundary
) ) conditions lead to the relation
(2i;)72:D2a2id(7%(72i)1 (2.159
R, =% U-'-,U-- —U..,U’ — 3.
(2?;)74:A4alid(72%(71i)- (2.150 H 221': (Ui Vi Ui jil fo 33

Results forj =1 are found in a similar way. We remark that with the prime on the wave function denoting differentiation
(as described in Ref.3] for the special case of a neutral with respect ta.

targe) a systematic, graphical treatment of this procedure Wronskian relations satisfied by the asymptotic states are
may be formulated; the introduction of partial summations ofrequired for the evaluation of this surface term. Since closed
the perturbation series leads to level-shift corrections to th@nalytic forms for these states are not available, we resort to
denominators that appear in the expansion coefficients. ~a somewhat indirect argument. We introduce the notation

lll. DISTORTED-WAVE FORMALISM Wla,b]ii=2 (a,bj—ajbj).
]

The procedure described above may be used to construct
asymptotic solutions of the Schtimger equation in the form  The fact thatW[F,F];,; is independent of for r>r, is
of outgoing or incoming waves, denoted, respectivelyQas  verified directly by repeating the discussion leading from Eq.
andl;; . From these, standing-wave solutions are obtained if3-3) to Eq.(3.5 but with the true and trial wave functiots
the formEji :(6“ —|_ji)/2i and Eji = _(6“ +|_ji)/2. In the  andU; each being replaced iy and the integration running
limit r—oo, these functions behave as from ry to r. Similarly, the Wronskians o with G andG
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with itself are seen to be independentr dér r >r,. Accord- _ _
ingly, they may each be evaluated in the limit- as will (i12)¥};=F; +Z Oy Tjri, r>ro.  (3.10
be done below. i’

To derive the expected relatioh[F,F];/;=0 we setU, Comparison of the two form§3.2) and (3.10 leads to the
=U and observe that the conditid®;» =0 is equivalent to connectionT =K 1—i and from this, along with the sym-
VV[U,U]i/i|r:,0=O. With U replaced by the form shown in  metry of theK matrix, the unitarity property of follows.
Eq. (3.2) we obtain a sum of terms, each a multiple of one ofReturning to Eq.(3.9), we may take the limitr —c and
the Wronskians, adding to zero. One ternWEE,E]i,i, the Make use of Egs(3.1 to find that, with the superscript

only one not involving a coefficient containing the reaction d€Noting matrix transpose,

matrix K. Since this term is independent Kfit cannot can- iRt aeyRTe) .

cel against the remaining terms and therefore must vanish. Vji~e “iB'; —€“i(B'S)j;. (3.11)
Wlh?_n evaluated for large with the aid of Eq.(3.18 the  Here we definao;=kr— 7 1n 2kr—1m/2+ o, and

relation

(BT)ji=(Cji+idji)ei5i. (313

zj: {(cjircji+dji dji)sin(8i— 4i/) Using Eqs.(3.7) we verify thatc+id is a unitary matrix and
henceBB'=1; assuming thaB has an inverse we also have
+(cji-djj —dji.cj)cog5—,)}=0 (3.6) B'B=1. Then the wave function?®, defined in terms of
undistorted incoming and outgoing waves, satisfies
is obtained. If this is to be satisfied in general, independently . A
of the particular values of the polarization phasgs the \If?i~e"“’i 5ji— €S, r—oe, (3.13
coefficient of the cosine function must vanish, that is,
with ¥2=W¥B andS’=BTSB. From the last relation and the

unitarity properties of the matric&andSit follows that S°
; (cji-dj—djirc5) =0, (3.78 s unitary.

and the coefficient of the sine function must vanish ifor IV. THRESHOLD BEHAVIOR

#I. Its value fori” =i may be adjusted, by suitable choice of  The jdentification of those scattering parameters with
the overall normalization constaftenoted a<; in Sec. I, smooth energy dependence near a reaction threshold requires
to give an analysis of the analytic properties of the asymptotic wave
functions. For a purely Coulombic long-range potential this
analysis is well known; a brief review, reproducing in a
; (Cji’cji+dji’dji):5i’i (37b) y p g

somewhat different manner some results obtained in[Rgf.
will be included here in preparation for generalizations to a

It may now be verified with the aid of Eqé3.1b and(3.7) ~ wider class of multipole potentials. -
that W[ag]i,i vanishes. In a similar way one finds that Two Coulomb wave functions that are analytic in energy

— _ . . . and sinusoidal at great distances have been identifiéd
W[ G,FJi/i=kd/i . With these results in hand, the relation They are denoted here d¢y) and Q(y), the first regular

WU Ulisilr—r, =0 is seen o reduc.e o .the symr.netry Stat®-2nd ‘the second irregular at the origin, each corresponding to
mentKii,—Ki,FO. As a final step in this analysis we may nonintegral orbital quantum number (In the absence of
combine Eqs(3.4) and(3.5), along with the symmetry prop-  channel-changing asymptotic interactions each of these func-

erty just obtained, to arrive at the identity tions may be considered as an element of a diagonal matrix
in channel spacg.The outgoing-wave solutio®(y) intro-
fo duced earlier may be representéte argumenty is sup-
K=K — UiLiiU;; (dr. 3.8 . S92 4
VL JEJ, fo U= 38 pressed temporarilyas the linear combination

A variational approximation for th& matrix is obtained by O=(Cst+C4G)I+ Q. (4.9

replacing the exact solution on the right by a trial function.

A scattering matrix is introduced by writing the wave
function in the regiorr >r, expressed in terms of distorted
incoming and outgoing waves, as

The functionscs, ¢4, and G are defined in the Appendix.
One writesJ=AF, where the diagonal elements of the ma-
trix function F have the asymptotic behavidf ~sinkr
—yml2— nIn 2kr+ o, ]; the coefficientA is defined in the Ap-
pendix as is the matrix functioh= — (c,A) L.

0..,S (3.9 In the regionr >r the effective potential isas we have
T temporarily assumedurely Coulombic and the wave func-

tion may be expressed in the matrix fonln=F+OT. By

With the T matrix defined by the relatio®=1+2iT, we means of a straightforward transformation a renormalized
have wave function is arrived at, behaving forrg as

H\M N

¥ii=lji—
j
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u=JM-0Q. 4.2 vation of Eq.(4.3) may now be repeated, with wave func-

N o _ tions J and Q in Eq. (4.2) being replaced by andQ, re-
The analyticity of the matriXM in the energy variable may spectively, and with the matric&andM now modified by
be shown to follow from the analytic properties of the wavehe gistorting potential.
functionsJ andQ [1]. The matricevl andT are related by The fact that theVl matrix has no singularity below the

_f1Urn CeN1—1£1/2 threshold for channels 1 and 2 may be used to study the form
T=FAM=(h+if)] 7 4.3 of the T matrix, for scattering in channels that are open be-

where the functions andf are the real and imaginary parts, 0w threshold, at energies just below threshold. In the nota-
respectively, of —(c; 'c;+G). From the relatonT *  tion of Ref. [1], the initial and final states of these “old”

=K ~1—ji one finds that the real, symmetric matriddsand channels are denoted aandf, respectively, while the pair
K are related by of channels 1 and 2 that open at the threshold are referred to
as “new,” and are denoted collectively by the symiboWe
M=fY2K ~1f124 h, (4.4)  assume that close to the threshold the vaMésand M® of
the M matrix, evaluated just above and just below threshold,
a relation that may be taken as the basis for effective-rangmay be taken to be approximately equal. Then, defining

theory. X 1=1Y2T-412 gnd r=h+if, we have
We now consider the extension of the preceding results to
allow for distortion effects arising from the inclusion of the MP—P=M3— 7= (X" 13+ 72— 7P, (4.8

- i L 1 I O B
long-range potential/-. Distorted versionsD andl, of the The matrix equationX®=Xa— X2YX?, with Y=12— 7, is

purely Coulombic outgoing and incoming waves are Ob'derived from the preceding relations. The solution of this

tained directly from the modified perturbation procedure de- T X
. . . o equation is simplified by the assumption that elements of the
scribed above in Sec. Il along with the normalization pre-

scription defined in Sec. lll. In a somewhat schematic form matrix Y corresponding to "old” channels are small enough

- . to be neglected; only “new” channels contribute by virtue of
omitting channel subscripts, we have, for example, the ex; . - .
pansion the discontinuity ofr at threshold. The solution, reexpressed

in terms of theT matrix, provides us with the representation

O(7)=2 3,0(y+p). 49 =TS TRy ) LT, (49
t,t/

The standing WanE(a—l_)/Zi is then defined as well and

. . where T contains matrix elements 6f2 connecting new
is constructed in the form 9

channels only. We approximate® by its near-threshold
_ value i (obtained from the limiting behaviof—1 andh
F(y)=2 a,F(y+p). (460  —0) and evaluater®=—(c; *c3+G) using Egs.(A2) to
. determine the rati@, *c; and to verify thatG vanishes as
We seek a distorted version of the functidthat retains its ~ the energy approaches the threshold value from below. We
analytic property. The simplest candidate is the fary) ~ Nen haver’= —cotm(Z/k—y), where we have replacdcby

B . . ) _ i k, with k real. ThenY =i+ cotm(Z/x—) and Eq.(4.9) be-
=A(y)F(y). The analyticity of this solution, rewritten as comes, when written in terms of the mat@ 1+ 2iT,

- A(y)
Jy)=2 ayr—=JI(y+p), 4. !
D=2 iR B g g S S
tt’ S—exp2mi(y=Z/x)}],,
may be examined in perturbation theory. The ratio (4.10

A(y)/A(y+p), evaluated in the Appendix, contains branch-

point singularities on the negativé axis but is analytic in  The rapid energy dependence of the scattering matrix just
the neighborhood of the threshold. The expansion coeffibelow threshold, corresponding to a Rydberg series of reso-
cientsa, in Eq. (4.7) are formed from the coefficienis!® nances, is described in this representation. The result is of the

generated in the perturbation proced(se designed as to be standar_d forn{5], here modified by the _renorma]ization of
free of singularitie these coefficients are analytic as well the orbital quantum number, and involving matrix elements
neark?=0: this is seen explicitly in the first- and second- for scattering in the presence of both the monopole and mul-

order calculations of Sec. II. Thus the perturbation seriediPol€ long-range potentials.

provides a functionJ(y)=A(y)F(y) with smooth energy

dependence near the threshold. As shown in the Appendix, V. SUMMARY

the irregular Coulomb solutio( ), analytic ink?, may be The analytic continuation of th& matrix below an exci-
expressed as a linear combinationJ¢f) andJ(—y—1). It tation threshold, in the form shown in E€.10, represents
then follows that a distorted versi@(y) that preserves this an extension of a result obtained in R¢L] and in later
analytic property may be defined by replacidgy) and developments of quantum-defect the@sy6] as well, in that
J(—y—1) by their distorted versions in E¢A6). The deri- it allows a wider class of long-range potentials, including
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those that are nondiagonal in channel space. A key element APPENDIX
in the present analysis is the development, in Sec. Il, of a

modified perturbation procedure for determining theg \ ions that entered into the discussion in the text. The
asymptotic states; exact analytic solutions are unavailable fqt, .\ <ion relations shown in E@2.9 involve the coeffi-
potentials of this type. There are indications from earlier caljents

culations[4] that the rate of convergence of this procedure
may in many cases be unsatisfactory for the lowest partial 1 [(y+1)2+ 5?2 L

waves; it may then be necessary to supplement the method di*(¥)= 2y Dy dY(y)=di"(-y-1),
with a more direct numerical approach. In any event the

perturbation method provides guidance regarding the struc-

ture and analytic properties of the asymptotic solutions. An diY(y)=—
integral identity for the reaction matrix was derived in Sec.
[ll—this was done formally, independent of any specific re-
sults of the perturbation calculation—that can be useful in

Here we record some of the properties of Coulomb wave

7
y(y+1)’

d? () =dP(ydY(y+1)+dH(ndP(y—1)

developing variational approximations of thkematrix. Uni- +dgl>(7)2'

tarity properties of the scattering matrix were established in

the course of_ this discussion. The analysis of thresho_ld b_e- d<12>(y)=d(11>(7,)[d81>(7+ 1)+dgl>(7)],
havior given in Sec. IV was based on the representation, in

the distorted-wave version of E@4.3), of the T matrix in (z>(7) d (,y)[d(l)(,y)_'_d(l)(,y 1)]
terms of a matriXM that has a smooth energy dependence in -t ’
the neighborhood of the threshold for the opening of one or

. il d?(7)=dP (9 d (y+1),

more new channels. Such a representation may be used as
the basis for a modified effective-range theory, starting with

2 (o dD gD (e

the replacement of thil matrix by the first two terms in an dZ,(y)=d(y)d=(y—1). (A1)
expansion in powers of the energy abdwe below a reac- o coefficients appearing in E(.1) are defined, witt
tion threshold. While the representatiéh10 for theSma-  _ _; n=izIk, as PP g ®-1 ’

trix is restricted to the immediate neighborhood of the
threshold, that energy range is of considerable interest since ¢ y)=exd(n—iy)ml2+io T (y+1+ nyn~(r+1)
it includes the accumulation point of a Rydberg series of

resonances. xcosm(—y—1+n),

As remarked in Ref[2], alternative methods, based on ) )
asymptotic expansions, for solving close-coupled radial Caly)=exfl(n—iy)m/2+io, ]l (n=y)n”
equations in the presence of long-range multipole potentials Xsinm(—y—1+n). (A2)

were proposed some time afiil,12 and improved versions

[13] are now widely used in accurate variatioidmatrix  The analytic solutiorQ(y) in Eq. (4.1) is defined as

calculations. The close relationship between those alternative

methods and the modified perturbation theory introduced by Q(y)=N(y)—=G(y)I(y). (A3)

Cavagnero was discussed briefly in Rgf]. Similar com-

ments may be made in the context of the present extension #there

the modified perturbation theory. Specifically, the introduc-

tion of a modified orbital quantum number in RgL2] has I'(y+1+n)

its counterpart here, accompanied by a clear criterion for its N(y)= W
: ; . . o . (n—1v)

choice, namely, the avoidance of spurious singularities. This

modification has the effect of building into the asymptotic

solution the phase shifts that accumulate in the long-range - WJ(— y—1) (Ad)

field. In more general terms, the distinctive feature of the

method lies in the directness of its description of long-range, g

effects in near-threshold reactions using a relatively simple

and algebraically generated perturbation expansion. This

cotm(2y+1)J(y)

should lead to benefits in numerical applications at energies G(y)= M_ p( 7) cotm(2y+1).
near thresholds though no extensive computations based on n?*Ur(n—y) p=o0 n?
this method have yet been performed. (A5)

Hereb,(y) are polynomials iny with by(y)=1; the proce-
dure for calculation of these parameters is given by Ham
The integel is the orbital quantum number of interest in the
This work was supported in part by the National Sciencdimit V-=0. By combining Eqs(A3)—(A5) we obtain the
Foundation under Grant No. PHY-0070525. form, more convenient for our present purposes,
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|
b
o=l 2

p=0 n?P

cotm(2y+1)|J(y)

1

sinm(2y+ 1)‘](_7_ 1. (A6)

The functionA(vy), first appearing just below Ed4.1), is
defined as
2| 77|y+1e7]'rr/2

[T(y+1+n)|” (A7)

Aly)=
We note that the functiof=—(c,A) ! is evaluated as
f(y)=(2m) te” ""[L(y+1+in)|*n~ > Y], (A8)

which may be identified as the imaginary part e(c;lcg
+@G), its real part being

PHYSICAL REVIEW A 63 032714

h=—ReG(y)+fe?"”sin 2my. (A9)

From Eq.(A7) we find that the rati?\(y)/A(y+p), en-
tering into the discussion in Sec. 1V, is evaluatedforO as
AWIA(y+p)=[(y+1+p—1)*(kIZ)>+ 1]
X[(y+1+p—2)%(k/iZ)2+1]Y2 -

X[ (y+1)3(kiZ)?+1]Y2, (A10)

while for p<0

AWIA(Y+p)=[YA(KIZ)?+ 1] Y (y—1)3(k/IZ)?
+1]7 Y2 [(y+1+p)2(kIZ)2+1] Y2
(A11)
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