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Uniform electron gas from the Colle-Salvetti functional: Missing long-range correlations
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Colle and Salvett{Theor. Chim. Acta37, 329 (1975] approximated the correlation energy of a many-
electron system as a functional of the Hartree-Fock one-particle density matrix. The most fundamental and
least approximate version of this functiongéheir Eq.(9)] is found to yield only 25% of the true correlation
energy of a uniform electron gas, and not 100% as previously believed. While short-range correlations are
described surprisingly well by this approach, important long-range correlations are missing. Such correlations
are energetically negligible in atoms, but cannot be ignored in more extended systems, including solids as well
as molecules.

DOI: 10.1103/PhysRevA.63.032513 PACS nuntder31.15.Ew, 71.10.Ca, 71.15m, 31.25.Eb

I. INTRODUCTION II. ELECTRON PAIR DENSITIES, ETC.

The correlation energy is the correction to the Hartree- We begin with a review of definition$18], le_en an
) - N-electron wave functionW(r,o4,...,Iyoy), We define the
Fock energy of a many-electron system. Starting from a pairg ;. density
correlated many-electron wave function, Colle and SaIvettP
[1,2] approximated the correlation energy as a functional ofp,(r,r')=N(N—1)

the one-particle Hartree-Fock density matrif™ (r,r’). N N
Later Lee, Yang, and PafB] transcribed the Colle-Salvetti x dr.lw , 2 1
(CS approximation into a widely used gradient-corrected aizzl JH Yoo, on) S (@)

functional of the electron density(r). The CS work also _ ) _
provided a motivation for more recent density functionalsthe one-particle density matrix

that employ the orbital kinetic energy densjtj. N
An early study by McWegn{/S] found that the most fun- pr(F =N W (11, T 9T AN
damental and least approximate form of the CS approach, oi=1

Eqg. (9) of Ref. [1], gave an accurate correlation energy per
electron for the electron gas of uniform density, supporting
the underlying CS approach. Encouraged by this result, Raand the electron density

jagopal, Kimball, and BanerjeRKB) [6] made a CS-like

ansatz for the pair-distribution function of a magnetic elec- 1 , ,

tron gas; long-range correlations were later built into the n(l’)=p1(l’,l’)=mf dr” pa(r.r"). ©
RKB model by Contini, Mazzone, and Sacch¢ft].

In the present work, however, we have not been able tyVhile n(r)dr is the probability of finding an electron fr,
reproduce the original result of Ré6]. We find instead that P2(r.r')dr dr’ is the probability of finding one electron in
Eq. (9) of Ref.[1] underestimates the magnitude of the cor-dr ar_1d another irdr’. We also define the pair-distribution
relation energy by about a factor of 4. Our result is consofunctiong(r,r):

X‘P(r,o'l,rza'z,...rNO'N)drz...drN, (2)

nant with a recent critique by Singh, Massa, and S§8hof FEY=nioncralr 4
the CS wave function for the two-electron atom, which in par,r)=n(r)n(rig(r.r'). @
particular points out that it is not normalized. By integrating Eq(1) overr’, we find that

It is widely known that the CS correlation energy func-
tional is accurate for smaller ator®,10], but not for mol-
ecules where it misses important long-range correlations f dr’n(r)fg(r,r')—1]=-1. ®)
[2,11,13 which must be described by other approaches such
as the configuration interaction method. We show here than other words, the densityn(r’)[g(r,r’')—1] of the
the electron gas also has energetically important long-rangexchange-correlation hole around an electron egpresents
correlations which are missed by all variants of the CS cora deficit of one electron.
relation energy functional. In both the electron §a8,14 The Hartree-Fock wave functiolf "F(r o q,....,ryon) is
and molecule§15-17, the exact correlation hole has a long- the energy-optimized single-determinant approximation to
range part which is approximately cancelled by the long-V, and the correlation energy is
range part of the exact exchange hole, an effect which could R R
have been but was not included in the CS approach. Ec=(V|H|W¥)— (WHF|H|wHF), (6)
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where H is the Hamiltonian. The Hartree-Fock density is \ RN
often close to the true density(r), and for the uniform au’ (1 +Wlu=o=Ag"(r,r). (15
electron gas these densities are identical. For simplicity, we
shall assumen(r)=n"""(r) in the equations that follow.
Then, in Hartree atomic units,

Eczfdrfdr’

Ill. COLLE-SALVETTI APPROACH

With the concepts of the previous section in mind, con-
sider the antisymmetric CS wave-functi¢m] for a spin-
unpolarized system

1
—EVE,)[pl(r,r'>—p§‘F<r,r'>]

VE(ry0q,...rnon) =V (10, Iyo
fdrf dr’ — |[p2(r r'y— p (r,rr)]’ 7) 191 NON) (ryoy NON)
XII 1—o(ri,ril, 16
where the first term is the kinetic energy of correlatibn =] [ (ri J)] (16

and the second is the potential energy of correlatfn
Moreover, for a spin-unpolarized or closed-shell system  Where

1 Y — _n2 2 _ E
S =nmna) =R @® e(r.r’)=exd - FR)u ](1 PRI 1+3)) @D
is a Jastrow correlation factor. Hete=|r’' —r| and R=(r
B ey =22 ™ (e R, (99  tr’)/2. Equation(17) has a cusp an=0, and vanishes as
a u—. The inverse radius of the correlation hole is chosen to
be

where they'F(r) are the occupied Hartree-Fock orbitals.
Now we introduce the correlation contribution to the pair- B(R)=qn*3(R), (18)

distribution function ]
whereq=2.29 from a fit of Eq.(19) of Ref.[1] to the cor-

gc(r.r)=g(r,r")y—g"(r,r"). (10  relation energy of the He atom. For atoms, this fit partially
compensateg3] for the CS neglect o . and other approxi-
Clearly mations.
Having defined the CS approximation to the wave func-
f f dr’ n(r)n(r )Qc(r r') 11) tion, we must discuss the CS approximation to the correla-
r'| tion energy First, Colle and Salvetfil] assumed that
pa(r,r’)= p F(r,r"), making T,=0; this is a much more
At least for the uniform gas of fixed density we can also  doubtful approximation than the assumptio(r)=n"F(r),
write [19] as we shall see. Second, they argued thia small because
of strong damping by the Gaussian function in ELj7), so

Jdrf dr ,n(r)n(r’ )gT(r T )' 12 that

pSr,r ) =pSF(r e[ 1—e(r,r")1% (19

1

E:(r,r’):f dx gh(r,r'), (13)  which is properly positive and satisfies the cusp condition of
0 Eq. (15) for A=1. The corrections to E¢19) that arise when

¢ is not small, but which vanish in two-electron systems,

where g; is the correlation contribution to the pair- paye heen discussed by Soirat, Flocco, and ME2aThus
distribution function for electron-electron interactiox/ we arrive at Eq(9) of Ref. [1],

[r—r’|. The coupling constant varies from O(the Hartree-

Fock wave functiopto 1 (the physical wave functionSince cs_ [Q2(r,r")—2¢(r,r")]
Eq. (5) must hold for every (including thex =0 or Hartree- E¢ Jdrf dr’ p5f(r.r’) T :
Fock limit) (20)
Pl N ) — which via Eq.(8) expresses the correlation energy as a func-
f dr’n(r’)ge(r.r’)=0. (14 tional of the Hartree-Fock one-particle density matrix.

Equation (20) is the most fundamental level of Colle-
Typically gi(r,r’) is negative for smallu=|r'—r|, and  Salvetti theory, and the one tested for the uniform gas by
positive for largeu. Comparison of Eqs(11) and(12) with  McWeeny[5]. We note that several further approximations
Eq. (14) then suggests that, g% becomes more long ranged are made to arrive at Eq19) of Ref. [1], which has been
in u, it must also become deeper at smallandE. andV,. used to estimate the dynamical correlation energy for mol-
must become more negative. The Coulomb cusp conditiorecules[Z] and is the basis of the Lee-Yang-Parr density func-
which follows from the dominance of/|r' —r| asr’—r, is  tional [3].
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To complete Eq(20), Colle and Salvetti had to find an 0.01

expression fob (R) in Eq. (17). To do so, they wrote down T 0005 |

the equationn(r) —n"F(r)=0, with n(r) constructed from 3 ol

the right-hand side of Eq.3). The result, Eq(10) of Ref. § ‘

[1], imposes the constraint of E¢L4) for A=1, as pointed £ 0005 R

out in Ref.[8]. However, the resulting integral equation for S 001} ~
®(R) cannot always be solved explicitly without further ap- ‘3 0015 | /'/
proximation. Colle and Salvetti assumed that the density g 002 | \ ¥

& :

varies little over the range op, an assumption which is
error-free for the uniform gas. Thus they could have obtained -0.025 o D : : '
an algebraic quadratic equation fdr(R) (the “full qua-
dratic equation’, which could have been solved exactly.
Instead they made a further approximation to simplify the F|G. 2. Real-space analysis of the correlation energy of Fig. 1
coefficients of this quadratic equation, solved it in the high-for r,=3. The area under each curve is the corresponding correla-
and low-density limits, and interpolated between these limitsion energy, according to Eq&24)—(26). The “exact” PW values

u (bohr)

with the simple formula are from Ref[14].
®(R)=7B(R)[1+TB(R)]. (21)  The functionse. andv . are accurately knowf21], as are the
functionsg, andg. [14,22,23, from a combination of theo-
IV. UNIFORM ELECTRON GAS USING EQ. (20) retical constraints and diffusion Monte Carlo simulations.

The CS approximation of Eq20) for the uniform gas is

Now let us consider an electron gas with a uniform den-
sity o
egs(rs):vgs(rs)zf du2mnugi(rg,u), (26
n=3/(4mrd)=k/(372). (22 0

The Hartree-Fock pair-distribution function is 9 rs,u) =g (kew)[@%(rs,u) —20(rs,u)],  (27)

e 1 _ . where ¢ is given by Eqs(17), (18), and(21).
9™ (y)=1~5[3(siny—y cosy)/y"]%, (23) Figure 1 shows thatSis only about: of the truee,, and
only abouts of the truev.., for the range of valence electron
wherey=Kkgu. The exact correlation energy per electron is densities 0.5r;=<10. As a check of our evaluation of the
integral of Eq.(26), two of us wrote independent computer
o _ programs which gave the same answer. Figure 1 also shows
€c(rs) =te(rg) +velrs) = fo du2mnug(rs,u), (24 g analytic parametrization efS by McWeeny{5], which is
close toe, but not toeS®.
where the potential energy of correlation is The real-space analysis of the correlation energy is the
integrand of Eq(24) or Eqg.(25), sincee, is the area under

N the curve of 2rnug,(rs,u) vsu. Forr =3, Fig. 2 compares
velrs) = o du2mnuge(rs,u). (25 the CS and “exact” real-space analyses. At sma8CSimi-
tatesg., butgS®is of much shorter range imthan eitherg,
0 orge.

Figure 3 shows the correlation contribution to the on-top
(u=0) pair-distribution function, plotted as a functionrqf.

@
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; . . : : 2 oal
0 2 4 r 6 8 10 S gas |
s 04 |
FIG. 1. Correlation energy per particle of the uniform electron 'O:g I
gas in three dimensions, as a function of the density parametér he
Eqg. (22). €. is the total correlation energy ang. the potential I
energy of correlation. We compare E®) of CS (Ref. [1]) with
McWeeny’s[5] parametrization thereof and with “exact” PW val- FIG. 3. On-top pair-distribution functiog.(rs,u=0) for the
ues from Ref[21]. uniform electron gas, as a function f.
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0.03 =3 | then Eq.(19) would wrongly predictg.<u™! at largeu, a
behavior which is not only wrong but manifestly inconsistent
002 ¢ 1 with Eq. (14).
< 007 R S /004l 41 In summary, key ingredients of the Colle-Salvetti func-
% 042 L} 0.03 | 1 tional [Eq. (9) of Ref. [1], or Eq. (20) of this articlgd are
b /002 $CS(k0) | inappropriate to the uniform electron gas: the strong Gauss-
VAT A/ o0t ° 11 ian damping in Eqs(17) and (18), and the form of the pair
022 | 0 2 ‘I‘r 6 8 101 density in Eq.(19). For the He atom, on the other hand,
027 ) L8 Soirat et al. [20] evaluated the same functional and found
0 1 15 2 25 ESS=—0.038 hartree, close to the exaet0.042 hartree.
k/2ke Without a long-range part, the CS real-space analysis for the

orrelation energyFig. 2) cannot describe the uniform elec-
ron gas, although it describes the He atom bdfég. 5 of
Clgef. [26]). While the long-range part of the C& is also
Seriously wrong in an atorfi8], this error is energetically
important for the electron gas, and not for the atomhere
the probability of finding two electrons far apart is very Jow

FIG. 4. Wave-vector-space analysis of the correlation energy o
Fig. 1 forrg=3. The area under each curve, multiplied s 27,
gives the corresponding energy in hartree. The inset shows the
violation of the sum rule of Eq30).

We see thagS(rs,u=0)=3 ®*(R)—1] imitatesg,(rs,u
=0) in the high density ;—0) limit. Why this should be
S0, in view of the incorrect long-range behaviorgdf(r ¢ ,u) V. UNIFORM ELECTRON GAS USING OTHER
for the uniform electron gas, is something we do not under- COLLE-SALVETTI EXPRESSIONS

stand[Since in an atong.(r,r) is determined mainly by the  Thuys far, we have only been concerned with our @)
local spin densities at [24], a roughly correctgi™Xrs,u  [Eq. (9) of Ref.[1] or Eq. (6.10 of Ref.[5]]. The double
=0) might be inherited from the fit to the He atgm. integral overr andr’ makes evaluation of this expression
Also of interest is the Fourier transform cumbersome for any nonuniform density. Colle and Salvetti
. ink [1] therefore changed variables t®=(r+r’)/2 and
SC(rSik):f du4wu2ngc(rs,u)m (28) u=r—r’, expanded pE'F(R—u/Z,R+u/2)~%nZ(R)[l
0 ku +K(R)u?/6], and performed the integration analytically
to obtain Egs(15) and(16) of Ref.[1], which expres&, as
an integral ovemR alone of a function oh(R) and K(R).
1 - Am 1 For the uniform electron gas, whele= 6k,2:/5, Egs.(15 and
ve(rg)= 2n)? fo dk47-rk2F ESC(rS,k), (290  (16) of Ref.[1] yield a correlation energy per electron

We find

which decomposes the correlation energy into contributions = 0.02209+ 0.00642 (31

€ - [}
from dynamic density fluctuations of various wave vectors ¢ 1+0.79431,+0.1577;
Figure 4 shows the wave-vector-space analysis of the corre-

lation energy forr ;=3. The largeu error ofgSr,u) mani- ~ Which is very close to the “CS Eq9)” curve in our Fig. 1.
fests here as a smadlerror. Amaral and McWeeny11] corrected Eq(16) of Ref. [1],

By Eq. (14) we should find but the correction to Eq:31) (0.00642-0.00432) is small.
Although Eqgs.(15) and(16) of Ref.[1] seem to produce
) o ) the desired simplification of Eq9) of Ref. [1], Colle and
Ii'”:) Se(rs, k)= fo dudmung.(rs,u)=0. (30  gajvetti replaced the function o R) andK(R) in their Eq.
- (16) by another function of the same variables in Etp) of

The inset to Fig. 4 shows that the CS correlation does ndRef-[1]; the final form of the CS functional. The new func-
exactly satisfy this condition, except in the limit—~0. In  ton was chosen phenomenologically to yield a good ap-
fact, the CS correlation hole contains a few hundredths of aRroximation to the correlation energy densiy(R) of the
electron. We can easily fix this problem, at least for the uni-He atom constructed from E¢9) of Ref. [1]. For the uni-
form gas, by replacing Eq21) by the exact solution of the form electron gas, Eq.19) of Ref. [1] yields a correlation
full quadratic equation fofb; this makes the CS correlation €N€rgy per electron

energy more negative than the CS curve in Figoyl 45% at
r<=0, and by 75% at,=10), but still far from the exacdt,.

The most serious error in EQR0) for the uniform elec-
tron gas clearly arises from the strong Gaussian damping of
¢ in Egs.(17) and(18). The correct long-range behavior of which surprisingly is about twice the “CS E¢P)” curve of
g.(rs,u) in the electron gas is-u~* [14,22. To achieve our Fig. 1. The Lee-Yang-PafLYP [3]) density functional
this from the wave function of Eq16) requires[25] that  for the correlation energy is found from E@{.9) of Ref.[1]
pocu~ ! at largeu. Wheng decays this slowly, the justifica- by making a density-gradient expansionkR). Since this
tion for Eq. (19) is also lost. In fact, ifexu™?! at largeu, expansion is exact for a uniform density, Eg§2) is also the

0.04918+0.0186% 0408285
B 1+0.56314, ’

(32

€Ec=
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TABLE I. Correlation energy per electron for the uniform elec- transferable to a variety of systems. Some more-recent cor-
tron gas with density parameteg=3, exactly and in various ver- relation energy functionalgt] that make use ofi(r) and its
sions of Colle-Salvetti theory. gradients, and sometimes Kf(r), are correct by construc-
tion for the uniform gas, accurate for atoms, amthen com-

Expression ec(rs=3) (hartreg bined with similar exchange functionalsseful for molecu-
“Exact” (Ref. [21]) —0.0370 lar atom|zat|op energies. ' .
Eq. (9) of Ref.[1] —0.0098 Th_e descrlpthn of long-range c_orrelatlon by de_nS|ty-

- functional approximations, for use witxactexchange, is a
Eq. (15 of Ref.[1] 0.0086 . -
Eq. (2.6) of Ref. [11] _0.0073 key problem for the.future. Perhaps. this problem will be
Eq. (19) of Ref. [1]: Ref. [3] —0.0203 solved by constructing the correlation energy from the

Hartree-Fockor Kohn-Shamone-particle density matrix, in

the same spirit but not in the same way as in the Colle-

Salvetti method.

LYP correlation energy for the electron gas. Itis higher than  Note added in proofA very recent critical analysis of the

the exact correlation energy by about 0.02 hart(€es 5 of  Colle-Salvetti functional for two-electron atoms is presented

Ref. [4]). in Ref.[27].
Table | compares the various CS expressions with one

another and with the “exact” correlation energy for the elec-

tron gas withr,=23. Important long-range correlations are

missing in all variants of CS theory. This work was supported in part by the U.S. National
A correct description of the uniform electron gas is re-Science Foundation under Grant No. DMR98-10620, and in

quired not only for an accurate description of the solid metpart by theFondazione Angelo Della Riccidirenze, Italy.

als[4], but also to make a correlation energy functional moreWe thank V. Sahni and L. Massa for helpful comments.
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