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Uniform electron gas from the Colle-Salvetti functional: Missing long-range correlations
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Colle and Salvetti@Theor. Chim. Acta37, 329 ~1975!# approximated the correlation energy of a many-
electron system as a functional of the Hartree-Fock one-particle density matrix. The most fundamental and
least approximate version of this functional@their Eq.~9!# is found to yield only 25% of the true correlation
energy of a uniform electron gas, and not 100% as previously believed. While short-range correlations are
described surprisingly well by this approach, important long-range correlations are missing. Such correlations
are energetically negligible in atoms, but cannot be ignored in more extended systems, including solids as well
as molecules.
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I. INTRODUCTION

The correlation energy is the correction to the Hartr
Fock energy of a many-electron system. Starting from a p
correlated many-electron wave function, Colle and Salv
@1,2# approximated the correlation energy as a functiona
the one-particle Hartree-Fock density matrixr1

HF (r ,r 8).
Later Lee, Yang, and Parr@3# transcribed the Colle-Salvet
~CS! approximation into a widely used gradient-correct
functional of the electron densityn(r ). The CS work also
provided a motivation for more recent density function
that employ the orbital kinetic energy density@4#.

An early study by McWeeny@5# found that the most fun-
damental and least approximate form of the CS approa
Eq. ~9! of Ref. @1#, gave an accurate correlation energy p
electron for the electron gas of uniform density, support
the underlying CS approach. Encouraged by this result,
jagopal, Kimball, and Banerjee~RKB! @6# made a CS-like
ansatz for the pair-distribution function of a magnetic ele
tron gas; long-range correlations were later built into
RKB model by Contini, Mazzone, and Sacchetti@7#.

In the present work, however, we have not been able
reproduce the original result of Ref.@5#. We find instead that
Eq. ~9! of Ref. @1# underestimates the magnitude of the c
relation energy by about a factor of 4. Our result is con
nant with a recent critique by Singh, Massa, and Sahni@8# of
the CS wave function for the two-electron atom, which
particular points out that it is not normalized.

It is widely known that the CS correlation energy fun
tional is accurate for smaller atoms@9,10#, but not for mol-
ecules where it misses important long-range correlati
@2,11,12# which must be described by other approaches s
as the configuration interaction method. We show here
the electron gas also has energetically important long-ra
correlations which are missed by all variants of the CS c
relation energy functional. In both the electron gas@13,14#
and molecules@15–17#, the exact correlation hole has a lon
range part which is approximately cancelled by the lon
range part of the exact exchange hole, an effect which co
have been but was not included in the CS approach.
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II. ELECTRON PAIR DENSITIES, ETC.

We begin with a review of definitions@18#. Given an
N-electron wave functionC(r1s1 ,...,rNsN), we define the
pair density

r2~r ,r 8!5N~N21!

3 (
s i51

N E )
j 53

N

dr j uC~rs1 ,r 8s2 ,...rNsN!u2, ~1!

the one-particle density matrix

r1~r ,r 8!5N (
s i51

N E C* ~rs1 ,r2s2 ,...,rNsN!

3C~r 8s1 ,r2s2 ,...rNsN!dr2 ...drN , ~2!

and the electron density

n~r !5r1~r ,r !5
1

N21 E dr 8 r2~r ,r 8!. ~3!

While n(r )dr is the probability of finding an electron indr ,
r2(r ,r 8)dr dr 8 is the probability of finding one electron in
dr and another indr 8. We also define the pair-distributio
function g(r ,r 8):

r2~r ,r 8!5n~r !n~r 8!g~r ,r 8!. ~4!

By integrating Eq.~1! over r 8, we find that

E dr 8 n~r 8!@g~r ,r 8!21#521. ~5!

In other words, the densityn(r 8)@g(r ,r 8)21# of the
exchange-correlation hole around an electron atr represents
a deficit of one electron.

The Hartree-Fock wave functionCHF(r1s1 ,...,rNsN) is
the energy-optimized single-determinant approximation
C, and the correlation energy is

Ec5^CuĤuC&2^CHFuĤuCHF&, ~6!
©2001 The American Physical Society13-1
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where Ĥ is the Hamiltonian. The Hartree-Fock density
often close to the true densityn(r ), and for the uniform
electron gas these densities are identical. For simplicity,
shall assumen(r )5nHF(r ) in the equations that follow
Then, in Hartree atomic units,

Ec5E drE dr 8S 2
1

2
¹ r8

2 D @r1~r ,r 8!2r1
HF~r ,r 8!#

1
1

2 E drE dr 8
1

ur2r 8u
@r2~r ,r 8!2r2

HF~r ,r 8!#, ~7!

where the first term is the kinetic energy of correlationTc
and the second is the potential energy of correlationVc .
Moreover, for a spin-unpolarized or closed-shell system

r2
HF~r ,r 8!5n~r !n~r 8!2

1

2
ur1

HF~r ,r 8!u2, ~8!

r1
HF~r ,r 8!52(

a
ca

HF* ~r 8!ca
HF~r !, ~9!

where theca
HF(r ) are the occupied Hartree-Fock orbitals.

Now we introduce the correlation contribution to the pa
distribution function

gc~r ,r 8!5g~r ,r 8!2gHF~r ,r 8!. ~10!

Clearly

Vc5
1

2 E drE dr 8
n~r !n~r 8!gc~r ,r 8!

ur2r 8u
. ~11!

At least for the uniform gas of fixed densityn, we can also
write @19#

Ec5
1

2 E drE dr 8
n~r !n~r 8!ḡc~r ,r 8!

ur2r 8u
, ~12!

ḡc~r ,r 8!5E
0

1

dl gc
l~r ,r 8!, ~13!

where gc
l is the correlation contribution to the pai

distribution function for electron-electron interactionl/
ur2r 8u. The coupling constantl varies from 0~the Hartree-
Fock wave function! to 1 ~the physical wave function!. Since
Eq. ~5! must hold for everyl ~including thel50 or Hartree-
Fock limit!

E dr 8 n~r 8!gc
l~r ,r 8!50. ~14!

Typically gc
l(r ,r 8) is negative for smallu5ur 82r u, and

positive for largeu. Comparison of Eqs.~11! and ~12! with
Eq. ~14! then suggests that, asgc

l becomes more long range
in u, it must also become deeper at smallu, andEc andVc
must become more negative. The Coulomb cusp condit
which follows from the dominance ofl/ur 82r u asr 8→r , is
03251
e

n,

d

du
gl~r ,r1u!uu505lgl~r ,r !. ~15!

III. COLLE-SALVETTI APPROACH

With the concepts of the previous section in mind, co
sider the antisymmetric CS wave-function@1# for a spin-
unpolarized system

CCS~r1s1 ,...,rNsN!5CHF~r1s1 ,...rNsN!

3)
i . j

@12w~r i ,r j !#, ~16!

where

w~r ,r 8!5exp@2b2~R!u2#H 12F~R!S 11
u

2D J ~17!

is a Jastrow correlation factor. Hereu5ur 82r u and R5(r
1r 8)/2. Equation~17! has a cusp atu50, and vanishes as
u→`. The inverse radius of the correlation hole is chosen
be

b~R!5qn1/3~R!, ~18!

whereq52.29 from a fit of Eq.~19! of Ref. @1# to the cor-
relation energy of the He atom. For atoms, this fit partia
compensates@8# for the CS neglect ofTc and other approxi-
mations.

Having defined the CS approximation to the wave fun
tion, we must discuss the CS approximation to the corre
tion energy. First, Colle and Salvetti@1# assumed that
r1(r ,r 8)5r1

HF(r ,r 8), making Tc50; this is a much more
doubtful approximation than the assumptionn(r )5nHF(r ),
as we shall see. Second, they argued thatw is small because
of strong damping by the Gaussian function in Eq.~17!, so
that

r2
CS~r ,r 8!5r2

HF~r ,r 8!@12w~r ,r 8!#2, ~19!

which is properly positive and satisfies the cusp condition
Eq. ~15! for l51. The corrections to Eq.~19! that arise when
w is not small, but which vanish in two-electron system
have been discussed by Soirat, Flocco, and Massa@20#. Thus
we arrive at Eq.~9! of Ref. @1#,

Ec
CS5

1

2 E drE dr 8 r2
HF~r ,r 8!

@w2~r ,r 8!22w~r ,r 8!#

ur 82r u
,

~20!

which via Eq.~8! expresses the correlation energy as a fu
tional of the Hartree-Fock one-particle density matrix.

Equation ~20! is the most fundamental level of Colle
Salvetti theory, and the one tested for the uniform gas
McWeeny@5#. We note that several further approximatio
are made to arrive at Eq.~19! of Ref. @1#, which has been
used to estimate the dynamical correlation energy for m
ecules@2# and is the basis of the Lee-Yang-Parr density fun
tional @3#.
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To complete Eq.~20!, Colle and Salvetti had to find a
expression forF(R) in Eq. ~17!. To do so, they wrote down
the equationn(r )2nHF(r )50, with n(r ) constructed from
the right-hand side of Eq.~3!. The result, Eq.~10! of Ref.
@1#, imposes the constraint of Eq.~14! for l51, as pointed
out in Ref.@8#. However, the resulting integral equation f
F(R) cannot always be solved explicitly without further a
proximation. Colle and Salvetti assumed that the densitn
varies little over the range ofw, an assumption which is
error-free for the uniform gas. Thus they could have obtain
an algebraic quadratic equation forF(R) ~the ‘‘full qua-
dratic equation’’!, which could have been solved exactl
Instead they made a further approximation to simplify t
coefficients of this quadratic equation, solved it in the hig
and low-density limits, and interpolated between these lim
with the simple formula

F~R!5Apb~R!/@11Apb~R!#. ~21!

IV. UNIFORM ELECTRON GAS USING EQ. „20…

Now let us consider an electron gas with a uniform de
sity

n53/~4pr s
3!5kF

3/~3p2!. ~22!

The Hartree-Fock pair-distribution function is

gHF~y!512
1

2
@3~siny2y cosy!/y3#2, ~23!

wherey5kFu. The exact correlation energy per electron

ec~r s!5tc~r s!1vc~r s!5E
0

`

du 2pnuḡc~r s ,u!, ~24!

where the potential energy of correlation is

vc~r s!5E
0

`

du 2pnugc~r s ,u!. ~25!

FIG. 1. Correlation energy per particle of the uniform electr
gas in three dimensions, as a function of the density parameterr s of
Eq. ~22!. ec is the total correlation energy andvc the potential
energy of correlation. We compare Eq.~9! of CS ~Ref. @1#! with
McWeeny’s@5# parametrization thereof and with ‘‘exact’’ PW va
ues from Ref.@21#.
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The functionsec andvc are accurately known@21#, as are the
functionsḡc andgc @14,22,23#, from a combination of theo-
retical constraints and diffusion Monte Carlo simulations.

The CS approximation of Eq.~20! for the uniform gas is

ec
CS~r s!5vc

CS~r s!5E
0

`

du 2pnugc
CS~r s ,u!, ~26!

gc
CS~r s ,u!5gHF~kFu!@w2~r s ,u!22w~r s ,u!#, ~27!

wherew is given by Eqs.~17!, ~18!, and~21!.
Figure 1 shows thatec

CS is only about14 of the trueec , and
only about1

6 of the truevc , for the range of valence electro
densities 0.5&r s&10. As a check of our evaluation of th
integral of Eq.~26!, two of us wrote independent compute
programs which gave the same answer. Figure 1 also sh
an analytic parametrization ofec

CS by McWeeny@5#, which is
close toec but not toec

CS.
The real-space analysis of the correlation energy is

integrand of Eq.~24! or Eq. ~25!, sinceec is the area under
the curve of 2pnuḡc(r s ,u) vs u. For r s53, Fig. 2 compares
the CS and ‘‘exact’’ real-space analyses. At smallu,gc

CS imi-
tatesgc , but gc

CS is of much shorter range inu than eithergc

or ḡc .
Figure 3 shows the correlation contribution to the on-t

(u50) pair-distribution function, plotted as a function ofr s .

FIG. 2. Real-space analysis of the correlation energy of Fig
for r s53. The area under each curve is the corresponding corr
tion energy, according to Eqs.~24!–~26!. The ‘‘exact’’ PW values
are from Ref.@14#.

FIG. 3. On-top pair-distribution functiongc(r s ,u50) for the
uniform electron gas, as a function ofr s .
3-3
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We see thatgc
CS(r s ,u50)5 1

2@F2(R)21# imitatesgc(r s ,u
50) in the high density (r s→0) limit. Why this should be
so, in view of the incorrect long-range behavior ofgc

CS(r s ,u)
for the uniform electron gas, is something we do not und
stand.@Since in an atomgc(r ,r ) is determined mainly by the
local spin densities atr @24#, a roughly correctgc

CS(r s ,u
50) might be inherited from the fit to the He atom.#

Also of interest is the Fourier transform

Sc~r s ,k!5E
0

`

du 4pu2ngc~r s ,u!
sinku

ku
. ~28!

We find

vc~r s!5
1

~2p!3 E
0

`

dk 4pk2
4p

k2

1

2
Sc~r s ,k!, ~29!

which decomposes the correlation energy into contributi
from dynamic density fluctuations of various wave vectorsk.
Figure 4 shows the wave-vector-space analysis of the co
lation energy forr s53. The large-u error ofgc

CS(r s ,u) mani-
fests here as a small-k error.

By Eq. ~14! we should find

lim
k→0

Sc~r s ,k!5E
0

`

du 4pu2ngc~r s ,u!50. ~30!

The inset to Fig. 4 shows that the CS correlation does
exactly satisfy this condition, except in the limitr s→0. In
fact, the CS correlation hole contains a few hundredths o
electron. We can easily fix this problem, at least for the u
form gas, by replacing Eq.~21! by the exact solution of the
full quadratic equation forF; this makes the CS correlatio
energy more negative than the CS curve in Fig. 1~by 45% at
r s50, and by 75% atr s510), but still far from the exactec .

The most serious error in Eq.~20! for the uniform elec-
tron gas clearly arises from the strong Gaussian dampin
w in Eqs.~17! and ~18!. The correct long-range behavior o
gc(r s ,u) in the electron gas is;u24 @14,22#. To achieve
this from the wave function of Eq.~16! requires@25# that
w}u21 at largeu. Whenw decays this slowly, the justifica
tion for Eq. ~19! is also lost. In fact, ifw}u21 at largeu,

FIG. 4. Wave-vector-space analysis of the correlation energ
Fig. 1 for r s53. The area under each curve, multiplied by 2kF /p,
gives the corresponding energy in hartree. The inset shows the
violation of the sum rule of Eq.~30!.
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then Eq.~19! would wrongly predictgc}u21 at largeu, a
behavior which is not only wrong but manifestly inconsiste
with Eq. ~14!.

In summary, key ingredients of the Colle-Salvetti fun
tional @Eq. ~9! of Ref. @1#, or Eq. ~20! of this article# are
inappropriate to the uniform electron gas: the strong Gau
ian damping in Eqs.~17! and ~18!, and the form of the pair
density in Eq.~19!. For the He atom, on the other han
Soirat et al. @20# evaluated the same functional and fou
Ec

CS520.038 hartree, close to the exact20.042 hartree.
Without a long-range part, the CS real-space analysis for
correlation energy~Fig. 2! cannot describe the uniform elec
tron gas, although it describes the He atom better~Fig. 5 of
Ref. @26#!. While the long-range part of the CSgc is also
seriously wrong in an atom@8#, this error is energetically
important for the electron gas, and not for the atom~where
the probability of finding two electrons far apart is very low!.

V. UNIFORM ELECTRON GAS USING OTHER
COLLE-SALVETTI EXPRESSIONS

Thus far, we have only been concerned with our Eq.~20!
@Eq. ~9! of Ref. @1# or Eq. ~6.10! of Ref. @5# #. The double
integral overr and r 8 makes evaluation of this expressio
cumbersome for any nonuniform density. Colle and Salv
@1# therefore changed variables toR5(r1r 8)/2 and
u5r2r 8, expanded r2

HF(R2u/2,R1u/2)' 1
2 n2(R)@1

1K(R)u2/6#, and performed theu integration analytically
to obtain Eqs.~15! and~16! of Ref. @1#, which expressEc as
an integral overR alone of a function ofn(R) and K(R).
For the uniform electron gas, whereK56kF

2/5, Eqs.~15! and
~16! of Ref. @1# yield a correlation energy per electron

ec52
0.0220910.00642r s

110.79431r s10.1577r s
2 , ~31!

which is very close to the ‘‘CS Eq.~9!’’ curve in our Fig. 1.
Amaral and McWeeny@11# corrected Eq.~16! of Ref. @1#,
but the correction to Eq.~31! (0.00642→0.00432) is small.

Although Eqs.~15! and ~16! of Ref. @1# seem to produce
the desired simplification of Eq.~9! of Ref. @1#, Colle and
Salvetti replaced the function ofn(R) andK(R) in their Eq.
~16! by another function of the same variables in Eq.~19! of
Ref. @1#, the final form of the CS functional. The new func
tion was chosen phenomenologically to yield a good
proximation to the correlation energy densityec(R) of the
He atom constructed from Eq.~9! of Ref. @1#. For the uni-
form electron gas, Eq.~19! of Ref. @1# yields a correlation
energy per electron

ec52
0.0491810.01863e20.40828r s

110.56314r s
, ~32!

which surprisingly is about twice the ‘‘CS Eq.~9!’’ curve of
our Fig. 1. The Lee-Yang-Parr~LYP @3#! density functional
for the correlation energy is found from Eq.~19! of Ref. @1#
by making a density-gradient expansion ofK(R). Since this
expansion is exact for a uniform density, Eq.~32! is also the

of
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LYP correlation energy for the electron gas. It is higher th
the exact correlation energy by about 0.02 hartrees~Fig. 5 of
Ref. @4#!.

Table I compares the various CS expressions with
another and with the ‘‘exact’’ correlation energy for the ele
tron gas withr s53. Important long-range correlations a
missing in all variants of CS theory.

A correct description of the uniform electron gas is r
quired not only for an accurate description of the solid m
als@4#, but also to make a correlation energy functional mo

TABLE I. Correlation energy per electron for the uniform ele
tron gas with density parameterr s53, exactly and in various ver
sions of Colle-Salvetti theory.

Expression ec(r s53) ~hartree!

‘‘Exact’’ ~Ref. @21#! 20.0370
Eq. ~9! of Ref. @1# 20.0098
Eq. ~15! of Ref. @1# 20.0086
Eq. ~2.6! of Ref. @11# 20.0073
Eq. ~19! of Ref. @1#; Ref. @3# 20.0203
em

. B

T
6
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transferable to a variety of systems. Some more-recent
relation energy functionals@4# that make use ofn(r ) and its
gradients, and sometimes ofK(r ), are correct by construc
tion for the uniform gas, accurate for atoms, and~when com-
bined with similar exchange functionals! useful for molecu-
lar atomization energies.

The description of long-range correlation by densi
functional approximations, for use withexactexchange, is a
key problem for the future. Perhaps this problem will
solved by constructing the correlation energy from t
Hartree-Fock~or Kohn-Sham! one-particle density matrix, in
the same spirit but not in the same way as in the Co
Salvetti method.

Note added in proof.A very recent critical analysis of the
Colle-Salvetti functional for two-electron atoms is presen
in Ref. @27#.
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