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Classical and quantal collisional Stark mixing at ultralow energies
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Exact classical and quantal solutions are presented for the full array of intrashell transitiena/”’,

between any angular momentum states, induced by slow distant collisions with a charged particle. The colli-
sions are adiabatic with respect to the orbital frequency of the atomic electron and the transitions are induced
by the weak ion-atom dipole field generated by the ion moving along a classical path. The rich symmetry of the
problem allows a unified approach and is the source of the excellent agreement, beyond the usual Ehrenfest’s
correspondence principle, between the classical and quantal treatments. A classical transition probability is
defined. Probabilities for transition between any angular momentum states within a high Rydberg energy level
are derived in exact analytic forms and are analyzed for a large number of numerical examples. The transition
probabilities obtained from the three methods—quantal and classical formulations and Monte Carlo classical
simulations—are directly compared to provide excellent agreement.
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[. INTRODUCTION experiment (~28). On averaging over the azimuthal quan-
tum numberm, the size of the problem becomes much re-
The collision of a slow heavy charged particle with anduced and satisfactory results have been obtaiBgdCon-
excited atom at large impact parameters induces transitionsidering the Rydberg atom in a frame that rotates together
between neighboring angular momentum states of the exitegith the internuclear axis, the Stark mixing problem is re-
atom. For very low velocity of the projectile, the transitions duced to the problem of the Rydberg atom in mixadtic
with change in principal quantum number are much lesgields electric, provided by the projectile ion, and magnetic,
probable than the quasielastic angular momentum changingroduced by the noninertiéCoriolis) forces. In this way, the
collisions at large impact parameters. Because these stat@@ll known results(in both classical[9] and quantum
are very close in energy, or are even degenerate as for hyi0,11] mechanics for the problem of interaction between
drogen and Rydberg atoms, the process is very efficient sinageak fields and an atom can be adopf&d] to provide a
little or no energy transfer is required. In fact, the cross secsolution for the Stark mixing problem. In a remarkable series
tions increase as the energy of the incoming particle is deof papers, both classicéll3—15 and quantal[15,16 ver-
creased. This process is called Stark mixing and is importarions of this approach have been successfully applied for the
in many problems in atomic physics. For example, B¢ttle  zero to higher angular momentum transitions, by including
analyzed the absorption of low-energy negative iesons the quantum defect appropriate to the experimgntsClas-
in liquid hydrogen on the recognition that the Stark mixing issical trajectory Monte Carlo simulatiorjd7] were also in
essential in such processes. Also, Stark mixing is included iagreement with the experimerit].
the calculation of the Augefor autoionizatioh process, All theoretical efforts rely on the impact parameter for-
which follows the collision between ions and atof@$ and  malism, in which the projectile is a classical particle moving
in zero-electron-kinetic-energfZ EKE) photoelectron spec- along a definite trajectory. The dipole interaction has been
troscopy[3]. Stark mixing has also been important in astro-proven to be a good approximation for the projectile-target
physics(e.g.,[4]), in recent efforts to produce antihydrogen potential because of the long-range Coulomb interactions
at 4 K [5] and for general three-body recombination at ul-and the decisive role of large impact parameters. For slow
tralow energieq6]. The first stage in recombination at ul- moving ions, Stark mixing can occur without energy trans-
tralow temperature$, [6] is a very rapid collisional capture fer. The dynamics of the Rydberg atom is therefore adia-
into high Rydberg states with high angular momentum andatic. The orbit of the Rydberg electron can still be consid-
large radiative lifetimes, at a rate proportional T@ *°. ered elliptical, but its shape and orientation change slowly
Since then-changing collisions are relatively unimportant at during the collision time, which is very much longer than the
ultralow energies, the’-mixing collisions are essential in orbital time. This classical mechanics picture translates into
producing the low angular momentum states required to rathe quantal description by restricting the dynamics to the
diatively decay at relatively high rate to lomdevels, thereby energy shell, as prescribed by adiabatic perturbation theory.
stabilizing the recombination. In this paper, a unified theory for the general time-
Experimentg 7] on single ion collisions with alkali-metal dependent solution of collisional Stark mixing is presented,
Rydberg atom have measured larganixing cross sections both in the classical and quantal formulations. The excep-
for slow projectiles, including dipole-forbidden transitions. tional rich dynamic symmetry of the hydrogen atom provides
Various theoretical models have been developed to reprahe key foundation that enables both the classical and quantal
duce the experimental data. Even though a set of coupledolutions to be constructed in a unified w&@ec. 1) by using
channel equations can be written, their solution becomes ingroup representation theory. This classical-quantal corre-
practical for the large quantum numbers considered in thepondence transcends the well known Ehrenfest's theorem
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(as observed in the general case of weak field-atom interac-

tion [15,18) just because of the S@ dynamical group z
symmetry of the energy shell of the hydrogen atom. The

agreement, as expected, is very good. It is shown that the

present quantal solutioeveloped in Sec. Il Acan be for-

mulated(Sec. Ill B) so as to provide the rotating coordinate L
frame formal result obtained i12,15,18. The efficiency of
the present quantal solution is demonstrated in Sec. VI. A
new classical solution applicable to transitions between arbi-
trary angular momentum states is derived in Sec. IV A. We Wg
define the classical transition probability, in a language de- b
signed to exploit the dynamical symmetry, as the normalized X

volume of phase space accessible to both initial and final FIG. 1. Geometry of the Stark mixing collision.
states in Sec. IV B. Monte Carlo simulatioSec. V) are

also performed to yield results in agreement with the classimation, which is the same as the dipole approximation, the
cal expression for the Stark mixing probabilities. interaction potentia/=er- & is

!

>l

Il. KINEMATICS OF STARK MIXING
Rr Z,e2dd..

i V(r,R)=—-2,2—=———R-r
Stark mixing occurs when the electron of a Rydberg atom ' ™R3 vb dt
changes its angular momentum, without changing its energy,
as a result of a collision, at large impact parameters, with a Z,e? dd .
slow massive particle of chargge. In addition to the en- =—p gt (ysin®+zcos®). ©)
ergy, given by the constant Hamiltonian
2 2 The impact parametds, the impact angleb, and internu-
p e ; L
HOZR_ - clear vectorR are displayed in Fig. 1. The angular momen-
e

tum of relative motiorl = uR?*®= — yvb (wherey is the
reduced mass of the projectile-target systeemains con-
served sincé =L (so thatL . andL are effectively decou-
pled.

Various frequencies or time scales are important to the
/ V—2mcE, (1) present discussion of the collision, and are as follows.

(i) The projectile rotatior{collision) frequency

the angular momentum=r X p of the unperturbed Rydberg
electron and the Runge-Leriar eccentricity vector

r
A=|pr—(p-1)p—mee” -

which is directed toward the pericenter and normalized to

angular momentum units, are also conserved. These quanti- B do _ by large b v 1
ties define the dynamic S@ symmetry of the hydrogen YRTTAT TRz T BT T
atom with given energ¥, which is a subgroup of the global
SO4,2) symmetry group. Because the @Dgroup is iso-
morphic with the direct product SO(8)SO(3) of two rota-
tion groups, a special decomposition

from which the collision timer.,, can be defined.
(ii) The transition frequency

L=M+N, A=M-N ) _Ei—E;

permits the dynamics of the hydrogen atom to be separated

into two decoupled motions. The generatédsandN act  f the Rydberg electron. For transitioms—n=1 between
independently as angular momenta and are also Conservﬁ‘éighboring levelswy, 1.y is SIMply we/n3=w,=v,/a,
quantities for the unperturbed Rydberg atom. They evolvgneorpital frequency(the Bohr correspondence principle
independently[9] with time on application of an electric Herea, =n2a, andv,,=v,/n are the averaged orbital radius

field. _ _ _ _ and velocity.
The orbital electron interacts with the time-dependent (iii) The Stark precession frequency

electric field £(t) generated by the passing projectile of
chargeZ,e. In the weak-field approximation, this field is 3 Z.aw
1%nYn

constant over the spatial extent of the atom. In this approxi- ws:ganvn(g/e): 7 R

This group contains sufficient generators to enable one to formu]for the precession oA aboutR prov!dgs the precessional
late the dynamics of the system solely in terms of operations of’€duency of the Runge-Leneccentricity vector A of the

irreducible representations of the grof®]. Rydberg orbit about the field directiah
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(iv) The spin-orbit coupling frequencyso corresponds be= ian
with the maximum fine-structure splitting and is approxi- «— Orbital Sudden —k——— Orbital Adiabatic ——
mately [20] a2qw,/n, where agg is the fine structure con- }
stant. «— Stark Adiabatic — s} Stark Sudden—

(v) The quantum defect frequenayyy is the precessional
frequency of the electron orbit due to its interaction with the
polarizable core. This frequency is important when one-
electron atoms are considered other than hydrogen. The com-
bined polarization of the core due to the orbital electron and

the charged projectile has to be taken into account. Given th%ecrease_sps_ increases outward anbl Increases inward,
: thereby limiting the extent of the two sudden regions where
quantum defect,, the quantum defect frequency is

n changes and” mixing occurs. The variation with can be
represented by av(b) phase-space diagram partitioned into
the characteristic regions as illustrated in Fig. 3. Forv*
when / is sufficiently large such that the core penetration=(3Z/2)"?v,, the (n,/) changing and” changing(orbital
and relativistic corrections can be ignorid]. and Stark suddenshaded regions overlap and expand, in
By Considering the exp@t) factor in time-dependent per- direCt contrast to UItraCOId Speed§v*, Where the Orbital
turbation theory, several types of collisions can be classifiec@nd Stark adiabati¢cleay regions increase and the shaded

Z
bs:%_%;uu“n

FIG. 2. Partitioning the impact parameter space

wQD~55/wn//

as in[22], by comparing the above frequencies. regions diminish and do not overlap, thereby indicating few
The Stark mixing parameter is defined as the following collisional changes. The region of interest here is the overlap
ratio between the Stark and collision frequencies: of the orbital adiabatic dr<w,) region, b>bc
=(vlv,)a,, with the weak-field ps<w,) region, b>b*
ws 3Z;(aw,| 3Z; u nh =(32,/2)'?a,, i.e., the region in Fig. 3 defined Hy>b.
== 2 o0 |72 mily 4 for v=0v*=(32,/2)"%, and byb>b* for v=<v*.

The following formulation assumes that the Rydberg
Whena<1, thenwsre<1 and the collision time is much atom, during the cpllision, occupies the same degenerate en-
shorter than the Stark precessional time so thathanging ~ ©€rgy shell. The main element of the perturbation pote(8kl
or Stark suddertransitions are favored. This is in contrast to IS the electron position vectar, which by Pauli’s replace-
Stark adiabatidransitions wherex>1; the electronic angu- ment rule[23]
lar momentum does not change since the atom has sufficient
time to relax to the Stark effect.

3 A
The orbital parameteg is the ratio r=n=- 2p, ®

o

B:wR/wn:i an_ e is replaced by its average), a procedure valid for orbital
vha b Db adiabatic collisiongsee Appendix A for a detailed explana-

For anorbital adiabaticcollision, whenB<1 orb>b, the

orbital electron adjusts itself adiabatically to the slow ion eV

perturbation. Sincev,7.,>1, No energetic transitions oc-

cur. Theorbital suddenregime,8>1 or b<b., is associ- v/,

ated withw,,7.oy<<1 and impulsiven—n’ transitions.

The product of thex and 8 parameters defines the ratio
wslw,=(32,/2)(a,/b)?, which depends only oh (and not 300 K
v). For weak fieldsthe Stark mixing splittingAEs=7% wg
<hw,, the (h—n=*1) energy gap. This also means that the
internuclear distancR is much greater than the mean orbital
radiusa, . In this approximation, the electron’s orbital time

is then much shorter than any characteristic collisional time v+ _ 7.7

Strong «—| ——» Weak
Field <—|——— Field

........................

Orbital Adiabatic

to cause” changes to the elliptical orbit. The vectoksand Stark Sudden

angular momentunL, which are constant for the unper-
turbed motion, then become good dynamical variables for ultracold
the description of the perturbed motion, within the weak- (4K)

Orbital Adiabatic
. . . 1
field approximation.

. . . L *= /37 /2 b/ay,
With respect to orbital motion, the collision is sudden or ‘ b 34i/2

adiabatic according tdb<bc and b>bc, respectively, FIG. 3. Partitioning the-b phase-space map into regions char-
wherebc=(v/vy)a,. With respect to the Stark frequency, acterized mainly by(a) energy changesib) energy and angular
the collision is adiabatic or sudden accordingbtabs and  momentum changegc) angular momentum changes, afd no
b>bg, respectively, wherdés=(v,/v)a,. The impact pa- changes. Regions for strong and weak field collisions are also
rameterb space can then be partitioned as in Fig. 2.tAs shown.

bS
Stark Adiabatic
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tion). SinceZ,e?r/buv is thenaA, the perturbing potential (Z1a,/v)?. Departure from this variation is governed by
(3) can be written in terms of the componets andAz as AP (b,v) and by the physical limits imposed upon the
integration.
d The discussion above is valid for both quantal and classi-
V(a)ze{F)-f(t)z —a——(A,sin®+ Az cosd), cal descriptions of Stark collisional mixing, since both in-
dt volve only kinematics and general dynamical symmetry ar-
guments. It is shown belowin Secs. IIl A and IV A that
under the adiabatic, dipole and classical path assumptionBoth quantal and classical dynamics are governed by the fol-
Moreover, the components ;,A,,A3} generate a subgroup 0wing generic equation:
of the original symmetry group. The solution of the problem
can then be written in terms of the;e symmetry-group gen- iﬁ: iadﬁ(stin¢+Js cos®)U 7
erators and the Stark parameterwhich acts as a coupling ot dt
constant. Under the above approximations, the collision pa- _ _ . . .
rametersy, b, andZ, become combined into one parameterfor the time evolution operatod within the_ rotation Lie
o group S@3). The generat_or$Jl,J2,J3} of thls_group ha\_/e
The cross section for Stark mixing is the commutator$J; , Ji]=i€jndn, Where ey, is the Levi-
Civita antisymmetric permutation symbol for any,k
=1,2,3. The required solution of E?) is

_ “ o) . .
Unmn/'—ZWJO Py, bdb U(t,to) =e'™iex —iAD(J; £ adg)]e” P (8)
3Z.a.\2 [ da This can be easily verified with the aid of the relations
=2q| == f PO (a,AD)—. (6) . . _
2vlvy) Jo 77 ol e'M23,e7™2=7, cosh + J3sinA,

) _ . . e'M2J,e M2=]J, cos\ — J; sinA,
The probabilitiesP,,/, obtained here are defined only in the
full orbital adiabatic regiom>b for v=v* and in the adia- e'M1Je” ™M=, cosh + J, sin\,

batic region restricted by the weak-field conditiorb* for

v=<v* (see Fig. 3 Whenv<v* andb<b*, the Stark pa- Which are derived from the basic identity

rametera>1. Since the transition probabilities are bounded N X

for large @, the contribution to ther integration is vanish- eMBe M=B+ —[A,B]+ =—[A,[AB]]+--- (9
ingly small for largea, decreasing as 2, and can be ne- 1 2!

glected fora>1. Cross sectiori6) can then be defined at
ultralow speedw <v*, when thelower limit b, to the
b-integration is taken as the weak-field linmt. For higher
speedsv >v*, the probabilities determined here are vali
only in the full adiabatic regiob>b. and do not hold in the
(oribital sudden regionb* <b<b required in(6). In prac-
tical calculations of Eq(6), various physical effects such as
guantum defect, spin-orbit coupling, and Debye screening i
a plasma determlne anpperllmlt_to the b integration and U(0,— ) =exi m(J,+ ady)]e” ™1

hence a lower limitw,,;, to the « integration. For example,

the spin-orbit splitting overlaps with the Stark splitting when or, in terms of finite angle rotation®[ ¢,n] by angle ¢

b>Dbrnax, Where bra~n"?arg(3Z1/2)"%a,. Similarly, the  anout directiom and the parametey= 1+ o2, is
guantum defect comes into effect for the critich),.y

and the above commutation relations. The net polar angle
A® swept during the collision betwedg andt is ® — &y,
d The initial conditionU(ty,tg)=1 is automatically satisfied.
If no cutoff radius is consideredp,— 7 asty— —o and
d—d, (the classical deflection angles t—o. For the
simplest case of distant straight line trajectodgs=0, and
ﬁhe evolution operator is then

~n°?/Y2571432,/110)"%,. The Debye radius Rp U(%,—2)=R[~ym,(1/y,0xaly)]R[7,(1,0,0].
= (kT/4m?Z,e’N)*?, whereT andN are the temperature and

number density of the projectiles, is another viable upper Ill. QUANTAL THEORY

limit to the impact parametd#]. Stray electric fields in the ) _

collision region can also impose an upper limit to the impact A. Quantal intrashell dynamics

parameter. The decision of which limit should be adopted in  The Schrdinger equation for the time evolution operator
the definition(6) depends, of course, on the specific problemu (t,t,) is

considered. These cutoff procedures are crucial for low an-

gular momentum transfers where the transition probability ., dU

P(a) cannot offset the 1/ singularity (cf. Ref. [4]) asb 'hE:(HO“LV)U' (10
—oo, The initial and final angle®, and®, between which

the Stark mixing is effective, are also dependent on the spawhereH, is the free atom Hamiltonian andis the interac-
cific cutoff procedurd14]. For trajectories with zero deflec- tion potential (3). If the projectile is moving sufficiently
tion (A®=-m), then Eq. (6) varies universally as slowly, adiabatic perturbation theory can be applied and then
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the whole dynamics of the target atom becomes restricted to The core of solutior{12) is the exponential of the opera-
the initial degenerate energy shélhe orbital adiabatic re- tor L;—2ap,z/3. By using basic commutator algebra and
gion in Fig. 3. This simple fact has two major consequencesEq. (9), this operator is diagonalized as

First, the position operator and hence the perturbation poten-

tial (3) commute with the unperturbed Hamiltonian, as one e ivalh
can prove directly from the matrix elements of the commu-

tator[r,Hy] between any states within the energy shell. i
The potential in the interaction representation where q=2p,arctan@)/3 and y=y1l+a®. The solution
(12) has therefore the alternative form

2a val
Li— ?pn{z} eVi/h= yLa,

— aiHot/ —iHot/h
V,=eMove Mo Ul(t’to):ei¢L1/he—i{y}q/he—iyAq>L1/ﬁei{y}q/ﬁe—iq>oL1/h,
is then identical with the potential in the ScHioger repre- (14
sentation {/,=V), and the equation to be solved, in the in-

) o which illustrates very effectively how the action of the slow
teraction representation, is

distant encounter charged projectile coming from the nega-

9y, tive z axis is decomposed into successive rotations about the
'ﬁ7=VU| , (11 x axis and alternating impulsive momentum transfetsyj
along they axis.
where U, (t,to) = expHot/A)U(t t)exp(—iHgto/4). Second, It is interesting to compare the solutig¢h4) obtained in

the components,y,z of the position operator do not com- this orbital _adiabatic limit with the p_urely impulsive solution
mute between themselves when restricted to the energy shefesented in sec. Ill C. The evolution operati#), for un-
This follows from the well known Pauli “replacemenf23] ~ deflected collisions, yields

r— —3nA/2 (see Appendix A for detai)s This shows that U, (= — o) =g HldngimLi/hgilylalhgimLyfh,

the position vector behaves, within the intrashell dynamics, ’

like an angular momentum and is denoted{bywhen op- In the limit that «—0, gq—2ap,/3=Ag/2 and
erating only within then-shell. In fact, the set of operators exp(mylLi/f)—exp(mLi/f). Then

{Ly,—2{y}pn/3,— 2{z}p./3} generates a rotation group and

Egs. (11) and (7) are identical whenJd;=L,, J,=  J1(*.=%=)
—2{y}p,/3 andJ;= —2{z}p,/3. Using the solution8) of —i A —i)2 Ag\2 .
Eq. (7), the exact solution of Eq(10) of Sec. Il for the :{14— (l|)<{y2}ﬁq)+( 21) ({yz}hq> +...}e'“'-1/ﬁ
evolution operator, within the adiabatic approximation, is ’ ’
then i ({y}Ad) i? [{y}Aq)?
—imlLq/h
ST ) Z( o) Tl

e i®oLy/h

. i 2
U, (t,tg) =g Pta/t EXF{ - %ACD( Li— ?apn{z})

which reduces, with the aid of expfL, /#)y" exp(—inL, /%)
12 —ycosm)=(—y)", to

This can also b_e directly V(_arified by subst_ituting E2) in U =e 2904 O(a?). (15)
Eqg. (10) and using Eq(9) with the appropriate commutator
algebra. This limit merges with the impulsive result ERO) below.
The transition probability for a generalf transition at
timetis B. Formal development
(1) = ) = _ It is interesting, however, to note that by introducing Pau-
3(D=(L(rDIi(r D) =(LA(r O]Vt ) Wil o)) li's replacement directly in the potenti&B) and by writing
=(1(N[U(t,t0)| (1)), the Runge-Lenz vector a=M —N, the potential decom-
poses as
where V¥, is the target wave function, which tends in the
asymptotic limits {— =) to the unperturbed basis set V=Vy+Vy,
@(r,t)= ¢;(r)exp(-iE;t/h). The transition amplitude for a
Stark mixing process is where
a(ﬁn3:<nﬁ|ul(oo,—oo)|na>, (13 Vy=—a(M,sin®+Mj;cosd)d
and

where the initial staté=|na) att= —c« evolves to the final
statesf=|ng) att=o; « and 8 now Iabgl the stateslwithin V= (N, sin® + N5 cosd ) .

the same energy shell. The superscripwill be omitted,

since all dynamics is restricted to the energy shell describeBecause the commutatof$4;,N;]=0, [M;,Ho]=0, and

by quantum numben. When « and 8 label states with a [N;,Hy]=0 (for anyi,j=1,2,3 combinatiop the problem
given magnitude and projection of the angular momentum(10) becomes separable, exactly in the same way as the clas-
the transition amplitude is given by E€L2) in Eq. (13) and  sical Stark mixing equations become decouglszk the next

is feasible and efficient for practical numerical applications.section. The time evolution operator then factorizes as
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TABLE I. The four bases useful for describing the quantal states of the hydrogen atom.

Basis Quantum Complete set of Origin
numbers commuting observable
orbital [n/m)q Ho, L2, Ls Standard for spherical coordinates; describes
correctly the states of the field-free atom
parabolic [nin,m)p Hq, Hy, L3 Separation of Hamiltoniai =H,+H, in

parabolic coordinateg=r+z, n=r—z2,
tane=y/x; n=n;+n,+|m|+1

Stark [ngm)g Hq, Az, Lj Parabolic basis; describes the Stark states for
small electric field€, when the interaction
—eéz is diagonal,g=n;—n,

algebraic [nuv)a Ho, M3, N3 The two rotation groups in which the dynamic
symmetry group SO(45SO(3)® SO(3)
decomposes using E@); the equivalent
angular momentum for both SO(3)
representations ig=(n—1)/2; u=(m+q)/2 and
v=(m—q)/2

U=Uy UuUy, (16)
0

F(a)=DW D[ 7,(1,0,0],

1 16
‘”’(?0" ;)
where, of courseUHozexp[—iHo(t—to)/ﬁ], andU,, andU,
are the solutions of the equationsdUy /dt=VyU,, and whereD[¢,(n;,n,,n3)] is the Wigner matrix representation
ihdUnlot=V\Uy, respectively. Using the group- for the rotationR[ ¢,n] by angle¢ about directionn (see
theoretical result Eq(8) of Sec. Il, the solutions for the [24] for the explicit expressionThe transition probability in

operatordJy, andUy are then the space oN is the element’ v of the matrixF(— «).
M I _ e T Calculation of the transition probability between orbital
Uy=e""1"exd —i/fi(P—Do)(My—aMg)Je™Fora ™ states requires the explicit unitary transformation between

(17 the orbital and algebraic bases. This can be obtained by di-
rect scalar products of orbital and parabolic states for which
explicit coordinate representations are known. The result can

Up=e®Nt/fexp —i/7i(d— Dg)(Ny+ aNg)Je~ PN /A be written in terms of hyperge_ometric_functio[%]. How-
(18) ever, an equivalent result is provided by the SO(4)
~SO(3)®S0(3) isomorphism. The orbital state, as a com-
In calculating the amplitudé€l13), four interesting basis bination of two angular momentum states,(s®e[26] for
sets can be chosen for the one electron hydrogenlike atorexample

Table | summarizes key properties of these bases. The orbital ,

basis is useful for describing the field-free atom, before and ! (/m)

after the collision, whereas the algebraic basis appears natu- [n/m)= Z ClVInuy),

rally as a basis wherkl; andN3 are diagonal. The solution o=

(16) has the simplest expression in this algebraic basis. Aljynere the transformation matri’™ is given by the stan-
four bases in Table | span tmé degenerate energy shell and garq Clebsch-Gordan coefficientguj v|/m). The transi-

can be equally adopted to characterize the hydrogen atojon amplitude for them—/"m’ transition is then
The algebraic basis spans a tensorial product of two spaces

(Ju)®|v)) corresponding with spaces used for a matrix rep-

and

resentation of the product SO(@B0(3). The twospaces a/m  m= 2 , CEL/,,T )CE{Vm}F,uM(OI)Fw(—a),
have the same dimension becaugé=N?=(L%+A?)/4 tadld (19
=(n?-1)%%/4 and are associated with two angular mo-
menta withj=(n—1)/2. which can be expressed in matrix form as

The transition amplitude between the two algebraic states
is then the product of two amplitudes fit andN indepen- a/,m,/m=Tr[C(/'m')F(—a)C(/m)TFT(a)],

dent actions, exactly in the same way in which the classical

M and N vectors evolve independently in time, i.e., whereC' is the transpose of matri€. The above result Eq.

A vy, (uv) = Qur @y, - Each factor is the matrix element of (19) is in exact agreement with the solution obtained in

a j=(n—1)/2 dimensional representation of the rotations[12,15,1 using the rotating frame approach. The quantal

represented by Eq.16). For example, from Eq(17), one  development here in the fixed frame is exquisite in that it

getsa,:,=F, ,(a) with follows exactly the same reasoning basic to the exact classi-
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cal mechanics solutiofSec. IV A). This result exhibits the
essential power of the SO(4) symmetry group for the energy af®(q)= <¢f|exp— 7 Aa rl i), (20
shell of the hydrogen atom. The common SO(4) symmetry

therefore transcends the chosen formulatigtassical or the inelastic form factor amplitude. This agrees with other

quantal and provides a classical-quantal correspondence at@ternative derivation$28,29 for the probability of an im-
level more fundamental than Ehrenfest's theorem and th@ulsive transition. The momentum transferred in(anpul-

Heisenberg correspondence. In practice, the fourfold summasive) rectilinear collision is
tion (19) and the use of the Wigner rotation matricesfor
F(«) are not very efficient and the difficulty of calculation Aq=(2Z,€*bv)y=(4ahi3nay)y.
increases dramatically with. Instead, the solutiofil2) pro-
vides a simpler approach, since the matrix elements of théhe transition amplitude, valid in the orbital and Stark sud-
argument in the exponential have simple expressions directigen region(cf. Fig. 3), is therefore
in the orbital basis. The array of transitions is obtained at
once, within one matrix exponentiation of a band diagonal af. MP( ) = ( byl exp—i ___|¢>
matrix for which efficient algorithms are availadl27]. 3 nag
When the projection of the initial and final angular mo-

mentum is not determined, the transition probability is which connects with thee— 0 limit Eq. (15) of the adiabatic

result Eq.(14). Even though this approximation is appropri-
ate for the amplitude for transitioms”—n’/" between dif-
P E E 2 ferent energy shells, it is a good approximation, in particular
ora)= 2/+1 p |a/’m’/m| : for very smalla [see Eq(15)], if the normalized

The exact quantal solution can therefore be derived di- Tv;;"; '”‘” / > |a'mp|
rectly without making use of unnecessary complications of a

rotating frame and a fictitious magnetic field. The structure
of the present solution Eq14) represents a sequence of
alternating momentum transfefis they direction and rota-
tions about thex axis. This recognition motivates the follow-
ing section.

Ctransition probability is adopted for the problem of intrashell
transitions. This normalization is a consequence of the dif-
ference between the operatdrg, appropriate only to in-
trashell transitions, and for all transitions.

IV. CLASSICAL THEORY
C. Impulsive limit
. . . A. Classical intrashell dynamics
In the other extreme situatiofthe orbital sudden—Stark

sudden region in Fig. 3, where<1), the impulsive limit, The angular momentum vectdr and the Runge-Lenz
the collision is very fast and the collision time,, is much ~ Vector defined by
smaller than the orbital time. The potential has again the

same form in both Schdinger and interaction representa- A=p;?t
tions, V=V,, since, in the equalityf|V|i)=(f|V,|i)e'“f, i
the exponentw;t<l [with w¢=(E;—E;)/%] can be re-
placed by zero. Now the position operator mahe normal
behavior, in that its components commute between them-

,
pX L—meeZF

are constant for the unperturbed classical Rydberg atom.
Moreover,A-L=0 andA?+ Lz—mean—nzh2 In the pres-

selves. The impulsive transition amplitude is ence of an electric field of mtensn‘& the angular momen-
tum L changes at the rate
affP=(p¢(r)|exp— f V(r,t")dt'[¢;(r)), dL -
rTo —erxé.

as may be directly verified upon using the closure relation
Since the forcd== —V V(r,t) acting on the Rydberg elec-
tron is impulsive and imparts momentufig, then

On assuming that the collision is orbital adiabat<€w,

and & is constant over one peripdthe slow change ot
during the collision is the classical average

Pt i ” AL /dL e (t+T/2
exp— - V(r,t")dt' =exp— —f dr-f F(r,t)dt (= =__J - _
U F— ( 7 . T Ty i - (rx&)dt=—e(r)x &(t)
=exp— Aq r over one orbital period. Since the weak-field approxima-

tion (ws<w,) also holds, the vectorls and A then change

very little over one orbital period. Using Pauli's replacement
so that the probability amplitude for an impulsive collision is rule (r)~ —3A/2p,, the following set of coupled equations
simply can then be deducd®,22]:
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dA - dL ~ M(t)=Upy(t,te)M(to) and a similar equation holds for the
_—_wsRXL, _—_a)sRXA, . . . . .
dt dt time evolution ofN. The first equation in Eg22) becomes
where bothws=a® andR vary with time. Under the sub- dU;; A
stitution ao - ¥einkRaUy;
M = L+A N= L—A (21) where € is the fully antisymmetric permutation symbol.
2 2 Because the infinitesimal generatdgsfor the rotation group
the above set of differential equations becomes decoupled f§© Matrices with elementsl);;=—e;;c (see[30] for ex-
yield ample and sinceR=(0,sin®,cos®), the above equation in
matrix form is
_ RXM N RXN 22
H - wWg ’ H - wg ’ ( ) dUM ) - -
T a(sin®J,+cosdI3)Uy,

where the magnituded?=N?=(L?+ A?)/4=n?%?/4 re-
main constant throughout the collision. The classical a”alySiﬁlhere[ﬁk jj]: fkjnjn- This equation is the matrix represen-

for constant electric fields is given by Bof®]. For time- . . Lo~
independeniwg, both M and N precess with constant fre- tatlon of the group equatiof¥) and the SOIU.“C"U’V' IS .the
matrix representation of the general soluti@. The final

quencyws about the(fixed) direction of internuclear axi®.  yectorM' is therefore obtained from the initial vecttst by
For general time-varyingws, the system of differential three successive rotations
equationg22) does not have an exact solution. Percival and ’

Richards [22] have used classical perturbation theory to M'=R[—®,(1,0,0]R[yAD,(1/y,0,— aly)]
solve Egs.(22) and then provided a diffusional theory of
angular momentum mixing. Bellomet al. [17] approached XR[P,(1,0,0]M. (23)

the same problem by proceeding via the time evolution ) o
propagatorU % (t,t,) for M andN in the rotating frame, an 1he solution forN has the similar form
approach that results in formulas too complicated for physi-
cal changes\L andAA to be extracted. A special solution
for transitions from angular momenta state=0 has been XR[Pg,(1,0,0]N (29
recently obtained by Kazansky and Ostrov$kg—15.

An exact analytical solution is, however, possible underobtained simply by replacing by — « in the corresponding
the weak field and orbital adiabatic approximations for aequation forM. The matrixR[®,n] is the rotation matrix
classical projectile trajectory and when the magnitude of vecfor a vector and corresponds with the representation of the
tors M and N remains constant during the collision, as for abstract rotatiorfspecified by the anglé and the direction
the present case of intrashell transitions. These vectors areof rotation on the three-dimensional vector space. Analyti-
then obtained at any moment by orthogonal transformationsal expression fotJ,, andUy can be obtainedi31] as ex-
from the initial valuesM (ty) andN(ty). Let these transfor- plicit functions of&« andA®. In particular, whenb=0 and

mations be Uy(t,ty) and Uy(t,ty), respectively. Then @,=, the (3x3) matrixU,, is

N'=R[—-®,(1,0,0]R[yADP,(1/y,0,+aly)]

y [1+a’cogmy)] ay 'sinmy) ay ’[l-cogmy)]
OUu=| ay 'sin(my) —cog 7 y) —y~tsin(y) (25)
ay qcogmy)—1] y lsinmy) —y a’+codmy)]
and Uy is obtained fromU,, by replacinga with — a.

As a result of the collision, the initial state of the target atom, specified by the vettpdg,(changes to the final state
(L",A") according to

L'=—5—L+——5—A, (26)
Uy—-U Uy+U
A= Mz N+ M2 NA. (27)

For the undeflected trajectory of the projectile, whikr0 and®,= 7, explicit results are:
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Li=y"?[1+a’codm )L+ ay tsin(m y)Ay+ ay ’[1-cod 7 y)]As,
Ly=—cogm y)L,—y tsin(m y)Lg+ay tsin(m y)A;,
L=y 'sin(m y)Ly—y Y a®+codm y)ILgt ay [cod my) —1]Ay, (28
Ar=y [1+a’codmy)]A+ay tsin(my)Lotay 1-codmy)]Ls,
Ay=—cogm y)Ay—y tsin(m y)Ag+ay tsin(T y)Ly,

A= y lsin(m y)A,— y H a?+cog 7 y)|Ag+ ay Y codmy)—1]L,.

Here y=\/1+ o and the components of the initial and final the collision. Following the definitiori29), the overlap vol-
vectors are defined in the fixed coordinate frame of Fig. 1ume of accessiblel(,A) space that contains both initial and
Similar expressions have also been obtaifg4 for general  final states is

A®. The above exact solutions are easily verified and satisfy

the invariant relations

Vo= | [ L= rmai- myatial-miE=77)

X 8(L-A)dL dA. (30)

L'-A’=L-A=0
and

L2+ A’2=L2+A%=n%h2. The transition probability is then, in a geometric sense, the
ratio of two volumes: the volume/),,,, of the accessible
The orbit of the final staten(L’) is confined to a plane states compatible with the required final angular momentum
perpendicular to the findl’ and the energy is preserved ( and the volume of the acceptable initial staiés . The /

is not changed —/" transition probability is therefore defined as the ratio
o B. Clas.smal transmon probability ") =Vn//’ -
The initial state is defined by the angular momentum Y,

and Runge-Len?A vectors. Apart from the constraints that
(i) the magnitude of the vector is/ %, (ii) the magnitude of . .
the A vector i ynZ— /2 in the given state, andii) L and of phase-space volumes.. Transformation F(_) the alternative
A are always orthogonal, the two vectors are completely ranst of vectorsv andN defined by Eq(Z) fa_cnltates evalu_—
dom in the six-dimensional spage}®{A}, which is a map- ation of th_e integra(30). _The Jacc_)blan of t_h|s trgnsformatlon
ping of the usual I(,p) phase space. The initial angular mo- is dL dA=8dM dN. With the aid of the identities
mentum can have any value between 0 arid The special
case of zero initial angular momentum requires a separate S(L-A)=86(M?—N?)=58(N—M)/2M,
analysis, presented at the end of this section. In the following
discussion, the initial angular momentum is assumed strictly
positive. S(|L|=/h)=6(V2M?(1+cos. MN) — /1)

The hypersurface in théL}®{A} space on which the _ 2% 2/on 02 . 2
initial state is uniformly dist?ib}ute{d i}s restricted by the above = 8(CosZ MN = (/ZA%12M "= 1))/ RIM*,
constraints and has the volume

8(|A|—#\n?= /%) = 5(y2MZ(1—cos/. MN) — i Jn?— /?)
= 6(VAM? = /*h*—fi\n"~ /%)
=8(M—nhl2)h\n’—/?14M,

vn/zf f S(|L|—#2/)8(|A|—hn?>—/?)S(L-A)dL dA,
(29)

which, upon integration, reduces to

Vo, =812/ \In?= /2, S(L'|=7/"1)=6(J2M?*(1+cos. M'N') = /"' 1)
=8(cos. M'N' —(/"?4h212M?—1)) /" hIM?,

Each point within this manifold evolves during the collision
according to the rule@8), so that only a fraction of possible
initial states can have the final angular momentdmafter  the accessible phase-space volume is
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vn//,:f fSMZNZdQMdQNdeN ',A(I) =-n1/2
0.8
><5(N—|\/|)ﬁ\/n2—|25M i1 /h 0 e A® = -
2M am AM-nAl2) o :
/%h? 'h 0.4 — - -
X8 cos’ MN—| —— 1| |— — A =-n/4
2M? M?2 0.2
J12% 2 b
X 8| cosx. M'N'" — /T - 0.0 0.2 0.4 0.6 0.8 1
2
M FIG. 4. The proper rotation anglhe as a function of the Stark
g . parametera for the net polar angle swelt® = —a, —37/4,
This finally reduces to the simpler form 12, and— /4.
Vospr=—7F— 4//"’ﬁf dQy, dQy A®~ —37/4, the angley increases up ter asa increases
n

to unity. For smaller values aA®, the angley increases

INT_ @ monotonically witha.

X - - : " . .
o(cos2 MN =) o(cosz MPN' = £7), The classical transition probabilif{31) is then

where the integral is now over only the angular part of the

vectorsM and N and where the parametefs and B’ are ") /!
simply related to the initial and final states by P/'/:zﬂ-?ﬁnzf J dQy dQy
277 2,72 X 8(cos/. MN— B) 8(cos/. M"N— B'),

,8—?—1, ,8,2 n2 —-1. (32)

where the angle betweev andM” is y. Thed(Q integral
The final vectorsM’=UyM and N’=UyN are given by can be done first if one chooses to work in spherical coordi-
finite rotation[Egs.(23) and(24)] of the initial M andN, so  nates with thez axis along the vectop. In doing this, the
that the relative angles MN and ~M’N’ are independent vectorsM andM” are fixed and have the coordinatés,()

of the specific coordinate frame chosen. Then and @, y) as depicted in Fig. 5. The surface area element is

dQy\=d(cosh)de¢, whered and ¢ are the spherical coordi-

M’-N’" (UyM)-(OyN) nates of the vectoN. Instead of the6,¢) system, a new set

cos. M'N'= Ve VE of coordinates can be defined by,(u,), the angles oN
with M and, respectivelyM”. The surface area element is
(ULUMM)N now dQy=du;du,/sinA, whereA is the angle between the
=—————=co£. M"N, NM and NM’ arcs, as in Fig. 5. A proof of this result is
M2 derived in Appendix B.

) , i ) The dQy integral is now simpler to evaluate and yields
whereM” is obtained by rotation fronVl using the operator

U0y . Being a product of two rotations, this operator is Va
also a rotation about some directierby the angley deter-
mined from the trace

T{UUu]=1+2 cosy

of the rotation operator. The proper rotation angldepends
only on the collision(Stark parametew and the polar angle
AP =d—d, swept out during collision time intervat{,t)

and is independent of the initial or the final state of the Ke-
pler atom. It is determined by

cos)2£=[1+ a@? cog 1+ a?Ad)]/(1+ a?).

For small <1, cosy~1—8a?si(A®/2)+O(a?) so that
x~4a sin(A®/2)+0O(a?). The plot Fig. 4 of the “univer-
sal” function y(«,A®) for the case\ ® = — 77 shows thaly FIG. 5. The geometry and coordinates used in solving the inte-
has a maximum at~0.9 and is never greater than When  gral (31).
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y where
m _ 2

.o
piY = f d(cos®)(sinA sinuy sinu,) 1,
i rery BN ( ) 1 2)

cogu;+Uuy)—Ccosy
where cos,=2/2/n?~1, cosu,=2/"?/n?~1, and the fac- A(ZIn,7"nsa) = 1—cosy ,
tor 2 arises because thé,(¢) —(uq,u,) transformation is
not single-valued.
Basic trigonometry(see[32]) applied to spherical triangle / cogu;—U,)—Ccosy
MNM " yields B(/In,/"In;a)=

1—cosy (33

cosl’= cosu; cosu,+sinuy Sinu, COSA

On denoting co® by z the transition probability is the

so that one-dimensional integral

sinuy sinu, cosA = (cosl’ _ —cosI")(cosl'—cosI, ),

wherel’ . =u;*u, are the limits tol" asA rotates through P ()= 27" 1 f dz
2. Since X2 1 cosy V(= A)(B-2?)'

cosl'=cos®?+sin®2 cosy

) _ where the limits of integration are defined by the
for spherical triangle»M”, then condition of reality for the square-root function. The
last integral can now be expressed in terms of the
complete elliptic integrak (m) = [ 72(1—msir?x) dx so
X (B—cog0)]2, that

sinuy sinu, sinA=(1—cosy)[(cos® — A)

0 if B<O0

B
277 1 K(T>/\/B—A if 5>0, A<O

whn? sirfx/2

P(/nr)/()() = (34

= >
= o

K(T)/JE if B>0, A>0

provides the exact classical probability as a functionrof  sitions, the probability is zero. For the important case of zero
/", and sif y/2, which combines the Stark parameter initial angular momentum, the transition probabilRyin the
=(3Z,/2) (a,v,/bv) and the net polar angle swept during limit of /—0 is

the collisionA® into one function. The probabilit{34) sat-

isfies_detaile_d balance/?///éZ/’P/// , Where 2 is the o /' 1(hin?)
classical weight of the staie/". P lo(a)=— - —. (35
Inspecting the definition&33) reveals more qualitative as- sin(x/2) sin?(x/2)— (/"' In)

pects. First,A and B are always less than 1, and orifycan
attain 1 wheru, =u,, i.e., for elastic collisiong’=/". The  This result was also obtained fit4]. When/’ =n, the tran-
transition probability reduces, for this case, to the simplesition probability is

form
1/(An)
PO ()= :
P — U S 2N IS )
a—0)~ ———
’ 4an>— /2

When the argument of the square-root function is negative,
the transition probability is zero. Similarly, for maximum

in the limit of smalla, thereby exhibiting the I/ singularity  jnjtial angular momentumy’=n, the transition probability
of elastic transitions. For transitions with’#/ and small  has the limit

enoughea, the factor5 is negative and then the transition
probability is zero.B is always greater thamd because /1 1(#n2)
cosfu;—uy)=cos(i; +u,). In the limit of each and/’'—0 () a)= : ,
or n, thenuy ,=0 or 7 and A=B<1. For/—/"=0 tran- . sin( x/2) V(7' In)?—sirt(x/2)
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a=0.2
v/nt o
0.8 ol o,
B<® -7 y
0.6 A< 0
0.4/ B>0 A 0.
0.2 . B<0 0.
A>0 y y
0o 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 FIG. 6. Contour plots of the solutions o
l/n =0 (solid line) andB=0 (dotted ling for various
r a=0.6 a=0.8 values ofa. In gray zones3<0 and the transi-
ni P A0 lipee—=—— A0 tion is classically forbidden.
0.8 A<0 0.8 A<0
0.6 B>0 0.6 B0
b
0.4 0.4 B
0.2 gt 0.2
0 0 ]
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

l/n

where, again, the transition probability is zero unless theclose to unity, the transition probability has the following
final angular momentuny”’ is large enough to make the expansion for small:

argument of the square-root function positive5i¢ 0 and.A

is small, the transition probability has a singularity, typical

. \ I 1
for classical mechanics. Because the complete ellitic P~—(2In2—-3In A/B).
function diverges logarithmically when the argument is very JB
l/n=0.071
1.0 1.0
0.8 0.8
0.6 0.6
U'/n
04 0.4
0.2 0.2
0.0 0.0 FIG. 7. Contour plots of the solutions of
00 02 04 06 08 10 00 02 04 06 08 1.0 — 0 (solid ine) andB=0 (dotted ling for various
L0 l/n=0.64 10 l/n=093 values of/. In gray zones3<0 and the transi-
’ P — i tion is classically forbidden.
B<0,- ‘" A
08| -~ 0.8 ",
A<0 X
0615, 0.6 N A<O
l’ n R, B>0 \‘
04| 04 ,  B>0
02| g A>0 02| B<0
0.0 : 0.0 e~
00 02 04 06 08 1.0 00 02 04 06 08 1.0
a a
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When B has small but positive values, the transition prob-
ability has a finite limit becaus&(0)==/2. Of course,
when 3 approaches zero from negative values, the transition
probability is zero. Thus, the singularities in the transition
probability are given by the solutions of the equatioAs
=0 andB=0, which areu,= *u;=* y.

A map of the various zones in the plane of reduced initial
and final angular momenta’(n,/”/n) is displayed in Fig. 6
for the four valuese=0.2, 0.4, 0.6, and 0.8 of the Stark
parameter. In the central regiad, is negative ands is posi-
tive. Within the lower left and upper right corners, bdsh
and A are positive. The transition is classically forbidden in
the upper left and lower right cornetgray zoneswhere 3
<0. Along the solid line, A=0 lines, which represent
cos {(/In)+cos (/' In)=xI2,m2—y, the transition FIG. 8. The geometry of the initial state described by the direc-
probability has a logarithmi¢cusp singularity. Across the  tions of the angular momentuin and Runge-LenA vectors.
dotted B=0 lines, which represent coY//n)
—cos Y(/'In)=xl2,m—x/2, the transition probability coordinate system where theaxis is along the principal
jumps from zerd(in the gray zongto some finite valudin  directionw of the rotation matriX U\, (as discussed earlier
the central zone As «—0, the two inaccessible regions in this section, the magnitude is
(whereB<0) increase until the central region wiix>0 and
A<0 becomes an elongated line strip lying along the diag-
onal /=/". Only elastic collisions are therefore permitted
in the limit «—0. As « increases to unity, the classically _ ~
forbidden zones diminish and the collision becomes moravhered is the angle betweed,,A (or UyA) and the direc-
and more effective in its ability to induce larger angular mo-tion ». The transition probability is then
mentum changes.

Figure 7 presents corresponding maps to Fig. 6. The same _1 |7 ; S A— T Vi
characteristic regions are now displayed in the plane of final Pro=2 fo S(nAsin(x/2)sin6—/"h)sin 6 d¢
reduced angular momentwff/n and the Stark parameter
for four values of the initial reduced angular momentum N /'(hn?)
//n=0.07;, 0.36, 0.64, and 0.93. Again, the classigglly for- _sin(X/2) \/sinz(X/Z)—(/’/n)Z’
bidden regionggray zones correspond to the conditio
<0 in the left upper and lower corners. The elastic=/"  in agreement with the’—0 limit (35) to the general classi-
transitions are always possible, even wher-0. Again, cal /—/" transition probability(34).
along the solid 4=0) and dotted 8=0) lines, the transi-
tion probabilities have cusp and step singularities. When V. CLASSICAL DYNAMICS SIMULATION
increases, the span of the possible final angular momentum,

for given angular momentum, increases. Large angular mo- The present classical Monte Carlo simulations are differ-
mentum transfer is only possible for collisions with large ent from the standard classical trajectory Monte Carlo simu-

Stark parameter— 1. Both Figs. 6 and 7 are key to the lations in that the initial state is not specified by the position

interpretation of the variation of the probabiliti&s ., (a) and the velocity of the orbiting electron. Instead, the simula-

with both /" and a, respectively tion begins with a random distribution of the initial states in
The result(35) oiatained from the”— 0 limit of the gen- the {L}®{A} space, propagates each state according to the

eral result(34) can be also proven directly. Because-0, rule (28), and then performs the statistical analysis of the

the classical orbits are characterized only by the Runge-Lenfﬂ1al distribution (.)f states to prowde, in the I|m|.t of an infi-
nite number of trials, the probabilit . - for a given tran-

vector A. In this case, the volume occupied by the initial " . : X :
P y sition. This section describes the correct way to generate the

1. ~
§|UMA— UnA|=nfsin(x/2)sin g,

state Is initial distribution of states.
The angular momenturh and the Runge-Lena vectors
VnO:f S(|A|=nfi)dA=4mnh2. are sufficient to completely specify all characteristics of the
atom’s orbit, provided they are orthogonal, as for the case of
The volume of the accessible final statésis pure Coulomb attraction. Only five components are therefore

independent and two of them, the magnitudesand A
=n?—L?, characterize the shape and size of the orbit.
There are then three angles that specify the orientation of the
orbit in space, for a given assignment of the energy and
where the orthogonal matricefs]M'N depend only on the @angular momentum. The direction of the angular momentum
Stark parametes and are defined by E@25). In a spherical  vector L is arbitrary. Two random numbers, the projection

1. -
VﬂO/’:f 5(|A|_nﬁ)5 E‘(UM_UN)A‘_/,ﬁ)dA!
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~

L,=cos#, and its azimuthal angle,, generate a uniform ! 0 1 2
distribution of L on the unit sphere. The direction of the ¢m ~ ° 2 0 1 -2 -1 0 12
Runge-Lenz vectoA is uniformly distributed in the plane 0.0 0 020 0 0.9..0..0.9
perpendicular td_, and the anglep betweenA and a given S0 0 e 00 e 000
fixed directionN in this plane is the third random number 7 0 [20423/ 142 0 1INZ 0 0 2aA3 0 0
required to simulate an initial state. In summary, three ran- 1 0 0 INZ 0 00 0 a 0
dom numbers are required) L,=cosé,; uniformly distrib- 5 o P o T
uted within the — 1,1] interval, (i) ¢, uniformly distributed
within the [0,27] interval, and(iii) ¢ uniformly distributed £ | 0 4 & D 0 1.0 32 0 0
within the [0,27] interval. The initialL and A vectors are 20 0 0 2043 0 0 32 0 32 0
then I 0 0 0 a 0 0 @ 0 1

sin 6, cose, sin 6,cosp, L 0:9 % <9;@4 4 I B)N
L=#/| sinfising; |, A=#n?—/2| sinb,sine, |. | ‘

cosé, cosé, FIG. 9. Matrix representation df; — aAz for n=3.

The spherical polar angle®, and ¢, of A, as illustrated in ping is given by/ =floor(vk—1) andm=k—/2—/—1.

Fig. 8, must now be expressed in terms of the above randofine jndexk counts the degeneracy of the energy shell, and
variablesé;, ¢;, ande. Basic trigonometry32] applied t0  ,ns from 1 ton2. The matrix element

the spherical triangleENA andLZA yields

cosé,=sing sin g, (L) =37+ m)(/—m+1) 8,10 -1

+%\/(/_ m)(/+m+1)5/’/5m',m+l

and

0=cos#, cosh,+sin b, sinh, cog po,— ¢1), of L, is nonzero only forA/’=0 andAm=*1, which re-
_ _ _ flects the fact that the cylindrical symmetry of the Rydberg
respectively. On solving these two equations figrand ¢,,  atom is broken by the precessionlofabout the field of the

the arbitrary Runge-Lenz vector projectile. Thesem-changingtransitions are, however, con-
ditioned by the full structure of solutiofl2), which shows
A(01,01.0) that such transitions are only in evidence for nonzerdhe

—C0S6, COSe, SiNg —Sing; COSe matrix element

=#+n?— /2| —cosé, sing, sing+cose, cose GET S
S|n 01 Sll’l(p (A3)§mm = (2//+1)(2/_ 1) 5///715m/'m
is then expressed in term of the random variables. It auto- [(/+1)2—m?[n’—(/+1)7]

matically obeys the constraint requirememtsL=0, A?

+L2:n2 andA.N:co&p (2/+3)(2/+1) /,/Jrlam,’m

of the componeni;= —(2/3n)z along the fixedZ axis of
VI. NUMERICAL EXAMPLES guantization is nonzero fak/'= =1 andAm=0 transitions.

In this section, numerical examples for calculation of theThese dipole transitions only contribute for nonzeroThe
transition probability between states with given angular moJnatrix L — aAs has then a band diagonal structure, as illus-
mentum @/ —n/") are presented. There are three maintrated in Fig. 9 for the special casemf 3. Explicit analyti-
methods used in this paper. The classical Monte Carlo simusal formulas forP(/”,)/(a,ACD) can be directly obtainefB3]
lation, as described in the preceding section, requires thiar smalln=2,3.
running of a large number of trials to sample the three di- The transition amplitude for transitiok—k’ is the kk’
mensional space of arbitrary parameters. The explicit classmatrix element of the exponential of the matrixi AP (L,
cal mechanics expressidB4) is used directly. —aA3), sandwiched between the rotations implied by Eq.

The quantal calculation is based on E@3) and(12). A (12. When a~0, the dipole forbidden transitions are not
matrix representation for the operatlofj— @Az [where Pau- possible, because the transition matrixexpil /A still
li's replacement5) was adopteflis required. Instead of the maintains a band diagonal structure. Asincreases, more
spherical basi$~'m), which is difficult to use in this case, and more off-diagonal elements become populated, leading
we define a new linear basis obtained by mapping th@)(  to dipole forbidden transitions. Efficient algorithms, using
quantum numbers to a unique index/?+/+m+1, in  Padeapproximations, are availabJ@7] for matrix exponen-
such a way, for example, that (08)1, (1,-1)—2, (1,0) tiation. The full array of transition probabilities is then ob-
—3, (1,14, (2-2)—5, and so on. The inverse map- tained all at once.
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0.2 A<0 (20) 2 (20)
B>0 P, ©02) 02} P, (0.6)
0.15{ 4>0 o 0.15
B>O ® ° .
0.1 ° e 0.1 :
il 4<0 A0 40 7 a0
0.05} , ; . B<0 0.05 .. e S
: sl o
; - T 2ol, 0 5 10 15 20!

FIG. 12. The Monte Carlo simulatiofsteplike line$, the clas-
sical(solid line), and quantaf{dots transition probabilitie® ./, («)
for given «= 0.6 and initial/’= 14 within then= 20 shell.3>0 for
all /.

FIG. 10. The Monte Carlo simulatiofsteplike line, the clas-
sical(solid line), and quantaldots transition probabilitie® /()
for given a=0.2 and initial/=4 within then=20 shell.

The examples, provided by Figs. 10-13, demonstrate thand third plots of Fig. 6, respectively. The steps indicate a
the Monte Carlo simulation yields results identical to theclassical threshold” or a classical cutoff”, for transitions
classical dynamics expressi@d4). The transition probabili- to a final value of/”’. The cusp-step variation of Fig. 10
ties for given Stark parameters€0.2 and 0. and initial  indicates that transitions t6’</", are classically allowed
angular momentumA=4, 12, 14, and 18, respectivg¢lgre  and the step-step variation of Fig. 11 indicates that classi-
represented as a function of the final angular momentim  cally accessible”’ are within the range”’ </'</",. The
This also provides the distribution over the final angular mo-cusp-cusp variation of Fig. 12 is associated with the fact that
mentum states, which result from collisions, at giverfrom  transitions to al¥’”’ are classically accessiblef. Fig. 6, plot
an initial population of states with the same initial angular3), while the step-cusp variation of Fig. 13 signifies that only
momentum/”. In this examplen=20. The present corre- transitions to/’'=/" are classically possible. For a given
sponding quantal results are also represented in the sam@tial angular momentunt’ and Stark parameter, the po-
graphs by dots. Vertical dotted lines indicate the positions okjtion of the cusp singularities, given by the solutions of the
the singularities, corresponding to the=0 andB=0 lines equationA=0, is

in Fig. 6. TheA=0 andB=0 singularities produce cusp and
/.

step variations irP ., , as/”’ increases through the singular- 2\ 112 v
ity (Fig. 6). Four distinct and characteristic classes of varia ( ):‘(1__2) sm—i(—) cos2|. (36)
tion of P, , with /” then emerge. These are displayed in n n 2 \n 2

Figs. 10-13, where the predictgdusp,step (step,step

(cusp,cusp and (step,cusp classical variations are exhib- Expressiong36) are also solutions of the equatiéi+= 0 for
ited. These results are fully representative and can be ange step singularities. The threshold vakié is a cusp(so-
lyzed by vertical cuts through Fig. 6 appropriate to a givenlution of A=0) provided/ <n siny/2 and is a stegsolution

/. The/ anda parameters in Figs. 10—13 correspond to theof 3=0) provided/ > n siny/2. Similarly, the cutoff/”, is
values//n=0.2 and 0.6 and tg’/n=0.7 and 0.9 in the first

0.2
(20) (20)
P 0.2 oo P’ ’0.6)
r12 . 0151 18
0.1
. 0.1 | B=0 e o fi
{ B<0 . ° [l
0.05 | B<0 0.05 R A=0
5. P : l,
. . ) 0 5 10 15 20

FIG. 13. The Monte Carlo simulatiofsteplike lineg, the clas-
sical(solid ling), and quantaldots transition probabilitie® , ,(«)
for given @=0.6 and initial/= 18 within then= 20 shell. Across
the first dotted line5 changes sign and is negative on both sides
of this line..4 changes sign across the second line whileemains
positive.

0 5 10 15 20

FIG. 11. The Monte Carlo simulatiofsteplike lineg, the clas-
sical(solid line), and quanta(dots transition probabilitie® /()
for given «=0.2 and initial/’= 12 within then= 20 shell.A<0 for
all 7.

032701-15



D. VRINCEANU AND M. R. FLANNERY PHYSICAL REVIEW A 63 032701

0.1
0.08
0.06
0.04
0.02

0 5 10 15 20 25 l’ 0 5 10 15 20 25 l’

FIG. 14. The classical and quantal Stark mixing transition probabilties(«) within then=28 energy shell, fore=0.2, as a function
of the final angular momentuni’ and for various initial angular momenta

a cusp if/>ncosy/2 or a step if”’<n cosy/2. The separa- an s 7 X
tion between the singularities is T) “\ T :2(—) cos3
(/_+) _ /_— _ (1_ /_2) llzsin_ when //nssinXIZ. The maximum separation of girs at-
n n n? 2 tained at/*/n=siny/2. This occurs in Fig. 6 where the
A=0 andB=0 curves both intersect thé/n axis at/*/n.
when//n=siny/2, and is The transitions”— /" have significant quantal probabilities
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20 ]
A

15

10

5 ; W

0 i ] FIG. 15. Density plots of the transition prob-
r abilities, calculated within the quantal treatment,

0.6 0.8 for four values ofa=0.2, 0.4, 0.6, and 0.8 in the
25 (/,7") plane. The probability increases as the
20 gray becomes darker.

15 I
10 I

o L N

0 5 10 15 20 25 0 5 10 15 20 25

only when/” is in the classical accessible region and exhibitthe similar classical set of plots presented in Fig. 6. Density
the characteristic exponential decreasing behavior in théaps inthe{’,/") plane are shown for the same four values
classical inaccessible regions. of Stark parametew. The first map fora=0.2 corresponds
The second set of examples compares between the classd the results of Fig. 14, where cuts along various values of
cal and quantal transition probabilities within the=28 en-  //n are made. The quantal transition probability increases as
ergy shell. A set of graphs, for variou$ and fixed Stark the gray areas becomes darker. The same zones outlined in
parametera=0.2, is presented in Fig. 14. The transition Fig. 6 can be recognized and the boundaries between them
probability is plotted versus the final angular momentum.are in exact correspondence with the classical equatibns
The cusp-step, step-step, and step-cusp variations are all ap0 andB=0, as discussed at the end of Sec. V. The quantal
parent, together with the superimposed quantal oscillatoryansition probabilities are practically zero over the classical
behavior within the classical accessible region. The oscillazg pigden regions, occupying the upper left and lower right

tions possibly originate from the fact that there are Wogq,mers of Fig. 6. The quantal probabilities are maximum on
pom_tsN of |_ntersect|on of the t\,//vo _ardsirawn on the sphere the ridge given by the equatiad=0, where the classical
of Fig. 5 with centersM andM” with separatiorl”(«) and dynamics results in singularities

radii u;(/) andu,(/"). Each point of intersection provides When is very small, decreasing toward zero, only elas-

equal classical contributions ®,,,(a) while the diﬁé erent tic transitions are allowed so that only the principal diagonal
phases associated with each point produce the g - is exhibited, as in Figs. 6 and 15. The quantal calculation

classical interference oscillations, exhibited in both thé . . . o o .

variations ofP,, () with / and« fixed, as in Fig. 14, and yields unity for the probability of elasti¢’=/" transitions in

the « variation of P, (a) in Fig. 16 for/ and /" fixed. the «—0 limit and the classical result diverges ag 1h the
s same limit. All other transitions have zero probability. This

Figure 14 also illustrates that the separatioff, /" )/n k : !
between the various discontinuities increases toysmt €ature is responsible for the well know4] divergence of
the cross sectiof6) for elastic transitions.

/In=sin /2 and then decreases Ass increased from 0 to X ) o . o
n—1, in accord with Eq(36). In general, Fig. 14 shows that Figure 16 (_j|§plays the ’probablhty_for trgnsmons originat-
the classical picture is complementary to the quantal in that it"d from the initial level/=5 to various final levels, as a
has the ability to explain the general overall behavior of thefunction of the Stark parameter. Again, the agreement is
quantal results and to provide the general framework oréxpectedly very good. For small, there is always a classi-
which the quantal results rest. It has also provided the varical inaccessible region3<0) for quasielastic”’ #/, ex-
ous regiongbetween cusps, steps, etthat remain obscured cept for the fully elastic transitions’ =/". A threshold step
within the quantal treatment. at «= a is therefore displayed for the probability of transi-
The set of plots in Fig. 15 is the quantal correspondent ofions with /' =/". This property is fully explained with the
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FIG. 16. The classical and quantal Stark mixing transition probabilRies(«) within the n=28 energy shell, for’=5, as a function
of the Stark parametet and for various final angular momentd.

aid of the plots in Fig. 7 of”’/n versusa for various values transitions are precluded3&0) except at high values af

of ZIn. As /' is increasedgt determined by the intersec- —1.

tion of /'/n with the B=0 curve increases and a steB ( Figure 17 shows that the quantal probabilities are high in
=0) to cusp (A=0) variation witha is obtained, as exhib- the classical accessible region8>%0) of Fig. 7 and are
ited in Fig. 16. For higher”’/n values, intersection with the more significant in thed<0 region than in thed>0 region.
A=0 curve(and therefore the cusmlisappears. Figure 16 Variation of the transition probability along the horizontal
(for the specifin=28 case considered, or in general Fig. 7 line for /' =const provides plots as exhibited in Fig. 16.
also shows that low”— high /" and high/— low /"’ Figure 17 is the quantal correspondence of Fig. 7.
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be introduced from physical considerations specific to the
actual problem discussed. For the results presented in Fig.
18, an arbitrary cutoffe,,;;,=0.01 was introduced for both
the classical and quantal calculations. With the exception of
elastic transitions, where special care must be exercised since
the present model fails, the agreement between quantal and
classical model is much better than one would expect from
the traditional correspondence principles such as Ehrenfest’s
theorem and Bohr’s correspondence. The exceptionally rich
symmetry group SQt), characteristic for one-electron at-
oms in both the quantal and classical treatments, explains the
quality of the agreement obtained.

VII. CONCLUSIONS

In conclusion, we have presented a case study of the long-
standing problem of tha/—n/" transition array in atomic
hydrogen produced by distant collisions with slow heavy
charged particles. Complete formulations from the quantal,
classical, and Monte Carlo simulation viewpoints have been
developed. The SO(4) dynamical symmetry ofnj(has

FIG. 17. Density plots of the transition probabilities, calculated P€€N exploited to provide exact classical and quantal solu-
within the quantal treatment, for four values of the initial angulartions (28) and(12), under the adiabatic, dipole and classical

momentum/ =2, 10, 18, and 26, in thea(,/') plane. The prob-
ability increases as the gray becomes darker.

Figure 18 exhibits variation of the integral factor

1
I
Emin

which appears in the cross secti@®) as a function of the
final angular momenturs” for various initial angular mo-
menta/. It is assumed here tha@® = — 7. This integral
does not depend on the projectile properfiedocity, impact
parameter, or char@gebut depends only on the initial and
final state of the target. Due to then®/singularity, the cross

v 2

SZlUn

m da o,/
Vavs -
(13

|(”) —
v

ma’

sections for elasticA=/") and near elastic transitions are

very much enhanced. Various cutoff;,) procedures can

10

20

15 25

E )

FIG. 18. Classical and quantal comparison of the intebral
defining the Stark mixing cross secti@® within the n=28 energy
shell, for various initial angular momenta as a function of the
final angular momentura™.

path assumptions. A classical expressidh) for the transi-
tion probability P(/”,)/ is presented in a language that exploits
the dynamical symmetry and is used to obtain exact analyti-
cal result434). A new exacf(fixed-frame representation Eq.
(12) of the quantal solution has also been presented and di-
rectly applied to provide exact quantal probabilities for the
full array of transitions. This solution is feasible for efficient
numerical calculation of probabilities for transitions involv-
ing even largen and all/ and/”, in contrast to the previous
guantal(rotating-frame version[15,16], which was applied
only to the/=0—/" transitions. Exact analytical expres-
sions forP(/”,)/ can also be obtaind®3] for low n.

The exact quantal results fé’l‘/”,)  oscillate about the clas-
sical background. By revealing essential characteristics that
remain obscured within the quantal treatment, the classical
results complement the quantal results. Further development
would include a semiclassical analysis capable of reproduc-
ing the oscillatory structure in the quant%&”,)/ without sac-
rificing the physical transparency of the classical model.

Although the numerical results presented here are associ-
ated with a straight line projectile pathe., A® = — 1), the
theory is suitable for all polar deflection anglasb swept
out during the collision by the classical trajectory. Specific
problems(nonhydrogenic atoms, stray fields, the Debye ra-
dius in plasmas, etcmay impose further restrictions on the
range of impact parametér which results in restrictions on
a. The basic theory presented can still be applied to these
cases with minor adjustments. The classical trajectory appro-
priate to a rotating dipole can be determined to account for
the influence of the target on the projectile’s motion.

In summary, both classical and quantal solutions of Stark
mixing have been presented in a compact form reflecting the
mathematical beauty of the problem as well as their prag-
matic value. It is probably one of the last remaining prob-
lems in collision physics capable of an exact solution.
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Note added in proofA general concise analytical expres- ducing M= (L +A)/2 and M=(L—A)/2. EachM and N

sion for the quantal probabilitieE’(/”,)/ for all n has since operators generate separately a so(3) subalgebra, such that

been obtained34] in a form (a) which is easy to use for SO(4)=SO(3)®S0O(3).

numerical evaluation, even at very high-100, (b) which Following [26], it is useful to prove the following.
yields compact analytical results far=2-5 and(c) which Result.The matrix elements of the operatddsdefined by
naturally provides the classical lim{84) obtained here. 3 A
Q=r+5—
ACKNOWLEDGMENTS 2 pn
This work has been supported by AFOSR Grant No.are zero between any states with the same energy(L.e.,
49620-99-1-0277 and NSF Grant No. 98-02622. =0 within the energy shell.
Proof. The commutator between the Pauli-Lenz vector
APPENDIX A: PAULI'S REPLACEMENT and the position vector can be written as

Pauli's replacemen{23] for the classical one-electron ] 5
atom follows from the straightforward calculation of the av-  [Aj."k]=— 2_pn'hfjkn|-n+ 2—pn[meH,rjrk—r Sik]-

eraged projection of the position vector on the Runge-Lenz (A1)
vector,
Because the commutatpH,X] is zero for any Hermitian
.. 3 € 3 1 operatorX, when restricted to the energy shéthe hyper-
(r-Ay= SE€5ET T EA\/?meE’ virial theorem[35]), commutator(Al) is simply

where € is the eccentricity of the orbit corresponding with
the energyE. Because the perpendicular component @i

3
[Aj Td=- 2_pn|ﬁ5jkn|-n
A averages to zero, the following rule is valmh averaging

over an orbital period: in the Hilbert subspace of degenerate states with the same
energy. Thus, the vectd2 commutes with the Pauli-Lenz
r~— 3A vector and has the commutators
2 py
1
providedA does not change significantly in this time. Here [M;, Q]=[N;,Q]= Eihejknﬂn
Pn=(p?)=\—2m.E is the characteristic orbital momen-
tum.

with the vectorsM and N obtained by decompositio(®).

The classical Runge-Lenz vector has the symmetrizegyiih the aid of the basic Jacobi identity for commutators,

(Pauli-Lenz quantal form
/ [A,[B,C]]+[B,[C,A]]+[C,[A,B]]=0,
Pn

it follows directly that 2=0. For example,Q2,=0 if A
:M3, B:Nz, andC:Q3.

This result provides a concise proof that Pauli’s replace-
ment(5) is valid whenever the dynamics is constrained to the

[A;,H]=0 (a conserved quantity constant energy manifoletf., [18] for a lengthier proof

1 -
A= E(pr—LXp)—meezr

alternative to the form given by E@l). The operatoA has
the following properties:

[Lj 'Ak]:ihfjknAn (also a vector, APPENDIX B: AREA ELEMENT FOR SPHERICAL
BIFOCAL COORDINATES

[Aj Al =ife€jnln  (its components do not commyte The spherical bifocal coordinates are given by the angles

u; andu, between a pointP) and two fixed foci A; and
A,) on the unit sphere. Of course, these coordinates are
unigue only on the half sphere.

Theorem.The area element in spherical bifocal coordi-

These commutation relations define the SO(4) dynamicnaItes 'S

symmetry group for the restricted motion of the orbital elec-

tron to the energy shell. The Hamiltoni&his an invariant ds— du; du,
and can be used to label matrix representations for this sinA -’

group. The correct energy levels for the hydrogen atoms re-

sult from the symmetry without solving any differential whereA is the angle between the arcs joining a given point

equation. The SO(4) operators can be disentangled by intr@n the sphere with the two foci:

A-L=L-A=0 (vectorA is orthogonal orl.),

A?+L2=(n?-1)A? (constant for intrashell transitions
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A= /2 APA,. where 6=/ PD and ¢= 2/ A,;D. Applying again spherical
trigonometry to the spherical triangles;PD and A,PD,
Proof. Here are two proofs of the theorem. One is shortthen
and intuitive. The other one is longer but a bit more rigorous.
Short Proof.The length of the arc described by the point P:=(cosu,,\cog/ PD—coZ u;, sin/ PD),
P on the sphere for an infinitesimal change— u,+du,,
whenuy, is kept fixed, isds;. Basic spherical triangle geom- where
etry provides

sinZ PD=sinuy sinu, sinA/sinT’,

:& where, by definition,u; ,=2A{.,P, A=2APA,, and T
ds;= . ’ ; .

sinA =/A;A,. The goal is to express all coordinates Pfin
and a similar relation terms ofu, andu, and to do the corresponding derivatives in

Eq. (B1). Spherical trignometry yields
g du, S?=sir? u, sir? u, sir? A
=5
sinA =[cogu;—u,)—cosl'][cos’—cogu;+u,)].

for the infinitesimal ards,. The elementary surface area is On defining
given by the cross product of the two ams; X ds;. Since
the angle between these arcs is, in the first order of approxi-

1
mations, agaim\, then Si=sm§ [T+ (ugtuy)],

~ 1
_ duidu; S._sin [T=(u—uy)],
sinA '
as advertised. the angleA is then determined from
Direct Proof. A direct proof calculates by brute force the e @ & &
area element using SiNA =— S_ = _S+S*$*S*
sinu; sinu, sinuy sinu,
P 9P and the coordinates ¢ are now
dS=|—X— duldUZ. (Bl)
(9Ul (9U2

S+§+ - S_Fé_ V S+ S_§+§_

P:= sinT’ ’ sinT’

cosuy,

The length of the calculation depends, of course, on the par-
ticular coordinate frames of choice. For example, one can
chooseA; andA, in the equatoriakOy plane, withA; on ~ Then Eq.(B1) finally reduces to
the Ox axis. LetD be a point on the ar&;A, such that the

arc PD is perpendicular toA;A, (like a meridian passing ds=
throughP). The coordinates of the poift are then

sinu, sinu,
S

which proves directly the above theorem for spherical bifo-

P:=(cosf cosp, cosd sing, sin6), cal coordinates.
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