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Entanglement, information, and multiparticle quantum operations
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Collective operations on a network of spatially separated quantum systems can be carried out using local
quantum operations, classical communication~CC!, and shared entanglement~SE!. Such operations can also be
used to communicate classical information and establish entanglement between distant parties. We show how
these facts lead to measures of the inseparability of quantum operations, and we argue that a maximally
inseparable operation on two qubits is theSWAP operation. The generalization of our argument toN-qubit
operations leads to the conclusion that permutation operations are maximally inseparable. For evenN, we find
the minimum SE and CC resources which are sufficient to perform an arbitrary collective operation. These
minimum resources are 2(N21) units of entanglement and 4(N21) bits, and these limits can be attained
using a simple teleportation-based protocol. We also obtain lower bounds on the minimum resources for the
odd case. For allN>4, we show that the SE and CC resources required to perform an arbitrary operation are
strictly greater than those that any operation can establish or communicate.

DOI: 10.1103/PhysRevA.63.032314 PACS number~s!: 03.67.Hk
m
e
th
a

um

-

a
t

e
in

ur
v
th

um
n

io
th
ca
s

er
f

a
ur

be-
f the
the
ns-

ent
al-

n-
mu-

gle-
n to
lo-
arry
an-
-

r-
ork
lti-

arry

dd
s re-

uch
igh-
ht

er
ara-
I. INTRODUCTION

Many of the information-theoretic properties of quantu
systems are attributable to the existence of entanglem
Entanglement is responsible for the nonlocal correlations
can exist between spatially separated quantum systems,
revealed by the violation of Bell’s inequality@1#. It also lies
at the heart of several intriguing applications of quant
information, such as quantum teleportation@2#, quantum
computational speedups@3,4#, and certain quantum crypto
graphic protocols@5#.

The central position of entanglement in quantum inform
tion theory, and its usefulness in applications, has led
considerable efforts being devoted to finding a suitable m
sure of how much entanglement a quantum system conta
This problem has been solved completely for bipartite p
states@6#, and the accepted measure is the subsystem
Neumann entropy, conventionally taken to the base 2, so
a maximally entangled state of a pair of two-level quant
systems, orqubits @7#, possesses one unit of entangleme
This fundamental unit is known as anebit.

The production of entanglement requires the transmiss
of quantum information between systems. Conversely,
transmission of quantum information between systems
be used to establish entanglement between them. Perhap
most perfect expression of this duality is the fact that th
are two equivalent definitions of the quantum capacity o
communications channel@8#. According to one definition@9#,
it is the asymptotic maximum amount of quantum inform
tion that can be transmitted per use of the channel, meas
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in qubits. In the other@10#, it is the asymptotic maximum
number of ebits of entanglement that can be established
tween the sending and receiving stations, again per use o
channel. An important consequence of this equivalence is
fact that no entanglement can be created without the tra
mission of quantum information. That is, no entanglem
can be created when only local quantum operations are
lowed, and only classical information can be transmitted.

Collective quantum operations involving multiple qua
tum systems can create entanglement and be used to com
nicate classical information. Conversely, the use of entan
ment shared by spatially separated laboratories, in additio
facilities enabling classical communication and arbitrary
cal quantum operations, permits these laboratories to c
out collective operations upon a network of separated qu
tum systems. The ability to do this will have interesting im
plications for many potential applications of quantum info
mation, such as distributed quantum computing, netw
quantum communication, and the production of novel mu
particle entangled states.

This paper extends the analysis presented in@11#, where
we examined the entanglement resources required to c
out collective quantum operations uponN qubits, in particu-
lar, for the case of evenN. In addition to giving a fuller
treatment of this problem, including an analysis of the o
case, we examine the classical communication resource
quired to carry out an arbitrary collective operation uponN
qubits, and also the amount of classical information that s
an operation can be used to send. An intriguing issue h
lighted by these considerations is that of how we mig
quantify the ‘‘inseparability’’ of a quantum operation, rath
than that of a quantum state. As we shall see, this insep
bility has both classical and quantum aspects.
©2001 The American Physical Society14-1
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In Sec. II we examine the use of entanglement and c
sical communication to carry out arbitrary collective ope
tions upon a pair of qubits. A simple protocol for achievin
this, which uses quantum teleportation, is proposed. T
classical and two quantum measures of the inseparability
quantum operation arise naturally from these considerati
The quantum measures are analogous to the entangleme
formation@12# and distillation@13# of quantum states. Thes
are, respectively, the minimum amount of entanglement
quired to perform the operation and the maximum amoun
entanglement that the operation can establish. The clas
measures of inseparability are, respectively, the minim
amount of classical information required to perform the o
eration, and the maximum amount of classical informat
that the operation can be used to communicate. The rela
ship between these measures leads to the conclusion t
maximally inseparable quantum operation is theSWAP opera-
tion, or any other which can be obtained from it by loc
unitary transformations.

The remainder of this paper is concerned with collect
operations uponN qubits. How much bipartite entangleme
can such an operation be used to establish and how m
information can it be used to communicate? Also, how mu
bipartite entanglement and classical information are nee
to perform an arbitraryN qubit operation?

In Sec. III we develop a graph-theoretic framework f
the representation of bipartite entanglement and commun
tion networks forN laboratories. Using this framework, w
formulate theN-qubit generalization of our teleportation pro
tocol. We also generalize our discussion of quantifying
inseparability of quantum operations to theN-particle case.
As far as the ‘‘distillation’’ measures are concerned, whi
quantifies the ability of a quantum operation to establish
tanglement and communicate classical information, we fi
that permutation operations are maximally insepara
These operations can establish the largest amount of
tanglement, and can be used to communicate the lar
amount of classical information.

In Sec. IV we are concerned with minimizing the e
tanglement and communication resources required to
form an arbitrary quantum operation uponN qubits. There
are two distinct scenarios to consider here. On the one h
we may wish to determine the minimum resources requ
to carry out an arbitrary operation just once. We refer to t
as the ‘‘one-shot’’ scenario. On the other hand, it may be
case that theN laboratories share a very large amount
entanglement, and are able to communicate large amoun
classical information. They may wish to use these resou
with maximum efficiency to carry out an arbitrary operati
many times. The limit as both the resources and the num
of repetitions of the operation tend to infinity is known as t
asymptoticlimit. In this scenario, the asymptotically min
mum resources are the minimum entanglement and clas
communication that must be used, on average, per run o
operation.

We find that in terms of both entanglement and comm
nication, our teleportation protocol is optimal, in both t
one-shot and asymptotic scenarios, for evenN. We obtain
lower bounds on the minimum resources for the odd ca
03231
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We show that, for allN>4, the classical communication an
entanglement resources required to carry out anarbitrary
operation are strictly greater than the amount of entan
ment that can be established, and the amount of class
information that can be sent, by anyparticular operation. We
also show that if the manipulation of these resources ob
the same efficiency restrictions as those found in entan
ment swapping@14# and indirect communication, then th
teleportation protocol is optimal for allN>12 and for all
N>4 for entanglement resources in the one-shot case if o
integer resources are allowed.

II. OPERATIONS INVOLVING TWO QUBITS

We consider first the simple case of just two qubits. Su
pose that two parties, by convention Alice and Bob, occu
laboratoriesA andB which contain qubitsa andb, respec-
tively. The Hilbert spaces of these systems are denoted
Ha andHb , so that the Hilbert space of the collective sy
tem ab is the tensor product spaceHa ^ Hb . In addition to
these systems, Alice and Bob possess auxiliary local qu
tum systems, shared entanglement and a two-way clas
communication channel. This setup is illustrated in Fig.
Using these resources, Alice and Bob can perform any
lective operation by carrying out the following four steps.

Step 1. Alice teleports the state ofa to Bob in laboratory
B. This costs one ebit of entanglement and two classical
from A to B.

Step 2. Bob, possibly making use of his auxiliary system
carries out the operation locally upon the compound syst

Step 3. Bob teleports the final state of Alice’s qubit bac
to her. This costs one ebit of entanglement and two class
bits from B to A.

Step 4. ~Selective operations only! Bob transmits to Alice
any classical information that he might have obtained at
end of his local quantum~LQ! operation. This step applie
only to ~generalized! measurements, in which case it wou
be information about the result.

Thus, the total classical communication and shared
tanglement~CC and SE! resources required to perform a
arbitrary collective operation onab using teleportation, such
that Alice and Bob share the same classical information
the end, are

FIG. 1. Illustration of the experimental setup considered in S
II. LaboratoriesA andB contain respective qubitsa andb. Their
aim is to perform an arbitrary collective operation on these sys
using shared entanglement~SE! and a two-way classical commun
cation ~CC! channel. They are also able to perform arbitrary loc
quantum~LQ! operations, possibly involving local auxiliary quan
tum systems and their respective parts of the entangled system
4-2
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2 ebits12 bits~A→B!12 bits~B→A!1CS~B→A!.
~2.1!

The supplementary informationCS(B→A) is that which
is conveyed by Bob to Alice in step 4. This additional info
mation will be created when the operation, represented b
completely positive, linear, trace-preserving mapL, is selec-
tive. The most general kind of operation which gives rise
nonzero supplementary information is a generalized m
surement. A generalized measurement withM outcomes is
described byM positive, Hermitian operatorsEr , where r
51, . . . ,M and ( rEr51. These operators form a positiv
operator-valued measure~POVM! @15# and each of them cor
responds to a distinct outcome. If the initial state ofab is
described by the density operatorr, then the probabilitypr
of obtaining outcomer is given by TrrEr . The supplemen-
tary information generated at Bob’s laboratory is given
the Shannon entropy of this distribution,

CS52(
r 51

M

pr log2pr . ~2.2!

This quantity can take on any non-negative real val
Clearly, it is zero when the operation is nonselective.
however, we consider an operation described by the POV

Er5
1

M
, ~2.3!

where Bob records the outcome, then the supplementary
formation is equal to log2M, which diverges asM→`. For
this operation, one cannot decrease the supplementary i
mation using any information that Alice may have about
initial state r, since the probability distribution is uniform
regardless of what the initial state is.

For selective operations, the transmission of this sup
mentary information will have epistemological significan
for Alice which may be important in some applications. S
may, for example, wish to carry out some local operat
upon her system, depending on the supplementary infor
tion she receives from Bob. For the remainder of this pap
however, we shall not be concerned withCS , and when we
speak of the classical information required to complete
quantum operation, we will mean that which is needed
carry it out nonselectively. In this paper, we shall be co
cerned largely with unitary operations anyway, which a
nonselective.

Returning to the teleportation protocol, it may be the ca
that the CC and SE resources required to perform aparticu-
lar operation,L, are less than those required to performany
operation, by this method. Let us denote byCR(L:A→B),
CR(L:B→A), andER(L) the number of classical bits trans
mitted in each direction and number of ebits of entanglem
required to carry outL. These may be regarded, respective
as classical and quantum measures of how nonlocal the
eration is, andER(L) is therefore somewhat analogous to t
entanglement of formation of quantum states@12#.

Alternative classical and quantum measures of insep
bility arise naturally if we consider the fact that collectiv
operations on quantum systems can be used to transmit
03231
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sical information and establish entanglement between dis
locations. Let us define the quantitiesCC(L:A→B),
CC(L:B→A), andEC(L), respectively, the maximum num
ber of classical bits that the operation can be used to c
municate in each direction, and the maximum number
ebits of entanglement that it can create betweenA and B.
EC(L) is correspondingly analogous to the entanglemen
distillation of quantum states@13#. We must have

CC~L:A→B!<CR~L:A→B!, ~2.4!

CC~L:B→A!<CR~L:B→A!, ~2.5!

EC~L!<ER~L!. ~2.6!

The first two inequalities come from the fact that all classi
information that the operation can be used to transmit m
in Fig. 1, be sent over the classical channel. Equivalently,
classical information can be transmitted using LQ and
operations alone. Were this not the case, it would be poss
to violate relativistic casuality. An intriguing argument fo
this has recently been described by Eisertet al. @16#. The
third inequality comes from the fact that entanglement c
not increase under LQ and CC operations. For one-way c
sical communication, this has been shown by Horodecki
Horodecki@17# to be also equivalent to the impossibility o
superluminal communication.

The general viability of the teleportation protocol implie
that the minimum CC and SE resources required to perfo
any particular operation will not exceed two ebits of e
tanglement and two classical bits each way. The most n
local quantum operations with regard to the resource m
suresER andCR are those for which the minimum values o
these quantities are both equal to 2. Inequalities~2.4!–~2.6!
imply that the maximum values of theEC and CC cannot
exceed 2. Any operation which saturates the limits of 2
the latter measures must also then saturate inequalities~2.4!–
~2.6!, and can be termed a maximally inseparable operat

One such operation is theSWAP operation. This is a uni-
tary operationUS which, for any stateuca&PHa and any
stateucb&PHb , acts as follows:

USuca& ^ ucb&5ucb& ^ uca&, ~2.7!

that is, it exchanges the states ofa and b. The ability of
SWAP to create two ebits of entanglement and transmit t
classical bits each way is easily demonstrated. We shall n
do this, with reference to Figs. 2 and 3. The remarka
properties of theSWAP operation are also described by Co
lins et al. @18# and Eisertet al. @16#.

In Fig. 2, Alice and Bob initially share two ebits of en
tanglement in the form of Bell states@19#. Using superdense
quantum coding@20#, Alice and Bob can each manipulat
one of their particles, those represented by hollow circles
produce any of the four Bell states that they wish. The fi
shared Bell states areuBa& and uBb&. TheSWAP operation is
then performed on the states of the hollow qubits, result
in each party being in possession of the entire Bell st
which the other party created. Each then performs a B
measurement, which has four possible outcomes and
4-3
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reveals two bits of information, showing howSWAP can
transmit two classical bits each way.

Figure 3 shows howSWAP can be used to establish tw
ebits of entanglement between Alice and Bob. Each pa
initially possesses one local ebit of entanglement. If
SWAP operation is used to interchange the states of one
ticle from each entangled pair, the result is that Alice a
Bob share two ebits of entanglement.

Notice that theSWAP operation cannot be used to crea
two ebits of entanglement, and communicate two class
bits each way, simultaneously. In fact, looking at Figs. 2 a
3, we can see, up to local operations, these processe
essentially the time-reverses of each other.

FIG. 2. Illustration of how theSWAP operation can be used t
communicate two classical bits each way between Alice and B

FIG. 3. Illustration of how theSWAP operation can be used t
establish two ebits of entanglement betweenA andB.
03231
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A broader class of maximally inseparable operations
two qubits can be obtained by considering those which
equivalent toSWAP up to a bilateral local unitary operation
Specifically, any unitary operationT of the form T5(Ua2

^ Ub2
)US(Ua1

^ Ub1
) must require the same entangleme

and communication resources asUS . Here,Ua i
andUb i

are

local unitary operations ona andb, respectively. The reaso
for this is simple: it is possible to convert this operation in
theSWAP operation by just local unitary transformations, th
is, without any additional entanglement or classical comm
nication resources. This follows from the simple observat
that US5(Ua2

†
^ Ub2

† )T(Ua1

†
^ Ub1

† ).

III. MULTIPARTICLE SYSTEMS, GRAPHICAL
REPRESENTATIONS, AND TELEPORTATION

Let us now extend our discussion to the case ofN-particle
systems. Instead of just two spatially separated laborato
we now haveN of them, which we labelAj , where j
51, . . . ,N. In each of these laboratories is a qubit, and
label theseqj . We are interested in the CC and SE resour
required to perform an arbitrary collective quantum ope
tion involving all N qubits.

Each laboratory shares a certain number of ebits of
tanglement with every other laboratory. In this paper,
shall, except where indicated, take all entanglement to b
pure, bipartite form. TheN laboratories are also linked b
classical communication channels, so that each can com
nicate a certain number of classical bits to the others. E
laboratory also possesses auxiliary quantum systems al
ing arbitrary local quantum operations to be performed.

The CC and SE resources available to the network
laboratories are conveniently represented using the conc
of graph theory@21#. Recall that a graphG5(V,E) is a setV
of vertices connected by edges comprising a setE. If the
edges have a sense of direction indicating an asymmet
relationship between the vertices they connect, then
graph is said to be a directed graph, or a digraph. If ther
no preferred direction, the graph is undirected.

The CC and SE resources can be represented by dis
entanglement and communication graphs. Both graphs
comprised ofN vertices, each of which represents one of t
laboratoriesAj . The resource entanglement graphGE repre-
sents the amount of bipartite entanglement shared by e
pair of laboratories. Specifically, we write both thej th labo-
ratory and its corresponding vertex asAj . The weight of the
edge joining verticesAi and Aj is equal to the number o
ebits of entanglement shared by these laboratories. The g
is characterized completely by theN3N resource entangle
ment matrixER . The elementER

i j of this matrix is equal to
the number of ebits of entanglement shared byAi and Aj .
The diagonal elements of this matrix are zero.

Clearly,ER is symmetric and the graphGE is undirected.
These observations follow from the fact that entanglemen
a shared, rather than a directed resource.

As an example, a resource entanglement graph forN54
is depicted in Fig. 4. This corresponds to the following r
source entanglement matrix:

.

4-4
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ER5S 0 3 2 6

3 0 1 0

2 1 0 0

6 0 0 0

D . ~3.1!

Likewise, we can define a resource communication gr
GC . This represents the number of classical bits that
laboratories can communicate directly to each other. By
rectly, we mean that the information is not relayed by a se
intermediate laboratories from origin to destination. T
weight of the edge running fromAi to Aj represents the
number of classical bits thatAi can communicate directly to
Aj . These weights are the elements of a correspondin
defined resource communication matrixCR . The i j element
of this matrix,CR

i j , is equal to the number of classical bi
that Ai can communicate directly toAj . The diagonal ele-
ments of this matrix are also zero.CR is not necessarily
symmetric and the graphGC is directed, which follows from
the fact that communication operations have a natural se
of direction from sender to receiver. An example of a
source communication graph forN54 is given in Fig. 5,

FIG. 4. Example of an entanglement graphGE with N54. This
corresponds to the resource entanglement matrixER in Eq. ~3.1!.

FIG. 5. Example of a communication graphGC with N54. This
corresponds to the resource communication matrixCR in Eq. ~3.2!.
03231
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which corresponds to the resource communication matrix

CR5S 0 1 4 0

2 0 0 9

0 0 0 0

5 0 0 0

D . ~3.2!

The fact that each pair of vertices may be joined by m
than one edge means thatGC is, strictly speaking, a multi-
graph, indeed a multidigraph since these edges are dire
We do not, however, wish to unduly proliferate terminolog
so we shall simply use the term graph.

In either graph, an edge of weight zero is equivalent to
edge. Thus, if two vertices are not linked by an edge in
graphGE , then the corresponding laboratories share no
tanglement. Similarly, if there is no edge running from ve
tex Ai to Aj in the graphGC , thenAi cannot communicate
any classical information directly toAj .

Two quantities that will be of particular interest to us a
the total shared entanglement and the total number of cla
cal bits that can be communicated. Respectively, these a

ER5
1

2 (
i j

ER
i j , ~3.3!

CR5(
i j

CR
i j . ~3.4!

The factor of 1/2 in Eq.~3.3! occurs as a consequence of t
shared nature of entanglement, which implies that the
tanglement shared by each pair of laboratories is coun
twice in the summation.

Having established the framework within which we w
work, let us now see how such resources can be use
perform an arbitrary collective quantum operation upon
N qubits qj . The teleportation-based procedure for two q
bits described in the preceding section admits a natural g
eralization to the case ofN qubits, which we now describe

We consider the situation in which all laboratories sha
entanglement and have the resources for two-way class
communication with one particular laboratory. Let this lab
ratory beA1. It follows that the other laboratories can tel
port the states of their qubits toA1. The operation can then
be carried out atA1 as an LQ operation. The final states
the other qubits can then be teleported back to their orig
laboratories, completing the procedure.

This multiparticle protocol generalizes the first three ste
of the two-qubit protocol described in the preceding secti
It requires each of the laboratoriesA2 , . . . ,AN to share two
ebits of entanglement withA1 and for two bits of classica
information to be communicated each way between eac
them andA1. The elements of the corresponding resou
entanglement and communication matrices are

ER
i j 5CR

i j 52ud i12d1 j u. ~3.5!

The corresponding graphsGE andGC are depicted in Figs. 6
and 7. The total resource entanglement and communica
are
4-5
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ER5
CR

2
52~N21!. ~3.6!

The graphGE representing the entanglement resources
quired by the teleportation protocol is said to be atree. Gen-
erally speaking, a tree is an connected, acyclic graph, tha
one where every pair of vertices is connected by at least
path, and where there are no closed paths.

Any quantum operation onN qubits can be performed
using this method and thus, at least for the topology of
tanglement and communication in our protocol, the values
ER andCR in Eq. ~3.6! are sufficient.

Much of the remainder of this paper will be concern
with the issue of whether or not this protocol is optimal, th
is, whether or not there exists a procedure for carrying
any quantum operation onN qubits which requires fewe
resources than this protocol. Prior to doing so, it is of inter
to determine whether or not this protocol is the most effici
among those that operate by teleportation of the states o
qubits concerned.

If they are to interact by a single local collective operati
at one of the laboratories, then this is easily shown to be
case. We haveN laboratoriesAi , each of which possesses
corresponding qubitqi . If we wish theN laboratories to be
able to carry out any collective operation upon theqi by
teleporting single qubits, then at least 2(N21) such telepor-
tations must take place.

To see why, suppose that the first teleportation is fromA1
to A2 . A2 now has information aboutA1. Second, anothe

FIG. 6. Resource entanglement graph for the teleportation
tocol.

FIG. 7. Resource communication graph for the teleportat
protocol.
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lab Ar teleports a state toA3. If they are completely different
labs from the first pairs of laboratories, thenA3 can hold
information only about one other lab,Ar . If, however, r
52, thenA3 can hold information about three qubits:q1 ,
q2, andq3.

The most efficient way to pass on information is forA3 to
teleport a stateA4 and so on. AfterN21 steps, the bes
possible situation is that one labAN can have information
from all of the other labs. None of the other labs can hav
complete set of information. So now there must be at lea
further N21 communication events required so that each
the first N21 labs can get information from labAN . This
gives a total of at least 2(N21) teleportations.

We saw in the preceding section that the total resou
entanglement for an arbitrary operation upon two partic
can be recovered if the operation in question is unita
equivalent toSWAP. Also, for such an operation, the require
classical communication facilities required to complete
arbitrary operation can be fully used to communicate use
information. An important question is, does there exist
operation or class of operations that fulfills this role in t
generalN-particle case?

Let us denote the maximum total entanglement that
be established, and the maximum number of classical
that can be sent by any operation byEC and CC , respec-
tively. To resolve this issue, it is helpful to partition th
entire network ofN qubits into a single qubit and a com
pound system comprised of the remainingN21 qubits. How
much entanglement can be established between the loc
of the isolated qubit and the rest of the network? Also, h
much classical information can be transmitted in both dir
tions between the location of this qubit and the remainde

In the teleportation protocol, a special status was given
laboratory A1. However, this choice was arbitrary, an
clearly this role could have been assumed by any laborat
It follows that any collective quantum operation uponN qu-
bits can be carried out with each laboratory sharing no m
than two ebits of entanglement, and is able to exchange
more than two classical bits each way, with the rest of
network. The reasoning which led us to inequalities~2.4!–
~2.6! then implies that no operation can be used to estab
more than two ebits of pure bipartite entanglement, or
used to exchange more than two classical bits each w
between any particular laboratory and the rest of the n
work.

The maximum total entanglement that can be establis
is then obtained by multiplication of two ebits by the numb
of laboratories and then dividing by 2, since entanglemen
shared, giving

EC<N. ~3.7!

The maximum number of classical bits that any collect
operation can use to communicate is obtained by multiply
the maximum amount of information that one laboratory c
communicate, namely two bits, byN, the number of labora-
tories, giving

CC<2N. ~3.8!

o-

n
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ENTANGLEMENT, INFORMATION, AND . . . PHYSICAL REVIEW A 63 032314
These bounds are tight, that is, they can be accessed
specific class of quantum operations, the permutation op
tions.

A unitary permutation operator uponN qubits is described
by

UPuc1& ^ •••^ ucN&5ucP(1)& ^ •••^ ucP(N)&, ~3.9!

whereP( i ) represents a permutation of the indexi P@1,N#.
Here, we consider only permutation operations which sat
P( i )Þ i ; i P@1,N#.

To see thatN ebits of entanglement can be establish
using a permutation operation, suppose thatAi contains one
local ebit, in the form of, for example, some standard B
state. We shall denote this state byuBi ,i&. The first and sec-
ond indices denote the laboratories which possess the
and second qubits, respectively. Suppose now that the
ond qubits’ states are permuted according to Eq.~3.9!. This
transformsuBi ,i& into uBi ,P( i )&. Following this permutation,
laboratoriesAi andAP( i ) share the Bell stateuBi ,P( i )&. There
areN laboratories, and soN shared ebits of entanglement
the form of Bell states have been established. This proce
is illustrated in Fig. 8.

To see that a permutation operation can be used to c
municate 2N classical bits, suppose thatAP21( i ) shares the
Bell stateuBi ,P21( i )& with Ai . Locally, using superdense cod
ing, AP21( i ) can manipulate the state of the second qubit
this Bell state so that it becomes any of the four possible B
states. Figure 9 illustrates this scenario, where each se
qubit is represented by a hollow circle. We may therefo
write the state following this local manipulation a

uBm( i )
i ,P21( i )&, where the integerm( i )P@1, . . . ,4#. The permu-

tation operation is then carried out on the set of locally m
nipulated qubits, resulting inAi being in possession of th
stateuBm( i )

i ,i &. By performing a Bell measurement,Ai can read
the two bits of information sent byAP21( i ) , and in total 2N
bits have been communicated.

As is the case with theSWAP operation for two qubits, the
number of ebits thatUP can establish is also the minimum
amount of entanglement required to carry out this operat
The same is true of the classical communication resou
involved. Suppose thatAi shares one ebit of entangleme

FIG. 8. Illustration of the production ofN ebits of entanglemen
by the permutation operation. Here,N56 and the permutation take
$1,2,3,4,5,6% to $6,1,2,3,4,5%. One qubit of each initial local ebit is
transferred to the successive laboratory, resulting in the finaN
shared ebits.
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with AP( i ) and can communicate two classical bits to th
location. Then the permutation operation can be carried
using these resources to teleport the state of qubitqi from Ai
to AP( i ) . Permutation operations, including theSWAP opera-
tion, make maximally efficient use of the resources requi
to carry them out.

As is also the case with theSWAP operation, any operation
which is equivalent toUP up to anN-partite local unitary
transformation, that is, any unitary operationT of the form

T5~ ^ i 51
N Ui

2!UP~ ^ j 51
N U j

1!, ~3.10!

whereUi
1 and U j

2 are arbitrary local unitary operations o
qubits qi and qj , is also maximally inseparable. This is
consequence of the fact thatUP can be obtained fromT by
the local unitary operation

UP5~ ^ i 51
N Ui

2†!T~ ^ j 51
N U j

1†!. ~3.11!

Comparing Eqs.~3.7! and~3.8! with Eq. ~3.6!, we see that
the total amount of entanglement that can be established
the total amount of classical information that can be sent
strictly less than that required to carry out an arbitrary o
eration using the teleportation protocol, with the exception
the caseN52. We have not, however, established the op
mality of the teleportation protocol. We examine this issue
the following section.

IV. RESOURCES REQUIRED TO PERFORM ARBITRARY
MULTIPARTICLE OPERATIONS

A. Graph symmetrization

The teleportation-based method for performing an ar
trary collective quantum operation uponN spatially sepa-
rated qubits requiresER52(N21) ebits of entanglemen
and CR54(N21) classical bits. An obviously importan
question is, are these figures optimal, in the sense that no
entanglement and communication will suffice?

Unlike the case ofN52, for generalN we cannot answer
this question by making use of the fact that the resou

FIG. 9. Illustration of how permutation operations can be us
to communicate 2N classical bits, using the same cyclic permut
tion as in Fig. 8. Each laboratory initially shares one ebit with
successor, which it then manipulates into one of the four Bell sta
The manipulated qubits are represented by hollow circles. The
mutation operation is then used to localize each of these ebits in
successive laboratories. Individual local Bell measurements are
formed upon these, each of which reveals two classical bits, orN
bits in total.
4-7
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entanglement and communication required by the telepo
tion protocol can, respectively, be recovered or used to c
municate messages, as can be done with theSWAP operation.
For N.2, the values ofER and CR for the teleportation
protocol, given by Eq.~3.6!, are strictly greater than the up
per bounds onEC and CC in Eqs. ~3.7! and ~3.8!. Another
approach must be taken to resolve this issue. In this sec
we show that, for evenN, the resource entanglement an
communication required to perform an arbitrary quantum
eration uponN qubits using the teleportation protocol a
indeed the minimum possible values. We describe a pr
technique, which we termgraph symmetrization, to establish
this fact. The same method is then used to find lower bou
on the minimum values ofER and CR for odd N. We find
that, for N>4, these lower bounds are strictly greater th
the upper bounds onEC andCC in Eqs.~3.7! and ~3.8!.

The problem we will investigate is the following. A ne
work of laboratoriesAi possesses shared bipartite entang
ment, described by the graphGE , and facilities enabling
limited classical communication between them, described
a graphGC . If these graphs describe sufficient resources
enable any collective operation to be performed upon th
respective resident qubitsqj , then what lower bounds mus
the corresponding values ofER andCR satisfy?

We commence by making the following observation:
the graphsGE(V) and GC(V) describe sufficient resource
then so does any other pair of graphs obtained from them
a permutation of the vertices. Note that we have written
dependence of the graphs on the vertex set explicitly h
This makes sense intuitively. Nevertheless, here we pro
a short proof. LetGE8 (V) and GC8 (V) be the entanglemen
and communication graphs obtained fromGE(V) andGC(V)
by a permutationP of the vertex set. We may writeGE8 (V)
5GE(P@V#) and GC8 (V)5GC(P@V#), where P@V# is the
permutation. The reversibility of permutation operations i
plies that GE(V)5GE8 (P21@V#) and GC(V)
5GC8 (P21@V#). Consider now a quantum operationL on
the N qubits. This also depends on the vertex set and so
write it asL(V). We can obtain another quantum operati
L8 from L by applying the same permutation to the vert
set, that is,L8(V)5L(P@V#) andL(V)5L8(P21@V#).

If there exists an operationL8(V) which cannot be per-
formed using the resources described by the graphsGE8 (V)
andGC8 (V), then by reversing the permutationP, it follows
thatL(V) cannot be carried out usingGE(V) andGC(V), in
contradiction with our premise. Thus, if the resources
scribed by the graphsGE(V) and GC(V) can be used to
carry out any quantum operation, then so do those descr
by GE(P@V#) and GC(P@V#) for any permutationP of the
vertex setV.

Let us now consider the graphsG̃E andG̃C , defined by

G̃E5 (
P[V]

GE~P@V# !, ~4.1!

G̃C5 (
P[V]

GC~P@V# !. ~4.2!
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These graphs are constructed by summing over all of
graphs obtained fromGE andGC by permuting the vertices
By summing, we mean summing the entanglement and c
munication represented by the weights of the edges. The
source entanglement and communication matrices for th
graphs are easily obtained. Their elements are

ẼR
i j 5 (

P[V]
ER

P( i ),P( j ) , ~4.3!

C̃R
i j 5 (

P[V]
CR

P( i ),P( j ) . ~4.4!

These graphs are regular and complete. A complete grap
one where each pair of vertices is joined by an edge. In
case of the graphG̃C , this means that each pair of vertices
connected by an edge in each direction. A regular grap
one where all edges have the same weight. In a netw
represented by these graphs, all pairs of laboratories s
the same amount of entanglement, and can communicate
same amount of classical information, in both directions.

For the purposes of illustration, the graphsG̃E andG̃C are
shown in Figs. 10 and 11 corresponding to the particu
graphsGE andGC in Figs. 4 and 5.

The regularity and completeness properties are ea
proven, and follow immediately from the fact that the grap
G̃C andG̃E , being defined as sums over all vertex permu
tions, are clearly permutation invariant themselves.

The total resource entanglement and communication
these graphs,ẼR andC̃R , are easily evaluated in terms of th
corresponding resources represented by the original gra
GE andGC . Take the case ofẼR : there areN! permutations
of the vertex set, soG̃E describesN! times as much en-
tanglement asGE , that is,

ẼR5N!ER . ~4.5!

Similarly,

C̃R5N!CR . ~4.6!

FIG. 10. Symmetrized resource entanglement graphG̃E corre-
sponding to the graphGE in Fig. 4. Here,e, which is given by Eq.
~4.7!, is equal to 24 ebits.
4-8
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All edges in each of these graphs have the same we
and it will be convenient to label these two weights. ForG̃E

and G̃C , we denote these edge weights simply bye and c,
respectively. These are

e52~N22!!ER , ~4.7!

c5~N22!!CR , ~4.8!

which follows from Eqs.~4.5! and ~4.6!, and also from the
fact that the graphsG̃E and G̃C haveN(N21)/2 andN(N
21) edges, respectively. For the graphs in Figs. 10 and
we find thate524 andc542.

There areN! permutations of the vertex set. The perm
tation invariance of the sufficiency condition then impli
that the resources represented by the graphsG̃E andG̃C can
be used to perform any operationN! times. By this, we mean
the following: suppose thatAi containsN! qubits. We can
then defineN! sets of qubits, where each contains one qu
from each laboratory. It will be possible to perform the sa
operation separately upon every one of these sets.

In the next two subsections, we will use the formalis
developed here, together with inequalities~2.4!–~2.6! to es-
tablish lower bounds on the values ofe andc. These lead to
lower bounds onER andCR through Eqs.~4.7! and~4.8!. We
shall treat the cases of even and oddN separately, since, fo
evenN, it is possible to use this technique to solve for t
minimum values ofER andCR which are necessary to carr
out any operation. These are those required to implemen
teleportation protocol described in Sec. III.

B. Necessary and sufficient resources for evenN

Using the formalism we have set up, we can obtain
minimum values ofER andCR exactly whenN is even. The
network of N laboratories is assumed to possess suffic
resources, described by the graphsG̃E and G̃C , to enable
any operation to be carried outN! times. Here, we conside
one particular operation, which we will refer to as th

FIG. 11. Symmetrized resource communication graphG̃C cor-
responding to the graphGC in Fig. 5. Here,c, which is given by Eq.
~4.8!, is equal to 42 bits.
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pairwise-SWAP ~PS! operation. This operation has the effe
of swapping the state of a qubit atAj with that of one at
Aj 11, for all odd j. If we write the two-particleSWAP opera-
tion exchanging the states of qubits atAj and Aj 11 as
US

j 11,j , then the PS operation may be written as

UPS5US
N,N21

^ US
N22,N23

^ •••^ US
2,1. ~4.9!

This operation is illustrated in Fig. 12.
The PS operation is a permutation operation which lea

no vertex invariant, and so it can be used to establishN ebits
of entanglement or to communicate 2N classical bits. Per-
forming this operationN! times can then createN!N ebits of
entanglement or send 2N!N bits of classical information.
From the assumption that the graphsG̃E and G̃C represent
sufficient resources to carry out theN!-fold PS operation, we
can deduce the minimum values ofe andc, and using Eqs.
~4.7! and ~4.8!, those ofER andCR required to do so.

To determine the minimum value ofe, we will make use
of the fact that entanglement cannot increase under LQ
CC operations. Consider the situation depicted in Fig.
We partition the entire network into two sets. One conta
the even laboratoriesA2 ,A4 , . . . ,AN , and the other contains
the odd onesA1 ,A3 , . . . ,AN21. We shall refer to these set
asSeven andSodd.

The total entanglement initially shared by these sets
be calculated in a straightforward manner. Each of theN/2
laboratories inSodd sharese ebits with each laboratory in
Seven, that is,Ne/2 ebits withSeven in total. Adding up the
N/2 such contributions from the laboratories inSodd gives
(N/2)2e ebits initially shared bySeven and Sodd. The final
entanglement they share isN!N ebits. The total entangle
ment thatSeven and Sodd share cannot increase, giving th
inequality

S N

2 D 2

e>N!N. ~4.10!

Making use of Eq.~4.7!, we find that

FIG. 12. Depiction of the pairwise-SWAP ~PS! operation forN
54.
4-9
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ER>2~N21!. ~4.11!

This lower bound on the total resource entanglement is
cisely the amount which is required by the teleportation p
tocol. Thus, for evenN, the teleportation protocol is optima
with regard to the required total resource entanglement.

This bound has been derived on the basis of the fact t
in a multiparticle system, the~bipartite! entanglement share
by two exhaustive subsets cannot increase under LQ and
operations. Although the entanglement initially shared
each pair of laboratories is in pure, bipartite form, the tra
formation shown in Fig. 13 may, at some point, manipul
the resource entanglement into, possibly mixed, multipart
entanglement. Our argument still holds under these circ
stances. If the final entanglement is in multiparticle for

FIG. 13. Use of the resource entanglement graphG̃E to carry
out theN!-fold pairwise-SWAP operation. Initially, the entanglemen

resources are distributed according to the graphG̃E . We have di-
vided theN laboratories into even and odd setsSeven andSodd. For
the sake of clarity, we have not indicated the internal entanglem
of these sets. Each laboratory inSodd sharese ebits of entanglemen
with each laboratory inSeven. These sets are separated by an ima
nary partition, indicated by the broken line. Initially, these s
share (N/2)2e ebits, and theN!-fold PS operation can createN!N
ebits. The total entanglement shared across this partition ca
increase, and the requirement thate must be large enough to carr
out theN!-fold PS operation leads to inequalities~4.10! and~4.11!.
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then in order to carry out theN!-fold PS operation,Aj and
Aj 11 will have to be able todistill 2N! ebits of pure, bipar-
tite entanglement. Thetotal distillable entanglement betwee
SevenandSodd cannot increase, which again leads to inequ
ity ~4.10! and thus the teleportation bound in~4.11!.

The nonincreasing of entanglement under LQ and CC
erations is an asymptotic result. It follows that the telepor
tion protocol is asymptotically optimal for evenN. By
asymptotic@22#, we mean that, given a very large number
sets of separated qubits, where the same arbitrary opera
is to be carried out on each set, the teleportation proto
uses the minimumaverageentanglement that is required pe
run of the operation.

In practical situations, it is often the resources required
carry out an operation successfully just once that will be
interest. For general information processing tasks, the
sources required in the ‘‘one-shot’’ scenario are at le
equal to the resources required asymptotically. For the pr
lem we have considered here, whenN is even, the entangle
ment resources required in both scenarios are equal. Th
because the teleportation protocol, which requires 2(N21)
ebits, can be used to carry out any collective operation oN
qubits once.

The proof that theN laboratories must also be able to se
4(N21) classical bits proceeds similarly. The graphG̃C is
assumed to represent sufficient CC resources to perform
operationN! times. If this operation is the PS operation, th
it should then be able to communicate 2N!N bits. Given this,
and the fact that each laboratory can communicatec classical
bits to each other, we can determine the minimum value oc,
from which we can infer the minimum ofCR through Eq.
~4.8!.

Again, we partition the vertex set intoSeven and Sodd.
According to inequalities~2.4!–~2.5!, the total amount of
resource communication between the setsSevenandSodd can-
not be less than the amount of classical information that
N!-fold PS operation can be used to communicate betw
these two sets.

According toG̃C , each of theN/2 laboratories in either
Seven or Sodd can communicatec classical bits to each labo
ratory in the other set. From this, we find that the maximu
amount of classical information that can be sent in eit
direction betweenSeven to Sodd odd is (N/2)2c bits.

TheN!-fold PS operation can be used to sendN!N bits in
either direction betweenSeven and Sodd. Inequalities~2.4!–
~2.5! imply that

S N

2 D 2

c>N!N. ~4.12!

Making use of Eq.~4.8!, we obtain

CR>4~N21!, ~4.13!

which is the amount of resource communication required
implement the teleportation protocol. We have thus sho
that, in terms of the total resource entanglement and com
nication, the teleportation protocol described in Sec. III
maximally efficient.
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C. Necessary resources for oddN

Let us now examine the case of oddN. We have been
unable to find a specific operation which can be used
prove that the minimum resources required to carry out
operation on an odd number of qubits are those employe
the teleportation protocol. However, using the graph symm
trization technique, it is still possible to obtain lower boun
on these minimum resources. As before, we assume tha

graphsG̃E andG̃C represent sufficient resources to perfo
any operationN! times. The specific operation we shall co
sider here is the PS operation upon the firstN23 qubits, and
a separate, cyclic permutation of the remaining three.
N53, there is only this latter part of the operation. We sh
refer to this as the PS1CP operation, and it is illustrated i
Fig. 14.

The PS1CP operation is again a permutation operat
which leaves no vertex invariant. It follows that it can b
used to establishN ebits of entanglement and to commun
cate 2N classical bits.

We shall now apply the same arguments as those use
the PS operation for evenN to obtain lower bounds on th
resources required to carry out the PS1CP operation. Again,
we partition theN laboratories into the subsetsSeven and
Sodd.

Our aim, as before, is to obtain lower bounds on the m

mum values ofc ande from the assumption thatG̃E andG̃C

represent sufficient resources to perform this particular
erationN! times.

We begin by deriving a lower bound on the minimu
sufficient resource entanglementER . In Fig. 15, the total
initial entanglement betweenSevenandSodd is depicted, as is
the amount of entanglement that can be established by
N!-fold PS1CP operation. As before, these sets are divid
by an imaginary partition, and the total entanglement acr
this partition cannot increase.

Initially, each of the (N21)/2 laboratories inSevenshares
e ebits with each of the (N11)/2 laboratories inSodd. The
total amount of entanglement initially shared bySeven and
Sodd is then (N221)e/4 ebits. There are two contributions t
the amount of entanglement that can be created by
N!-fold PS1CP operation. One is that created by the PS p
of the operation on the qubits in the firstN23 laboratories.
This can createN!(N23) ebits. The second contributio
comes from the cyclic permutation on the remaining th
laboratories. This gives an additional 2N! ebits. Inequality
~2.6! then implies

FIG. 14. Depiction of the PS1CP operation forN57.
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S N221

4 De>N! ~N21!. ~4.14!

Making use of Eq.~4.8!, we obtain a corresponding lowe
bound onER :

ER>2S N

N11D ~N21!, ~4.15!

that is, the teleportation bound multiplied by a factor
N/(N11). The argument given for evenN that this bound

FIG. 15. Use of the resource entanglement graphG̃E to carry
out the N!-fold PS1CP operation. The initial entanglement re

sources are distributed according to the graphG̃E . Here, prior to
carrying out the operation, the setsSeven and Sodd share (N2

21)e/4 ebits of entanglement. TheN!-fold PS1CP operation can
establishN!N ebits between them. The total entanglement sha
by these sets cannot increase, and the requirement thate must be
large enough to carry out theN!-fold PS1CP operation leads to
inequalities~4.14! and ~4.15!.
4-11



ite
als

e-
l
tio

i

a

m

he

un

ou

u

g

re

re
se
le
u
us
l-

ta

ts
r of
one

in
to
ber
dd
ss

or-

ne-
sical
of
six

old

tic
hat
for-

ll

ry
rees-
rce

op-

m
arry
ns
es-
rge
ted

ome-
-

-

ay
ore

ne

CHEFLES, GILSON, AND BARNETT PHYSICAL REVIEW A63 032314
cannot be improved upon by converting the initial bipart
resource entanglement into multiparticle entanglement
applies here.

Let us now obtain a lower bound on the minimum r
source communicationCR . As with the even case, we wil
make use of the fact that the amount of classical informa
that the PS1CP operation can be used to communicate,
either direction betweenSeven and Sodd, cannot exceed the
amount of resource communication in this direction th
must be consumed in order to implement theN!-fold
PS1CP operation.

For the sake of concreteness, we shall consider com
nication fromSeven to Sodd. Initially, each of the (N21)/2
laboratories inSevencan communicatec classical bits to each
of the (N11)/2 laboratories inSodd. This implies that the
total resource communication fromSeven to Sodd is (N2

21)c/4 bits. It is easy to show that it is the same in t
opposite direction.

As with entanglement, the PS and CP parts of theN!-fold
PS1CP operation make distinct contributions to the amo
of information that this operation can use to send fromSeven
to Sodd. For a single implementation of PS1CP, the PS part
can communicate (N23) bits fromSeven to Sodd, while the
CP part can be used to send two bits. Thus, the total am
of classical information that theN!-fold PS1CP operation
can use to send in either direction across the partition
N!(N21) bits.

The impossibility of this exceeding the resource comm
nication across the partition implies that

S N221

4 D c>N! ~N21!. ~4.16!

and, making use of Eq.~4.8!, we obtain the correspondin
bound forCR :

CR>4S N

N11D ~N21!, ~4.17!

which, like the entanglement bound in~4.15!, is the telepor-
tation bound multiplied byN/(N11).

Like the bounds in~4.11! and~4.13! for the even case, the
lower bounds we have obtained here for the minimum
source entanglement and communication for oddN are
asymptotic results. However, the fact that the bounds~4.15!
and ~4.17! are not integers suggests that if the available
sources are at these bounds, then they may not be very u
in the one-shot case, where it is more desirable to be ab
transmit whole bits of classical information, and to manip
late whole ebits of entanglement. With this in mind, let
return to the bound onER in ~4.15! and consider the inequa
ity

2N~N21!

N11
52~N21!221

4

N11
>2~N21!22,

~4.18!

where the equality is attained only in the limit asN→`. If
we are to round this bound up to the next integer, we ob
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2(N21)21. Thus, the minimum number of integer ebi
able to carry out an arbitrary operation on an odd numbe
qubits, in the one-shot case, is bounded from below by
ebit less than the teleportation bound.

By a similar calculation, one can show, using the bound
~4.17!, that in the one-shot case, if classical information is
be transmitted in integer amounts, then the minimum num
of bits needed to carry out an arbitrary operation on an o
number of qubits is bounded from below by three bits le
than the teleportation bound. ForN53,5, a stronger bound
of two bits less than resource communication for the telep
tation protocol is obtained.

With these observations in mind, the case ofN53 ap-
pears to be particularly significant. For this case, in the o
shot scenario, we see that at least three ebits and six clas
bits are required. However, we know that a permutation
three qubits can create three ebits or be used to send
classical bits. This implies that these bounds must also h
asymptotically.

It is important to compare the bounds in~4.15! and~4.17!,
which hold rigorously in both the one-shot and asympto
scenarios, with the maximum amount of entanglement t
can be created, and the maximum amount of classical in
mation that can be sent, by anN-qubit operation. With this in
mind, we note the following inequality, which holds for a
N>3:

2S N

N11D ~N21!>N. ~4.19!

The equality is obtained only whenN53. This implies that,
for all N>4, the resources required to carry out an arbitra
operation exceed those that can be recovered, either by
tablishing consumed entanglement or using the resou
communication which was consumed to implement the
eration to send useful messages.

As we saw in Sec. II, this is not the case forN52, which
can be seen from the properties of theSWAP operation. The
remaining case, that ofN53, is presently unsolved.

D. Transfer of expendable resources

In our derivation of the lower bounds on the minimu
resource entanglement and communication needed to c
out any multiqubit operation, we used specific operatio
where certain pairs of laboratories needed to be able to
tablish large amounts of entanglement or communicate la
amounts of classical information: more than is represen
by the corresponding edges in the graphsG̃E andG̃C . Thus,
to carry out either theN!-fold PS or PS1CP operation, the
resources from the other edges in these graphs must s
how be ‘‘transferred’’ to the edges which must ‘‘gain’’ re
sources.

We can formalize this notion in the following way: con
sider a multiqubit operationL on N qubits. IfL is carried out
N! times, then depending on the initial conditions, there m
be some pairs of laboratories which will end up sharing m
thate ebits of entanglement, or exchanging more thanc clas-
sical bits in either, or perhaps both directions. Let us defi
4-12
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the target entanglement and communication graphsGE
T and

GC
T . These will represent either the number of ebits sha

by each pair of laboratories or the number of classical
communicated, following theN!-fold implementation ofL.
These graphs can be characterized by the target entangle
and communication matricesET5$ET

i j % and CT5$CT
i j %, in

the same way as for the resource graphs.
For G̃E andGE

T , we will define a pair of complementar
subsets of the edge set,SE1 andSE2 , in the following way:
SE1 is the subset of the edge set, where each edge is den
by the unorderedpair (i , j ), such thatET

i j .e. The setSE2

contains all edges for whichET
i j <e. These sets contain th

edges which, respectively, gain and do not gain entan
ment.

Similarly, for the classical communication graphsG̃C and
GC

T , we will define the subsetsSC1 andSC2 of the edge set.
SC1 contains the edges, represented byorderedpairs @ i , j #,
for which CT

i j .c, andSC2 contains all edges@ i , j # for which
CT

i j <c.
Here, we shall be particularly interested in the edg

which gain resources. In fact, the resources contained in
other edges, contained in the setsSE2 and SC2 , will be
consideredexpendable. The total expendable entangleme
and communication are given by

EE5
1

2 (
( i , j )PSE2

ẼR
i j , ~4.20!

CE5 (
[ i , j ] PSC2

C̃R
i j . ~4.21!

The question we would like to answer is, how much of t
expendable entanglement or communication can be tr
ferred to the setSE1 or SC1? We have been unable to obta
the general solution to this problem, although the analysi
the PS operation suggests intuitively appealing up
bounds.

For theN!-fold PS operation, the values ofEE andCE are
easily calculated, where the setsSE1 and SC1 contain the
edges linking laboratories whose qubits are to be swap
We find that

EE5
1

2
~N222N!e, ~4.22!

CE5~N222N!c. ~4.23!

If each pair of swapped qubits generates two ebits of
tanglement, then as we know, theN!-fold PS operation can
by used to createN!N ebits. The total amount of entangle
ment which has beenadded to the setSE1 is then N!N
2(Ne/2) ebits. From inequality~4.10!, we see that

N!N2
Ne

2
<

EE

2
, ~4.24!

that is, at most half of the expendable entanglement can
added to the edges inSE1 . Whether or not this bound hold
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for arbitrary resource and target entanglement graphs, fo
N, is currently unknown. However, we can prove that
holds in general forN53. Consider three laboratories
A1•••A3. Let their initial and final entanglement be de
scribed by the resource and target entanglement graphsGE

andGE
T , characterized by the corresponding matricesER and

ET . The difference between the initial and final entang
ment between each pair of laboratories can be represente
the matrixD5ET2ER .

The fact that the total amount of entanglement shared
one laboratory and the other pair cannot increase implies
the sum of the elements in each row or column ofD cannot
exceed zero. This also implies that the entanglement betw
at most one pair of laboratories can increase. Let this pai
laboratories beA1 andA2. Summing up the elements ofD in
rows 1 and 2, together with the nonincreasing property of
column sums, givesD12<uD131D23u/2. The numerator on
the right hand side is the total amount of entanglement l
We see that the entanglement transferred to the edge~1,2!
cannot exceed half of this loss.

This kind of entanglement loss was originally discover
in association withentanglement swapping@14#. It would be
useful to know whether or not it is an unavoidable feature
all operations which transfer entanglement, and for an a
trary number of spatially separated systems. Any proof,
disproof, of this conjecture must take into account the po
bility that the initial bipartite resource entanglement is co
verted into multiparticle entangled states. Some progress
recently been made towards developing a theory of con
sion between bipartite and multiparticle entangled sta
@23#. The study of certain particular situations has indica
that these conversions are typically lossy. Consequently,
do not believe that multiparticle entangled states will ena
more efficient entanglement transfer.

Returning to theN!-fold PS operation, we will show how
a similar result relating the expendable communication to
communication that can be added to the edges inSC1 can be
obtained. TheN!-fold PS operation can by used to sen
2N!N bits. The total amount of communication which h
beenadded to the setSC1 is then 2N!N2Nc bits. From
inequality ~4.12!, we see that

N!N2
Nc

2
<

CE

2
, ~4.25!

that is, at most half of the expendable communication can
added to the edges inSC1 .

This restriction holds in general if the expendable co
munication is used to transmit informationindirectly be-
tween pairs of laboratories. By ‘‘indirectly,’’ we mean th
following: the weight of an edge in a resource communic
tion graph is equal to the number of bits that one party c
transmit along a channel to some other party, without pa
ing through some intermediate laboratory. Clearly, t
sender can transmit more information to the receiver if
sends some information via some intermediate laborator
By indirect communication, we mean this relaying proc
dure.
4-13
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Thus, if the sender wishes to sendk bits indirectly, he
will use up at leastk bits of resource communication sendin
this information to the intermediate parties, who will in tu
use up at least a furtherk bits of resource communicatio
relaying it to the receiver. So, the indirect communication
k bits from one laboratory to another requires at least 2k bits
to be depleted from the resource communication.

For the remainder of this section, we will assume that
hypothesis that at most half of the expendable resources
be transferred is of general validity, and explore its con
quences for oddN and the PS1CP operation. We will show
that this leads to tighter bounds than~4.15! and~4.17! on the
amount of resource entanglement and communica
needed to carry out an arbitrary operation on an odd num
of qubits.

Let us return to theN!-fold PS1CP operation. Beginning
with entanglement, the amount of entanglement transfe
to the edges inSE1 has two contributions. The entangleme
transferred by the PS part of the operation is easily calcula
to be (N23)(2N! 2e)/2 ebits. The amount transferred b
the CP part is 3(N! 2e) ebits. The expendable entangleme
is that initially represented by all other edges in the gra
G̃E , and is found to be

EE5FN2

2
2N2

3

2Ge. ~4.26!

The assumption that at most half of the expendable entan
ment can be transferred to the edges inSE1 leads to the
inequality

N!N<eFN23

2
13G1

EE

2
. ~4.27!

From the relationship betweene and the initial resource en
tanglementER , expressed in Eq.~4.7!, we find

ER>
2~N21!

113/N2
. ~4.28!

Similar reasoning can be applied to the required minim
resource communication. If at most half of the expenda
communication is transferable, then the minimum numbe
classical bits required to perform the PS1CP operation with
odd N is bounded by

CR>
4~N21!

113/N2
. ~4.29!

Assuming that inequalities~4.28! and ~4.29! hold, let us
deduce the minimum integer resources for the one-shot c
as we did in the preceding subsection. To this end, we n
the inequality

2~N21!

113/N2
>2~N21!21, ~4.30!

for N>3, with the equality only being attained whenN
53. From this inequality, we see that for allN>4, the mini-
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mum integer resource entanglement is equal to that requ
to implement the teleportation protocol. By a similar calc
lation, one can show that for allN.3, the minimum integer
resource communication is at least equal to one bit shor
the teleportation bound, and that for allN>12 it is equal to
the teleportation bound.

Figure 16 illustrates the main asymptotic bounds we h
derived in this paper: the teleportation bound, the bound
rived from the PS1CP operation derived in the preceedin
subsection, and the bound derived from the PS1CP opera-
tion based on the assumption that only half of the expenda
resources are transferable.

To summarize this subsection, we have worked on
assumption that at most half of the expendable resources
be transferred. The analysis of the PS operation supports
conjecture that this is true for allN. If it indeed is true in
general, then in the one-shot case, the teleportation prot
is optimal with regard to the resource entanglement for
odd NÞ3, and also in terms of the resource communicat
for all odd N>13, if only integer resources are permitted

V. DISCUSSION

In this paper, we have examined the properties of coll
tive quantum operations performed upon spatially separa
quantum systems. We have considered a network ofN spa-
tially separated laboratories, each of which contains one
bit. The network is equipped with facilities for classical com
munication and local quantum operations, and each pai
laboratories also shares bipartite pure entanglement.

This scenario we have considered helps to emphasize
fact that the final state of each system will depend upon
initial states of the others. The evolution thus requires inf
mation to be exchanged between the systems. In clas
physics, this is simply classical information. If the system
are quantum mechanical, then the exchange of quantum
formation is necessary.

FIG. 16. Lower bounds on the resource entanglement and c
munication versus the number of qubits. The solid line correspo
to the teleportation bound in~4.11! and ~4.13!. The dotted line
indicates the bounds in~4.15! and ~4.17! for the PS1CP operation
which hold rigorously for oddN. The dashed line corresponds to th
bounds in~4.28! and~4.29!, for the PS1CP operation and oddN if
at most half of the expendable resources can be transferred.
4-14
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The transmission of quantum information from one loc
tion to another can be achieved by sending quantum syst
or by quantum teleportation. We have proposed a sim
teleportation-based protocol which allows any quantum
eration to be performed uponN separated, identical quantum
systems. Teleportation requires the transmission of class
information and existence of entanglement shared by
sending and receiving stations. In the case ofN52, one
particular class of operations, namely those equivalent, u
bipartite local unitary transformations, to theSWAP opera-
tion, permits either the minimum classical communication
entanglement resources required to perform any operatio
be ‘‘recovered’’ for other tasks. These operations may
regarded as the most inseparable operations forN52.

For N.2, the situation is more interesting. ForN>4, no
operation can establish the entanglement or be used to c
municate the information necessary to perform any ope
tion. Whether or not this is also the case forN53 is cur-
rently unknown. For allN we have determined the maximu
total amount of entanglement that can be established, an
maximum total number of classical bits that can be comm
nicated, by any operation. Permutation operations at
these limits, which are also the minimum resources requ
to carry out these specific operations.

We have also examined the problem of finding the mi
mum resources required to perform an arbitrary operat
The scenario we considered was one where each pair of l
ratories shares a certain amount of entanglement, and
communicate a certain number of classical bits to each ot
The problem we addressed was, what are the minimum
ues of the total entanglement and communication require
carry out ana priori unknown operation, that is, unknow
prior to the entanglement and communication resources
ing set up?

For evenN, we have found these minimum resources e
an

re

f.

J.

,
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actly, and these can be used to perform an arbitrary opera
using teleportation. We arrived at these bounds using a te
nique we refer to as graph symmetrization. We have t
shown that the teleportation protocol is optimal for evenN.
Whether or not it is also optimal for oddN is an important
outstanding problem. We have shown, in the even case,
the optimality of the teleportation protocol can be reinte
preted as coming from a restriction on the extent to wh
expendable resources can be transferred from one pa
laboratories to another. In particular, for any amount of
sources transferred, at least as much are irrevocably lost.
assumption that this restriction always holds leads to tigh
bounds on the resources required to carry out an arbit
operation on an odd number of qubits. These bounds im
that if, in the one-shot scenario, resources can only be c
sumed in integer amounts, then the teleportation protoco
optimal for all N.3 for entanglement and for allN>12 for
communication also. One clear conclusion from our work
that the case ofN53 is of particular interest, since many o
our results which apply to all otherN have not been estab
lished for this case. It could be that graph-theoretic te
niques are not suitable for analyzing the three-qubit case,
that other tools must be employed.
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