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Hyperspherical elliptic harmonics and their relation to the Heun equation
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Hyperspherical elliptic~HSE! harmonics are the eigenfunctions of the generalized angular momentum op-
erator obtained by separating variables in HSE coordinates. These functions depend on accessory parameters
characterizing the HSE coordinate system and present a more flexible basis on a hypersphere as compared with
more familiar hyperspherical polar harmonics. We discuss a special set of HSE harmonics arising in hyper-
spherical treatments of the three-body problem in the HSE coordinate system introduced in an earlier paper
@Tolstikhin et al., Phys. Rev. Lett.74, 3573~1995!#. The separation of variables in these coordinates leads to
the Heun equation, which is a generalization of the Gauss hypergeometric equation. We develop an efficient
method to solve the corresponding one-dimensional eigenvalue problem and thus construct the HSE harmon-
ics, which opens a way for their application in the studies of various atomic, molecular, and nuclear three-body
systems.
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I. INTRODUCTION

The Laplace operator ind-dimensional space expressed
hyperspherical coordinates can be presented in the form

D5
1

Rd21

]

]R
Rd21

]

]R
2

L2

R2
, ~1!

whereR is the hyperradius andL2 is the generalized angula
momentum operator squared. Hyperspherical~HS! harmon-
ics are defined as the eigenfunctions ofL2 @1#,

@L22l~l1d22!#Yv~V!50, ~2!

l50,1,2. . . ,

whereV is a collective notation for a set of (d21) hyper-
angles parametrizing the hypersphere andv denotes a set o
(d21) quantum numbers uniquely definingl and Yv(V).
HS harmonics play an important role in many applicatio
providing a basis for expanding solutions to various pro
lems in classical and quantum physics. As the most int
sively developed direction during the past two decades,
the one closest to our own interests, we mention their ap
cations in the theory of few-body systems@2–5#; see also a
recent review article@6# and references therein. HS harmo
ics are closely related to the rotation groupO(d) and can be
constructed by the algebraic methods. Another approac
construct these functions is to explicitly expressL2 as a
differential operator inV and solve Eq.~2!. In doing so one
has to start by choosing a coordinate system in which Eq.~2!
allows separation of variables. The coordinate system sp
fies the set of hyperanglesV; the quantum numbersv then
acquire a meaning of the numbers of zeros of the solution
the corresponding separation equations. In this paper
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adopt the second approach, therefore we shall not discu
group-theoretical meaning ofv, but we remark that this se
may also include some additional quantum numbers like p
ity corresponding to discrete subgroups ofO(d). For anyd
>2, Eq.~2! allows separation of variables in an infinite num
ber of coordinate systems. They can be divided into clas
each class consisting of coordinate systems related to
other by rotations, and the different classes leading to se
ration equations having different mathematical structu
This can be illustrated by the exampled53. It is well-known
that the Laplace operator in three-dimensional space all
separation of variables in two~and only two! spherical coor-
dinate systems: these are spherical polar and spherical e
tic ~also known as conical@7,8#, spheroconal@9,10#, sphe-
roelliptic @11#, and elliptic @12#! coordinates. Of the two
angular separation equations in the spherical polar coo
nates the nontrivial one is of the Legendre type, while b
angular separation equations in the spherical elliptic coo
nates are of the Lame´ type. The Legendre equation can b
reduced to the hypergeometric equation and solved ‘‘ana
cally,’’ i.e., it is very well studied. This greatly simplifies th
work with spherical polar harmonics and explains why in
overwhelming majority of application-oriented treatises de
ing with spherical harmonics the spherical polar coordina
are employed. The Lame´ equation is much less studied an
although basic discussions of spherical elliptic harmon
can be found in several fundamental mathematical te
@9,10,13#, the methods to work with these functions are n
sufficiently developed and original papers on this subject s
continue to appear@12#. The variety of the different classe
of separable coordinate systems on a hypersphere ford.3 is
larger; see, e.g., Refs.@11,14#, where the cased54 is ana-
lyzed. However, the situation is similar to that ford53 in
the sense that one can distinguish hyperspherical polar~HSP!
and hyperspherical elliptic~HSE! coordinate systems leadin
to the hypergeometric and Lame´ or, more generally, Heun
separation equations, respectively. For the same reason
above, all known to us studies dealing with HS harmon
and their applications employ HSP coordinates and cons
©2001 The American Physical Society10-1
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OLEG I. TOLSTIKHIN AND MICHIO MATSUZAWA PHYSICAL REVIEW A 63 032510
only HSP harmonics; see, e.g., Refs.@1–6#. Meanwhile, HSE
harmonics provide much more flexibility in choosing a ba
in the best way suiting the needs of a particular phys
problem, which in our opinion warrants more detailed stu
of and closer acquaintance with these functions.

In this paper we discuss a special set of HSE harmo
arising in hyperspherical treatments of the three-body pr
lem in the HSE coordinates introduced in Ref.@15#. Finding
this coordinate system has led to the development of a
powerful method for studying various three-body syste
with Coulomb@15–21# and molecular@22–24# interparticle
interactions. Further extensions of this approach require
veloping appropriate analytical and numerical technique
task that has motivated the present paper and is part
addressed here. In the following, we shall always keep
mind applications to the three-body problem to be discus
elsewhere. The HSE harmonics considered in this paper
functions of the two HSE coordinatesh andj, an accessory
parameterg characterizing the HSE coordinate system, a
an azimuthal quantum numberm having a meaning of the
projection of the total angular momentum along a body-fix
axis. Form50, they give a new representation of the H
harmonics for a three-body system with zero total angu
momentum,L50; for mÞ0, they constitute a more gener
set of functions providing a new basis for expanding
internal wave functions of a three-body system withLÞ0
@27#. The paper is organized as follows: Sec. II summari
basic equations in the HSE coordinates, the correspon
separation eigenvalue problem is analyzed in Sec. III,
solutions are used to construct the HSE harmonics in S
IV, and Sec. V concludes.

II. BASIC EQUATIONS

Configuration space of the three-body problem has
dimensions,d56, so the set of hyperspherical anglesV in
this case consists of five variables. This set can be divi
into two parts,V5(Vs,Vo), whereVs denotes a set of two
angles defining the shape of the three-body triangle, its
being determined by hyperradiusR, andVo denotes a set o
three angles defining the overall orientation of the system
space, e.g., the Euler angles. For states withL50 the wave
function does not depend onVo . ThenL2 can be considered
as a differential operator in two shape anglesVs and we
denote it byL0

2. A discussion of the different sets of shap
angles for the three-body problem can be found in Ref.@22#.
The coordinate systems introduced by Delves@25# and Smith
and Whitten@26# present two most well-known examples
HSP coordinates in configuration space. Here we putVs
5(h,j), whereh andj are HSE coordinates introduced
Ref. @15#. These variables vary in the intervals

22g<h<2g, ~3a!

2g<j<2p22g, ~3b!

whereg is a parameter such that

0<g<p/2. ~4!
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In the applications to the three-body problem@15–24# g is
defined by the masses of particles; here we assume thg
may take arbitrary values in the interval~4!. The freedom in
choosing this parameter reveals the mentioned above
ibility of the HSE coordinate system. In these coordinates
operatorL0

2 is given by@15#

L0
25

216

cosh2cosj F ]

]h
~cosh2c!

]

]h
1

]

]j
~c2cosj!

]

]jG .
~5!

Having in mind to extend the present construction to the c
LÞ0, we consider a more general operator,

Lm
2 5L0

21
4s2m2

cosh2cosj F 1

cosh2c
1

1

c2cosjG , ~6!

where

c[cos 2g, s[sin 2g. ~7!

The additional term}m2 with a non-negative integerm hav-
ing a meaning of an azimuthal quantum number inde
arises in treating the three-body problem within the symm
ric top approximation@16,18#, and we include it here withou
making the analysis more complex.

HSE harmonics are defined by

F1

2
Lm

2 2UGF~h,j!50, ~8!

where the factor 1/2 is introduced for consistency with Re
@15–24#. This equation allows separation of the variablesh
andj. Seeking its solutions in the form

F~h,j!5 f ~h!g~j! ~9!

one obtains ordinary differential equations defining the fu
tions f (h) andg(j),

F8 d

dh
~cosh2c!

d

dh
2

2s2m2

cosh2c
1U~cosh2c!1AG f ~h!50,

~10a!

F8
d

dj
~c2cosj!

d

dj
2

2s2m2

c2cosj
1U~c2cosj!2AGg~j!50,

~10b!

whereA is the separation constant. The possibility to se
rate the variables in Eq.~8! results from the existence of a
additional integral of the motion represented by an opera
commuting withLm

2 whose eigenvalues are given byA. In-
deed, as follows from Eqs.~10!, the solutions of Eq.~8!
having the form~9! also satisfy

@Ym2A#F~h,j!50, ~11!

where
0-2
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Ym5
28

cosh2cosjF ~c2cosj!
]

]h
~cosh2c!

]

]h

2~cosh2c!
]

]j
~c2cosj!

]

]jG
12s2m2F 1

cosh2c
2

1

c2cosjG . ~12!

Equations ~10! must be solved subject to the regulari
boundary conditions forf (h) andg(j) at the end points of
the intervals~3!, which can be satisfied only for certain va
ues ofU andA. Thus each HSE harmonic~9! can be char-
acterized by a pair of eigenvaluesU andA or, alternatively,
by a pair of HSE quantum numbersnh and nj giving the
numbers of zeros of the functionsf (h) andg(j).

It can be easily seen that Eqs.~10a! and~10b! are actually
identical: they amount to the same differential equation c
sidered in different intervals of the independent variab
Equation~10b! can be reduced to Eq.~10a! by substituting
p/22g, h1p, 2A, and f for g, j, A, andg, respectively.
Thus it is sufficient to analyze Eq.~10a!.

III. ANALYSIS OF THE SEPARATION EIGENVALUE
PROBLEM IN HYPERSPHERICAL ELLIPTIC

COORDINATES

Consider the equation

F8
d

dt
~cost2c!

d

dt
2

2s2m2

cost2c
1U~cost2c!1AGT~t!50,

~13a!

22g<t<2g, T~62g!,`, ~13b!

wherec and s are related tog by Eqs.~7!. The end points
t562g of the interval oft are regular singular points o
Eq. ~13a!, each with the characteristic exponents6m/2. The
boundary conditions~13b! select the regular solutions at bo
singularities, i.e., those corresponding to the exponent1m/2
if mÞ0 and having no logarithmic terms in their expansio
neart562g if m50. In this section we shall regardg, m,
andU as external parameters that may take arbitrary valu
while A will be treated as a spectral parameter. The bound
conditions~13b! can be satisfied only for a discrete set of t
values of A, thus we are dealing with a singular Sturm
Liouville eigenvalue problem. The eigenvalues and eig
functions of Eqs.~13! will be denoted by

An~g,m,U !, Tn~t;g,m,U !, n50,1,2, . . . , ~14!

wheren is the number of zeros ofTn(t;g,m,U) as a func-
tion of t. The eigenfunctions are orthogonal with unit weig
and we normalize them by

E
22g

2g

Tn~t;g,m,U !Tn8~t;g,m,U ! dt5dnn8 . ~15!
03251
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Equations~13! remain unchanged upon changing the sign
t, so the eigenfunctions with even~odd! n are even~odd!
functions oft.

The role of Eq.~13a! in the construction of the HSE har
monics is similar to that of the Legendre equation in t
theory of three-dimensional spherical polar harmonics or
the corresponding separation equation in the theory of sp
roidal wave functions. This analogy is not accidental sin
Eq. ~13a! is a generalization of the spheroidal equatio
which in turn is a generalization of the Legendre equation
will be shown shortly. The Legendre equation can be
duced to the hypergeometric equation and, as a consequ
is very well studied; see, e.g., Chap. 8 in Ref.@28#. The
spheroidal equation is not reducible to the hypergeome
equation, which essentially complicates its analysis, ho
ever, it also has been intensively studied due to its imp
tance for many physical applications and a number of pr
tically useful results have been obtained and are availabl
the literature; see, e.g., Chap. 21 in Refs.@28# and @29#.
Equation~13a! has even more involved mathematical stru
ture and we do not know a treatise to be referred to in t
respect. The purpose of this section is to derive some res
relevant to the present paper. Here we show that Eq.~13a!
can be reduced to the so-called Heun equation, construc
efficient analytical representation for the solutions of E
~13!, and discuss a special class of polynomial solutions
fining the HSE harmonics.

Let us introduce a new variablex and a new function
w(x),

x5sin2~t/2!, ~16a!

~x2a!m/2w~x!5T~t!, ~16b!

wherea[sin2g<1. Thenw(x) satisfies

F d2

dx2
1S 12e0

x
1

12e1

x21
1

12ea

x2a D d

dx

1
px1q

x~x21!~x2a!Gw~x!50, ~17!

which is a form of the Heun equation@10,13#. The Heun
equation directly generalizes the Gauss hypergeome
equation by having one more finite regular singular poi
The different types of spectral problems that can be form
lated on the basis of this equation generate several new t
of eigenvalue schemes, which could find numerous appl
tions in physics, however, the Heun equation is still mu
less studied than its hypergeometric relative; reviews
some recent achievements in this direction can be foun
Ref. @30#. Equation~17! has characteristic exponents 0 a
e0 at x50, 0 ande1 at x51, 0 andea at x5a, ande6 at
x5`; the parameterp is defined by the exponents,p
[e2e1 , andq is a spectral parameter. The cases when so
of the exponent differences are equal to 1/2 occupy a spe
position since the Heun equation then allows a broader gr
of transformations. The case when the exponent differen
at all three finite singular points are equal to 1/2 is known
0-3
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the Laméequation; this equation arises when variables in
three-dimensional Laplace operator are separated in ellip
dal coordinates@9,10,13#. In our case the parameters in E
~17! are related to those in Eq.~13a! by

e05
1

2
, e15

1

2
, ea52m, e65

1

2
~m116A11U/2!,

~18a!

p5e2e15
1

8
@2m~m12!2U#, ~18b!

q5
1

16
@A12aU24m~11m2am!#. ~18c!

Thus two of the exponent differences are equal to 1/2, wh
is known as the Wangerin equation@8#. A detailed classifi-
cation of the different particular cases of the Heun equa
and its confluent forms is given in Ref.@31#. As follows from
Eqs.~13b! and ~16a!, the new variable varies in the interva
0<x<a, i.e., between two singular points of Eq.~17!. The
boundary conditions for Eq.~17! can be obtained from Eqs
~13! and~16! and consist of the following:~i! the solutions of
Eq. ~17! must be regular atx5a, and ~ii ! even~odd! solu-
tions of Eqs.~13! are represented by the solutions of Eq.~17!
corresponding to the exponent 0~1/2! at x50.

Consider an equivalence transformation of Eq.~17! to be
used in the following. Let us introduce a new function,

w̃~x!5
w~x!

xa0~x21!a1
. ~19!

It can be shown that fora i equal to 0 ore i , i 50,1, w̃(x)
satisfies an equation of the same form as Eq.~17! with the
same values ofa andea and the other parameters replaced

ẽ05e022a0 , ẽ15e122a1 , ~20a!

p̃5p1a0~22e12ea!1a1~22e02ea!12a0a1

5p1~m13/2!~a01a1!12a0a1 , ~20b!

q̃5q2a0~12ea!2a@a0~12e1!1a1~12e0!12a0a1#

5q2a0~11m!2a@~a01a1!/212a0a1#. ~20c!

We shall distinguish four classes of the solutions of Eq.~17!
according to the following four possibilities in choosing th
exponentsa0 anda1 in Eq. ~19!, wherew̃(x) is assumed to
have only non-negative integer powers in the expansi
near x50 and x51: ~I! a05a150, ~II ! a050 and a1
51/2, ~III ! a051/2 and a150, and ~IV ! a05a151/2.
Classes I and II represent even solutions of Eqs.~13!, and
classes III and IV represent odd ones.

The solutions of Eq.~17! can be sought as an expansion
terms of a suitable set of functions complete in the inter
xP@0,a#. Let us first consider the solutions regular atx5a
and corresponding to the exponent 0 atx50, i.e., represent-
ing even solutions of Eqs.~13!. We have analyzed severa
03251
e
oi-

h

n
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l

choices of the basis functions and found that the fastest c
vergence is achieved with the Jacobi polynomials,

w~x!5 (
k50

`

wkPk
(2ea ,2e0)

~2x/a21!. ~21!

Substituting this expansion into Eq.~17!, one obtains a three
term recursion relation defining the coefficientswk ,

~B01q!w01C0w150, ~22a!

Akwk211~Bk1q!wk1Ckwk1150, k51,2, . . . ,
~22b!

where

Ak5a@p1~k21!~k1d2e1!#
k~k1d21!

~2k1d22!~2k1d21!
,

~23a!

Bk5
a

2 Fp1~ea2e0!
k~k1d!~d22e111!1p~d21!

~2k1d21!~2k1d11! G
1~a/221!k~k1d!, ~23b!

Ck5a@p1~k1e1!~k1d11!#
~k2e011!~k2ea11!

~2k1d11!~2k1d12!
,

~23c!

andd[12e02ea . Let Dk(q) denote the determinant of th
upper-leftk3k block of the tridiagonal matrix multiplying
the vector of coefficientswk in Eqs.~22!. Then the values of
q for which Eqs.~22! are satisfied can be found from th
characteristic equation

DK~q!50 ~24!

for a sufficiently largeK. The characteristic polynomia
DK(q) can be computed for any trial value ofq from the
recurrence

D0~q!51, ~25a!

D1~q!5B01q, ~25b!

Dk11~q!5~Bk1q!Dk~q!2AkCk21Dk21~q!, k51,2, . . .

~25c!

The rate of convergence of expansion~21! can be character
ized by the rootsr 1 and r 2 of the quadratic equationA
1Br1Cr250, whereA, B, andC are the limiting values of
Ak , Bk , andCk at k→`. In general, convergence is fast
the larger the ratiour 2 /r 1u. As can be seen from Eqs.~23!, in
our case

A5ak2/4, B5~a22!k2/2, C5ak2/4, ~26!

hence

r 15tan2~g/2!, r 25cot2~g/2!. ~27!
0-4
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Thus convergence should be fast for smallg, but may be-
come worse asg approachesp/2. The high rate of conver
gence of expansion~21! for g not very close top/2 and for
arbitrary values of the other parameters has been confir
by our calculations. The difficulty with the caseg→p/2 can
be explained as follows. A general solution of Eq.~17! be-
haves;A12x at x→1, but a→1 asg→p/2, and in order
to reproduce this square-root behavior, expansion~21! re-
quires more and more terms. To find an efficient expans
for the caseg→p/2 remains an open problem. Using Eq
~16! and~18!, functions~21! and the roots of Eq.~24! can be
transformed to the solutions of Eqs.~13!. In this way one can
construct the even solutions of Eqs.~13!. The odd solutions
can be obtained by the same procedure applied after
equivalence transformation~19! with a051/2 anda150.

The described algorithm is based on the well-known pr
erties of tridiagonal matrixes and is rather standard@32#; for
example, a similar method is used for constructing sphe
dal wave functions@28,29#. However, let us discuss briefl
one circumstance that plays a decisive role in making
algorithm simple in use and really efficient in practical c
culations, but which is not usually paid due attention. T
concerns the method of how the roots of Eq.~24! are sought.
In the general case, there is no other option but to seek
roots iteratively by starting from some independently o
tained estimate of the initial intervalqn

2<qn<qn
1 , bracket-

ing the desired eigenvalueqn , and then refining this interval
e.g., using the bisection method. There are two situati
where such iterations unambiguously converge toqn : ~a! the
initial interval @qn

2 ,qn
1# does not contain other eigenvalu

but qn , which is the case, e.g., if initial intervals for differen
n do not overlap; then one just has to locate the point wh
DK(q) changes sign;~b! the setDk(q), k50,1, . . .K, forms
a Sturmian sequence@32#, then to find a zero ofDK(q) one
has to follow the variation of the number of sign changes
this sequence as a function ofq; in this case iterations con
verge to the desired eigenvalue independently of how m
other roots of Eq.~24! fall in the initial interval@qn

2 ,qn
1#. If

neither of these conditions is fulfilled then the algorithm s
can be used, of course, but it becomes less definite and
quires additional numerical tricks. In our case it can
shown that the eigenvalues of Eqs.~13! satisfy

An
2<An~g,m,U !<An

1 , ~28a!

where
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An
25

2s

g
en2max@0,U~12c!#, ~28b!

An
15

2~12c!

g2
en2min@0,U~12c!#, ~28c!

and

en5~n1mAg cotg!~n1mAg cotg11!. ~28d!

Together with Eqs.~18! and ~20! this provides an estimate
for the initial interval@qn

2 ,qn
1#. However, there is no guar

antee that for eachn this interval contains only one eigen
value, and this is certainly not the case forg→p/2. Equa-
tions ~25! define a Sturmian sequence ifAkCk21>0 for all
k51,2, . . .K. As can be seen from Eqs.~18!, ~20!, and~23!,
in our case this condition depends on the parametersU andm
and is not generally satisfied. However, a more deta
analysis shows thatAkCk21 may become negative only fo
one value ofk>1, and this may happeneither for evenor
for odd solutions of Eqs.~13!. Thus solutions of one parity
can always be constructed by the method~b! described
above, and since even and odd eigenvalues alternate
each other, this yields nonoverlapping initial brackets
computing solutions of the other parity by the method~a!.

We now discuss a special class of polynomial solutions
the Heun equation~17!. The possibility for the existence o
such solutions can be seen from Eqs.~25!. Indeed, let
AkCk2150 for some particulark, then the roots of equation
Dk(q)50 are also roots of Eq.~24! for any K>k. In this
case Eqs.~22! have (k11) solutions for which wk11
5wk125 . . . 50, hence Eq.~17! has (k11) solutions given
by polynomials of degreek. Using the equivalence transfor
mation ~19!, we obtain four classes of the polynomial sol
tions of Eq.~17! corresponding to the discussed above fo
possibilities in choosinga0 anda1. These solutions exist fo

U52~N1m!~N1m12!, N50,1,2, . . . , ~29a!

and have the form

w I~x!5PN/2~x!,—N/211 solutions,
~29b!

w IV~x!5Ax~x21! PN/221~x!,—N/2 solutions,

for evenN, and
TABLE I. The polynomial solutions~30! of Eqs.~13! obtained forU given by Eq.~29a! for three lowest
values ofN. The eigenfunctions are not normalized.d[A4(m11)(m12)1c2.

N n An
(N)(g,m) (cost2c)2m/2Tn

(N)(t;g,m)

0 0 4cm(m11) 1
1 0 4(m11)@c(m11)21# cos(t/2)
1 1 4(m11)@c(m11)11# sin(t/2)
2 0 4@c(m11)(m12)1c2d# 2(m12)cost2c1d
2 1 4c(m11)(m12) sint
2 2 4@c(m11)(m12)1c1d# 2(m12)cost2c2d
0-5
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w II~x!5Ax21 P(N21)/2~x!,—~N11!/2 solutions,
~29c!

w III ~x!5Ax P(N21)/2~x!,—~N11!/2 solutions,

for oddN, wherePk(x) denotes a polynomial inx of precise
degreek. Thus in both cases we obtainN11 solutions. The
eigenvalues and eigenfunctions of Eqs.~13! corresponding to
the polynomial solutions of Eq.~17! will be denoted by

An
(N)~g,m!, Tn

(N)~t;g,m!, n50,1, . . . ,N. ~30!

These functions for three lowest values ofN are given in
Table I.

Finally, let us discuss Eqs.~13! in the limit g→0. In this
case it is convenient to introduce a new variable,

t5t/~2g!, 21<t<1. ~31!
03251
Assuming thatg2m2→0 and g2U→ŨÞ0 as g→0, Eq.
~13a! takes the form

F d

dt
~12t2!

d

dt
2

m2

12t2
1

1

2
Ũ~12t2!1

1

4
AGc~ t !50.

~32!

Apart from a trivial change of notation, this coincides wi
the spheroidal equation, see@28,29#. If g2U→0 as g→0,
then one obtains

F d

dt
~12t2!

d

dt
2

m2

12t2
1

1

4
AGc~ t !50. ~33!

This is the Legendre equation, see Ref.@28#. From this for
the solutions of Eqs.~13! one obtains

An~g,m,U !ug→054~n1m!~n1m11!, ~34a!
ons
,

FIG. 1. Solid lines—the eigenvalues of Eq.~10a! given by Anh
(g,m,U); dashed lines—the eigenvalues of Eq.~10b! given by

2Anj
(p/22g,m,U). The eigenvalues are plotted as functions ofU for several representative values of the parametersg andm. The lowest

~the highest! curves in solid~dashed! manifolds correspond tonh50 (nj50) and are shown by thicker lines. The points of the intersecti
between solid and dashed curves shown by solid circles indicate the values ofU and A for which Eqs.~10! are satisfied simultaneously
which corresponds to the HSE harmonics.
0-6
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Tn~t;g,m,U !ug→05~12t2!m/2P̃n
(m,m)~ t !, ~34b!

n50,1,2. . . ,

where P̃n
(m,m)(t) are the normalized Jacobi polynomial

Equations~15! and ~34b! define our standardization for th
functions Tn(t;g,m,U). Note that the eigenvalues~34a!
could be obtained from Eqs.~28! in the limit g→0. The limit
g→p/2 can also be analyzed analytically, but this leads t
rather complicated transcendental equation for the eigen
ues which we do not discuss here.

IV. HYPERSPHERICAL ELLIPTIC HARMONICS

Let us return to Eqs.~10!. Following the approach used i
the preceding section, we can consider these equations s
rately, treatingg, m, andU as parameters andA as an eigen-
value. As follows from the above results, thus defined eig
values of Eqs.~10a! and~10b! are given byAnh

(g,m,U) and

FIG. 2. The separation constants~35b! for the HSE harmonics
with nh1nj520 are plotted as functions ofg for two representa-
tive values ofm. The lowest~the highest! curves correspond to
nh50 (nj50).
03251
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2Anj
(p/22g,m,U), respectively, wherenh andnj are the

numbers of zeros of the corresponding eigenfunctions. Th
eigenvalues as functions ofU are shown in Figs. 1 for sev
eral representative values ofg and m. Note that such plots
for two values ofg related byg25p/22g1 can be obtained
from each other by inverting the sign ofA and interchanging
the types of lines used to draw the two sets of eigenvalu
hence it is sufficient to consider the interval 0<g<p/4. For
g→0, the eigenvalues of Eq.~10a! are given by Eq.~34a!, so
the solid curves in Figs. 1~a! and 1~b! are almost independen
of U; for g5p/4, the solid and dashed curves are symme
with respect to the axisA50, as can be seen from Figs. 1~c!
and 1~d!. The values ofU and A for which Eqs.~10! are
satisfied simultaneously are given by the coordinates of
intersections between the solid and dashed curves;
versely, each solid circle in Fig. 1 represents a HSE h
monic.

As has been noticed above, Eqs.~10a! and ~10b! amount
to the same differential equation considered in the interv
@22g,2g# and @2g,2p22g#, respectively. This means tha
HSE harmonics are given by the solutions of Eq.~10a!,
which are regular ath562g and at h52p22g, which
corresponds to polynomial solutions of Eqs.~13!. This situ-
ation is similar to the case of spherical elliptic harmonics
three-dimensional space@9,10,13#: the regularity boundary
conditions can be satisfied simultaneously atthree singular
points due to the presence oftwo spectral parameters, th
energy eigenvalueU and the separation constantA. Thus we
can summarize our construction of the HSE harmonics
follows:

Unhnj
52~nh1nj1m!~nh1nj1m12!, ~35a!

Anhnj
5Anh

(nh1nj)
~g,m!52Anj

(nh1nj)
~p/22g,m!,

~35b!

Fnhnj
~h,j!5N3Tnh

(nh1nj)
~h;g,m!Tnj

(nh1nj)
~j;p/22g,m!,

~35c!

nh50,1, . . . , nj50,1, . . . ,

wherenh andnj are the HSE quantum numbers andN is a
normalization factor. As follows from Eq.~35a!, the energy
eigenvaluesUnhnj

do not depend ong, and HSE harmonics

with the same values ofnh1nj1m are degenerate. Th
separation constantsAnhnj

for nh1nj50, 1, and 2 are given
in Table I; in the general case their dependence on the H
quantum numbersnh and nj and the parametersg and m
cannot be found analytically. Figure 2 illustrates the dep
dence ofAnhnj

on g for nh1nj520 and two representativ
values ofm. Functions~35c! are orthogonal with the weigh
(cosh2cosj) and we normalize them by@15,22#
0-7
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p2

4sE22g

2g

dhE
2g

2p22g

dj~cosh2cosj!

3Fnhnj
~h,j!Fnh8n

j8
~h,j!

5dnhnh8
dnjn

j8
. ~36!

For any m, these functions form a complete basis in t
space of functions of two shape anglesVs satisfying appro-
priate boundary conditions at collinear configurations. T
transformations between thus constructed HSE harmo
and the more familiar sets of HSP harmonics obtained
separating variables in Eq.~8! in Delves and Smith-Whitten
coordinates, as well as their application for expanding
internal wave functions of a three-body system withLÞ0,
will be discussed elsewhere.
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V. CONCLUSIONS

In this paper we have introduced a special set of H
harmonics in six-dimensional space and developed an
cient algorithm to practically construct them. These fun
tions may find applications in hyperspherical treatments
various atomic@2,3#, molecular@4#, and nuclear@5# three-
body systems. However, because of a relation between
additional integral of motionYm responsible for the separa
tion of variables in HSE coordinates and theO(4) symmetry
of the Coulomb interaction, these functions are especi
convenient for studying three-body Coulomb systems,
will be demonstrated in a forthcoming paper.
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