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Classical and quantal collisional Stark mixing at ultralow energies

D. Vrinceanu and M. R. Flannery
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332

~Received 6 June 2000; published 2 February 2001!

Exact classical and quantal solutions are presented for the full array of intrashell transitionsnl →nl 8,
between any angular momentum states, induced by slow distant collisions with a charged particle. The colli-
sions are adiabatic with respect to the orbital frequency of the atomic electron and the transitions are induced
by the weak ion-atom dipole field generated by the ion moving along a classical path. The rich symmetry of the
problem allows a unified approach and is the source of the excellent agreement, beyond the usual Ehrenfest’s
correspondence principle, between the classical and quantal treatments. A classical transition probability is
defined. Probabilities for transition between any angular momentum states within a high Rydberg energy level
are derived in exact analytic forms and are analyzed for a large number of numerical examples. The transition
probabilities obtained from the three methods—quantal and classical formulations and Monte Carlo classical
simulations—are directly compared to provide excellent agreement.
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I. INTRODUCTION

The collision of a slow heavy charged particle with
excited atom at large impact parameters induces transit
between neighboring angular momentum states of the ex
atom. For very low velocity of the projectile, the transitio
with change in principal quantum number are much l
probable than the quasielastic angular momentum chan
collisions at large impact parameters. Because these s
are very close in energy, or are even degenerate as for
drogen and Rydberg atoms, the process is very efficient s
little or no energy transfer is required. In fact, the cross s
tions increase as the energy of the incoming particle is
creased. This process is called Stark mixing and is impor
in many problems in atomic physics. For example, Bethe@1#
analyzed the absorption of low-energy negative K2 mesons
in liquid hydrogen on the recognition that the Stark mixing
essential in such processes. Also, Stark mixing is include
the calculation of the Auger~or autoionization! process,
which follows the collision between ions and atoms@2# and
in zero-electron-kinetic-energy~ZEKE! photoelectron spec
troscopy@3#. Stark mixing has also been important in astr
physics~e.g.,@4#!, in recent efforts to produce antihydroge
at 4 K @5# and for general three-body recombination at
tralow energies@6#. The first stage in recombination at u
tralow temperaturesTe @6# is a very rapid collisional capture
into high Rydberg states with high angular momentum a
large radiative lifetimes, at a rate proportional toTe

24.5.
Since then-changing collisions are relatively unimportant
ultralow energies, thel -mixing collisions are essential in
producing the low angular momentum states required to
diatively decay at relatively high rate to lown levels, thereby
stabilizing the recombination.

Experiments@7# on single ion collisions with alkali-meta
Rydberg atom have measured largel -mixing cross sections
for slow projectiles, including dipole-forbidden transition
Various theoretical models have been developed to re
duce the experimental data. Even though a set of coup
channel equations can be written, their solution becomes
practical for the large quantum numbers considered in
1050-2947/2001/63~3!/032701~22!/$15.00 63 0327
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experiment (n'28). On averaging over the azimuthal qua
tum numberm, the size of the problem becomes much r
duced and satisfactory results have been obtained@8#. Con-
sidering the Rydberg atom in a frame that rotates toge
with the internuclear axis, the Stark mixing problem is r
duced to the problem of the Rydberg atom in mixedstatic
fields: electric, provided by the projectile ion, and magnet
produced by the noninertial~Coriolis! forces. In this way, the
well known results ~in both classical@9# and quantum
@10,11# mechanics! for the problem of interaction betwee
weak fields and an atom can be adopted@12# to provide a
solution for the Stark mixing problem. In a remarkable ser
of papers, both classical@13–15# and quantal@15,16# ver-
sions of this approach have been successfully applied for
zero to higher angular momentum transitions, by includ
the quantum defect appropriate to the experiments@7#. Clas-
sical trajectory Monte Carlo simulations@17# were also in
agreement with the experiments@7#.

All theoretical efforts rely on the impact parameter fo
malism, in which the projectile is a classical particle movi
along a definite trajectory. The dipole interaction has be
proven to be a good approximation for the projectile-tar
potential because of the long-range Coulomb interacti
and the decisive role of large impact parameters. For s
moving ions, Stark mixing can occur without energy tran
fer. The dynamics of the Rydberg atom is therefore ad
batic. The orbit of the Rydberg electron can still be cons
ered elliptical, but its shape and orientation change slo
during the collision time, which is very much longer than t
orbital time. This classical mechanics picture translates i
the quantal description by restricting the dynamics to
energy shell, as prescribed by adiabatic perturbation the

In this paper, a unified theory for the general tim
dependent solution of collisional Stark mixing is present
both in the classical and quantal formulations. The exc
tional rich dynamic symmetry of the hydrogen atom provid
the key foundation that enables both the classical and qua
solutions to be constructed in a unified way~Sec. II! by using
group representation theory. This classical-quantal co
spondence transcends the well known Ehrenfest’s theo
©2001 The American Physical Society01-1
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~as observed in the general case of weak field-atom inte
tion @15,18#! just because of the SO~4! dynamical group
symmetry1 of the energy shell of the hydrogen atom. T
agreement, as expected, is very good. It is shown that
present quantal solution~developed in Sec. III A! can be for-
mulated~Sec. III B! so as to provide the rotating coordina
frame formal result obtained in@12,15,16#. The efficiency of
the present quantal solution is demonstrated in Sec. VI
new classical solution applicable to transitions between a
trary angular momentum states is derived in Sec. IV A. W
define the classical transition probability, in a language
signed to exploit the dynamical symmetry, as the normali
volume of phase space accessible to both initial and fi
states in Sec. IV B. Monte Carlo simulations~Sec. V! are
also performed to yield results in agreement with the cla
cal expression for the Stark mixing probabilities.

II. KINEMATICS OF STARK MIXING

Stark mixing occurs when the electron of a Rydberg at
changes its angular momentum, without changing its ene
as a result of a collision, at large impact parameters, wit
slow massive particle of chargeZ1e. In addition to the en-
ergy, given by the constant Hamiltonian

H05
p2

2me
2

e2

r
,

the angular momentumL5r3p of the unperturbed Rydber
electron and the Runge-Lenz~or eccentricity! vector

A5Fp2r2~p•r !p2mee
2

r

r G Y A22meE, ~1!

which is directed toward the pericenter and normalized
angular momentum units, are also conserved. These qu
ties define the dynamic SO~4! symmetry of the hydrogen
atom with given energyE, which is a subgroup of the globa
SO~4,2! symmetry group. Because the SO~4! group is iso-
morphic with the direct product SO(3)% SO(3) of two rota-
tion groups, a special decomposition

L5M1N, A5M2N ~2!

permits the dynamics of the hydrogen atom to be separ
into two decoupled motions. The generatorsM and N act
independently as angular momenta and are also conse
quantities for the unperturbed Rydberg atom. They evo
independently@9# with time on application of an electric
field.

The orbital electron interacts with the time-depend
electric field EW(t) generated by the passing projectile
chargeZ1e. In the weak-field approximation, this field i
constant over the spatial extent of the atom. In this appro

1This group contains sufficient generators to enable one to for
late the dynamics of the system solely in terms of operations
irreducible representations of the group@19#.
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mation, which is the same as the dipole approximation,
interaction potentialV5erW•EW is

V~r ,R!52Z1e2
R•r

R3
5

Z1e2

vb

dF

dt
R̂•r

5
Z1e2

vb

dF

dt
~y sinF1z cosF!. ~3!

The impact parameterb, the impact angleF, and internu-
clear vectorR are displayed in Fig. 1. The angular mome
tum of relative motionL rel5mR2Ḟ52mvb ~wherem is the
reduced mass of the projectile-target system! remains con-
served sinceL rel@L ~so thatL rel andL are effectively decou-
pled!.

Various frequencies or time scales are important to
present discussion of the collision, and are as follows.

~i! The projectile rotation~collision! frequency

vR52
dF
dt 5

bv

R2
→

large b v
b '

1
tcoll

from which the collision timetcoll can be defined.
~ii ! The transition frequency

v i j 5
Ei2Ej

\

of the Rydberg electron. For transitionsn→n61 between
neighboring levels,vn,n61 is simply v0 /n35vn5vn /an ,
the orbital frequency~the Bohr correspondence principle!.
Herean5n2a0 andvn5v0 /n are the averaged orbital radiu
and velocity.

~iii ! The Stark precession frequency

vS5
3

2
anvn~E/e!5

3

2

Z1anvn

R2

for the precession ofA about R provides the precessiona
frequency of the Runge-Lenz~eccentricity! vector A of the
Rydberg orbit about the field directionÊ.

u-
f

FIG. 1. Geometry of the Stark mixing collision.
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CLASSICAL AND QUANTAL COLLISIONAL STARK . . . PHYSICAL REVIEW A 63 032701
~iv! The spin-orbit coupling frequencyvSO corresponds
with the maximum fine-structure splitting and is appro
mately @20# aFS

2 vn /n, whereaFS is the fine structure con
stant.

~v! The quantum defect frequencyvQD is the precessiona
frequency of the electron orbit due to its interaction with t
polarizable core. This frequency is important when on
electron atoms are considered other than hydrogen. The c
bined polarization of the core due to the orbital electron a
the charged projectile has to be taken into account. Given
quantum defectd l , the quantum defect frequency is

vQD'5d l vn /l

when l is sufficiently large such that the core penetrati
and relativistic corrections can be ignored@21#.

By considering the exp(ivt) factor in time-dependent per
turbation theory, several types of collisions can be classifi
as in @22#, by comparing the above frequencies.

The Stark mixing parametera is defined as the following
ratio between the Stark and collision frequencies:

a5
vS

vR
5

3Z1

2 S anvn

bv D5
3Z1

2

m

me

n\

L rel
. ~4!

Whena!1, thenvStcoll!1 and the collision time is much
shorter than the Stark precessional time so thatl -changing
or Stark suddentransitions are favored. This is in contrast
Stark adiabatictransitions wherea@1; the electronic angu
lar momentum does not change since the atom has suffic
time to relax to the Stark effect.

The orbital parameterb is the ratio

b5vR /vn5
v
vn

an

b
[

bc

b
.

For anorbital adiabaticcollision, whenb!1 or b@bc , the
orbital electron adjusts itself adiabatically to the slow i
perturbation. Sincevntcoll@1, no energetic transitions oc
cur. Theorbital suddenregime,b@1 or b!bc , is associ-
ated withvntcoll!1 and impulsiven→n8 transitions.

The product of thea andb parameters defines the rat
vS /vn5(3Z1/2)(an /b)2, which depends only onb ~and not
v). For weak fieldsthe Stark mixing splittingDES5\vS
!\vn , the (n→n61) energy gap. This also means that t
internuclear distanceR is much greater than the mean orbit
radiusan . In this approximation, the electron’s orbital tim
is then much shorter than any characteristic collisional ti
to causel changes to the elliptical orbit. The vectorsA and
angular momentumL , which are constant for the unpe
turbed motion, then become good dynamical variables
the description of the perturbed motion, within the wea
field approximation.

With respect to orbital motion, the collision is sudden
adiabatic according tob,bC and b.bC , respectively,
wherebC5(v/vn)an . With respect to the Stark frequenc
the collision is adiabatic or sudden according tob,bS and
b.bS , respectively, wherebS5(vn /v)an . The impact pa-
rameterb space can then be partitioned as in Fig. 2. Asv
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decreases,bS increases outward andbC increases inward,
thereby limiting the extent of the two sudden regions wh
n changes andl mixing occurs. The variation withv can be
represented by a (v,b) phase-space diagram partitioned in
the characteristic regions as illustrated in Fig. 3. Forv.v*
5(3Z1/2)1/2vn , the (n,l ) changing andl changing~orbital
and Stark sudden! shaded regions overlap and expand,
direct contrast to ultracold speedsv<v* , where the orbital
and Stark adiabatic~clear! regions increase and the shad
regions diminish and do not overlap, thereby indicating f
collisional changes. The region of interest here is the ove
of the orbital adiabatic (vR,vn) region, b.bC
5(v/vn)an, with the weak-field (vS,vn) region, b.b*
5(3Z1/2)1/2an, i.e., the region in Fig. 3 defined byb.bC
for v>v* 5(3Z1/2)1/2vn and byb.b* for v<v* .

The following formulation assumes that the Rydbe
atom, during the collision, occupies the same degenerate
ergy shell. The main element of the perturbation potential~3!
is the electron position vectorr , which by Pauli’s replace-
ment rule@23#

r'^r &52
3

2

A

pn
~5!

is replaced by its averagêr &, a procedure valid for orbita
adiabatic collisions~see Appendix A for a detailed explana

FIG. 2. Partitioning the impact parameter spaceb.

FIG. 3. Partitioning thev-b phase-space map into regions cha
acterized mainly by~a! energy changes,~b! energy and angular
momentum changes,~c! angular momentum changes, and~d! no
changes. Regions for strong and weak field collisions are a
shown.
1-3
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D. VRINCEANU AND M. R. FLANNERY PHYSICAL REVIEW A 63 032701
tion!. SinceZ1e2r /bv is thenaA, the perturbing potentia
~3! can be written in terms of the componentsA2 andA3 as

V~a!5e^rW&•EW~ t !52a
dF

dt
~A2 sinF1A3 cosF!,

under the adiabatic, dipole and classical path assumpti
Moreover, the components$L1 ,A2 ,A3% generate a subgrou
of the original symmetry group. The solution of the proble
can then be written in terms of these symmetry-group g
erators and the Stark parametera, which acts as a coupling
constant. Under the above approximations, the collision
rametersv, b, andZ1 become combined into one parame
a.

The cross section for Stark mixing is

snl →nl 852pE
0

`

Pl 8l

(n) b db

52pS 3Z1an

2v/vn
D 2E

0

`

Pl 8l

(n)
~a,DF!

da

a3
. ~6!

The probabilitiesPl 8l

(n) obtained here are defined only in th
full orbital adiabatic regionb.bC for v>v* and in the adia-
batic region restricted by the weak-field conditionb.b* for
v<v* ~see Fig. 3!. Whenv,v* andb,b* , the Stark pa-
rametera.1. Since the transition probabilities are bound
for large a, the contribution to thea integration is vanish-
ingly small for largea, decreasing asa23, and can be ne-
glected fora.1. Cross section~6! can then be defined a
ultralow speedsv<v* , when thelower limit bmin to the
b-integration is taken as the weak-field limitb* . For higher
speedsv.v* , the probabilities determined here are va
only in the full adiabatic regionb.bC and do not hold in the
~oribital sudden! regionb* ,b,bC required in~6!. In prac-
tical calculations of Eq.~6!, various physical effects such a
quantum defect, spin-orbit coupling, and Debye screenin
a plasma determine anupper limit to the b integration and
hence a lower limitamin to thea integration. For example
the spin-orbit splitting overlaps with the Stark splitting wh
b.bmax, where bmax'n5/2aFS

21(3Z1/2)1/2a0. Similarly, the
quantum defect comes into effect for the criticalbmax

'n5/2l 1/2d l
21/2(3Z1/10)1/2a0. The Debye radius RD

5(kT/4p2Z1e2N)1/2, whereT andN are the temperature an
number density of the projectiles, is another viable up
limit to the impact parameter@4#. Stray electric fields in the
collision region can also impose an upper limit to the imp
parameter. The decision of which limit should be adopted
the definition~6! depends, of course, on the specific proble
considered. These cutoff procedures are crucial for low
gular momentum transfers where the transition probab
P(a) cannot offset the 1/a3 singularity ~cf. Ref. @4#! as b
→`. The initial and final anglesF0 andF, between which
the Stark mixing is effective, are also dependent on the s
cific cutoff procedure@14#. For trajectories with zero deflec
tion (DF52p), then Eq. ~6! varies universally as
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(Z1an /v)2. Departure from this variation is governed b
DF(b,v) and by the physical limits imposed upon thea
integration.

The discussion above is valid for both quantal and cla
cal descriptions of Stark collisional mixing, since both i
volve only kinematics and general dynamical symmetry
guments. It is shown below~in Secs. III A and IV A! that
both quantal and classical dynamics are governed by the
lowing generic equation:

i
]U

]t
56a

dF

dt
~J2 sinF1J3 cosF!U ~7!

for the time evolution operatorU within the rotation Lie
group SO~3!. The generators$J1 ,J2 ,J3% of this group have
the commutators@Jj ,Jk#5 i e jknJn , wheree jkn is the Levi-
Civita antisymmetric permutation symbol for anyj ,k
51,2,3. The required solution of Eq.~7! is

U~ t,t0!5eiFJ1 exp@2 iDF~J16aJ3!#e2 iF0J1. ~8!

This can be easily verified with the aid of the relations

eilJ2J1e2 ilJ25J1 cosl1J3 sinl,

eilJ2J3e2 ilJ25J3 cosl2J1 sinl,

eilJ1J3e2 ilJ15J3 cosl1J2 sinl,

which are derived from the basic identity

elABe2lA5B1
l

1!
@A,B#1

l2

2!
†A,@A,B#‡1••• ~9!

and the above commutation relations. The net polar an
DF swept during the collision betweent0 and t is F2F0.
The initial conditionU(t0 ,t0)51 is automatically satisfied
If no cutoff radius is considered,F0→p as t0→2` and
F→FD ~the classical deflection angle! as t→`. For the
simplest case of distant straight line trajectoriesFD50, and
the evolution operator is then

U~`,2`!5exp@ ip~J16aJ3!#e2 ipJ1

or, in terms of finite angle rotationsR@w,n# by angle w
about directionn and the parameterg5A11a2, is

U~`,2`!5R@2gp,~1/g,0,6a/g!#R@p,~1,0,0!#.

III. QUANTAL THEORY

A. Quantal intrashell dynamics

The Schro¨dinger equation for the time evolution operat
U(t,t0) is

i\
]U

]t
5~H01V!U, ~10!

whereH0 is the free atom Hamiltonian andV is the interac-
tion potential ~3!. If the projectile is moving sufficiently
slowly, adiabatic perturbation theory can be applied and t
1-4
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the whole dynamics of the target atom becomes restricte
the initial degenerate energy shell~the orbital adiabatic re-
gion in Fig. 3!. This simple fact has two major consequenc
First, the position operator and hence the perturbation po
tial ~3! commute with the unperturbed Hamiltonian, as o
can prove directly from the matrix elements of the comm
tator @r ,H0# between any states within the energyEn shell.
The potential in the interaction representation

VI5eiH 0t/\Ve2 iH 0t/\

is then identical with the potential in the Schro¨dinger repre-
sentation (VI5V), and the equation to be solved, in the i
teraction representation, is

i\
]UI

]t
5VUI , ~11!

where UI(t,t0)5exp(iH0t/\)U(t,t0)exp(2iH0t0 /\). Second,
the componentsx,y,z of the position operator do not com
mute between themselves when restricted to the energy s
This follows from the well known Pauli ‘‘replacement’’@23#
r→23nA/2 ~see Appendix A for details!. This shows that
the position vectorr behaves, within the intrashell dynamic
like an angular momentum and is denoted by$r % when op-
erating only within then-shell. In fact, the set of operator
$Lx ,22$y%pn/3,22$z%pn/3% generates a rotation group an
Eqs. ~11! and ~7! are identical when J15Lx , J25
22$y%pn/3 andJ3522$z%pn/3. Using the solution~8! of
Eq. ~7!, the exact solution of Eq.~10! of Sec. II for the
evolution operator, within the adiabatic approximation,
then

UI~ t,t0!5eiFL1 /\ expF2
i

\
DFS L12

2a

3
pn$z% D Ge2 iF0L1 /\.

~12!

This can also be directly verified by substituting Eq.~12! in
Eq. ~10! and using Eq.~9! with the appropriate commutato
algebra.

The transition probability for a generali→ f transition at
time t is

af i~ t !5^F f~r ,t !uC i~r ,t !&[^F f~r ,t !uU~ t,t0!uC i~r ,t0!&

5^f f~r !uUI~ t,t0!uf i~r !&,

where C i is the target wave function, which tends in th
asymptotic limits (t→6`) to the unperturbed basis s
F j (r ,t)5f j (r )exp(2iEjt/\). The transition amplitude for a
Stark mixing process is

aba
(n)5^nbuUI~`,2`!una&, ~13!

where the initial statei[una& at t52` evolves to the final
statesf [unb& at t5`; a andb now label the states within
the same energy shell. The superscriptn will be omitted,
since all dynamics is restricted to the energy shell descri
by quantum numbern. When a and b label states with a
given magnitude and projection of the angular momentu
the transition amplitude is given by Eq.~12! in Eq. ~13! and
is feasible and efficient for practical numerical application
03270
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The core of solution~12! is the exponential of the opera
tor L122apnz/3. By using basic commutator algebra an
Eq. ~9!, this operator is diagonalized as

e2 iyq/\S L12
2a

3
pn$z% Deiyq/\5gL1 ,

where q52pn arctan(a)/3 and g5A11a2. The solution
~12! has therefore the alternative form

UI~ t,t0!5eiFL1 /\e2 i $y%q/\e2 igDFL1 /\ei $y%q/\e2 iF0L1 /\,
~14!

which illustrates very effectively how the action of the slo
distant encounter charged projectile coming from the ne
tive z axis is decomposed into successive rotations about
x axis and alternating impulsive momentum transfers (6q)
along they axis.

It is interesting to compare the solution~14! obtained in
this orbital adiabatic limit with the purely impulsive solutio
presented in sec. III C. The evolution operator~14!, for un-
deflected collisions, yields

UI~`,2`!5e2 i $y%q/\eipgL1/\ei $y%q/\e2 ipL1/\.

In the limit that a→0, q→2apn/35Dq/2 and
exp(ipgL1/\)→exp(ipL1/\). Then

UI~`,2`!

5F11
~2 i !

1! S $y%Dq

2\ D1
~2 i !2

2! S $y%Dq

2\ D 2

1•••GeipL1 /\

3F11
i

1! S $y%Dq

2\ D1
i 2

2! S $y%Dq

2\ D 2

1•••Ge2 ipL1/\,

which reduces, with the aid of exp(ipL1 /\)yn exp(2ipL1 /\)
5yn(cosp)n5(2y)n, to

UI5e22iq$y%/\1O~a2!. ~15!

This limit merges with the impulsive result Eq.~20! below.

B. Formal development

It is interesting, however, to note that by introducing Pa
li’s replacement directly in the potential~3! and by writing
the Runge-Lenz vector asA5M2N, the potential decom-
poses as

V5VM1VN ,

where

VM52a~M2 sinF1M3 cosF!Ḟ

and

VN5a~N2 sinF1N3 cosF!Ḟ.

Because the commutators@Mi ,Nj #50, @Mi ,H0#50, and
@Ni ,H0#50 ~for any i , j 51,2,3 combination!, the problem
~10! becomes separable, exactly in the same way as the
sical Stark mixing equations become decoupled~see the next
section!. The time evolution operator then factorizes as
1-5
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TABLE I. The four bases useful for describing the quantal states of the hydrogen atom.

Basis Quantum Complete set of Origin
numbers commuting observable

orbital unl m&O H0 , L2, L3 Standard for spherical coordinates; describes
correctly the states of the field-free atom

parabolic un1n2m&P H1 , H2 , L3 Separation of HamiltonianH5H11H2 in
parabolic coordinates,j5r 1z, h5r 2z,
tanw5y/x; n5n11n21umu11

Stark unqm&S H0 , A3 , L3 Parabolic basis; describes the Stark states for
small electric fieldE, when the interaction
2eEz is diagonal;q5n12n2

algebraic unmn&A H0 , M3 , N3 The two rotation groups in which the dynamic
symmetry group SO(4)[SO(3)% SO(3)
decomposes using Eq.~2!; the equivalent
angular momentum for both SO(3)
representations isj 5(n21)/2; m5(m1q)/2 and
n5(m2q)/2
-

to
bi
n
a

A
d

to
ac
p

o

te

ic
.,
f
ns

n

al
en
di-

ich
can

4)
m-

.
in
tal
t it
ssi-
U5UH0
UMUN , ~16!

where, of course,UH0
5exp@2iH0(t2t0)/\#, andUM andUN

are the solutions of the equationsi\]UM /]t5VMUM and
i\]UN /]t5VNUN , respectively. Using the group
theoretical result Eq.~8! of Sec. II, the solutions for the
operatorsUM andUN are then

UM5eiFM1 /\ exp@2 i /\~F2F0!~M12aM3!#e2 iF0M1 /\

~17!

and

UN5eiFN1 /\exp@2 i /\~F2F0!~N11aN3!#e2 iF0N1 /\.
~18!

In calculating the amplitude~13!, four interesting basis
sets can be chosen for the one electron hydrogenlike a
Table I summarizes key properties of these bases. The or
basis is useful for describing the field-free atom, before a
after the collision, whereas the algebraic basis appears n
rally as a basis whereM3 andN3 are diagonal. The solution
~16! has the simplest expression in this algebraic basis.
four bases in Table I span then2 degenerate energy shell an
can be equally adopted to characterize the hydrogen a
The algebraic basis spans a tensorial product of two sp
(um& ^ un&) corresponding with spaces used for a matrix re
resentation of the product SO(3)% SO(3). The twospaces
have the same dimension becauseM25N25(L21A2)/4
5(n221)\2/4 and are associated with two angular m
menta withj 5(n21)/2.

The transition amplitude between the two algebraic sta
is then the product of two amplitudes forM andN indepen-
dent actions, exactly in the same way in which the class
M and N vectors evolve independently in time, i.e
a(m8n8),(mn)5am8man8n . Each factor is the matrix element o
a j 5(n21)/2 dimensional representation of the rotatio
represented by Eq.~16!. For example, from Eq.~17!, one
getsam8m5Fm8m(a) with
03270
m.
tal
d
tu-

ll

m.
es
-

-

s

al

F~a!5D ( j )F2gp,S 1

g
,0,2

a

g D GD ( j )@p,~1,0,0!#,

whereD@f,(n1 ,n2 ,n3)# is the Wigner matrix representatio
for the rotationR@f,n# by anglef about directionn ~see
@24# for the explicit expression!. The transition probability in
the space ofN is the elementn8n of the matrixF(2a).

Calculation of the transition probability between orbit
states requires the explicit unitary transformation betwe
the orbital and algebraic bases. This can be obtained by
rect scalar products of orbital and parabolic states for wh
explicit coordinate representations are known. The result
be written in terms of hypergeometric functions@25#. How-
ever, an equivalent result is provided by the SO(
'SO(3)% SO(3) isomorphism. The orbital state, as a co
bination of two angular momentum states, is~see@26# for
example!

unl m&5 (
m,n52 j

j

Cmn
(l m)unmn&,

where the transformation matrixC(l m) is given by the stan-
dard Clebsch-Gordan coefficients^ j m j nul m&. The transi-
tion amplitude for thel m→l 8m8 transition is then

al 8m8,l m5 (
mnm8n8

Cm8n8
(l 8m8)Cmn

(l m)Fm8m~a!Fn8n~2a!,

~19!

which can be expressed in matrix form as

al 8m8,l m5Tr@C(l 8m8)F~2a!C(l m)TFT~a!#,

whereCT is the transpose of matrixC. The above result Eq
~19! is in exact agreement with the solution obtained
@12,15,16# using the rotating frame approach. The quan
development here in the fixed frame is exquisite in tha
follows exactly the same reasoning basic to the exact cla
1-6
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cal mechanics solution~Sec. IV A!. This result exhibits the
essential power of the SO(4) symmetry group for the ene
shell of the hydrogen atom. The common SO(4) symme
therefore transcends the chosen formulation~classical or
quantal! and provides a classical-quantal correspondence
level more fundamental than Ehrenfest’s theorem and
Heisenberg correspondence. In practice, the fourfold sum
tion ~19! and the use of the Wigner rotation matricesD for
F(a) are not very efficient and the difficulty of calculatio
increases dramatically withn. Instead, the solution~12! pro-
vides a simpler approach, since the matrix elements of
argument in the exponential have simple expressions dire
in the orbital basis. The array of transitions is obtained
once, within one matrix exponentiation of a band diago
matrix for which efficient algorithms are available@27#.

When the projection of the initial and final angular m
mentum is not determined, the transition probability is

Pl 8l ~a!5
1

2l 11 (
m52l

l

(
m852l 8

l 8

ual 8m8,l mu2.

The exact quantal solution can therefore be derived
rectly without making use of unnecessary complications o
rotating frame and a fictitious magnetic field. The structu
of the present solution Eq.~14! represents a sequence
alternating momentum transfers~in they direction! and rota-
tions about thex axis. This recognition motivates the follow
ing section.

C. Impulsive limit

In the other extreme situation~the orbital sudden–Star
sudden region in Fig. 3, wherea!1), the impulsive limit,
the collision is very fast and the collision timetcoll is much
smaller than the orbital time. The potential has again
same form in both Schro¨dinger and interaction represent
tions, V5VI , since, in the equalitŷ f uVu i &[^ f uVI u i &eiv f i t,
the exponentv f i t!1 @with v f i5(Ef2Ei)/\# can be re-
placed by zero. Now the position operator hasr the normal
behavior, in that its components commute between th
selves. The impulsive transition amplitude is

af i
imp5^f f~r !uexp2

i

\Et0

t

V~r ,t8!dt8uf i~r !&,

as may be directly verified upon using the closure relati
Since the forceF52“ rV(r ,t) acting on the Rydberg elec
tron is impulsive and imparts momentumDq, then

exp2
i

\Et052`

t5`

V~r ,t8!dt85exp2
i

\E dr "E
2`

`

F~r ,t !dt

5exp2
i

\
Dq•r

so that the probability amplitude for an impulsive collision
simply
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af i
imp~q!5^f f uexp2

i

\
Dq•r uf i&, ~20!

the inelastic form factor amplitude. This agrees with oth
alternative derivations@28,29# for the probability of an im-
pulsive transition. The momentum transferred in an~impul-
sive! rectilinear collision is

Dq5~2Z1e2/bv !ŷ5~4a\/3na0!ŷ.

The transition amplitude, valid in the orbital and Stark su
den region~cf. Fig. 3!, is therefore

af i
imp~a!5^f f uexp2 i

4

3

a

n

y

a0
uf i&,

which connects with thea→0 limit Eq. ~15! of the adiabatic
result Eq.~14!. Even though this approximation is appropr
ate for the amplitude for transitionsnl →n8l 8 between dif-
ferent energy shells, it is a good approximation, in particu
for very smalla @see Eq.~15!#, if the normalized

P̃ba
imp5uaba

impu2Y (
b

uaba
impu2

transition probability is adopted for the problem of intrash
transitions. This normalization is a consequence of the
ference between the operators$r %, appropriate only to in-
trashell transitions, andr for all transitions.

IV. CLASSICAL THEORY

A. Classical intrashell dynamics

The angular momentum vectorL and the Runge-Lenz
vector defined by

A5pn
21Fp3L2mee

2
r

r G
are constant for the unperturbed classical Rydberg at
Moreover,A•L50 andA21L25mean5n2\2. In the pres-
ence of an electric field of intensityEW, the angular momen-
tum L changes at the rate

dL

dt
52erW3EW.

On assuming that the collision is orbital adiabatic (Ḟ!vn

and EW is constant over one period!, the slow change ofL
during the collision is the classical average

DL

T
5 K dL

dt L
T

52
e

TEt2T/2

t1T/2

~rW3EW!dt52e^rW&3EW~ t !

over one orbital periodT. Since the weak-field approxima
tion (vS!vn) also holds, the vectorsL andA then change
very little over one orbital period. Using Pauli’s replaceme
rule ^r &'23A/2pn , the following set of coupled equation
can then be deduced@9,22#:
1-7
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dA

dt
52vSR̂3L ,

dL

dt
52vSR̂3A,

where bothvS5aḞ and R̂ vary with time. Under the sub
stitution

M5
L1A

2
, N5

L2A

2
, ~21!

the above set of differential equations becomes decouple
yield

dM

dt
52vSR̂3M ,

dN

dt
51vSR̂3N, ~22!

where the magnitudesM25N25(L21A2)/45n2\2/4 re-
main constant throughout the collision. The classical anal
for constant electric fields is given by Born@9#. For time-
independentvS , both M and N precess with constant fre
quencyvS about the~fixed! direction of internuclear axisR̂.
For general time-varyingvS , the system of differentia
equations~22! does not have an exact solution. Percival a
Richards @22# have used classical perturbation theory
solve Eqs.~22! and then provided a diffusional theory o
angular momentum mixing. Bellomoet al. @17# approached
the same problem by proceeding via the time evolut
propagatorU rot

6 (t,t0) for M andN in the rotating frame, an
approach that results in formulas too complicated for phy
cal changesDL andDA to be extracted. A special solutio
for transitions from angular momenta statel 50 has been
recently obtained by Kazansky and Ostrovsky@13–15#.

An exact analytical solution is, however, possible und
the weak field and orbital adiabatic approximations for
classical projectile trajectory and when the magnitude of v
tors M and N remains constant during the collision, as f
the present case of intrashell transitions. These vectors
then obtained at any moment by orthogonal transformati
from the initial valuesM (t0) andN(t0). Let these transfor-
mations be ŨM(t,t0) and ŨN(t,t0), respectively. Then
03270
to

is
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n
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M (t)5ŨM(t,t0)M (t0) and a similar equation holds for th
time evolution ofN. The first equation in Eq.~22! becomes

dŨi j

dF
52ae inkR̂nŨk j ,

where e i jk is the fully antisymmetric permutation symbo
Because the infinitesimal generatorsJ̃k for the rotation group
are matrices with elements (J̃k) i j 52e i jk ~see@30# for ex-
ample! and sinceR̂5(0,sinF,cosF), the above equation in
matrix form is

dŨM

dF
52a~sinF J̃21cosF J̃3!ŨM ,

where@ J̃k ,J̃ j #5ek jnJ̃n . This equation is the matrix represen
tation of the group equation~7! and the solutionŨM is the
matrix representation of the general solution~8!. The final
vectorM 8 is therefore obtained from the initial vectorM by
three successive rotations,

M 85R@2F,~1,0,0!#R@gDF,~1/g,0,2a/g!#

3R@F0 ,~1,0,0!#M . ~23!

The solution forN has the similar form

N85R@2F,~1,0,0!#R@gDF,~1/g,0,1a/g!#

3R@F0 ,~1,0,0!#N ~24!

obtained simply by replacinga by 2a in the corresponding
equation forM . The matrixR@F,n# is the rotation matrix
for a vector and corresponds with the representation of
abstract rotation~specified by the angleF and the direction
n of rotation! on the three-dimensional vector space. Analy
cal expression forUM and UN can be obtained@31# as ex-
plicit functions ofa andDF. In particular, whenF50 and
F05p, the (333) matrix ŨM is
e

ŨM5F g22@11a2 cos~p g!# ag21 sin~p g! ag22@12cos~p g!#

ag21 sin~p g! 2cos~p g! 2g21 sin~p g!

ag22@cos~p g!21# g21 sin~p g! 2g22@a21cos~p g!#
G ~25!

and ŨN is obtained fromŨM by replacinga with 2a.
As a result of the collision, the initial state of the target atom, specified by the vectors (L ,A), changes to the final stat

(L 8,A8) according to

L 85
ŨM1ŨN

2
L1

ŨM2ŨN

2
A, ~26!

A85
ŨM2ŨN

2
L1

ŨM1ŨN

2
A. ~27!

For the undeflected trajectory of the projectile, whenF50 andF05p, explicit results are:
1-8
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L185g22@11a2 cos~p g!#L11ag21 sin~p g!A21ag22@12cos~p g!#A3 ,

L2852cos~p g!L22g21 sin~p g!L31ag21 sin~p g!A1 ,

L385g21 sin~p g!L22g22@a21cos~p g!#L31ag22@cos~p g!21#A1 , ~28!

A185g22@11a2 cos~p g!#A11ag21 sin~p g!L21ag22@12cos~p g!#L3 ,

A2852cos~p g!A22g21 sin~p g!A31ag21 sin~p g!L1 ,

A385g21 sin~p g!A22g22@a21cos~p g!#A31ag22@cos~p g!21#L1 .
al
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Hereg5A11a2 and the components of the initial and fin
vectors are defined in the fixed coordinate frame of Fig
Similar expressions have also been obtained@31# for general
DF. The above exact solutions are easily verified and sat
the invariant relations

L 8•A85L•A50

and

L 821A825L21A25n2\2.

The orbit of the final state (n,L 8) is confined to a plane
perpendicular to the finalL 8 and the energy is preserved (n
is not changed!.

B. Classical transition probability

The initial state is defined by the angular momentumL
and Runge-LenzA vectors. Apart from the constraints th
~i! the magnitude of theL vector isl \, ~ii ! the magnitude of
the A vector is\An22l 2 in the given state, and~iii ! L and
A are always orthogonal, the two vectors are completely r
dom in the six-dimensional space$L% ^ $A%, which is a map-
ping of the usual (r ,p) phase space. The initial angular m
mentum can have any value between 0 andn\. The special
case of zero initial angular momentum requires a sepa
analysis, presented at the end of this section. In the follow
discussion, the initial angular momentum is assumed stri
positive.

The hypersurface in the$L% ^ $A% space on which the
initial state is uniformly distributed is restricted by the abo
constraints and has the volume

Vnl 5E E d~ uL u2\l !d~ uAu2\An22l 2!d~L•A!dL dA,

~29!

which, upon integration, reduces to

Vnl 58p2\2l An22l 2.

Each point within this manifold evolves during the collisio
according to the rules~28!, so that only a fraction of possibl
initial states can have the final angular momentuml 8 after
03270
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the collision. Following the definition~29!, the overlap vol-
ume of accessible (L ,A) space that contains both initial an
final states is

Vnl l 85E E d~ uL u2l \!d~ uL 8u2l 8\!d~ uAu2\An22l 2!

3d~L•A!dL dA. ~30!

The transition probability is then, in a geometric sense,
ratio of two volumes: the volumeVnl l 8 of the accessible
states compatible with the required final angular moment
and the volume of the acceptable initial statesVnl . The l
→l 8 transition probability is therefore defined as the rati

Pl 8l

(n)
5

Vnl l 8
Vnl

~31!

of phase-space volumes. Transformation to the alterna
set of vectorsM andN defined by Eq.~2! facilitates evalu-
ation of the integral~30!. The Jacobian of this transformatio
is dL dA58 dM dN. With the aid of the identities

d~L•A!5d~M22N2!5d~N2M !/2M ,

d~ uL u2l \!5d„A2M2~11cos/MN!2l \…

5d„cos/MN2~ l 2\2/2M221!…l \/M2,

d~ uAu2\An22l 2!5d„A2M2~12cos/MN!2\An22l 2
…

5d~A4M22l 2\22\An22l 2!

5d~M2n\/2!\An22l 2/4M ,

d~ uL 8u2l 8\!5d„A2M2~11cos/M8N8!2l 8\…

5d„cos/M8N82~ l 82\2/2M221!…l 8\/M2,

the accessible phase-space volume is
1-9
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Vnl l 85E E 8M2N2 dVM dVNd M dN

3
d~N2M !

2M
\

An22 l 2

4M
d~M2n\/2!

l \

M2

3dFcos/MN2S l 2\2

2M2
21D G l 8\

M2

3dFcos/M8N82S l 82\2

2M2
21D G .

This finally reduces to the simpler form

Vnl l 85
An22l 2

n2
4l l 8\E E dVM dVN

3d~cos/MN2b!d~cos/M8N82b8!,

where the integral is now over only the angular part of
vectorsM and N and where the parametersb and b8 are
simply related to the initial and final states by

b5
2l 2

n2
21, b85

2l 82

n2
21. ~32!

The final vectorsM 85ŨMM and N85ŨNN are given by
finite rotation@Eqs.~23! and~24!# of the initial M andN, so
that the relative angles/MN and /M8N8 are independen
of the specific coordinate frame chosen. Then

cos/M8N85
M 8•N8

M2
5

~ŨMM !•~ŨNN!

M2

5
~ŨN

TŨMM !•N

M2
5cos/M9N,

whereM 9 is obtained by rotation fromM using the operator
ŨN

TŨM . Being a product of two rotations, this operator
also a rotation about some directionn by the anglex deter-
mined from the trace

Tr@ŨN
TŨM#5112 cosx

of the rotation operator. The proper rotation anglex depends
only on the collision~Stark! parametera and the polar angle
DF5F2F0 swept out during collision time interval (t0 ,t)
and is independent of the initial or the final state of the K
pler atom. It is determined by

cos
x

2
5@11a2 cos~A11a2DF!#/~11a2!.

For small a!1, cosx'128a2 sin2(DF/2)1O(a3) so that
x'4a sin(DF/2)1O(a3). The plot Fig. 4 of the ‘‘univer-
sal’’ function x(a,DF) for the caseDF52p shows thatx
has a maximum ata'0.9 and is never greater thanp. When
03270
e

-

DF'23p/4, the anglex increases up top asa increases
to unity. For smaller values ofDF, the anglex increases
monotonically witha.

The classical transition probability~31! is then

Pl 8l

(n)
5

l 8

2p2\n2E E dVM dVN

3d~cos/MN2b!d~cos/M9N2b8!,

where the angle betweenM andM 9 is x. ThedVN integral
can be done first if one chooses to work in spherical coo
nates with thez axis along the vectorn. In doing this, the
vectorsM andM 9 are fixed and have the coordinates (Q,0)
and (Q,x) as depicted in Fig. 5. The surface area elemen
dVN5d(cosu)df, whereu andf are the spherical coordi
nates of the vectorN. Instead of the~u,f! system, a new se
of coordinates can be defined by (u1 ,u2), the angles ofN
with M and, respectively,M 9. The surface area element
now dVN5du1du2 /sinD, whereD is the angle between th
NM and NM9 arcs, as in Fig. 5. A proof of this result i
derived in Appendix B.

The dVN integral is now simpler to evaluate and yields

FIG. 4. The proper rotation anglex as a function of the Stark
parametera for the net polar angle sweptDF 5 2p, 23p/4,
2p/2, and2p/4.

FIG. 5. The geometry and coordinates used in solving the in
gral ~31!.
1-10
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Pl 8l

(n)
5

2l 8

p\n2E21

1

d~cosQ!~sinD sinu1 sinu2!21,

where cosu152l 2/n221, cosu252l 82/n221, and the fac-
tor 2 arises because the (u, f) →(u1 ,u2) transformation is
not single-valued.

Basic trigonometry~see@32#! applied to spherical triangle
MNM 9 yields

cosG5 cosu1 cosu21sinu1 sinu2 cosD

so that

sinu1 sinu2 cosD5~cosG22cosG!~cosG2cosG1!,

whereG65u16u2 are the limits toG asD rotates through
2p. Since

cosG5cosQ21sinQ2 cosx

for spherical triangleMnM 9, then

sinu1 sinu2 sinD5~12cosx!@~cos2Q2A!

3~B2cos2Q!#1/2,
g

-

le

n

03270
where

A~ l /n,l 8/n;a!5
cos~u11u2!2cosx

12cosx
,

B~ l /n,l 8/n;a!5
cos~u12u2!2cosx

12cosx
. ~33!

On denoting cosQ by z, the transition probability is the
one-dimensional integral

Pl 8l

(n)
~x!5

2l 8

p\n2

1

12cosxE dz

A~z22A!~B2z2!
,

where the limits of integration are defined by th
condition of reality for the square-root function. Th
last integral can now be expressed in terms of
complete elliptic integralK(m)5*0

p/2(12m sin2 x)21/2dx so
that
Pl 8l

(n)
~x!5

2l 8

p\n2

1

sin2x/25
0 if B,0

KS B
B2AD Y AB2A if B.0, A,0

KS B2A
B D Y AB if B.0, A.0

~34!
ero

ive,
provides the exact classical probability as a function ofl ,
l 8, and sin2 x/2, which combines the Stark parametera
5(3Z1/2) (anvn /bv) and the net polar angle swept durin
the collisionDF into one function. The probability~34! sat-
isfies detailed balance 2l Pl 8l 52l 8Pl l 8 , where 2l is the
classical weight of the statenl .

Inspecting the definitions~33! reveals more qualitative as
pects. First,A andB are always less than 1, and onlyB can
attain 1 whenu15u2, i.e., for elastic collisionsl 5l 8. The
transition probability reduces, for this case, to the simp
form

Pl l
(n)~a→0!'

1

4aAn22l 2

in the limit of smalla, thereby exhibiting the 1/a singularity
of elastic transitions. For transitions withl 8Þl and small
enougha, the factorB is negative and then the transitio
probability is zero.B is always greater thanA because
cos(u12u2)>cos(u11u2). In the limit of eachl and l 8→0
or n, thenu1,250 or p andA5B,1. For l →l 850 tran-
r

sitions, the probability is zero. For the important case of z
initial angular momentum, the transition probabilityP in the
limit of l →0 is

Pl 80
(n)

~a!5
l 8/~\n2!

sin~x/2!Asin2~x/2!2~ l 8/n!2
. ~35!

This result was also obtained in@14#. Whenl 85n, the tran-
sition probability is

Pnl
(n)~a!5

1/~\n!

sin~x/2!A~ l /n!22sin2~x/2!
.

When the argument of the square-root function is negat
the transition probability is zero. Similarly, for maximum
initial angular momentuml 5n, the transition probability
has the limit

Pl 8n
(n)

~a!5
l 8/~\n2!

sin~x/2!A~ l 8/n!22sin2~x/2!
,
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FIG. 6. Contour plots of the solutions ofA
50 ~solid line! andB50 ~dotted line! for various
values ofa. In gray zonesB,0 and the transi-
tion is classically forbidden.
th
e

a

ry

g
where, again, the transition probability is zero unless
final angular momentuml 8 is large enough to make th
argument of the square-root function positive. IfB.0 andA
is small, the transition probability has a singularity, typic
for classical mechanics. Because the complete ellipticK
function diverges logarithmically when the argument is ve
03270
e

l

close to unity, the transition probability has the followin
expansion for smallA:

P'
1

AB ~2 ln 22 1
2 ln A/B!.
FIG. 7. Contour plots of the solutions ofA
50 ~solid line! andB50 ~dotted line! for various
values ofl . In gray zonesB,0 and the transi-
tion is classically forbidden.
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When B has small but positive values, the transition pro
ability has a finite limit becauseK(0)5p/2. Of course,
whenB approaches zero from negative values, the transi
probability is zero. Thus, the singularities in the transiti
probability are given by the solutions of the equationsA
50 andB50, which areu256u16x.

A map of the various zones in the plane of reduced ini
and final angular momenta (l /n,l 8/n) is displayed in Fig. 6
for the four valuesa50.2, 0.4, 0.6, and 0.8 of the Star
parameter. In the central region,A is negative andB is posi-
tive. Within the lower left and upper right corners, bothB
andA are positive. The transition is classically forbidden
the upper left and lower right corners~gray zones! whereB
,0. Along the solid line,A50 lines, which represen
cos21(l /n)1cos21(l 8/n)5x/2,p/22x, the transition
probability has a logarithmic~cusp! singularity. Across the
dotted B50 lines, which represent cos21(l /n)
2cos21(l 8/n)5x/2,p2x/2, the transition probability
jumps from zero~in the gray zone! to some finite value~in
the central zone!. As a→0, the two inaccessible region
~whereB,0) increase until the central region withB.0 and
A,0 becomes an elongated line strip lying along the di
onal l 5l 8. Only elastic collisions are therefore permitte
in the limit a→0. As a increases to unity, the classical
forbidden zones diminish and the collision becomes m
and more effective in its ability to induce larger angular m
mentum changes.

Figure 7 presents corresponding maps to Fig. 6. The s
characteristic regions are now displayed in the plane of fi
reduced angular momentuml 8/n and the Stark parametera
for four values of the initial reduced angular momentu
l /n50.071, 0.36, 0.64, and 0.93. Again, the classically f
bidden regions~gray zones! correspond to the conditionB
,0 in the left upper and lower corners. The elasticl 85l
transitions are always possible, even whena→0. Again,
along the solid (A50) and dotted (B50) lines, the transi-
tion probabilities have cusp and step singularities. Whena
increases, the span of the possible final angular momen
for given angular momentum, increases. Large angular
mentum transfer is only possible for collisions with lar
Stark parametera→1. Both Figs. 6 and 7 are key to th
interpretation of the variation of the probabilitiesPl 8l (a)
with both l 8 anda, respectively.

The result~35! obtained from thel →0 limit of the gen-
eral result~34! can be also proven directly. BecauseL50,
the classical orbits are characterized only by the Runge-L
vector A. In this case, the volume occupied by the init
state is

Vn05E d~ uAu2n\!dA54pn2\2.

The volume of the accessible final statesl 8 is

Vn0l 85E d~ uAu2n\!dS 1

2 U~ŨM2ŨN!AU2l 8\ DdA,

where the orthogonal matricesŨM ,N depend only on the
Stark parametera and are defined by Eq.~25!. In a spherical
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coordinate system where thez axis is along the principa
directionn of the rotation matrixŨN

TŨM ~as discussed earlie
in this section!, the magnitude is

1

2
uŨMA2ŨNAu5n\sin~x/2!sinu,

whereu is the angle betweenŨMA ~or ŨNA) and the direc-
tion n. The transition probability is then

Pl 805 1
2 E

0

p

d„n\sin~x/2!sinu2l 8\…sinu du

5
l 8/~\n2!

sin~x/2!Asin2~x/2!2~ l 8/n!2
,

in agreement with thel →0 limit ~35! to the general classi
cal l →l 8 transition probability~34!.

V. CLASSICAL DYNAMICS SIMULATION

The present classical Monte Carlo simulations are diff
ent from the standard classical trajectory Monte Carlo sim
lations in that the initial state is not specified by the positi
and the velocity of the orbiting electron. Instead, the simu
tion begins with a random distribution of the initial states
the $L% ^ $A% space, propagates each state according to
rule ~28!, and then performs the statistical analysis of t
final distribution of states to provide, in the limit of an infi
nite number of trials, the probabilityPl 8l for a given tran-
sition. This section describes the correct way to generate
initial distribution of states.

The angular momentumL and the Runge-LenzA vectors
are sufficient to completely specify all characteristics of t
atom’s orbit, provided they are orthogonal, as for the case
pure Coulomb attraction. Only five components are theref
independent and two of them, the magnitudesL and A
5An22L2, characterize the shape and size of the or
There are then three angles that specify the orientation of
orbit in space, for a given assignment of the energy a
angular momentum. The direction of the angular moment
vector L̂ is arbitrary. Two random numbers, the projectio

FIG. 8. The geometry of the initial state described by the dir

tions of the angular momentumL̂ and Runge-LenzÂ vectors.
1-13



e

r
an

do

t

he
o
in

m
th
d
ss

,

-

nd

rg

-

s-

q.
ot

ing
g

-

D. VRINCEANU AND M. R. FLANNERY PHYSICAL REVIEW A 63 032701
Lz5cosu1 and its azimuthal anglew1, generate a uniform
distribution of L̂ on the unit sphere. The direction of th
Runge-Lenz vectorÂ is uniformly distributed in the plane
perpendicular toL̂, and the anglew betweenÂ and a given
fixed directionN̂ in this plane is the third random numbe
required to simulate an initial state. In summary, three r
dom numbers are required:~i! Lz5cosu1 uniformly distrib-
uted within the@21,1# interval,~ii ! w1 uniformly distributed
within the @0,2p# interval, and~iii ! w uniformly distributed
within the @0,2p# interval. The initialL and A vectors are
then

L5\l S sinu1 cosw1

sinu1 sinw1

cosu1

D , A5\An22l 2S sinu2cosw2

sinu2 sinw2

cosu2

D .

The spherical polar anglesu2 andw2 of A, as illustrated in
Fig. 8, must now be expressed in terms of the above ran
variablesu1 , w1, andw. Basic trigonometry@32# applied to
the spherical trianglesZN̂Â and L̂ZÂ yields

cosu25sinw sinu1

and

05cosu1 cosu21sinu1 sinu2 cos~w22w1!,

respectively. On solving these two equations foru2 andw2,
the arbitrary Runge-Lenz vector

A~u1 ,w1 ,w!

5\An22l 2S 2cosu1 cosw1 sinw2sinw1 cosw

2cosu1 sinw1 sinw1cosw1 cosw

sinu1 sinw
D

is then expressed in term of the random variables. It au
matically obeys the constraint requirementsA•L50, A2

1L25n2, andÂ•N̂5cosw.

VI. NUMERICAL EXAMPLES

In this section, numerical examples for calculation of t
transition probability between states with given angular m
mentum (nl →nl 8) are presented. There are three ma
methods used in this paper. The classical Monte Carlo si
lation, as described in the preceding section, requires
running of a large number of trials to sample the three
mensional space of arbitrary parameters. The explicit cla
cal mechanics expression~34! is used directly.

The quantal calculation is based on Eqs.~13! and~12!. A
matrix representation for the operatorL12aA3 @where Pau-
li’s replacement~5! was adopted# is required. Instead of the
spherical basisul m&, which is difficult to use in this case
we define a new linear basis obtained by mapping the (l ,m)
quantum numbers to a unique indexk5l 21l 1m11, in
such a way, for example, that (0,0)→1, (1,21)→2, (1,0)
→3, (1,1)→4, (2,22)→5, and so on. The inverse map
03270
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ping is given byl 5floor(Ak21) and m5k2l 22l 21.
The indexk counts the degeneracy of the energy shell, a
runs from 1 ton2. The matrix element

~L1! l m
l 8m85 1

2 A~ l 1m!~ l 2m11!d l 8l dm8,m21

1 1
2 A~ l 2m!~ l 1m11!d l 8l dm8,m11

of L1 is nonzero only forDl 50 andDm561, which re-
flects the fact that the cylindrical symmetry of the Rydbe
atom is broken by the precession ofL about the field of the
projectile. Thesem-changingtransitions are, however, con
ditioned by the full structure of solution~12!, which shows
that such transitions are only in evidence for nonzeroa. The
matrix element

~A3! l m
l 8m852A~ l 22m2!~n22l 2!

~2l 11!~2l 21!
d l 8l 21dm8,m

2A@~ l 11!22m2#@n22~ l 11!2#

~2l 13!~2l 11!
d l 8l 11dm8,m

of the componentA352(2/3n)z along the fixedZ axis of
quantization is nonzero forDl 561 andDm50 transitions.
These dipole transitions only contribute for nonzeroa. The
matrix L12aA3 has then a band diagonal structure, as illu
trated in Fig. 9 for the special case ofn53. Explicit analyti-
cal formulas forPl 8l

(n) (a,DF) can be directly obtained@33#
for small n52,3.

The transition amplitude for transitionk→k8 is the kk8
matrix element of the exponential of the matrix2 iDF(L1
2aA3), sandwiched between the rotations implied by E
~12!. When a'0, the dipole forbidden transitions are n
possible, because the transition matrix'expipL1/\ still
maintains a band diagonal structure. Asa increases, more
and more off-diagonal elements become populated, lead
to dipole forbidden transitions. Efficient algorithms, usin
Padéapproximations, are available@27# for matrix exponen-
tiation. The full array of transition probabilities is then ob
tained all at once.

FIG. 9. Matrix representation ofL12aA3 for n53.
1-14
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The examples, provided by Figs. 10–13, demonstrate
the Monte Carlo simulation yields results identical to t
classical dynamics expression~34!. The transition probabili-
ties for given Stark parameters (a50.2 and 0.6! and initial
angular momentum (l 54, 12, 14, and 18, respectively! are
represented as a function of the final angular momentuml 8.
This also provides the distribution over the final angular m
mentum states, which result from collisions, at givena, from
an initial population of states with the same initial angu
momentuml . In this example,n520. The present corre
sponding quantal results are also represented in the s
graphs by dots. Vertical dotted lines indicate the positions
the singularities, corresponding to theA50 andB50 lines
in Fig. 6. TheA50 andB50 singularities produce cusp an
step variations inPl 8l asl 8 increases through the singula
ity ~Fig. 6!. Four distinct and characteristic classes of var
tion of Pl 8l with l 8 then emerge. These are displayed
Figs. 10–13, where the predicted~cusp,step!, ~step,step!,
~cusp,cusp!, and ~step,cusp! classical variations are exhib
ited. These results are fully representative and can be
lyzed by vertical cuts through Fig. 6 appropriate to a giv
l . Thel anda parameters in Figs. 10–13 correspond to
valuesl /n50.2 and 0.6 and tol /n50.7 and 0.9 in the first

FIG. 10. The Monte Carlo simulation~steplike lines!, the clas-
sical~solid line!, and quantal~dots! transition probabilitiesPl 8l (a)
for given a50.2 and initiall 54 within then520 shell.

FIG. 11. The Monte Carlo simulation~steplike lines!, the clas-
sical~solid line!, and quantal~dots! transition probabilitiesPl 8l (a)
for givena50.2 and initiall 512 within then520 shell.A,0 for
all l 8.
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and third plots of Fig. 6, respectively. The steps indicate
classical thresholdl 28 or a classical cutoffl 18 for transitions
to a final value ofl 8. The cusp-step variation of Fig. 1
indicates that transitions tol 8<l 18 are classically allowed
and the step-step variation of Fig. 11 indicates that cla
cally accessiblel 8 are within the rangel 28 <l 8<l 18 . The
cusp-cusp variation of Fig. 12 is associated with the fact t
transitions to alll 8 are classically accessible~cf. Fig. 6, plot
3!, while the step-cusp variation of Fig. 13 signifies that on
transitions tol 8>l 28 are classically possible. For a give
initial angular momentuml and Stark parametera, the po-
sition of the cusp singularities, given by the solutions of t
equationA50, is

S l 68

n D 5US 12
l 2

n2 D 1/2

sin
x

2
6S l

n D cos
x

2U. ~36!

Expressions~36! are also solutions of the equationB50 for
the step singularities. The threshold valuel 28 is a cusp~so-
lution of A50) providedl ,n sinx/2 and is a step~solution
of B50) providedl .n sinx/2. Similarly, the cutoffl 18 is

FIG. 12. The Monte Carlo simulation~steplike lines!, the clas-
sical~solid line!, and quantal~dots! transition probabilitiesPl 8l (a)
for givena50.6 and initiall 514 within then520 shell.B.0 for
all l 8.

FIG. 13. The Monte Carlo simulation~steplike lines!, the clas-
sical~solid line!, and quantal~dots! transition probabilitiesPl 8l (a)
for given a50.6 and initiall 518 within then520 shell. Across
the first dotted lineB changes sign andA is negative on both sides
of this line.A changes sign across the second line whileB remains
positive.
1-15
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FIG. 14. The classical and quantal Stark mixing transition probabilitiesPl 8l (a) within then528 energy shell, fora50.2, as a function
of the final angular momentuml 8 and for various initial angular momental .
e

s

a cusp ifl .n cosx/2 or a step ifl ,n cosx/2. The separa-
tion between the singularities is

S l 18

n D 2S l 28

n D 52S 12
l 2

n2 D 1/2

sin
x

2

when l /n>sinx/2, and is
03270
S l 18

n D 2S l 28

n D 52S l

n D cos
x

2

when l /n<sinx/2. The maximum separation of sinx is at-
tained at l * /n5sinx/2. This occurs in Fig. 6 where th
A50 andB50 curves both intersect thel /n axis atl * /n.
The transitionsl →l 8 have significant quantal probabilitie
1-16
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FIG. 15. Density plots of the transition prob
abilities, calculated within the quantal treatmen
for four values ofa50.2, 0.4, 0.6, and 0.8 in the
(l ,l 8) plane. The probability increases as th
gray becomes darker.
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only whenl 8 is in the classical accessible region and exh
the characteristic exponential decreasing behavior in
classical inaccessible regions.

The second set of examples compares between the cl
cal and quantal transition probabilities within then528 en-
ergy shell. A set of graphs, for variousl and fixed Stark
parametera50.2, is presented in Fig. 14. The transitio
probability is plotted versus the final angular momentu
The cusp-step, step-step, and step-cusp variations are a
parent, together with the superimposed quantal oscilla
behavior within the classical accessible region. The osc
tions possibly originate from the fact that there are t
pointsN of intersection of the two arcs~drawn on the sphere
of Fig. 5! with centersM andM 9 with separationG(a) and
radii u1(l ) andu2(l 8). Each point of intersection provide
equal classical contributions toPl 8l (a) while the different
phases associated with each point produce the quantal~semi-
classical! interference oscillations, exhibited in both thel 8
variations ofPl 8l (a) with l anda fixed, as in Fig. 14, and
the a variation of Pl 8l (a) in Fig. 16 for l and l 8 fixed.
Figure 14 also illustrates that the separation (l 18 2l 28 )/n
between the various discontinuities increases to sinx at
l /n5sinx/2 and then decreases asl is increased from 0 to
n21, in accord with Eq.~36!. In general, Fig. 14 shows tha
the classical picture is complementary to the quantal in th
has the ability to explain the general overall behavior of
quantal results and to provide the general framework
which the quantal results rest. It has also provided the v
ous regions~between cusps, steps, etc.! that remain obscured
within the quantal treatment.

The set of plots in Fig. 15 is the quantal corresponden
03270
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the similar classical set of plots presented in Fig. 6. Den
maps in the (l ,l 8) plane are shown for the same four valu
of Stark parametera. The first map fora50.2 corresponds
to the results of Fig. 14, where cuts along various values
l /n are made. The quantal transition probability increases
the gray areas becomes darker. The same zones outlin
Fig. 6 can be recognized and the boundaries between t
are in exact correspondence with the classical equationA
50 andB50, as discussed at the end of Sec. V. The qua
transition probabilities are practically zero over the classi
forbidden regions, occupying the upper left and lower rig
corners of Fig. 6. The quantal probabilities are maximum
the ridge given by the equationA50, where the classica
dynamics results in singularities.

Whena is very small, decreasing toward zero, only ela
tic transitions are allowed so that only the principal diago
is exhibited, as in Figs. 6 and 15. The quantal calculat
yields unity for the probability of elasticl 5l 8 transitions in
thea→0 limit and the classical result diverges as 1/a in the
same limit. All other transitions have zero probability. Th
feature is responsible for the well known@4# divergence of
the cross section~6! for elastic transitions.

Figure 16 displays the probability for transitions origina
ing from the initial levell 55 to various final levels, as a
function of the Stark parametera. Again, the agreement is
expectedly very good. For smalla, there is always a classi
cal inaccessible region (B,0) for quasielasticl 8Þl , ex-
cept for the fully elastic transitionsl 85l . A threshold step
at a5aT is therefore displayed for the probability of trans
tions with l 85l . This property is fully explained with the
1-17
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FIG. 16. The classical and quantal Stark mixing transition probabilitiesPl 8l (a) within then528 energy shell, forl 55, as a function
of the Stark parametera and for various final angular momental 8.
-

-

7

in

al
6.
aid of the plots in Fig. 7 ofl 8/n versusa for various values
of l /n. As l 8 is increased,aT determined by the intersec
tion of l 8/n with the B50 curve increases and a step (B
50) to cusp (A50) variation witha is obtained, as exhib
ited in Fig. 16. For higherl 8/n values, intersection with the
A50 curve ~and therefore the cusp! disappears. Figure 16
~for the specificn528 case considered, or in general Fig.!
also shows that lowl → high l 8 and high l → low l 8
03270
transitions are precluded (B,0) except at high values ofa
→1.

Figure 17 shows that the quantal probabilities are high
the classical accessible regions (B.0) of Fig. 7 and are
more significant in theA,0 region than in theA.0 region.
Variation of the transition probability along the horizont
line for l 85const provides plots as exhibited in Fig. 1
Figure 17 is the quantal correspondence of Fig. 7.
1-18
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Figure 18 exhibits variation of the integral factor

I l 8l

(n)
5E

amin

1

Pl 8l

(n) da

a3
5

s l 8l

pan
2

2S v
3Z1vn

D 2

,

which appears in the cross section~6! as a function of the
final angular momentuml 8 for various initial angular mo-
menta l . It is assumed here thatDF52p. This integral
does not depend on the projectile properties~velocity, impact
parameter, or charge! but depends only on the initial an
final state of the target. Due to the 1/a3 singularity, the cross
sections for elastic (l 5l 8) and near elastic transitions a
very much enhanced. Various cutoff (amin) procedures can

FIG. 17. Density plots of the transition probabilities, calculat
within the quantal treatment, for four values of the initial angu
momentuml 52, 10, 18, and 26, in the (a,l 8) plane. The prob-
ability increases as the gray becomes darker.

FIG. 18. Classical and quantal comparison of the integralI l 8l

defining the Stark mixing cross section~6! within then528 energy
shell, for various initial angular momental as a function of the
final angular momentuml 8.
03270
be introduced from physical considerations specific to
actual problem discussed. For the results presented in
18, an arbitrary cutoffamin50.01 was introduced for both
the classical and quantal calculations. With the exception
elastic transitions, where special care must be exercised s
the present model fails, the agreement between quantal
classical model is much better than one would expect fr
the traditional correspondence principles such as Ehrenfe
theorem and Bohr’s correspondence. The exceptionally
symmetry group SO(4), characteristic for one-electron a
oms in both the quantal and classical treatments, explains
quality of the agreement obtained.

VII. CONCLUSIONS

In conclusion, we have presented a case study of the lo
standing problem of thenl →nl 8 transition array in atomic
hydrogen produced by distant collisions with slow hea
charged particles. Complete formulations from the quan
classical, and Monte Carlo simulation viewpoints have be
developed. The SO(4) dynamical symmetry of H(n) has
been exploited to provide exact classical and quantal s
tions ~28! and ~12!, under the adiabatic, dipole and classic
path assumptions. A classical expression~31! for the transi-
tion probabilityPl 8l

(n) is presented in a language that explo
the dynamical symmetry and is used to obtain exact ana
cal results~34!. A new exact~fixed-frame! representation Eq
~12! of the quantal solution has also been presented and
rectly applied to provide exact quantal probabilities for t
full array of transitions. This solution is feasible for efficie
numerical calculation of probabilities for transitions invol
ing even largen and alll andl 8, in contrast to the previous
quantal~rotating-frame! version@15,16#, which was applied
only to the l 50→l 8 transitions. Exact analytical expres
sions forPl 8l

(n) can also be obtained@33# for low n.
The exact quantal results forPl 8l

(n) oscillate about the clas
sical background. By revealing essential characteristics
remain obscured within the quantal treatment, the class
results complement the quantal results. Further developm
would include a semiclassical analysis capable of reprod
ing the oscillatory structure in the quantalPl 8l

(n) without sac-
rificing the physical transparency of the classical model.

Although the numerical results presented here are ass
ated with a straight line projectile path~i.e., DF52p), the
theory is suitable for all polar deflection anglesDF swept
out during the collision by the classical trajectory. Speci
problems~nonhydrogenic atoms, stray fields, the Debye
dius in plasmas, etc.! may impose further restrictions on th
range of impact parameterb, which results in restrictions on
a. The basic theory presented can still be applied to th
cases with minor adjustments. The classical trajectory ap
priate to a rotating dipole can be determined to account
the influence of the target on the projectile’s motion.

In summary, both classical and quantal solutions of St
mixing have been presented in a compact form reflecting
mathematical beauty of the problem as well as their pr
matic value. It is probably one of the last remaining pro
lems in collision physics capable of an exact solution.

r
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Note added in proof.A general concise analytical expre
sion for the quantal probabilitiesPl 8l

(n) for all n has since
been obtained@34# in a form ~a! which is easy to use fo
numerical evaluation, even at very highn;100, ~b! which
yields compact analytical results forn52 – 5 and~c! which
naturally provides the classical limit~34! obtained here.
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APPENDIX A: PAULI’S REPLACEMENT

Pauli’s replacement@23# for the classical one-electro
atom follows from the straightforward calculation of the a
eraged projection of the position vector on the Runge-L
vector,

^r•Â&5
3

2
e

e2

2E
52

3

2
A

1

A22meE
,

wheree is the eccentricity of the orbit corresponding wi
the energyE. Because the perpendicular component ofr on
A averages to zero, the following rule is valid,on averaging
over an orbital period:

r'2
3

2

A

pn

providedA does not change significantly in this time. He
pn5A^p2&5A22meE is the characteristic orbital momen
tum.

The classical Runge-Lenz vector has the symmetri
~Pauli-Lenz! quantal form

A5F1

2
~p3L2L3p!2mee

2r̂ G Y pn

alternative to the form given by Eq.~1!. The operatorA has
the following properties:

@Aj ,H#50 ~a conserved quantity!,

@L j ,Ak#5 i\e jknAn ~also a vector!,

@Aj ,Ak#5 i\e jknLn ~ its components do not commute!,

A•L5L•A50 ~vectorA is orthogonal onL !,

A21L25~n221!\2 ~constant for intrashell transitions!.

These commutation relations define the SO(4) dyna
symmetry group for the restricted motion of the orbital ele
tron to the energy shell. The HamiltonianH is an invariant
and can be used to label matrix representations for
group. The correct energy levels for the hydrogen atoms
sult from the symmetry without solving any differenti
equation. The SO(4) operators can be disentangled by in
03270
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ducing M5(L1A)/2 and M5(L2A)/2. EachM and N
operators generate separately a so(3) subalgebra, such
SO(4)[SO(3)% SO(3).

Following @26#, it is useful to prove the following.
Result.The matrix elements of the operatorsV defined by

V5r1
3

2

A

pn

are zero between any states with the same energy, i.eV
[0 within the energy shell.

Proof. The commutator between the Pauli-Lenz vec
and the position vector can be written as

@Aj ,r k#52
3

2pn
i\e jknLn1

1

2pn
@meH,r j r k2r 2d jk#.

~A1!

Because the commutator@H,X# is zero for any Hermitian
operatorX, when restricted to the energy shell~the hyper-
virial theorem@35#!, commutator~A1! is simply

@Aj ,r k#52
3

2pn
i\e jknLn

in the Hilbert subspace of degenerate states with the s
energy. Thus, the vectorV commutes with the Pauli-Lenz
vector and has the commutators

@M j ,Vk#5@Nj ,Vk#5
1

2
i\e jknVn

with the vectorsM and N obtained by decomposition~2!.
With the aid of the basic Jacobi identity for commutators

†A,@B,C#‡1†B,@C,A#‡1†C,@A,B#‡50,

it follows directly that V50. For example,V250 if A
5M3 , B5N2, andC5V3.

This result provides a concise proof that Pauli’s repla
ment~5! is valid whenever the dynamics is constrained to
constant energy manifold~cf., @18# for a lengthier proof!.

APPENDIX B: AREA ELEMENT FOR SPHERICAL
BIFOCAL COORDINATES

The spherical bifocal coordinates are given by the ang
u1 and u2 between a point~P! and two fixed foci (A1 and
A2) on the unit sphere. Of course, these coordinates
unique only on the half sphere.

Theorem.The area element in spherical bifocal coord
nates is

dS5
du1 du2

sinD
,

whereD is the angle between the arcs joining a given po
on the sphere with the two foci:
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D5/A1PA2.

Proof. Here are two proofs of the theorem. One is sh
and intuitive. The other one is longer but a bit more rigoro

Short Proof.The length of the arc described by the po
P on the sphere for an infinitesimal changeu2→u21du2,
whenu1 is kept fixed, isds1. Basic spherical triangle geom
etry provides

ds15
du2

sinD

and a similar relation

ds25
du1

sinD

for the infinitesimal arcds2. The elementary surface area
given by the cross product of the two arcsds13ds1. Since
the angle between these arcs is, in the first order of appr
mations, againD, then

dS5
du1 du2

sinD
,

as advertised.
Direct Proof.A direct proof calculates by brute force th

area element using

dS5U ]PW

]u1
3

]PW

]u2
Udu1du2 . ~B1!

The length of the calculation depends, of course, on the
ticular coordinate frames of choice. For example, one
chooseA1 and A2 in the equatorialxOy plane, withA1 on
the Ox axis. LetD be a point on the arcA1A2 such that the
arc PD is perpendicular toA1A2 ~like a meridian passing
throughP). The coordinates of the pointP are then

Pª~cosu cosf, cosu sinf, sinu!,
oc

-

03270
t
.

i-

r-
n

whereu5/PD and f5/A1D. Applying again spherical
trigonometry to the spherical trianglesA1PD and A2PD,
then

Pª~cosu1 ,Acos2/PD2cos2 u1, sin/PD!,

where

sin/PD5sinu1 sinu2 sinD/sinG,

where, by definition,u1,25/A1,2P, D5/A1PA2, and G
5/A1A2. The goal is to express all coordinates ofP in
terms ofu1 andu2 and to do the corresponding derivatives
Eq. ~B1!. Spherical trignometry yields

S25sin2 u1 sin2 u2 sin2 D

5@cos~u12u2!2cosG#@cosG2cos~u11u2!#.

On defining

S65sin
1

2
@G6~u11u2!#,

S̃65sin
1

2
@G6~u12u2!#,

the angleD is then determined from

sinD5
S

sinu1 sinu2
52

AS1S2S̃1S̃2

sinu1 sinu2

and the coordinates ofP are now

P:5Fcosu1,
S1S̃12S2S̃2

sinG
, 2

AS1S2S̃1S̃2

sinG
G .

Then Eq.~B1! finally reduces to

dS5Fsinu1 sinu2

S Gdu1 du25
du1 du2

sinD
,

which proves directly the above theorem for spherical bi
cal coordinates.
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