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Collective operations on a network of spatially separated quantum systems can be carried out using local
guantum operations, classical communicatiof), and shared entanglemd®E). Such operations can also be
used to communicate classical information and establish entanglement between distant parties. We show how
these facts lead to measures of the inseparability of quantum operations, and we argue that a maximally
inseparable operation on two qubits is theapP operation. The generalization of our argumentN@ubit
operations leads to the conclusion that permutation operations are maximally inseparable. Fgrveedimd
the minimum SE and CC resources which are sufficient to perform an arbitrary collective operation. These
minimum resources are R(—1) units of entanglement and M{ 1) bits, and these limits can be attained
using a simple teleportation-based protocol. We also obtain lower bounds on the minimum resources for the
odd case. For alN=4, we show that the SE and CC resources required to perform an arbitrary operation are
strictly greater than those that any operation can establish or communicate.
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[. INTRODUCTION in qubits. In the othef10], it is the asymptotic maximum
number of ebits of entanglement that can be established be-
Many of the information-theoretic properties of quantumtween the sending and receiving stations, again per use of the
systems are attributable to the existence of entanglementhannel. An important consequence of this equivalence is the
Entanglement is responsible for the nonlocal correlations thdtact that no entanglement can be created without the trans-
can exist between spatially separated quantum systems, asnisssion of quantum information. That is, no entanglement
revealed by the violation of Bell's inequalifiL]. It also lies  can be created when only local quantum operations are al-
at the heart of several intriguing applications of quantumlowed, and only classical information can be transmitted.

information, such as quantum teleportatip®l, quantum Collective quantum operations involving multiple quan-
computational speeduf8,4], and certain quantum crypto- tum systems can create entanglement and be used to commu-
graphic protocol$5]. nicate classical information. Conversely, the use of entangle-

The central position of entanglement in quantum informa-ment shared by spatially separated laboratories, in addition to
tion theory, and its usefulness in applications, has led tdacilities enabling classical communication and arbitrary lo-
considerable efforts being devoted to finding a suitable meaecal quantum operations, permits these laboratories to carry
sure of how much entanglement a quantum system containeut collective operations upon a network of separated quan-
This problem has been solved completely for bipartite pureum systems. The ability to do this will have interesting im-
states[6], and the accepted measure is the subsystem vaplications for many potential applications of quantum infor-
Neumann entropy, conventionally taken to the base 2, so thahation, such as distributed quantum computing, network
a maximally entangled state of a pair of two-level quantumquantum communication, and the production of novel multi-
systems, omubits[7], possesses one unit of entanglementparticle entangled states.

This fundamental unit is known as afbit. This paper extends the analysis presenteflLi], where

The production of entanglement requires the transmissiowe examined the entanglement resources required to carry
of quantum information between systems. Conversely, theut collective quantum operations upbinqubits, in particu-
transmission of quantum information between systems calar, for the case of evel. In addition to giving a fuller
be used to establish entanglement between them. Perhaps theatment of this problem, including an analysis of the odd
most perfect expression of this duality is the fact that therecase, we examine the classical communication resources re-
are two equivalent definitions of the quantum capacity of aquired to carry out an arbitrary collective operation updn
communications channg8]. According to one definitiofi9], qubits, and also the amount of classical information that such
it is the asymptotic maximum amount of quantum informa-an operation can be used to send. An intriguing issue high-
tion that can be transmitted per use of the channel, measurdighted by these considerations is that of how we might

quantify the “inseparability” of a quantum operation, rather
than that of a quantum state. As we shall see, this insepara-
*Email address: A.Chefles@herts.ac.uk bility has both classical and quantum aspects.
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In Sec. Il we examine the use of entanglement and claswe show that, for aIN=4, the classical communication and
sical communication to carry out arbitrary collective opera-entanglement resources required to carry outadritrary
tions upon a pair of qubits. A simple protocol for achieving operation are strictly greater than the amount of entangle-
this, which uses quantum teleportation, is proposed. Twdnent that can be established, and the amount of classical
classical and two quantum measures of the inseparability of @formation that can be sent, by apgrticular operation. We
quantum operation arise naturally from these considerationg!s0 show that if the manipulation of these resources obeys
The quantum measures are analogous to the entanglementtB same efficiency restrictions as those found in entangle-
formation[12] and distillation[13] of quantum states. These Ment swappind14] and indirect communication, then the
are, respectively, the minimum amount of entanglement ret€/€portation protocol is optimal for al=12 and for all
quired to perform the operation and the maximum amount Of\|>4 for entanglement resources in the one-shot case if only
entanglement that the operation can establish. The classicitéger resources are allowed.
measures of inseparability are, respectively, the minimum
amount of classical in_formation required to perfo_rm the op- Il. OPERATIONS INVOLVING TWO QUBITS
eration, and the maximum amount of classical information
that the operation can be used to communicate. The relation- We consider first the simple case of just two qubits. Sup-
ship between these measures leads to the conclusion thapase that two parties, by convention Alice and Bob, occupy
maximally inseparable quantum operation is $wear opera-  laboratoriesA and B which contain qubitsy and 8, respec-
tion, or any other which can be obtained from it by localtively. The Hilbert spaces of these systems are denoted by
unitary transformations. H, and’Hg, so that the Hilbert space of the collective sys-

The remainder of this paper is concerned with collectivetem a3 is the tensor product spaéé,®Hg. In addition to
operations upomN qubits. How much bipartite entanglement these systems, Alice and Bob possess auxiliary local quan-
can such an operation be used to establish and how mudhm systems, shared entanglement and a two-way classical
information can it be used to communicate? Also, how muctcommunication channel. This setup is illustrated in Fig. 1.
bipartite entanglement and classical information are neededsing these resources, Alice and Bob can perform any col-
to perform an arbitraryN qubit operation? lective operation by carrying out the following four steps.

In Sec. Il we develop a graph-theoretic framework for  Step 1 Alice teleports the state af to Bob in laboratory
the representation of bipartite entanglement and communica. This costs one ebit of entanglement and two classical bits
tion networks forN laboratories. Using this framework, we from A to B.
formulate theN-qubit generalization of our teleportation pro- ~ Step 2 Bob, possibly making use of his auxiliary systems,
tocol. We also generalize our discussion of quantifying thecarries out the operation locally upon the compound system.
inseparability of quantum operations to tNeparticle case. Step 3 Bob teleports the final state of Alice’s qubit back
As far as the “distillation” measures are concerned, whichto her. This costs one ebit of entanglement and two classical
guantifies the ability of a quantum operation to establish enbits from B to A.
tanglement and communicate classical information, we find Step 4 (Selective operations onlyob transmits to Alice
that permutation operations are maximally inseparableany classical information that he might have obtained at the
These operations can establish the largest amount of eend of his local quantuniLQ) operation. This step applies
tanglement, and can be used to communicate the largesnly to (generalizefl measurements, in which case it would
amount of classical information. be information about the result.

In Sec. IV we are concerned with minimizing the en-  Thus, the total classical communication and shared en-
tanglement and communication resources required to petanglement(CC and SE resources required to perform an
form an arbitrary quantum operation updhqubits. There arbitrary collective operation o@ using teleportation, such
are two distinct scenarios to consider here. On the one hanthat Alice and Bob share the same classical information at
we may wish to determine the minimum resources requiredhe end, are
to carry out an arbitrary operation just once. We refer to this
as the “one-shot” scenario. On the other hand, it may be the
case that theN laboratories share a very large amount of
entanglement, and are able to communicate large amounts of
classical information. They may wish to use these resources
with maximum efficiency to carry out an arbitrary operation
many times. The limit as both the resources and the number
of repetitions of the operation tend to infinity is known as the
asymptoticlimit. In this scenario, the asymptotically mini-
mum resources are the minimum entanglement and classical i, 1. |ilustration of the experimental setup considered in Sec.
communication that must be used, on average, per run of the | aporatoriesA and B contain respective qubits and 8. Their
operation. aim is to perform an arbitrary collective operation on these system

We find that in terms of both entanglement and commu-sing shared entangleme(®E) and a two-way classical communi-
nication, our teleportation protocol is optimal, in both the cation (CC) channel. They are also able to perform arbitrary local
one-shot and asymptotic scenarios, for edenWe obtain  quantum(LQ) operations, possibly involving local auxiliary quan-
lower bounds on the minimum resources for the odd caseum systems and their respective parts of the entangled systems.

032314-2



ENTANGLEMENT, INFORMATION, AND . .. PHYSICAL REVIEW A 63 032314

2 ebitst 2 bitg A—B)+2 bityB—A)+Cg(B—A). sical information and establish entanglement between distant
(2.2 locations. Let us define the quantitie€c(L:A—B),

The supplementary informatioBs(B—A) is that which ~ Cc(£:B—A), andEc(L), respectively, the maximum num-
is conveyed by Bob to Alice in step 4. This additional infor- ber of classical bits that the operation can be used to com-
mation will be created when the operation, represented by Biunicate in each direction, and the maximum number of
completely positive, linear, trace-preserving mapis selec-  €bits of entanglement that it can create betwéeand B.
tive. The most general kind of operation which gives rise toEc(£) is correspondingly analogous to the entanglement of
nonzero supplementary information is a generalized meadistillation of quantum statefd3]. We must have
surement. A generalized measurement withoutcomes is

described byM positive, Hermitian operatork,, wherer Cc(L:A—B)<Cr(L:A—B), (2.4
=1,... M andX,E,=1. These operators form a positive, . i
operator-valued measu(@OVM) [15] and each of them cor- Cc(L:B—A)<Cr(L1B—A), (2.9
responds to a distinct outcome. If the initial state is

P o Ec(L)<Er(L). (2.6

described by the density operafor then the probabilityp,

of obtaining outcome is given by T,V)Er- The supplemen-  The first two inequalities come from the fact that all classical
tary information generated at Bob's laboratory is given byjnformation that the operation can be used to transmit must,

the Shannon entropy of this distribution, in Fig. 1, be sent over the classical channel. Equivalently, no
M classical information can be transmitted using LQ and SE
Co=— E p.log,p; . (2.2) operations along. Were this .not the case, it would be possible

r=1 to violate relativistic casuality. An intriguing argument for

) . ) this has recently been described by Eisetrtal. [16]. The
This quantity can take on any non-negative real valuethjrg inequality comes from the fact that entanglement can-
Clearly, it is zero when the op_eration i§ nonselective. If,not increase under LQ and CC operations. For one-way clas-
however, we consider an operation described by the POVMgical communication, this has been shown by Horodecki and
Horodecki[17] to be also equivalent to the impossibility of

E,=—, (2.3 superluminal communication.
M The general viability of the teleportation protocol implies
_that the minimum CC and SE resources required to perform
where Bob records the outcome, then the supplementary iny,y particular operation will not exceed two ebits of en-
formation is equal to logv, which diverges adl —o. For ~ 3n41ement and two classical bits each way. The most non-
this operation, one cannot decrease the supplementary infog5| quantum operations with regard to the resource mea-

mation using any information that Alice may have about thesuresER andCy, are those for which the minimum values of

initial state p, since the probability distribution is uniform aqe quantities are both equal to 2. Inequalitd)—(2.6)

regardless Of. what the .|n|t|al state Is. . imply that the maximum values of thE; and Cc cannot
For selective operations, the transmission of this supplegyceed 2. Any operation which saturates the limits of 2 on

mentary information will have epistemological significance iq |atter measures must also then saturate inequaltids-

for Alice which may b_e important in some applications. S_he(2_6), and can be termed a maximally inseparable operation.

may, for example, wish to carry out some local operation’ qne g ch operation is thewvap operation. This is a uni-

upon her system, depending on the supplementary informqar operationU< which. for anv stat and an
tion she receives from Bob. For the remainder of this paper, y Operai s WhICh, y ) & Mo 4

however, we shall not be concerned with, and when we state|¢p3) & Mg, acts as follows:
speak of the chssmaI mfprmatlon requwe.d to_ complete a Ug ¢a>®|¢ﬁ>:|¢ﬁ>®|¢a>, (2.7
guantum operation, we will mean that which is needed to
carry it out nonselectively. In this paper, we shall be con-that is, it exchanges the states @fand 8. The ability of
cerned largely with unitary operations anyway, which areswap to create two ebits of entanglement and transmit two
nonselective. classical bits each way is easily demonstrated. We shall now
Returning to the teleportation protocol, it may be the caselo this, with reference to Figs. 2 and 3. The remarkable
that the CC and SE resources required to perforpardicu-  properties of theswap operation are also described by Col-
lar operation,Z, are less than those required to perfany  lins et al.[18] and Eisertet al. [16].
operation, by this method. Let us denote Gy(L:A— B), In Fig. 2, Alice and Bob initially share two ebits of en-
Cr(£:B—A), andEg(L) the number of classical bits trans- tanglement in the form of Bell stat¢&9]. Using superdense
mitted in each direction and number of ebits of entanglemengquantum codind20], Alice and Bob can each manipulate
required to carry out. These may be regarded, respectively,one of their particles, those represented by hollow circles, to
as classical and quantum measures of how nonlocal the oproduce any of the four Bell states that they wish. The final
eration is, andEg(L) is therefore somewhat analogous to theshared Bell states at&,) and|BB). The swaAP operation is
entanglement of formation of quantum staf&g]. then performed on the states of the hollow qubits, resulting
Alternative classical and quantum measures of inseparan each party being in possession of the entire Bell state
bility arise naturally if we consider the fact that collective which the other party created. Each then performs a Bell
operations on quantum systems can be used to transmit clasieasurement, which has four possible outcomes and thus
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A broader class of maximally inseparable operations on
two qubits can be obtained by considering those which are
equivalent toswWAP up to a bilateral local unitary operation.
Specifically, any unitary operatiom of the form T=(Ua2

®UBZ)US(UQ1® Uﬁl) must require the same entanglement
and communication resources lds. Here,U, andUlgi are

local unitary operations oa andg, respectively. The reason

for this is simple: it is possible to convert this operation into
the swap operation by just local unitary transformations, that
is, without any additional entanglement or classical commu-

7 B nication resources. This follows from the simple observation
—(ut T t T
thatUS—(UQZ®UBZ)T(U%®U51).
IBB> | B> lll. MULTIPARTICLE SYSTEMS, GRAPHICAL
REPRESENTATIONS, AND TELEPORTATION
Let us now extend our discussion to the casélqfarticle

systems. Instead of just two spatially separated laboratories,
FIG. 2. lllustration of how theswap operation can be used to we now haveN of them, which we labelA;, where |
communicate two classical bits each way between Alice and Bob.=1, ... N. In each of these laboratories is a qubit, and we
label thesey; . We are interested in the CC and SE resources

reveals two bits of information, showing hoawap can  réquired to perform an arbitrary collective quantum opera-
transmit two classical bits each way. tion involving all N qubits. _ _

Figure 3 shows hovswAP can be used to establish two Each laboratory shares a certain number of ebits of en-
ebits of entanglement between Alice and Bob. Each partj@ngdlement with every other laboratory. In this paper, we
initially possesses one local ebit of entanglement. If theshall, €xcept where indicated, take all entanglement to be in
SWAP operation is used to interchange the states of one paPUre, bipartite form. The\ laboratories are also linked by

ticle from each entangled pair, the result is that Alice andclassical communication channels, so that each can commu-
Bob share two ebits of entanglement. nicate a certain number of classical bits to the others. Each

Notice that theswAp operation cannot be used to create'@boratory also possesses auxiliary quantum systems allow-
two ebits of entanglement, and communicate two classicdNd arbitrary local quantum operations to be performed.
bits each way, simultaneously. In fact, looking at Figs. 2 and 1h€ CC and SE resources available to the network of
3, we can see, up to local operations, these processes Jaboratories are conveniently represented using the concepts

essentially the time-reverses of each other. of graph theory21]. Recall that a grapls=(V,E) is a setv
of vertices connected by edges comprising a Eetf the

edges have a sense of direction indicating an asymmetrical
relationship between the vertices they connect, then the
graph is said to be a directed graph, or a digraph. If there is
no preferred direction, the graph is undirected.

The CC and SE resources can be represented by distinct
entanglement and communication graphs. Both graphs are

@ comprised oiN vertices, each of which represents one of the
laboratoriesA; . The resource entanglement graph repre-
sents the amount of bipartite entanglement shared by each
pair of laboratories. Specifically, we write both tjih labo-
ratory and its corresponding vertex As. The weight of the
edge joining vertice\; and A; is equal to the number of
ebits of entanglement shared by these laboratories. The graph
is characterized completely by tiéX N resource entangle-
ment matrixEg. The elemen€} of this matrix is equal to
the number of ebits of entanglement sharedAyyand A; .
» < The diagonal elements of this matrix are zero.

Clearly, Eg is symmetric and the grapB¢ is undirected.
These observations follow from the fact that entanglement is
a shared, rather than a directed resource.

As an example, a resource entanglement grapiNfe#

FIG. 3. lllustration of how theswap operation can be used to is depicted in Fig. 4. This corresponds to the following re-
establish two ebits of entanglement betwdeand B. source entanglement matrix:
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Ay

A2 which corresponds to the resource communication matrix

® 0 1 4

2 0 0
0 0 O

6 1 50 0 0

2 The fact that each pair of vertices may be joined by more
than one edge means th@t is, strictly speaking, a multi-
graph, indeed a multidigraph since these edges are directed.
We do not, however, wish to unduly proliferate terminology,
| so we shall simply use the term graph.
A4 A3 In either graph, an edge of weight zero is equivalent to no
edge. Thus, if two vertices are not linked by an edge in the
FIG. 4. Example of an entanglement grapp with N=4. This  graphGg, then the corresponding laboratories share no en-
corresponds to the resource entanglement méggiin Eq. (3.1). tanglement. Similarly, if there is no edge running from ver-
tex A to A; in the graphGc, thenA; cannot communicate

3

o © O

Cr= (3.2

0 3 2 6 any classical information directly 4, .
Two quantities that will be of particular interest to us are

3 010 :
Er= ) (3.1 the total shared entanglement and the total number of classi-

2100 cal bits that can be communicated. Respectively, these are

6 0 0O

1 i
Er=> > El, (3.3

Likewise, we can define a resource communication graph ij

G¢. This represents the number of classical bits that the

laboratories can communicate directly to each other. By di- c :2 cil (3.4
rectly, we mean that the information is not relayed by a set of R T

intermediate laboratories from origin to destination. The .

Weight of the edge running fromi to Aj represents the The factor of 1/2 in EQ(33) occurs an a C_onS(_equence of the
number of classical bits th@; can communicate directly to Shared nature of entanglement, which implies that the en-
A;. These weights are the elements of a correspondingl{anglement shared by each pair of laboratories is counted
defined resource communication matéix. Theij element twice in the summation. o . .

of this matrix,Cl}, is equal to the number of classical bits Having established the framework within which we will
that A; can communicate directly t8;. The diagonal ele- work, let us now see how such resources can be used to
ments of this matrix are also zer@g is not necessarily perform an arbitrary coIIec.tlve guantum operation upon the
symmetric and the grapB. is directed, which follows from N qubitsg; . The teleportation-based procedure for two qu-

the fact that communication operations have a natural senddtS described in the preceding section admits a natural gen-
of direction from sender to receiver. An example of a re-€ralization to the case  qubits, which we now describe.

source communication graph foi=4 is given in Fig. 5, We consider the situation in which all laboratories sha_re
entanglement and have the resources for two-way classical
communication with one particular laboratory. Let this labo-
A 1 A ratory beA,. It follows that the other laboratories can tele-

1 2 port the states of their qubits #,. The operation can then
be carried out afA; as an LQ operation. The final states of
the other qubits can then be teleported back to their original
laboratories, completing the procedure.

This multiparticle protocol generalizes the first three steps
of the two-qubit protocol described in the preceding section.
It requires each of the laboratorids, ... Ay to share two
ebits of entanglement witA; and for two bits of classical
information to be communicated each way between each of
them andA;. The elements of the corresponding resource
entanglement and communication matrices are

54

Ed=Ci=2[8,— 6y (3.5

A4 A3 . . . .
The corresponding grapl@: andG are depicted in Figs. 6
FIG. 5. Example of a communication gra@iz with N=4. This  and 7. The total resource entanglement and communication
corresponds to the resource communication ma&gxn Eq. (3.2). are
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lab A, teleports a state tA;. If they are completely different
labs from the first pairs of laboratories, thén can hold
information only about one other lal, . If, however,r
=2, thenA; can hold information about three qubits;,
02, andgs.

The most efficient way to pass on information is Aoy to
teleport a stated, and so on. AfterN—1 steps, the best
possible situation is that one lafy can have information
from all of the other labs. None of the other labs can have a
complete set of information. So now there must be at least a
furtherN—1 communication events required so that each of
the firstN—1 labs can get information from laBy. This

FIG. 6. Resource entanglement graph for the teleportation Progives a total of at least A(— 1) teleportations.
tocol. We saw in the preceding section that the total resource
entanglement for an arbitrary operation upon two particles
can be recovered if the operation in question is unitarily
equivalent taswap. Also, for such an operation, the required
classical communication facilities required to complete an
arbitrary operation can be fully used to communicate useful

A,

Eg=— =2(N—1). (3.6

~R
2

The graphGg representing the entanglement resources re
quired by the teleportation protocol is said to beee Gen-

information. An important question is, does there exist an

erally speaking, a tree is an connected, acyclic graph, that iQperation or class of operations that fulfills this role in the

neralN-particle case?
Let us denote the maximum total entanglement that can

ge

one where every pair of vertices is connected by at least on
path, and where there are no closed paths.

Any quantum operation ol qubits can be performed be established, and the maximum number of classical bits

using this method and thus, at least for the topology of enth@t can be sent by any operation By and Cc, respec-
tanglement and communication in our protocol, the values ofVely. To resolve this issue, it is helpful to partition the
Eg andCr in Eq. (3.6) are sufficient. entire network ofN qubits into a single qubit and a com-

Much of the remainder of this paper will be concernedPound system comprised of the remainMg 1 qubits. How
with the issue of whether or not this protocol is optimal, that™MUch entanglement can be established between the location

is, whether or not there exists a procedure for carrying ouff the isolated qubit and the rest of the network? Also, how
any quantum operation oN qubits which requires fewer much classical information can be transmitted in both direc-

resources than this protocol. Prior to doing so, it is of interesionS between the location of this qubit and the remainder?
to determine whether or not this protocol is the most efficient !N the teleportation protocol, a special status was given to
among those that operate by teleportation of the states of tHaboratory A;. However, this choice was arbitrary, and
qubits concerned. clearly this role could have been assumed by any laboratory.
If they are to interact by a single local collective operation!t follows that any collective quantum operation upisrgu-
at one of the laboratories, then this is easily shown to be th@its ¢an be carried out with each laboratory sharing no more
case. We havé\ laboratoriesA, , each of which possesses a than two ebits of ent_angle'ment, and is ab_Ie to exchange no
corresponding qubig; . If we wish theN laboratories to be MOre than two class[cal blt§ each way, Wlth the'rest of the
able to carry out any collective operation upon teby network. The reasoning which led us to inequalitigsl)—

teleporting single qubits, then at least\Ne{ 1) such telepor- (2.6) then implies t_hat no opera’;ion can be used to establish
tations must take place. more than two ebits of pure bipartite entanglement, or be

To see why, suppose that the first teleportation is from used to exchangg more than two classical bits each way,
to A,. A, now has information abouA;. Second, another between any particular laboratory and the rest of the net-
' ' ' work.

The maximum total entanglement that can be established
is then obtained by multiplication of two ebits by the number
of laboratories and then dividing by 2, since entanglement is
shared, giving

<

Ec<N. 3.7
The maximum number of classical bits that any collective
operation can use to communicate is obtained by multiplying
the maximum amount of information that one laboratory can
communicate, namely two bits, By, the number of labora-
tories, giving
FIG. 7. Resource communication graph for the teleportation
protocol.

A,

(3.9
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FIG. 9. lllustration of how permutation operations can be used
by the permutation operation. Hefé=6 and the permutation takes

to communicate R classical bits, using the same cyclic permuta-
{1,2,3,4.5,8 0 {6,1,2,3,4,5. One qubit of each initial local ebit is tion as in Fig. 8. Each laboratory initially shares one ebit with its
transferred to the successive laboratory, resulting in the fihal

successor, which it then manipulates into one of the four Bell states.
shared ebits.

The manipulated qubits are represented by hollow circles. The per-
mutation operation is then used to localize each of these ebits in the

. . successive laboratories. Individual local Bell measurements are per-
These bounds are tight, that is, they can be accessed bY&med upon these, each of which reveals two classical bitsNor 2
specific class of quantum operations, the permutation operajs in total.

tions.
A unitary permutation operator updhqubits is described  with Ap ;) and can communicate two classical bits to this
by location. Then the permutation operation can be carried out
using these resources to teleport the state of qubdiom A,
Uply)® - @ln)=[dpa)® - @|¢ppn), (3.9 1o Ap(jy. Permutation operations, including tse/Ap opera-
tion, make maximally efficient use of the resources required
whereP(i) represents a permutation of the index[ 1,N]. to carry them out.
Here, we consider only permutation operations which satisfy As is also the case with tr®@vAP operation, any operation
P(i)#i Vie[1N]. which is equivalent tdJ, up to anN-partite local unitary
To see thatN ebits of entanglement can be establishedtransformation, that is, any unitary operatidrof the form
using a permutation operation, suppose thatontains one
local ebit, in the form of, for example, some standard Bell T=(®LUH)Up(®]L,U}), (3.10
state. We shall denote this state [B/"'). The first and sec- 1 ) _ } ]
ond indices denote the laboratories which possess the firéthere Ui and U} are arbitrary local unitary operations on
and second qubits, respectively. Suppose now that the seg@lbitsd; andq;, is also maximally inseparable. This is a
ond qubits’ states are permuted according to Bc9). This ~ consequence of the fact thit, can be obtained frorit by
transforms|B"') into |B""PM). Following this g?_;mutation, the local unitary operation
laboratoriesA; andAp;y share the Bell statB'""'"). There
areN laboratories, an(ci sl shared ebits offntan>glement in UP=(®P=1U?T)T(®p=1U%T)' (3.1
the form of Bell states have been established. This procedure

is illustrated in Fig. 8. Comparing Eqs(3.7) and(3.8) with Eq. (3.6), we see that

To see that a permutation operation can be used to co the total amount of entan_glement thap can be established and
municate N classical bits, suppose thAk 1., shares the nﬂhg total amount of classmgl information that can bg sent are
S T i ' _ ® strictly less than that required to carry out an arbitrary op-
Bell state[B"" ")) with A; . Locally, using superdense cod- eration using the teleportation protocol, with the exception of
ing, Ap-1(;) can manipulate the state of the second qubit inthe caseN=2. We have not, however, established the opti-

this Bell state so that it becomes any of the four possible Belfyajity of the teleportation protocol. We examine this issue in
states. Figure 9 illustrates this scenario, where each secoRge following section.

qubit is represented by a hollow circle. We may therefore

wr:tsﬁl(tir)]e state foIIF)W|ng th|s local manipulation as IV. RESOURCES REQUIRED TO PERFORM ARBITRARY
IB,.iy '), where the integen(i) e[1, ... ,4. The permu- MULTIPARTICLE OPERATIONS
tation operation is then carried out on the set of locally ma-

nipulated qubits, resulting id; being in possession of the A. Graph symmetrization

state] Bil;i(i)). By performing a Bell measuremew; can read The teleportation-based method for performing an arbi-
the two bits of information sent bxp-1(), and in total N trary collective quantum operation updw spatially sepa-
bits have been communicated. rated qubits requireEg=2(N—1) ebits of entanglement

As is the case with thewAp operation for two qubits, the and Cr=4(N—1) classical bits. An obviously important
number of ebits thalp can establish is also the minimum question is, are these figures optimal, in the sense that no less
amount of entanglement required to carry out this operationentanglement and communication will suffice?

The same is true of the classical communication resources Unlike the case oN=2, for generaN we cannot answer
involved. Suppose thad; shares one ebit of entanglement this question by making use of the fact that the resource
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entanglement and communication required by the teleporta- A,
tion protocol can, respectively, be recovered or used to com- e
municate messages, as can be done witlsther operation.
For N>2, the values ofEgr and Cg for the teleportation
protocol, given by Eq(3.6), are strictly greater than the up- e e
per bounds orE: and C¢ in Egs. (3.7 and(3.8). Another
approach must be taken to resolve this issue. In this section,
we show that, for evemN, the resource entanglement and e e
communication required to perform an arbitrary quantum op-
eration uponN qubits using the teleportation protocol are
indeed the minimum possible values. We describe a proof
technique, which we terrgraph symmetrizatigrto establish e
this fact. The same method is then used to find lower bounds A4 A3
on the minimum values oEr and Cg for odd N. We find
that, forN=4, these lower bounds are strictly greater than FIG. 10. Symmetrized resource entanglement gr@phcorre-
the upper bounds oE: andC in Egs.(3.7) and(3.8). sponding to the grapBg in Fig. 4. Here g, which is given by Eq.

The problem we will investigate is the following. A net- (4.7), is equal to 24 ebits.
work of laboratoriesA; possesses shared bipartite entangle-
ment, described by the grapBg, and facilities enabling These graphs are constructed by summing over all of the
limited classical communication between them, described bgraphs obtained froree andG¢ by permuting the vertices.
a graphGc . If these graphs describe sufficient resources td3y summing, we mean summing the entanglement and com-
enable any collective operation to be performed upon theimunication represented by the weights of the edges. The re-
respective resident qubitg, then what lower bounds must Source entanglement and communication matrices for these

A,

the corresponding values & and Cg satisfy? graphs are easily obtained. Their elements are

We commence by making the following observation: if
the graphsGg(V) and G(V) describe sufficient resources, Ell= > ERO-PO) (4.3
then so does any other pair of graphs obtained from them by PIV]

a permutation of the vertices. Note that we have written the

dependence of the graphs on the vertex set explicitly here. Ci— S cPOPO) (4.4

This makes sense intuitively. Nevertheless, here we provide Rogw R : :

a short proof. LetGg(V) and G;(V) be the entanglement

and communication graphs obtained fr@p(V) andG¢(V) These graphs are regular and complete. A complete graph is
by a permutatiorP of the vertex set. We may writ§.(V)  one where each pair of vertices is joined by an edge. In the
=Gg(P[V]) and G¢(V)=G¢(P[V]), whereP[V] is the case of the grapﬁc, this means that each pair of vertices is
permutation. The reversibility of permutation operations im-connected by an edge in each direction. A regular graph is
plies that Gg(V)=GL(P V]) and G¢(V) one where all edges have the same weight. In a network
:G'C(pfl[v])_ Consider now a quantum operatigh on represented by these graphs, all pairs of laboratories share
the N qubits. This also depends on the vertex set and so wie same amount of entanglement, and can communicate the
write it asﬁ(V) We can obtain another guantum operationsame amount of classical information, in both directions.

L' from £ by applying the same permutation to the vertex For the purposes of illustration, the grapBs andG are

set, that is,£’' (V) =L(P[V]) and£(V)=L' (P~ V]). shown in Figs. 10 and 11 corresponding to the particular
If there exists an operatiod’ (V) which cannot be per- graphsGg andGc in Figs. 4 and 5.
formed using the resources described by the graph@/) The regularity and completeness properties are easily

andG((V), then by reversing the permutatié it follows proven, and follow immediately from the fact that the graphs
that £(V) cannot be carried out usif@g(V) andGc(V), in  Gc andGg, being defined as sums over all vertex permuta-
contradiction with our premise. Thus, if the resources detions, are clearly permutation invariant themselves.
scribed by the graph&g(V) and G¢(V) can be used to The total resource entanglement and communication for
carry out any quantum operation, then so do those describaglese graph£, andCr, are easily evaluated in terms of the
by Ge(P[V]) andG¢(P[V]) for any permutatiorP of the  corresponding resources represented by the original graphs
vertex setv. . 5 5 _ Gg andGc. Take the case dg: there areN! permutations

Let us now consider the grapl& andGc, defined by o the yertex set, s@g describesN! times as much en-

tanglement a&g, that is,

Ge= >, Ge(P[V]), (4.2) .
PIV] Er=N!Eg. (4.9
Similarly,
Ge= g, Ge(PIVD. 4.2 Cr=NICq. 4.6

032314-8
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_ FIG. 12. Depiction of the pairwisewapr (PS operation forN
FIG. 11. Symmetrized resource communication gré&phcor- =4.

responding to the grapB. in Fig. 5. Hereg, which is given by Eg.

(4.8), is equal to 42 bits. pairwiseswAP (PS operation. This operation has the effect

All edges in each of these graphs have the same weigh f swapping the_ state of a qubit & W'th. that of one at
j+1, for all oddj. If we write the two-particleswAp opera-

andltwnl be convenient to label thgse two.we|ghts. B tion exchanging the states of qubits Af and A, ; as
andG¢, we denote these edge weights simplyéogndc, — yL"! | then the PS operation may be written as
respectively. These are
Ups=UNN1oUY 2N 3g ... ouUZ. (4.9
e=2(N—-2)!Eg, 4.7

c=(N—2)!Cg, (4.8  This operation is illustrated in Fig. 12. _ _
The PS operation is a permutation operation which leaves

which follows from Eqs.(4.5 and (4.6), and also from the no vertex invariant, and so it can be used to estaigibits

= = of entanglement or to communicatdNzlassical bits. Per-
fact that the graphSe and G¢ haveN(N—1)/2 andN(N forming this operatioMN! times can then creatd! N ebits of
—1) edges, respectively. For the graphs in Figs. 10 and 11 . . ; .
. - 7 éntanglement or sendN2N bits of classical information.

we find thate=24 andc=42.

There areN! permutations of the vertex set. The permu- From the assumption that the grapBg and G¢ represent
tation invariance of the sufficiency condition then implies Sufficient resources to carry out thé-fold PS operation, we

= ~ can deduce the minimum values @andc, and using Egs.
e s B o (4 87043, 0 O andCy e 1 0o o
)P i y op mes. by this, To determine the minimum value ef we will make use
the following: suppose thaA; containsN! qubits. We can

then defineN! sets of qubits, where each contains one qubitof the fact that entanglement cannot increase under LQ and

from each laboratorv. It will be possible to perform the sam CC operations. Consider the situation depicted in Fig. 13.
. Y- P P Swe partition the entire network into two sets. One contains
operation separately upon every one of these sets.

In the next two subsections, we will use the formalism INE €ven laboratoriek; Ay, ... Ay, and the other contains

developed here, together with inequaliti@s4)—(2.6) to es- the odd oned; A, ... Ay-1. We shall refer to these sets
. as Sayen and Syqq-
tablish lower bounds on the values@tndc. These lead to -
The total entanglement initially shared by these sets can
lower bounds orEg andCg through Eqs(4.7) and(4.8). We . :

. be calculated in a straightforward manner. Each of N2
shall treat the cases of even and ddideparately, since, for laboratories inS,y4 sharese ebits with each laboratory in
evenN, it is possible to use this technique to solve for the : odd = : . X y

. . Sevens that is,Ne/2 ebits withS, ., in total. Adding up the
minimum values ofEr andCg which are necessary to carry

out any operation. These are those required to implement th /?282?2;?3“22}];“0n:hfa:roerg ttI:e Iabc;rnac:osnes a‘???eg:‘yr?;l
teleportation protocol described in Sec. Ill. ) Its nitialy Yeven odd- :

entanglement they share Ié!N ebits. The total entangle-
ment thatS,e, and S,qq Share cannot increase, giving the
inequality

Using the formalism we have set up, we can obtain the
minimum values o andCy exactly whenN is even. The N\ 2
network of N laboratories is assumed to possess sufficient (5) e=NIN. (4.10
resources, described by the graghs and G, to enable
any operation to be carried ob! times. Here, we consider
one particular operation, which we will refer to as the Making use of Eq(4.7), we find that

B. Necessary and sufficient resources for eveN
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then in order to carry out thii!-fold PS operationA; and

A; 1 will have to be able tdalistill 2N! ebits of pure, bipar-
tite entanglement. Thiotal distillable entanglement between
Seven@nd Syqq Cannot increase, which again leads to inequal-
ity (4.10 and thus the teleportation bound (#h.11).

The nonincreasing of entanglement under LQ and CC op-
erations is an asymptotic result. It follows that the teleporta-
tion protocol is asymptotically optimal for eveN. By
asymptotid 22], we mean that, given a very large number of
sets of separated qubits, where the same arbitrary operation
is to be carried out on each set, the teleportation protocol
uses the minimunaverageentanglement that is required per
run of the operation.

In practical situations, it is often the resources required to
carry out an operation successfully just once that will be of
interest. For general information processing tasks, the re-
sources required in the “one-shot” scenario are at least
equal to the resources required asymptotically. For the prob-
lem we have considered here, whdgns even, the entangle-
ment resources required in both scenarios are equal. This is
because the teleportation protocol, which requireN-2()
ehits, can be used to carry out any collective operatiodon
qubits once.

The proof that theN laboratories must also be able to send
4(N—1) classical bits proceeds similarly. The gra@h is
assumed to represent sufficient CC resources to perform any

2N!

®
3’3’ > .

[N

A
A
A operationN! times. If this operation is the PS operation, then
it should then be able to communicateN bits. Given this,
— and the fact that each laboratory can communicatessical

Y bits to each other, we can determine the minimum valug of
from which we can infer the minimum ofy through Eg.

FIG. 13. Use of the resource entanglement gréghto carry (4.8). . . .
out theN!-fold pairwise:swap operation. Initially, the entanglement ~ Again, we partition the vertex set intBeyen and Soqq-
resources are distributed according to the grégh We have di- According to |neq_uallltlei2.4)—(2.5), the total amount of
vided theN laboratories into even and odd s&ge,andS,q. For ~ '€SOUrce communication between the Sk{g,and Syqq can-
the sake of clarity, we have not indicated the internal entanglemerf?Ot be less than the amount of classical information that the
of these sets. Each laboratorySg,, shares ebits of entanglement N!-fold PS operation can be used to communicate between
with each laboratory iB.,e,. These sets are separated by an imagi-these two sets.
nary partition, indicated by the broken line. Initially, these sets  According toéc, each of theN/2 laboratories in either
share (\1/2)26 ebits, and theN!-fold PS operation can creaté! N Seven OF Spqg CAN communicate classical bits to each labo-
ebits. The total entanglement shared across this partition cann@itory in the other set. From this, we find that the maximum
increase, and the requirement tieanust be large enough to carry amount of classical information that can be sent in either
out theN!-fold PS operation leads to inequaliti€és 10 and(4.11). direction betweerSy,ent0 Sygq 0dd is (N/2)2c bits.

The N!-fold PS operation can be used to seéyiN bits in
either direction betweeB,ye, and Syqq. INequalities(2.4)—

) ) (2.5 imply that
This lower bound on the total resource entanglement is pre-

cisely the amount which is required by the teleportation pro-
tocol. Thus, for evem, the teleportation protocol is optimal
with regard to the required total resource entanglement.

~ This bound has been derived on the basis of the fact thajyaking use of Eq(4.8), we obtain
in a multiparticle system, théipartite entanglement shared

by two exhaustive subsets cannot increase under LQ and CC
operations. Although the entanglement initially shared by
each pair of laboratories is in pure, bipartite form, the transwhich is the amount of resource communication required to
formation shown in Fig. 13 may, at some point, manipulateimplement the teleportation protocol. We have thus shown
the resource entanglement into, possibly mixed, multiparticleéhat, in terms of the total resource entanglement and commu-
entanglement. Our argument still holds under these circumnication, the teleportation protocol described in Sec. Ill is
stances. If the final entanglement is in multiparticle form,maximally efficient.

1

\—b/
NI!N

Er=2(N—1). (4.10)

N 2
(E) c=NIN. (4.12

Cr=4(N-1), (4.13
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C. Necessary resources for oddN

Let us now examine the case of ol We have been
unable to find a specific operation which can be used to
prove that the minimum resources required to carry out any
operation on an odd number of qubits are those employed by
the teleportation protocol. However, using the graph symme-
trization technique, it is still possible to obtain lower bounds
on these minimum resources. As before, we assume that the

graphsGg and G represent sufficient resources to perform
any operatiorN! times. The specific operation we shall con-
sider here is the PS operation upon the st 3 qubits, and

a separate, cyclic permutation of the remaining three. For
N=3, there is only this latter part of the operation. We shall

PHYSICA

\

L REVIEW A 63 032314

A
AN-2.§\ :

N-1

o«

[}

»3’ Ll

N

7
3

refer to this as the PSCP operation, and it is illustrated in
Fig. 14. Gf—l)e

The PS-CP operation is again a permutation operation
which leaves no vertex invariant. It follows that it can be
used to establisiN ebits of entanglement and to communi- .
cate AN classical bits. !

We shall now apply the same arguments as those used for A N! !
the PS operation for eveN to obtain lower bounds on the . \
resources required to carry out the-PSP operation. Again, A e N! & —9 A
we partition theN laboratories into the subse&, ., and
Sodd-

Our aim, as before, is to obtain lower bounds on the mini-
mum values ot ande from the assumption th&g andG¢
represent sufficient resources to perform this particular op-
erationN! times.

We begin by deriving a lower bound on the minimum
sufficient resource entanglemeBk. In Fig. 15, the total
initial entanglement betweed,,.,andS,yq is depicted, as is 4
the amount of entanglement that can be established by the
N!-fold PS+CP operation. As before, these sets are divided
by an imaginary partition, and the total entanglement across
this partition cannot increase.

Initially, each of the N—1)/2 laboratories irS,,.,Shares

2N!

wn
[

®
o

2N!

2N!

®
{l"? M.

{l’wfh' .
®

iy
- ®
~ @

J

h'd
NIN

FIG. 15. Use of the resource entanglement gr&ghto carry
out the N!-fold PS+CP operation. The initial entanglement re-
e ebits with each of theN+1)/2 laboratories irS,4q. The  sources are distributed according to the grégh. Here, prior to
total amount of entanglement initially shared By,,and  carrying out the operation, the seSye, and Syyy share (N
Soaqis then (N?>—1)e/4 ebits. There are two contributions to —1)€/4 ebits of entanglement. The!-fold PS+CP operation can
the amount of entanglement that can be created by th@stablishN!N ebits bet_ween them. The total gntanglement shared
N!-fold PS+CP operation. One is that created by the PS parPy these sets cannot increase, and the requiremene timaist be
of the operation on the qubits in the fifst- 3 laboratories. 'ar9e enough to carry out thig!-fold PS+CP operation leads to
This can createN!(N—3) ebits. The second contribution nedualities(4.14 and(4.15.
comes from the cyclic permutation on the remaining three
laboratories. This gives an additionalNR ebits. Inequality

(2.6) then implies

() 5
() ) (o

FIG. 14. Depiction of the PSCP operation foN=7.

(Nz—l
(4.14

2 )ezN!(N—l).

Making use of Eq.(4.8), we obtain a corresponding lower
bound onEg:

(N—-1), (4.19

Er=2 N
=9 ————
R N+1

that is, the teleportation bound multiplied by a factor of
N/(N+1). The argument given for eved that this bound
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cannot be improved upon by converting the initial bipartite2(N—1)—1. Thus, the minimum number of integer ebits
resource entanglement into multiparticle entanglement alsable to carry out an arbitrary operation on an odd number of

applies here. qubits, in the one-shot case, is bounded from below by one
Let us now obtain a lower bound on the minimum re- ebit less than the teleportation bound.
source communicatio€g. As with the even case, we will By a similar calculation, one can show, using the bound in

make use of the fact that the amount of classical informatior{4.17), that in the one-shot case, if classical information is to
that the PS-CP operation can be used to communicate, inbe transmitted in integer amounts, then the minimum number
either direction betweefd,, ., and S,44, cannot exceed the of bits needed to carry out an arbitrary operation on an odd
amount of resource communication in this direction thatnumber of qubits is bounded from below by three bits less
must be consumed in order to implement thg-fold than the teleportation bound. Fbr= 3,5, a stronger bound

PS+CP operation. of two bits less than resource communication for the telepor-
For the sake of concreteness, we shall consider commuation protocol is obtained.
nication from Sgyent0 Sygq- INitially, each of the N—1)/2 With these observations in mind, the caseNof 3 ap-

laboratories irS,,.,Can communicate classical bits to each pears to be particularly significant. For this case, in the one-
of the (N+1)/2 laboratories irS,yy. This implies that the shot scenario, we see that at least three ebits and six classical
total resource communication frorBse, t0 Soaq is (N?>  bits are required. However, we know that a permutation of
—1)c/4 bits. It is easy to show that it is the same in thethree qubits can create three ebits or be used to send six
opposite direction. classical bits. This implies that these bounds must also hold
As with entanglement, the PS and CP parts oftthdold ~ asymptotically.
PS+CP operation make distinct contributions to the amount It is important to compare the bounds(#h15 and(4.17),
of information that this operation can use to send fi8gy,,  Which hold rigorously in both the one-shot and asymptotic
to S,qq. FOr a single implementation of RSP, the PS part scenarios, with the maximum amount of entanglement that
can communicateN—3) bits from Sg,ent0 Soqq, While the — can be created, and the maximum amount of classical infor-
CP part can be used to send two bits. Thus, the total amoufation that can be sent, by &hqubit operation. With this in
of classical information that thil!-fold PS+CP operation mind, we note the following inequality, which holds for all
can use to send in either direction across the partition i&N=3:
NI(N—1) bits.
The impossibility of this exceeding the resource commu-

nication across the partition implies that 2

o) (N-D=N. (4.19

The equality is obtained only whexi=3. This implies that,
for all N=4, the resources required to carry out an arbitrary
operation exceed those that can be recovered, either by rees-
and, making use of Eq4.8), we obtain the corresponding tablishing consumed entanglement or using the resource
bound forCg: communication which was consumed to implement the op-
eration to send useful messages.

As we saw in Sec. ll, this is not the case M2, which
can be seen from the properties of #\@AP operation. The
remaining case, that &= 3, is presently unsolved.

NZ2—1
( 7 )czN!(N—l). (4.16

N
Cr=4 m)(N—l), (4.17)

which, like the entanglement bound #.15), is the telepor-
tation bound multiplied byN/(N+1).

Like the bounds in4.11) and(4.13 for the even case, the o o
lower bounds we have obtained here for the minimum re- [n our derivation of the lower bounds on the minimum
source entanglement and communication for dddare  resource entqnglgment and communication n(_eeded to carry
asymptotic results. However, the fact that the bou@ds5) out any mu]t|qup|t operation, we used specific operations
and (4.17) are not integers suggests that if the available rewhgre certain pairs of laboratories needed to be gble to es-
sources are at these bounds, then they may not be very usef@plish large amounts of entanglement or communicate large
in the one-shot case, where it is more desirable to be able @mounts of classical information: more than is represented
transmit whole bits of classical information, and to manipu-by the corresponding edges in the gra@sandGc . Thus,
late whole ebits of entanglement. With this in mind, let usto carry out either thé!-fold PS or PS-CP operation, the
return to the bound oEpg in (4.15 and consider the inequal- resources from the other edges in these graphs must some-

D. Transfer of expendable resources

ity how be “transferred” to the edges which must “gain” re-
sources.
2N(N-1) 4 We can formalize this notion in the following way: con-

N+1 2(N-1)—-2+ mBZ(N_ -2, sider a multiqubit operatiof on N qubits. If £ is carried out
(4.18 N! times, then depending on the initial conditions, there may
be some pairs of laboratories which will end up sharing more

where the equality is attained only in the limit Bis—oo. If thate ebits of entanglement, or exchanging more thahas-

we are to round this bound up to the next integer, we obtairsical bits in either, or perhaps both directions. Let us define
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the target entanglement and communication graghs and  for arbitrary resource and target entanglement graphs, for all
G¢. These will represent either the number of ebits sharedN, is currently unknown. However, we can prove that it
by each pair of laboratories or the number of classical bitd0lds in general forN=3. Consider three laboratories,
communicated, following th&l!-fold implementation ofL.  A;---Ag. Let their initial and final entanglement be de-
These graphs can be characterized by the target entangleméstibed by the resource and target entanglement gréghs
and communication matriceBr={E}} and C;={C}}, in andG[, characterized by the corresponding matriggsand
the same way as for the resource graphs. Er. The difference between the initial and final entangle-
For G andG{, we will define a pair of complementary ment between each pair of laboratories can be represented by

; ; . he matrixA=E;— Eg.
subsets of the edge s&;, andS¢_, in the following way: t T =R
Sc. is the subset of the e+dge sei where each edge is denoted The fact that the total amount of entanglement shared by
by the unorderedpair (i,j), such thatEli>e. The setS one laboratory and the other pair cannot increase implies that
) ’ - T . -

contains all edges for whicEY<e. These sets contain the the sum of the elements in each row or columniotannot
. 9 . T : exceed zero. This also implies that the entanglement between
edges which, respectively, gain and do not gain entangle:

ment at most one pair of laboratories can increase. Let this pair of
o . o ~ laboratories bé\; andA,. Summing up the elements Afin
TSImIIarIy, for the classical communication grapig and  rows 1 and 2, together with the nonincreasing property of the
Gc ., we will define the subset;, andSc_ of the edge set.  column sums, gives\;,<|A;3+A,4/2. The numerator on
Sc+ contains the edges, representeddogteredpairs[i,j],  the right hand side is the total amount of entanglement lost.
for whichC}>c, andSc_ contains all edged,j] for which  we see that the entanglement transferred to the étige
Cl=c. cannot exceed half of this loss.

Here, we shall be particularly interested in the edges This kind of entanglement loss was originally discovered
which gain resources. In fact, the resources contained in thia association witrentanglement swappirid4]. It would be
other edges, contained in the s&s_ and Sc_, will be  useful to know whether or not it is an unavoidable feature of
consideredexpendable The total expendable entanglementall operations which transfer entanglement, and for an arbi-

and communication are given by trary number of spatially separated systems. Any proof, or
disproof, of this conjecture must take into account the possi-
E _E il (4.20 bility that the initial bipartite resource entanglement is con-

E72 (iifese R ' verted into multiparticle entangled states. Some progress has

recently been made towards developing a theory of conver-
=i sion between bipartite and multiparticle entangled states
Cr. (4.2 [23]. The study of certain particular situations has indicated
that these conversions are typically lossy. Consequently, we
The question we would like to answer is, how much of thedo not believe that multiparticle entangled states will enable
expendable entanglement or communication can be trangoore efficient entanglement transfer. _
ferred to the seBg., or Sc.. ? We have been unable to obtain ~ Returning to theN!-fold PS operation, we will show how
the general solution to this problem, although the analysis of similar result relating the expendable communication to the

the PS operation suggests intuitively appealing uppefommunication that can be added to the edgein can be
bounds. obtained. TheN!-fold PS operation can by used to send

For theN!-fold PS operation, the values & andCg are ~ 2N!N bits. The total amount of communication which has

easily calculated, where the seg, and Sc, contain the beenaddedto the setSc, is then N!N—Nc bits. From
edges linking laboratories whose qubits are to be swappedlequality (4.12), we see that

CE=
[i,jleSc-

We find that
1 NN e Ce (4.25
EEZE(NZ—ZN)e, (4.22 ' 2 27 '
Ce=(N?-2N)c. 4.23 that is, at most half of the expendable communication can be

added to the edges B, .
If each pair of swapped qubits generates two ebits of en- This restriction holds in general if the expendable com-
tanglement, then as we know, theé-fold PS operation can munication is used to transmit informatidndirectly be-
by used to creat®l!N ebits. The total amount of entangle- tween pairs of laboratories. By “indirectly,” we mean the
ment which has beeaddedto the setSg. is thenN!N following: the weight of an edge in a resource communica-

—(Ne/2) ebits. From inequality4.10), we see that tion graph is equal to the number of bits that one party can
transmit along a channel to some other party, without pass-

NIN— N_e< E (4.24) ing through some intermediate laboratory. Clearly, the

’ 2 2" ' sender can transmit more information to the receiver if he

sends some information via some intermediate laboratories.
that is, at most half of the expendable entanglement can bBy indirect communication, we mean this relaying proce-
added to the edges B, . Whether or not this bound holds dure.
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Thus, if the sender wishes to serdbits indirectly, he Br 7
will use up at leask bits of resource communication sending 1% [ ’."f,.-
this information to the intermediate parties, who will in turn Wl 7
use up at least a furthet bits of resource communication . ,:f.o-"
relaying it to the receiver. So, the indirect communication of 2r '.;,f«"'

« bits from one laboratory to another requires at leasbi?s E., " ',:.:,.--
to be depleted from the resource communication. R> oL o

For the remainder of this section, we will assume that theCr/2 " { O
hypothesis that at most half of the expendable resources ca [ e
be transferred is of general validity, and explore its conse- ar ’..w""
quences for oddN and the PS CP operation. We will show 2 L T’
that this leads to tighter bounds theh15 and(4.17) on the ol .-a"," . , . . . . .
amount of resource entanglement and communication 1 2 3 a 5 8 7 8 9 10
needed to carry out an arbitrary operation on an odd numbe N
of qubits.

Let us return to thé\!-fold PS+CP operation. Beginning FIG. 16. Lower bounds on the resource entanglement and com-
with entanglement, the amount of entanglement transferrethunication versus the number of qubits. The solid line corresponds
to the edges iS¢, has two contributions. The entanglementto the teleportation bound i4.11) and (4.13. The dotted line
transferred by the PS part of the operation is easily calculateitidicates the bounds i#.15 and(4.17) for the PS-CP operation
to be (N—3)(2N! —e)/2 ebits. The amount transferred by Which hold rigorously for oddN. The dashed line corresponds to the
is that initially represented by all other edges in the graph’“ most half of the expendable resources can be transferred.

Ge, and is found to be mum integer resource entanglement is equal to that required
N2 3 to implement the teleportation protocol. By a similar calcu-
Ee=|=—-N-=|e. (4.26)  lation, one can show that for al>3, the minimum integer
2 2 resource communication is at least equal to one bit short of

the teleportation bound, and that for Al=12 it is equal to
§he teleportation bound.
Figure 16 illustrates the main asymptotic bounds we have
derived in this paper: the teleportation bound, the bound de-
Ec rived from the PS-CP operation derived in the preceeding
+—. (4.27  subsection, and the bound derived from thet® opera-

2 tion based on the assumption that only half of the expendable
resources are transferable.

To summarize this subsection, we have worked on the
assumption that at most half of the expendable resources can

The assumption that at most half of the expendable entangl|
ment can be transferred to the edgesSin. leads to the
inequality

N-3
——+3

NIN<
“2

From the relationship betweenand the initial resource en-
tanglementg, expressed in Eq4.7), we find

2(N—1) be transferred. The analysis of the PS operation supports the
= (4.28 conjecture that this is true for al. If it indeed is true in
1+ 3/N? general, then in the one-shot case, the teleportation protocol

Similar reasoning can be applied to the required minimunis optimal with regard to the resource entanglement for all
resource communication. If at most half of the expendable@ddN+# 3, and also in terms of the resource communication
communication is transferable, then the minimum number ofor all odd N=13, if only integer resources are permitted.
classical bits required to perform the PSP operation with

odd N is bounded by V. DISCUSSION
A(N—1) In this paper, we have examined the properties of collec-
R - (4.29  tive quantum operations performed upon spatially separated
1+3N quantum systems. We have considered a networlK spa-

. . . tially separated laboratories, each of which contains one qu-
Assuming that inequalitie$4.28 and (4.29 hold, let us i ‘The network is equipped with facilities for classical com-

deduce the minimum integer resources for the one-shot casgy hication and local quantum operations, and each pair of
as we did in the preceding subsection. To this end, we N0 horatories also shares bipartite pure entanglement.

the inequality This scenario we have considered helps to emphasize the
fact that the final state of each system will depend upon the
2(N—1) =2(N-1)—1, (430 Initial states of the others. The evolution thus requires infor-
1+ 3/N? mation to be exchanged between the systems. In classical
physics, this is simply classical information. If the systems
for N=3, with the equality only being attained whésy  are quantum mechanical, then the exchange of quantum in-
=3. From this inequality, we see that for &li=4, the mini-  formation is necessary.
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The transmission of quantum information from one loca-actly, and these can be used to perform an arbitrary operation
tion to another can be achieved by sending quantum systemssing teleportation. We arrived at these bounds using a tech-
or by quantum teleportation. We have proposed a simplaique we refer to as graph symmetrization. We have thus
teleportation-based protocol which allows any quantum opshown that the teleportation protocol is optimal for ewen
eration to be performed upav separated, identical quantum Whether or not it is also optimal for odd is an important
systems. Teleportation requires the transmission of classicalutstanding problem. We have shown, in the even case, that
information and existence of entanglement shared by théhe optimality of the teleportation protocol can be reinter-
sending and receiving stations. In the caseNsf2, one preted as coming from a restriction on the extent to which
particular class of operations, namely those equivalent, up texpendable resources can be transferred from one pair of
bipartite local unitary transformations, to tlesvAP opera- laboratories to another. In particular, for any amount of re-
tion, permits either the minimum classical communication orsources transferred, at least as much are irrevocably lost. The
entanglement resources required to perform any operation @ssumption that this restriction always holds leads to tighter
be “recovered” for other tasks. These operations may bebounds on the resources required to carry out an arbitrary
regarded as the most inseparable operationdfel. operation on an odd number of qubits. These bounds imply

For N>2, the situation is more interesting. Rde=4, no  that if, in the one-shot scenario, resources can only be con-
operation can establish the entanglement or be used to coraumed in integer amounts, then the teleportation protocol is
municate the information necessary to perform any operaeptimal for allN>3 for entanglement and for aN=12 for
tion. Whether or not this is also the case f9=3 is cur- communication also. One clear conclusion from our work is
rently unknown. For alN we have determined the maximum that the case o= 3 is of particular interest, since many of
total amount of entanglement that can be established, and thoair results which apply to all othéd have not been estab-
maximum total number of classical bits that can be commulished for this case. It could be that graph-theoretic tech-
nicated, by any operation. Permutation operations attaimiques are not suitable for analyzing the three-qubit case, and
these limits, which are also the minimum resources requirethat other tools must be employed.
to carry out these specific operations.

We have also examined the problem of finding the mini-
mum resources required to perform an arbitrary operation.
The scenario we considered was one where each pair of labo- We would like to thank Sandu Popescu, Noah Linden,
ratories shares a certain amount of entanglement, and cd&dsamu Hirota, and Masahide Sasaki for interesting discus-
communicate a certain number of classical bits to each othesions. We also wish to thank John Vaccaro for help with
The problem we addressed was, what are the minimum vakome of the figures. Part of this work was carried out at the
ues of the total entanglement and communication required tdapanese Ministry of Posts and Telecommunications Com-
carry out ana priori unknown operation, that is, unknown munications Research Laboratory, Tokyo, and we would like
prior to the entanglement and communication resources bee thank Masayuki Izutsu for his hospitality. This work was
ing set up? funded by the UK Engineering and Physical Sciences Re-

For evenN, we have found these minimum resources ex-search Council, and by the British Council.
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