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Hyperspherical elliptic harmonics and their relation to the Heun equation
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Hyperspherical elliptidHSE) harmonics are the eigenfunctions of the generalized angular momentum op-
erator obtained by separating variables in HSE coordinates. These functions depend on accessory parameters
characterizing the HSE coordinate system and present a more flexible basis on a hypersphere as compared with
more familiar hyperspherical polar harmonics. We discuss a special set of HSE harmonics arising in hyper-
spherical treatments of the three-body problem in the HSE coordinate system introduced in an earlier paper
[Tolstikhin et al, Phys. Rev. Lett74, 3573(1995]. The separation of variables in these coordinates leads to
the Heun equation, which is a generalization of the Gauss hypergeometric equation. We develop an efficient
method to solve the corresponding one-dimensional eigenvalue problem and thus construct the HSE harmon-
ics, which opens a way for their application in the studies of various atomic, molecular, and nuclear three-body
systems.
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[. INTRODUCTION adopt the second approach, therefore we shall not discuss a
group-theoretical meaning @, but we remark that this set

The Laplace operator id-dimensional space expressed in may also include some additional quantum numbers like par-

hyperspherical coordinates can be presented in the form ity corresponding to discrete subgroups@fd). For anyd

=2, Eq.(2) allows separation of variables in an infinite num-

1 4 9 A2 ber of coordinate systems. They can be divided into classes,

== a_RRd_la_R_ — (1) each class consisting of coordinate systems related to each

R R other by rotations, and the different classes leading to sepa-

h is the h . 2is th i | ration equations having different mathematical structure.
whereR is the hyperradius and® is the generalized angular s can be illustrated by the example= 3. It is well-known

momentum operator squared. Hyperspheriet$) harmon-  {hat the Laplace operator in three-dimensional space allows
ics are defined as the eigenfunctionsAof [1], separation of variables in tw@nd only twg spherical coor-
) _ dinate systems: these are spherical polar and spherical ellip-
[AT=A(A+d=2)]Y,(2)=0, @ ic (also known as conicdl7,8], spheroconal9,10], sphe-
roelliptic [11], and elliptic [12]) coordinates. Of the two
A=012..., angular separation equations in the spherical polar coordi-
] ) ) nates the nontrivial one is of the Legendre type, while both
where() is a collective notation for a set ofit-1) hyper-  gngular separation equations in the spherical elliptic coordi-
angles parametrizing the hypersphere andenotes a set of npates are of the Lamype. The Legendre equation can be
(d—1) quantum numbers uniquely definingandY,(Q).  reduced to the hypergeometric equation and solved “analyti-
HS harmonics play an important role in many applicationscally,” i.e., it is very well studied. This greatly simplifies the
providing a basis for expanding solutions to various prob-work with spherical polar harmonics and explains why in an
lems in classical and quantum physics. As the most inteneverwhelming majority of application-oriented treatises deal-
sively developed direction during the past two decades, anghg with spherical harmonics the spherical polar coordinates
the one closest to our own interests, we mention their appliare employed. The Lamequation is much less studied and,
cations in the theory of few-body systerfs-5]; see also a although basic discussions of spherical elliptic harmonics
recent review articl¢6] and references therein. HS harmon-can be found in several fundamental mathematical texts
ics are closely related to the rotation grodpd) and can be [9,10,13, the methods to work with these functions are not
constructed by the algebraic methods. Another approach teufficiently developed and original papers on this subject still
construct these functions is to explicitly expre&s$ as a  continue to appedrl2]. The variety of the different classes
differential operator irf) and solve Eq(2). In doing so one  of separable coordinate systems on a hypersphedf@ is
has to start by choosing a coordinate system in whichBq. larger; see, e.g., Reff11,14), where the casd=4 is ana-
allows separation of variables. The coordinate system speciyzed. However, the situation is similar to that fo=3 in
fies the set of hyperanglg3; the quantum numbers then  the sense that one can distinguish hyperspherical (idBP
acquire a meaning of the numbers of zeros of the solutions tand hyperspherical elliptiHSE) coordinate systems leading
the corresponding separation equations. In this paper W the hypergeometric and Lanw, more generally, Heun
separation equations, respectively. For the same reasons as
above, all known to us studies dealing with HS harmonics
*Email address: oleg@muon.imp.kiae.ru and their applications employ HSP coordinates and consider
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only HSP harmonics; see, e.g., Réfs-6]. Meanwhile, HSE  In the applications to the three-body probl¢fb—24 vy is

harmonics provide much more flexibility in choosing a basisdefined by the masses of particles; here we assumeythat

in the best way suiting the needs of a particular physicamay take arbitrary values in the intervd). The freedom in

problem, which in our opinion warrants more detailed studychoosing this parameter reveals the mentioned above flex-

of and closer acquaintance with these functions. ibility of the HSE coordinate system. In these coordinates the
In this paper we discuss a special set of HSE harmoniceperatorAj is given by[15]

arising in hyperspherical treatments of the three-body prob-

lem in the HSE coordinates introduced in Rf5]. Finding 5 —16

this coordinate system has led to the development of a neWAo:W

powerful method for studying various three-body systems

with Coulomb[15-21] and moleculaf22-24 interparticle )

interactions. Further extensions of this approach require dg4aving in mind to extend the present construction to the case

veloping appropriate analytical and numerical techniques, & 0, we consider a more general operator,
task that has motivated the present paper and is partially

addressed here. In the following, we shall always keep in 4s2m?
mind applications to the three-body problem to be discussed AZ=AS+

J J J J
(?—77(00577— c)% + a—g(c— Cosg)(?—g .

1 1

)

+
elsewhere. The HSE harmonics considered in this paper are COS7—Cosg{CoSn—C  C—COosE
functions of the two HSE coordinatesand &, an accessory here
parametery characterizing the HSE coordinate system, andN
an azimuthal quantum numben having a meaning of the c=cos2y, s=sin2y. @

projection of the total angular momentum along a body-fixed

axis. Form=0, they give a new representation of the HS 4 4 qgitional terme m? with a non-negative integen hav-
harmonics for a three-body system with zero total angulafng a meaning of an azimuthal quantum number indeed

mom(far}tum,szo; for m%o' they constiFutiz amore ggneraﬁl arises in treating the three-body problem within the symmet-
§et of functions prqwdmg a new basis for expanplmg theyic top approximatiorf16,18, and we include it here without
internal wave functions of a three-body system wlith 0

. ; ) .__making the analysis more complex.
[27]. The paper is organized as follows: Sec. Il summarizes HSE harmonics are defined by

basic equations in the HSE coordinates, the corresponding

separation eigenvalue problem is analyzed in Sec. lll, its 1
solutions are used to construct the HSE harmonics in Sec. iAﬁ“_U O (7n,é)=0, (8
IV, and Sec. V concludes.

where the factor 1/2 is introduced for consistency with Refs.
[15-24. This equation allows separation of the variabigs

Configuration space of the three-body problem has si@Ndé. Seeking its solutions in the form
dimensionsd=6, so the set of hyperspherical angl@sin
this case consists of five variables. This set can be divided O(7,6)=F(7)9(£) ©)
into two parts,Q)=(Qs,Q,), whereQ) s denotes a set of two ) ) ) _ ) .
angles defining the shape of the three-body triangle, its siz8ne obtains ordinary differential equations defining the func-
being determined by hyperradigs and (), denotes a set of tonsf(#) andg(é),
three angles defining the overall orientation of the system i 4 28m? .
space, e.g., the Euler angles. For states witt0 the wave Sl LAy _ _
function does not depend db,. ThenA? can be considered Tsdn(cosn ©) dn cospy—c +U(cosy CHA_ f(n)=0,
as a differential operator in two shape angles and we (109
denote it byAS. A discussion of the different sets of shape )
angles for the three-body problem can be found in R B
The coordinate systems introduced by Delf25] and Smith 8d_§(C_C°S§) dé c— co_s§+ U(c—cosé)—A|g(§)=0,
and Whitten[26] present two most well-known examples of ) (10b)
HSP coordinates in configuration space. Here we @yt
=(7,&), wheren and ¢ are HSE coordinates introduced in whereA is the separation constant. The possibility to sepa-

II. BASIC EQUATIONS

s?2m?

Ref.[15]. These variables vary in the intervals rate the variables in Eq8) results from the existence of an
additional integral of the motion represented by an operator
—2ysn<2y, (38  commuting withA2 whose eigenvalues are given By In-
deed, as follows from Eqg10), the solutions of Eq(8)
2y<s§E<2m—2v, (3b) having the form(9) also satisfy
wherey is a parameter such that [Y—A]D(7n,€&)=0, (11
o< y<=ml/2. (4) where

032510-2



HYPERSPHERICAL ELLIPTIC HARMONICS AND THEIR . .. PHYSICAL REVIEW A3 032510
- 9 9 Equations(13) remain unchanged upon changing the sign of
(C—COS§)3—77(COS77—C)% 7, so the eigenfunctions with eveedd n are even(odd)
functions of r.

m

 cOS7—COSé

d d The role of Eq.(1339 in the construction of the HSE har-

—(cosy—c) a—g(c—cosf)a—f monics is similar to that of the Legendre equation in the

theory of three-dimensional spherical polar harmonics or of

the corresponding separation equation in the theory of sphe-
. (12 roidal wave functions. This analogy is not accidental since
Eq. (139 is a generalization of the spheroidal equation,
which in turn is a generalization of the Legendre equation, as
will be shown shortly. The Legendre equation can be re-
duced to the hypergeometric equation and, as a consequence,
is very well studied; see, e.g., Chap. 8 in REI8]. The
spheroidal equation is not reducible to the hypergeometric
equation, which essentially complicates its analysis, how-
ever, it also has been intensively studied due to its impor-
tance for many physical applications and a number of prac-
tically useful results have been obtained and are available in
the literature; see, e.g., Chap. 21 in Rdf28] and [29].
‘Equation(13g has even more involved mathematical struc-
ture and we do not know a treatise to be referred to in this
respect. The purpose of this section is to derive some results
relevant to the present paper. Here we show that(Esg
can be reduced to the so-called Heun equation, construct an

1

+2s?m? -
cospy—C C—cosé

Equations (100 must be solved subject to the regularity
boundary conditions fof(#) andg(¢) at the end points of
the intervals(3), which can be satisfied only for certain val-
ues ofU andA. Thus each HSE harmoni®) can be char-
acterized by a pair of eigenvaluesandA or, alternatively,
by a pair of HSE quantum numbers, and n; giving the
numbers of zeros of the functiori$z) andg(¢).

It can be easily seen that Eq40g and(10b) are actually
identical: they amount to the same differential equation con
sidered in different intervals of the independent variable
Equation(10b) can be reduced to E¢10a by substituting
wl2— vy, n+a, —A, andf for y, & A, andg, respectively.
Thus it is sufficient to analyze E4103.

lI. ANALYSIS OF THE SEPARATION EIGENVALUE efficient analytical representation for the solutions of Egs.
PROBLEM IN HYPERSPHERICAL ELLIPTIC (13), and discuss a special class of polynomial solutions de-
COORDINATES fining the HSE harmonics.
Consi . Let us introduce a new variabbe and a new function
onsider the equation
@(x),
22 .
SE(COST— c)i— 2sm +U(cosT— c)+A}T(T)=O, X=si(r2), (163
dr dr cost—c
(133 (x—a)™(x)=T(7), (16b)
Coy=r<2y, T(*2y)<w, (13b) wherea=sirfy=<1. Theng(x) satisfies
2
wherec ands are related toy by Egs.(7). The end points d—+(1 €0 + 17 +1 ca i
7=+24y of the interval ofr are regular singular points of dx? X x=1 x-a/dx
Eqg. (139, each with the characteristic exponerts/2. The
boundary conditiong13b) select the regular solutions at both pX+q (X)=0 17
singularities, i.e., those corresponding to the exporemi2 x(x—1)(x—a) | ¢ '

if m#0 and having no logarithmic terms in their expansions

nearr= =2y if m=0. In this section we shall regard m,  which is a form of the Heun equatioi0,13. The Heun
andU as external parameters that may take arbitrary valuegquation directly generalizes the Gauss hypergeometric
while A will be treated as a spectral parameter. The boundargquation by having one more finite regular singular point.
conditions(13b) can be satisfied only for a discrete set of the The different types of spectral problems that can be formu-
values of A, thus we are dealing with a singular Sturm- lated on the basis of this equation generate several new types
Liouville eigenvalue problem. The eigenvalues and eigenof eigenvalue schemes, which could find numerous applica-

functions of Egs(13) will be denoted by tions in physics, however, the Heun equation is still much
less studied than its hypergeometric relative; reviews of
Ay(yv,mU), T, (ry,mU), n=01,2..., (14  Some recent achievements in this direction can be found in

Ref. [30]. Equation(17) has characteristic exponents 0 and

wheren is the number of zeros of,(7;y,m,U) as a func- €0 at.x=0, 0 ande, atx;l, O.andea atx=a, ande. at
x=o; the parameterp is defined by the exponentg

tion of 7. The eigenfunctions are orthogonal with unit weight ” .
and we normalize them by =e_e,, andqis a spectral parameter. The cases when some

of the exponent differences are equal to 1/2 occupy a special

) position since the Heun equation then allows a broader group

f ’ T (mymWT, (1 y,mU)dr=8,,. (15 of transform_a’gions_. The case when the exponent differences
-2y at all three finite singular points are equal to 1/2 is known as
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the Lameequation; this equation arises when variables in thechoices of the basis functions and found that the fastest con-
three-dimensional Laplace operator are separated in ellipsorergence is achieved with the Jacobi polynomials,

dal coordinate$9,10,13. In our case the parameters in Eq.
(17) are related to those in E¢L3a by

o

e(x)=, @ Pl @ V(2xa-1). (21)
= ! 1( +1+xy1+U/2) k=0
€E==, €177, €a=—M, €+==(M =+ ,
02 2 ? -2 Substituting this expansion into E(.7), one obtains a three-
(188 term recursion relation defining the coefficiemts,
1 _
p=e_e.=g[2m(m+2)-U], (18b) (Bo+Q)@ot+Cop1=0, (223
Axpr-1t (Bt d) o+ Crer+1=0, k=1.2,...,
1 (22b
q=E[A+2aU—4m(1+m—am)]. (180
where
Thus two of the exponent differences are equal to 1/2, which
is known as the Wangerin equati¢8]. A detailed classifi- Ac=alp+(k—1)(k+5—ep)] k(k+46-1)
cation of the different particular cases of the Heun equation k Y3d(2k+6-2)(2k+6—-1)°
and its confluent forms is given in R¢B1]. As follows from (233
Egs.(13b) and(16a), the new variable varies in the interval
0<x=a, i.e., between two singular points of EGQ.7). The a k(k+0)(6—2€,+1)+p(6—-1)

boundary conditions for Eq17) can be obtained from Eqs. Bk~ 3| P (€a=€0) (2k+o—1)(2k+o6+1)
(13) and(16) and consist of the following(i) the solutions of

Eq. (17) must be regular at=a, and (ii) even(odd) solu- +(al2=1)k(k+9), (23b
tions of Eqs(13) are represented by the solutions of ELj) K 1k 1
corresponding to the exponent(©/2) atx=0. _ L (K= et — €t
Consider an equivalence transformation of Eij) to be Ci=alp+(k+e)(k+ 5+ l)J(zk+ 5+1)(2k+6+2)’
used in the following. Let us introduce a new function, (230
- o(X) andé=1-ey—€,. Let A (q) denote the determinant of the
e(x)= o (19 upper-leftkxk block of the tridiagonal matrix multiplying
x*o(x—1) the vector of coefficients, in Egs.(22). Then the values of
: ~ f hich Egs.(22 tisfied be found f th
It can be shown that for; equal to O ore;, i=0,1, ¢(X) 2h:rragelr(i;stic ZZLfati)or?re salistied can be found from the
satisfies an equation of the same form as @q) with the
same values od ande, and the other parameters replaced by Ax(9)=0 (24)
€=~ 20ag, €=€—2ay, (208 for a sufficiently largeK. The characteristic polynomial
5 Ak(q) can be computed for any trial value gffrom the
P=p+ag(2—€e1—€3) t+ a1(2— €y~ €5) + 2agaq recurrence
=p+(Mm+3/2)(agtay)+2agay, (20b) Aog(q)=1, (259
q=0— ag(1—€x) —alag(1—€;) + ai(1—€o) +2apai] A(q)=By+q, (25b)
=q—ag(l+m)—a[(ag+ ay)/2+2apay]. (200

Ap+1(Q) = (Bt @) Ar(q) = ACy-1A¢-1(d), k=1,2,...
We shall distinguish four classes of the solutions of @) (250

according to the following four possibilities in choosing the .
; ~ ) The rate of convergence of expansi@i) can be character-
exponentsyg anday in Eq. (19), whereg(x) is assumed 10 764 py the rootsr, andr, of the quadratic equatior

have only non-negative integer powers in the expansions Br+Cr2=0, whereA, B, andC are the limiting values of
nearx=0 andx=1: (I) ap=a,=0, () ap=0 anda; A B  andC, atk—. In general, convergence is faster

=1/2, () ap=1/2 and a;=0, and (IV) ag=a;=1/2.  ihq |arger the ratidr,/r,|. As can be seen from Eq3), in
Classes | and Il represent even solutions of E4S), and 5/ case

classes lll and IV represent odd ones.
The solutions of Eq(17) can be sought as an expansion in A=ak%4, B=(a—2)k?2, C=ak?4, (26)
terms of a suitable set of functions complete in the interval
xe[0,a]. Let us first consider the solutions regularxat a hence
and corresponding to the exponent xat0, i.e., represent-
ing even solutions of Eqg13). We have analyzed several ro=tarf(y/2), r,=cot(y/2). (27)
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Thus convergence should be fast for smpllbut may be- 2s

come worse ag approachesr/2. The high rate of conver- Ay =—e—ma{0U(l-c)], (28b
gence of expansiofRl) for y not very close tor/2 and for 4
arbitrary values of the other parameters has been confirmed 2(1-c)
by our calculations. The difficulty with the case— 7/2 can A=

be explained as follows. A general solution of Efj7) be- " e
haves~1—-x atx—1, buta—1 asy— /2, and in order

to reproduce this square-root behavior, expans@h) re- and

quires more and more terms. To find an efficient expansion

for the casey— /2 remains an open problem. Using Egs. éx=(n+myycoty)(n+myycoty+1). (28d
16) and(18), functions(21) and the roots of Eq24) can be . : . .
'Erarisforr&eé to the solu(tio)ns of Eq43). In this \j.(vay)one can Together with Eqs(18) :’:1nd+(20) this provides an estimate
construct the even solutions of Eq43). The odd solutions for the initial interval[q, ,q, ]. However, there is no guar-
can be obtained by the same procedure applied after trRht€e that for_ egch thl§ interval contains only one eigen-
equivalence transformatiofl9) with ay=1/2 anda;=0. value, and this is certainly not the case fpr-7/2. Equa-

The described algorithm is based on the well-known propions (25 define a Sturmian sequenceAfCy_,=0 for all
erties of tridiagonal matrixes and is rather standa@@); for ~ k=1,2,...K. As can be seen from Eqd.8), (20), and(23),
example, a similar method is used for constructing spheroil? 0ur case this condition depends on the paramétesdm
dal wave functiong28,29. However, let us discuss briefly and is not generally satisfied. However, a more detailed
one circumstance that plays a decisive role in making thiginalysis shows tha,C,_, may become negative only for
algorithm simple in use and really efficient in practical cal-One value ofk=1, and this may happeeither for evenor
culations, but which is not usually paid due attention. Thisfor odd solutions of Eqs(13). Thus solutions of one parity
concerns the method of how the roots of E2) are sought. can always be constructed by the methdd described
In the general case, there is no other option but to seek th@bove, and since even and odd eigenvalues alternate with
roots iteratively by starting from some independently ob-€ach other, this yields nonoverlapping initial brackets for
tained estimate of the initial interval, <q,<q, , bracket- computing solutions of the other parity by the mettied
ing the desired eigenvalug,, and then refining this interval, W& now discuss a special class of polynomial solutions of
e.g., using the bisection method. There are two situationd!® Heun equatiolil7). The possibility for the existence of
where such iterations unambiguously converga,to(a) the ~ SUCh solutions can be seen from Edg5). Indeed, let
initial interval [, ,q, ] does not contain other eigenvalues ACy-1=0 for some particulak, then the roots of equa_tlon
butq,, which is the case, e.g., if initial intervals for different A(q)=0 are also roots of E¢24) _for any KZk.' In this
n do not overlap; then one just has to locate the point wher&aS¢€ Egs.(22) have &+1) solutions for Wh'Ch Pk+1
Ax(q) changes signib) the setA,(q), k=0,1, .. K, forms _ $kr2= - - =0, hence Eq(17) has k+1) solutions given
a Sturmian sequend&2], then to find a zero oAx(q) one by polynomials of degrek. Using the equivalence transfor-

has to follow the variation of the number of sign changes in{patlonf(tQ), vlve obtain fourd_clas;s,efhoféhe polygon’tl)lal s?clu-
this sequence as a function gf in this case iterations con- ions of Eq.(17) corresponding to the discussed above four

verge to the desired eigenvalue independently of how man9055|b|llt|es in choosingyy and ;. These solutions exist for

other roots of Eq(24) fall in the initial interval[q, ,q, ]. If U=2(N+m)(N+md+2 N=01 29
neither of these conditions is fulfilled then the algorithm still ( A ), 2., (299
can be used, of course, but it becomes less definite and rgng nave the form

quires additional numerical tricks. In our case it can be

e,—mMin[0,U(1—c)], (280

shown that the eigenvalues of Eq$3) satisfy ©'(X)=Prja(X),—N/2+ 1 solutions,
_ (29D
As<Ay(y.mU)<A_, (283 @" (X) = VX(X— 1) Pyjo_1(x),—N/2 solutions,
where for evenN, and

TABLE I. The polynomial solution30) of Egs.(13) obtained forU given by Eq.(299 for three lowest
values ofN. The eigenfunctions are not normalizetis \4(m+1)(m+2)+c?.

N n AN (y,m) (cost—c) ™2 TN (7;y,m)
0 0 decm(m+1) 1

1 0 4(m+1)[c(m+1)—1] cos(f/2)

1 1 4m+1)c(m+1)+1] sin(r/2)

2 0 A c(m+1)(m+2)+c—d] 2(m+2)cost—c+d

2 1 dc(m+1)(m+2) sinr

2 2 4c(m+1)(m+2)+c+d] 2(m+2)cost—c—d
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@"'(X)= VXx—1 P12 X),—(N+1)/2 solutions,
(299

@"(x) = VX Py 1y X),— (N +1)/2 solutions,

for odd N, whereP,(x) denotes a polynomial ir of precise
degreek. Thus in both cases we obtai+ 1 solutions. The
eigenvalues and eigenfunctions of EGk3) corresponding to
the polynomial solutions of Eq17) will be denoted by
AN (y,m), TM(ry,m), n=01,...N. (30

These functions for three lowest values éfare given in
Table I.

Finally, let us discuss Eq$13) in the limit y—0. In this
case it is convenient to introduce a new variable,
—1<t=<1.

t=17/(27), (31

200

T
A AT N AT A ARY:

————— y
7
| B £ ; 4 / /
= / / /
(a) v=0.01x, m=0 AR A S
p :
S g 4 4 ’ ’

100

-100

-200
600 T T 1 T g Ill ALK AL ’
i
b 1 _5 s ;LS P AP
(b) v=0.01%, M=b———Fss——0 " "]
’ I‘ I/ ’ o Il o ol I/ ’ d
L ’._4.4.4;’;'/"., o ¥
400 | TR

200 F

200 F

-400
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-400

1000

800

-200 0 400 600

PHYSICAL REVIEW A 63032510
Assuming thaty’m?—0 and y’U—U#0 as y—0, Eq.
(139 takes the form

d 29 m? Loy A
att T Yg T e TV

#(t)=0.

(32

Apart from a trivial change of notation, this coincides with
the spheroidal equation, s¢28,29. If y’U—0 as y—0,
then one obtains

d d m* 1

(11—t —
a5 T eta (33)

Aly(t)=0.

This is the Legendre equation, see R&B]. From this for
the solutions of Eq9(13) one obtains
An(y.mU)[, _o=4(n+m)(n+m+1), (34a

200

(€) ¥=0.25%, m=0

100

-100

-200

600

(d) y=025m, M=5
¥z L 2

400k

200 |

-200 |

400f

o T B |

400 600

TRtV O

-600 b o
-400  -200 0 200
U

800

FIG. 1. Solid lines—the eigenvalues of E(L0a given by An”(y,m,U); dashed lines—the eigenvalues of HGOb) given by
,Anf(#/z, v,m,U). The eigenvalues are plotted as function&Jdbr several representative values of the parameteasdm. The lowest
(the highestcurves in soliddashed manifolds correspond to, =0 (n.=0) and are shown by thicker lines. The points of the intersections
between solid and dashed curves shown by solid circles indicate the vallksrad A for which Egs.(10) are satisfied simultaneously,

which corresponds to the HSE harmonics.
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2000 T T T

—Ang(wlz— y.m,U), respectively, where, andn; are the
numbers of zeros of the corresponding eigenfunctions. These
eigenvalues as functions &f are shown in Figs. 1 for sev-
eral representative values ¢fand m. Note that such plots
for two values ofy related byy,= w/2— y, can be obtained
from each other by inverting the sign Afand interchanging
the types of lines used to draw the two sets of eigenvalues,
hence it is sufficient to consider the intervak@ < /4. For
v—0, the eigenvalues of EL0g are given by Eq(343, so
the solid curves in Figs.(2) and 1b) are almost independent
of U; for y=m/4, the solid and dashed curves are symmetric
with respect to the axi6 =0, as can be seen from FiggclL
and Xd). The values ofu and A for which Egs.(10) are
satisfied simultaneously are given by the coordinates of the
intersections between the solid and dashed curves; con-
versely, each solid circle in Fig. 1 represents a HSE har-
monic.

As has been noticed above, Eq$0a and(10b) amount
to the same differential equation considered in the intervals
[—2v,2y] and[2y,27— 2], respectively. This means that
HSE harmonics are given by the solutions of Efj0a),
which are regular aty=*2vy and at »=27— 2y, which
corresponds to polynomial solutions of Eq%3). This situ-
ation is similar to the case of spherical elliptic harmonics in
three-dimensional spad®,10,13: the regularity boundary
conditions can be satisfied simultaneoushthate singular
points due to the presence tfo spectral parameters, the
energy eigenvalubl and the separation constahtThus we
can summarize our construction of the HSE harmonics as
follows:

(a) nn+n§=l20, m=0

1000

-1000

-2000
0.0

3000

2000

1000

-1000

-2000

-3000
0.0

Unnn§=2(n,,+n§+m)(nn+n§+m+2), (353

YT

FIG. 2. The separation constar{&&h) for the HSE harmonics
with n,+n =20 are plotted as functions of for two representa- (n,+ng) (n,+nyg)
7' ¢ = 3 = — ¢ —
tive values ofm. The lowest(the highest curves correspond to An Ann” (y,m) An;’ (/2= y,m),
n,=0 (n;=0). (35b

Ta(riy,mU)|, o= (1—t)™PMM(t),  (34b
n(T Y )|7 0 ( ) n ( ) ( ) q)nnng(ﬂ,g):NXTﬁn;*—n{)(ﬂ;'y:m)Tf]:W+n§)(§;7T/2_ ,y’m),

n=0,1.2. .., (350

where P{(™™(t) are the normalized Jacobi polynomials. N =01
Equations(15) and (34b) define our standardization for the R
functions T,(7;y,m,U). Note that the eigenvalue&4g
could be obtained from Eq&28) in the_limit v—0. The limit wheren,, andn, are the HSE quantum numbers akds a
y— /2 can also be analyzed analytically, but this leads t0 g,ormalization factor. As follows from Eq35a, the energy
rather complicated transcendental equation for the eigeﬂvaé'igenvalueyn . do not depend ory, and HSE harmonics
ues which we do not discuss here. ; e

with the same values of,+n,+m are degenerate. The
separation constanﬁsn”ng forn,+n,=0, 1, and 2 are given
in Table I; in the general case their dependence on the HSE

Let us return to Eqg10). Following the approach used in gquantum numbersi, andn, and the parameterg and m

the preceding section, we can consider these equations segg@nnot be found analytically. Figure 2 illustrates the depen-
rately, treatingy, m, andU as parameters antlas an eigen- dence ofA, , ony for n,+n,=20 and two representative
value. As follows from the above results, thus defined eigenvalues ofm. Functions(35¢) are orthogonal with the weight
values of Eqs(10a and(10b) are given b)Ann(y,m,U) and  (cosyp—cosé) and we normalize them by5,27]

A n§:0,1,...,

IV. HYPERSPHERICAL ELLIPTIC HARMONICS
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JZ#—Zy
2y

><q)nﬂng( nyg)(bn’”né( 7,§)

:(Sn

71,2

7s dé(cosn—cosé)

2y
dn
-2y

”n;?‘snfné- (36)

For any m, these functions form a complete basis in the
space of functions of two shape angl@s satisfying appro-

PHYSICAL REVIEW A 63 032510

V. CONCLUSIONS

In this paper we have introduced a special set of HSE
harmonics in six-dimensional space and developed an effi-
cient algorithm to practically construct them. These func-
tions may find applications in hyperspherical treatments of
various atomic2,3], molecular[4], and nucleaf5] three-
body systems. However, because of a relation between the
additional integral of motiorY ,, responsible for the separa-
tion of variables in HSE coordinates and tBé4) symmetry
of the Coulomb interaction, these functions are especially
convenient for studying three-body Coulomb systems, as
will be demonstrated in a forthcoming paper.

priate boundary conditions at collinear configurations. The

transformations between thus constructed HSE harmonics
and the more familiar sets of HSP harmonics obtained by

separating variables in E¢B) in Delves and Smith-Whitten
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