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I. INTRODUCTION

Let B5C2; an element ofB is called a qubit. The spac
Bn5B^ n5(C2) ^ n is the space of quantum words of leng
n. An ~~n,K!! quantum codeQ is a K-dimensional linear
subspace ofBn. The parametersn andK are called the length
and the size~or cardinality! of the code.

Let L (Bn) be the space of linear operators onBn. A quan-
tum information message is a vectorwPQ. The messagew
can be altered by a linear operatorEPL (Bn), called an error
operator.

Let us define the set suppE#@1,n# in the following way.
Consider the action ofE on Bn. If E can be written as
idj ^ E8, where idj is the identity operator acting on thej th
tensor component andE8 an operator on the tensor produ
of the other components, we havej ¹suppE. The weight of
E is defined as wt(E)5usuppEu.

We say thatE is detectable byQ if for any two v,uPQ
with v'u then v'E(u). S is a set of correctable errors
E1(u)'E2(v) for any E1 , E2PS. Let dQ be the maximum
integer such thatQ can detect any error of weightdQ21 or
less;dQ is called the minimum distance ofQ. We say thatQ
is an ((n,K,dQ)) code. It can be proved that the codeQ can
correct any error of weightb(dQ21)/2c or less.

Remark. One can find a more detailed discussion of t
notions of quantum minimum distance, quantum detect
and quantum correction in@1–4#.

Probably the most interesting and important class of qu
tum codes are quantum stabilizer codes. These codes ca
viewed as natural analogs of classical linear codes. To de
a quantum stabilizer code we first introduce another clas
~nonquantum! codes.

Let T5F4 be a field of four elements. The nontrivial au
tomorphism ofF4 overF2 is called complex conjugation an
denoted in the same way. We fix a~symplectic! form on Tn
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given by v(x,y)5Tr(xȳ). A small symplectic codeF,Tn

is anv-isotropicF2 subspace inTn, i.e., v(x,y)50 for any
x,yPF. Its minimal distanced5dF is defined as the mini-
mum F4 Hamming norm of a nontrivial vector inF. Its di-
mensionk5kF is its F2 dimension, in particular,k<n. The
v-dual Fv of a small symplectic codeF is called a large
symplectic code; for a large symplectic code we haven
<kFv<2n. Of course,F,Fv.

Let F,Tn be a small symplectic code with paramete
@n,k,d#. We are going to define the stabilizer codeQF,Bn

corresponding toF. Let F45$0,1,e,ē%. Set

s~0!5F1 0

0 1G , s~e!5F0 1

1 0G ,
s~ē !5F1 0

0 21G , s~1!5F0 2 i

i 0 G .
These are the usual Pauli matrices. Then, fort5(t1 ,...,tn)
PTn, we put

s~ t !5s~ t1! ^¯^ s~ tn!. ~1!

We get a map~of sets! s:Tn→L (Bn). Being restricted to a
small symplectic codeF,Tn, the maps happens to be al-
most a group homomorphism, namely, forf 1 , f 2PF we have

s~ f 1!s~ f 2!5s~ f 2!s~ f 1!56s~ f 11 f 2!;

in particular,s( f 1) ands( f 2) commute. This makes it pos
sible to consider the subspace ofBn fixed by s(F) in the
following way. Let F5$ f 1 ,...,f k% be anF2 basis ofF and
let m5$m1 ,...,mk%, m iP$61%. DefineQF,m as follows:

QF,m5$xPBnus~ f i !~x!5m ix for any i 51,...,k%.

The quantum codeQF,m is called a stabilizer code. For an
f PF the operators( f ) acts onQF,m as61.

The small symplectic codeF being fixed, we get 2k dif-
ferent codesQF,m . The properties that we are interested
do not depend on the choice ofF and m, and by abuse of
©2001 The American Physical Society11-1
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notation we call each of themQF . The main theorem on
stabilizer codes says that the parameters of the quan
codes obtained are

KQF
52n2kF, dQF

5 min
f PFv\F

i f i>dFv. ~2!

Remark. Detailed descriptions of quantum stabilizer cod
including the proof of the above statements about their
rameters can be found in@5–10,13#.

Let kQ5 log2 KQ . We will say thatQ is an @@nQ , kQ ,
dQ]] quantum code. Let us set

RQ5
kQ

n
and dQ5

dQ

n
.

We are interested in

R~d!5 lim sup
n→`

RQ ,

where the limit is taken over all codes withdQ>d.
The best known nonconstructive lower bound onR(d)

was obtained in@10# via codes overF4 :

R~d!>12d log2 32H~d!, ~3!

where H(x)52x log2 x2(12x)log2(12x) is the binary en-
tropy function. For upper bounds see@2#.

Several methods have been proposed to construct q
tum codes, see, e.g.,@5,7–14#. However, whenn grows for a
fixed R.0, the relative minimum distanced of all these
codes tends to zero. In this paper we give a~polynomial inn!
construction of quantum codes from algebraic geome
codes, so that in a certain interval of ratesR the relative
minimum distance of these quantum codes is separated
zero, i.e., we construct a family of asymptotically good qua
tum codes.

The construction proceeds in four steps. Algebraic cur
give us asymptotically good nonbinary algebraic geome
codes, and we provide that each of them contains its d
Then we take a binary symbolwise expansion in a self-d
basis of the codewords of these algebraic geometry code
that the resulting binary codes also contain their duals. T
we put these codes into Steane’s construction@14# to con-
struct good symplectic codes. The corresponding quan
codes are asymptotically good.

To make the exposition simpler, we follow this path bac
wards. We have already explained how quantum codes
related to symplectic codes. In Sec. II we recall Stean
construction of symplectic codes starting from tripl
D8.D.D' of binary codes. Section III explains how t
construct binary codes containing their duals from co
over F2m with the same property. In Sec. IV we produ
necessary algebraic geometry codes. Finally, in Sec. V
sum up to get the parameters. Here is the result~see Fig. 1!.

Theorem 1. For anydP(0, 1
18 # andR lying on the broken

line given by the piecewise linear function
03231
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R~d!512
1

2m2121
2

10

3
md for dP@dm ,dm21#,

wherem53,4,5,...,d25 1
18 , d35 3

56 , and

dm5
3

5

2m22

~2m21!~2m2121!
for m54,5,6,...,

there exist polynomially constructible families of quantu
codes withn→` and asymptotic parameters greater than
equal to~d, R!.

II. FROM BINARY CODES TO SYMPLECTIC CODES

We follow Steane’s construction@14# with improved esti-
mates for the parameters given by Cohen, Encheva,
Litsyn @12#.

We start with a tripleD8.D.D' of binary codes, where
D is an@n,k,d# code containing its dualD', andD8 a larger
@n,k8# code withk8>k12. Let G be a generator matrix o
D, and letG8 be such a matrix that

S G
G8 D

is a generator matrix ofD8. Denote byd28 the second gen-
eralized weight ofD8, i.e., the minimum weight of the bit-
wiseOR of two different nonzero codewords~see@15–18# for
properties and known bounds!. Form the codeC,F2

2n with
the generator matrix

S G 0

0 G

G8 G9
D ,

where the matrixG9 is obtained fromG8 by permuting its
rows so that no row stays in its place.

Fix the following F2 linear isomorphism betweenF2
2n

and F4
n , first mapping (x1 ,...,xn ,y1 ,...,yn)PF2

2n to
„(x1 ,y1),...,(xn ,yn)…P(F2

2)n and then identifyingF2
2 andF4

FIG. 1. Nonconstructive bound Eq.~3! and polynomial bound of
Theorem 1.
1-2
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by (0,0)50, (0,1)5e, (1,0)5 ē, (1,1)51. The image ofC
under this map isF,F4

n . Here is an estimate for its param
eters@14,12#.

Theorem 2. The codeF,F4
n is a large symplectic code

i.e., F.Fv. Its parameters arekF5k1k8 and dF

>min(d,d28).
Proof. Let x5(a1 ,...,an ,b1 ,...,bn) and x8

5(a18 ,...,an8 ,b18 ...,bn8). We choose the above identificatio
betweenF4

n andF2
2n . In the basis ofF2

2n the formv(x,x8) is
given by v(x,x8)5S j 51,...,najbj81aj8bj . Then suppose tha
xPFv. This means thatv(x,x8)50 for anyx8PF. In par-
ticular, this is true for x85(a18 ,...,an8,0,...,0) and x8
5(0,...,0,b18 ,...,bn8). We get S j 51,...,najbj850 for any
(b18 ,...,bn8)PD, and therefore (a1 ,...,an)PD',D. Analo-
gously, (b1 ,...,bn)PD',D, and we see thatxPF.

The value ofkF is obvious. Then we have to estimatedF .
Let xPF. Then

x5~a1 ,...,an,0,...,0!1~0,...,0,b1 ,...,bn!

1~a18 ,...,an8 ,b18 ,...,bn8!,

where (a1 ,...,an)PD, (b1 ,...,bn)PD, and
(a18 ,...,an8 ,b18 ,...,bn8)PD8. If the last summand is zero, th
number of nonzero pairs (aj ,bj ) is at leastd. If it is nonzero,
then both (a11a18 ,...,an1an8) and (b11b18 ,...,bn1bn8) lie
in D8 and they are different since two generators ofD8 not
lying in D cannot differ by an element ofD. Hence, theF4

weight of the sum is at leastd28 . h

Corollary 1. The parameters of the corresponding qua
tum stabilizer codeQF satisfy

kQF
5k1k82n, dQF

>min~d,d28!>min~d, 3
2 d8!.

Proof. By Eq. ~2! the dimensionkQF
5n2kFv5n2(2n

2kF)5k1k82n. The first inequality is also that of Eq.~2!.
To prove thatd28>

3
2 d8 write two different vectors one

below the other. Let the number of columns~0,0!, ~0,1!,
~1,0!, ~1,1! equal, respectively,a1 , a2 , a3 , a4 . Then d28
5a21a31a4 . The weight of the first vector isa31a4
>d8, of the seconda21a4>d8, and of their suma21a3
>d8. Summing up we get the result.h

To apply this construction one needs good binary co
with D',D.

III. FROM NONBINARY TO BINARY CODES

The following theorem is due to Kasami and Lin@19#.
Theorem 3. Let be a code overF2m andC',C. Let a i ,

i 51,...,m, be a self-dual basis ofF2m over F2 , i.e.,

Tr~a ia j !5d i j .

Let D andD' be codes obtained by the symbolwise bina
expansion of codesC andC' in the basisa i . ThenD',D
andD' is the binary dual ofD.
03231
-

s

Proof. The first statement is obvious. Let us prove t
second one. Let x5(x1 ,x2 ,...,xn)PC and y
5(y1 ,y2 ,...,yn)PC'. Let

xj5(
i 51

m

xi
~ j !a i ,

yj5(
i 51

m

yi
~ j !a i .

Then

(
j 51

n

xjyj5xy50.

Hence

05TrS (
j 51

n

xjyj D
5TrS (

j 51

n

(
i 51

m

(
t51

m

xi
~ j !yt

~ j !a ia tD
5(

j 51

n

(
i 51

m

(
t51

m

xi
~ j !yt

~ j !Tr~a ia t!

5(
j 51

n

(
i 51

m

xi
~ j !yi

~ j ! .

So we have proved that (D)'$D'. It remains to note that
the dimensions ofD andD' are complementary. h

Of course, if we start from a tripleC8.C.C' of codes
over F2m the same descent gives us a tripleD8.D.D' of
binary codes.

IV. FROM ALGEBRAIC CURVES TO CODES

In this section we follow standard algebraic geome
constructions presented in@20#, proving that they satisfy
some extra properties needed to use them in above cons
tions. That is, we want a tripleC8.C.C' of codes over
F2m with good parameters. Let us start by looking for alg
braic codes containing their duals.

Let wP(Fq* )n. For a codeC,Fq
n we define

Cw
'5 H xPFq

n :( wixiyi50 for any yPCJ .

Let X be a ~smooth projective geometrically irreducibl
algebraic! curve of genusg defined overFq , D be an effec-
tive divisor of degreea, andP85$P1 ,...,Pn8%#X(Fq) a set
of Fq points such that suppDùP85B; we setP85P11¯

1Pn8 . As usual,

L~D!5$ f PFq~X!:~ f !1D>0%ø$0%

is the space of functions associated with the divisor, and

V~D!5$vPV~X!:~v!1D>0%ø$0%
1-3
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that of differential forms.
Suppose thata<n8/21g/221, then for any effective di-

visor E of degree degE5n81g2222a we have deg(K
1P822D2E)5g, and by the Riemann-Roch theorem the
exists anvPV(P822D2E). Unfortunately, working over a
finite field, we cannot guarantee thatv actually has poles a
all points of P8. However, the set of polesP
5$P1 ,...,Pn%#P8 consists ofn>n82g points. PutP5P1
1¯1Pn . Of course, vPV(P22D2E). Let w
5„ResP1

(v),...,ResPn
(v)….

The algebraic geometry codeCL(X,D,P) is defined as the
image of the evaluation map

L~D!→Fq
n ,

f °„f ~P1!,...,f ~Pn!….

Put C5CL(X,D,P)w
' . For any two functions f, g

PL(D) we havef gvPV(P). Thereforef gv has no poles
except in P and, by the residue formula,(wi f (Pi)g(Pi)
5(ResPi

(v)50. We have proved thatC$Cw
' .

If q52m, any element ofFq* is a square, in particular
wi5v i

2. Let gv be coordinatewise multiplication byv
5(v1 ,...,vn). Then the codeC85gv(C) has the property
C8$C8'.

Recall that ifa>2g21 the parameters ofC andC8 are

k5n2a1g21,

d>a22g12.

Summing up, we have proved the following theorem.
Theorem 4. If there exists a curve overFq of genusg with

at leastn8>4g Fq points, then for anyn<n82g and any
a52g21,...,n/21g21 there is an@n,k,d#q codeC with

k5n2a1g21, ~4!

d>a22g12, ~5!

such thatC$Cw
' for somewP(Fq* )n.

Moreover, ifq is a power of 2, there is such a code wi
C$C'.

Remark. The codes withC5Cw
' have been studied befor

by Driencourt, Michon, Katsman, Tsfasman, Stichteno
and Scharlau~see@20#, Secs. 3.1.3 and 3.4.4!. Such codes
can be built on the whole lengthn8. The necessity to con
struct codes withC.Cw

' has never arisen before. It look
more difficult, and in Theorem 4 we could do nothing bet
than to sacrificeg points.

Applying, as usual, Theorem 4 to asymptotically go
families of curves overFq , q being a square, such that

uX~Fq!u
g~X!

→Aq21,

we get the following corollary.
Corollary 2. Let q be an even power of a prime. Then fo

any
03231
,

r

aPS 2

Aq22
,
1

2
1

1

Aq22
D ~6!

there exist families of codes with asymptotic parameters

R512a1
1

Aq22
, ~7!

d>a2
2

Aq22
, ~8!

with the auxiliary propertyC$Cw
' for somewP(Fq* )n. If q

is an even power of 2, there exist such codes with the str
ger propertyC$C'.

To construct quantum codes we need a somewhat stro
statement. Recall that we need a tripleC8.C.C'.

If we take two divisors D8<D then
CL(X,D8,P)#CL(X,D,P) and we have the opposite inclu
sion for duals. The differential formv with the above prop-
erties good forD is also good forD8. Taking D5aP0 and
D85a8P0 with a8,a we prove a further corollary.

Corollary 3. Let q522m. Then for any pair of real num-
bers (a8,a) such that 2/(2m22)<a8<a<1/211/(2m22)
there exist families of triples of 22m-ary codesC8.C$C'

with asymptotic parameters

R8512a81
1

2m22
, ~9!

d8>a82
2

2m22
, ~10!

R512a1
1

2m22
, ~11!

d>a2
2

2m22
. ~12!

HereR8 signifies the asymptotic rate andd 8 the asymptotic
relative minimum distance of codesC8, and R and d are
asymptotic parameters of codesC.

Remark. Choosing anFq point P` and taking suppE
5suppD5suppD85P0 and P85X(Fq)\P0 we see that the
above codes are polynomially constructible. This uses,
course, a difficult theorem of Vla˘dut and co-workers~see
@21,20#!.

V. SUMMING UP: QUANTUM CODES

We say that a quantum code can be constructed in p
nomial time if there exists a polynomial time algorithm co
structing explicitly an encoder of the code and this enco
has polynomially many elementary quantum gates.

In @22# it is in fact shown that knowledge of the generat
matrix of the symplectic codeF ~also called generating op
erators of the stabilizer group ofQF! suffices to construct a
polynomial complexity encoder. Moreover, this encoder co
struction is, roughly speaking, a sequence of Gaussian el
nations ofk3n matrices and hence it has polynomial com
plexity. Any generator matrix of the codeC' could be used
1-4
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to construct a set of generator operators ofS polynomially.
Finally, it is shown in @21,20# that generator matrices o
algebraic geometry codes described in Sec. IV can be c
structed in polynomial time. Thus the associated quan
stabilizer codes are also constructible in polynomial time

To construct an asymptotically good quantum codeQ we
start with a family of curves X over F22m with
uX(Fg)u/g(X)→2m21. Each curve gives us a tripl
C8.C.C' of algebraic geometry codesC over F22m as
described in Sec. IV. LetC be an@n,k,d# code andC8 an
@n,k8,d8# code. Binary expansions ofC andC8 with respect
to a self-orthogonal basis give us a tripleD8.D.D' of
binary codes withnD85nD52mn, kD852mk8, kD52mk,
dD8>d8, dD>d ~cf. Sec. III!. These codes give us symple
tic codes F, their parameters being@2mn, 2m(k1k8),

>min$d,3
2d8%#. In their turn these give us quantum stabiliz

@@2mn,2m(k1k82n),>min$d,3
2d8%## codes Q. The corre-

sponding asymptotic parameters are

RQ5R1R821, ~13!

dQ>min$d, 3
2 d8%, ~14!

whereR, R8, d, andd8 are the parameters of algebraic g
ometryF22m-ary codes.

It is time to use Corollary 3. Puta85 2
3 (a1g), where

g51/(2m22) ~this choice ofa8 is optimal here!. The re-
strictions 2g<a8,a< 1

2 1g are equal to 2g<a< 1
2 1g.

The asymptotic parameters of the algebraic geometry co
are

R512a1g, ~15!

d>a22g, ~16!

R8512 2
3 a1 1

3 g, ~17!
.

gy

W

W

03231
n-
m

es

d8> 2
3 a2 4

3 g. ~18!

Their binary expansions have the sameR and R8, and the
estimates for theird andd8 are divided by 2m. By Corollary
1 the parameters of the quantum codes obtained are

RQ5R1R821511 4
3 g2 5

3 a, ~19!

dQ>
1

2m
~a22g!. ~20!

Therefore, for anym>3 we get a polynomial bound

RQ512
2

2m22
2

10

3
mdQ ~21!

with the restriction

dQ<
1

2m S 1

2
2

1

2m22D , ~22!

i.e.,

12
2

2m22
>RQ>

1

6
2

1

3

1

2m22
. ~23!

Theorem 1 now follows from Eqs.~21! and ~23! by direct
computation.

In Fig. 1 we have presented the Gilbert-Varshamov ty
bound Eq.~3! and the polynomial bound of Theorem 1 bas
on Eqs.~21! and ~23!.
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