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I. INTRODUCTION

Let B=C?; an element of3 is called a qubit. The space

PACS nuntber03.67—a

given by o(Xx,y)=Tr(xy). A small symplectic codé&CT"
is an w-isotropicF, subspace iT", i.e., w(x,y)=0 for any
X,y € F. Its minimal distancal=dg is defined as the mini-

B"=pB®"=(C?®" is the space of quantum words of length mum F, Hamming norm of a nontrivial vector if. Its di-

n. An ((n,K)) quantum codeQ is a K-dimensional linear
subspace oB". The parametens andK are called the length
and the sizdor cardinality of the code.

Let L(B") be the space of linear operators 8h A quan-
tum information message is a vectwore Q. The message
can be altered by a linear operatoe L (B"), called an error
operator.

Let us define the set supc[1,n] in the following way.
Consider the action of on B". If E can be written as
id;®E’, where id is the identity operator acting on théh

tensor component an’ an operator on the tensor product

of the other components, we haye supfE. The weight of
E is defined as W) = |supfE|.

We say thatt is detectable by if for any twov,ueQ
with v Lu thenv L E(u). Sis a set of correctable errors if
E;1(u)LEy(v) foranyE,, E;€S. Letdg be the maximum
integer such tha@ can detect any error of weighty—1 or
less;dg is called the minimum distance @. We say thaQ
is an ((h,K,dg)) code. It can be proved that the coQecan
correct any error of weigh(d,—1)/2] or less.

Remark One can find a more detailed discussion of the
notions of quantum minimum distance, quantum detection,

and quantum correction iiL—4].

mensionk=Kkg is its F, dimension, in particulaik<n. The
w-dual F® of a small symplectic cod& is called a large
symplectic code; for a large symplectic code we have
<kpo=<2n. Of courseFCF*.

Let FCT" be a small symplectic code with parameters
[n,k,d. We are going to define the stabilizer co@gC B"
corresponding td-. Let F,={0,1¢,€}. Set

10 0 1
70=y 4] D=1 o
1 0 0 —i
These are the usual Pauli matrices. Then,tfe(t,,... t,,)
eT", we put
ot)=o(t)® -00(t,). (N)

We get a magof set3 o:T"—L(B"). Being restricted to a
small symplectic cod&CT", the mapo happens to be al-
most a group homomorphism, namely, fqr,f, e F we have

o(f)o(fy)=o(fr)o(f)=*a(f;+1,);

Probably the most interesting and important class of quan-

tum codes are quantum stabilizer codes. These codes can peparticular,o(f,) ando(f,) commute. This makes it pos-
viewed as natural analogs of classical linear codes. To defingple to consider the subspace Bt fixed by o(F) in the
a quantum stabilizer code we first introduce another class qb|iowing way. Let 7={f,...,f,} be anF, basis ofF and

(nonquantum codes.

Let T=F, be a field of four elements. The nontrivial au-

tomorphism off, overF, is called complex conjugation and
denoted in the same way. We fix(gymplecti¢ form on T"
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let w={my,.....}, i e{*1}. DefineQg , as follows:

Qr,={xeB"o(f)(x)=ux for any i=1,..k}.

The quantum cod® , is called a stabilizer code. For any
f e F the operatow(f ) acts onQy, as*1.

The small symplectic codE being fixed, we get ©dif-
ferent codeQ . The properties that we are interested in
do not depend on the choice @f and i, and by abuse of
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notation we call each of ther®g. The main theorem on
stabilizer codes says that the parameters of the quantunRQl“

codes obtained are Eq. (3)

KQF=2”’kF, do.= min [|f|[=dg.. ) 0.8} Theorem 1

feF“\F

Remark Detailed descriptions of quantum stabilizer codes o.s}
including the proof of the above statements about their pa
rameters can be found [5-10,13.

Let ko=l0og, K. We will say thatQ is an[[nqg, Kq, 0.41
do]] quantum code. Let us set

k d 0.21
_"Q _-Q
RQ_F and 5Q_F'
i ) 8.02 G.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
We are interested in b0
R(6)=limsupRq, FIG. 1. Nonconstructive bound E() and polynomial bound of
n—o

Theorem 1.

where the limit is taken over all codes witih= 6.
The best known nonconstructive lower bound R(S)
was obtained if10] via codes oveF,:

1 10
R(O)=1—Sm—1—7~ 3 M for 6€[bn,om-1l,

wherem=3,4,5,....6,= 15, 83==, and
R(8)=1~élog, 3—H(9), 3 3 2m-2

om=3 (2"—1)(2m 1-71)

for m=4,56,...,
where H(x) = —xlog, x—(1—X)log,(1—x) is the binary en-
tropy function. For upper bounds sE2. there ex_ist polynomially const_ructible families of quantum
Several methods have been proposed to construct quafodes withn—co and asymptotic parameters greater than or
tum codes, see, e.45,7-14. However, whem grows fora  €gual to(5, R).
fixed R>0, the relative minimum distancé of all these
codes tends to zero. In this paper we givg@alynomial inn)
construction of quantum codes from algebraic geometry We follow Steane’s constructidri4] with improved esti-
codes, so that in a certain interval of ratesthe relative mates for the parameters given by Cohen, Encheva, and
minimum distance of these quantum codes is separated frokitsyn [12].
zero, i.e., we construct a family of asymptotically good quan- We start with a tripleD’ DD D D™ of binary codes, where
tum codes. D is an[n,k,d code containing its dudb*, andD’ a larger
The construction proceeds in four steps. Algebraic curvegn,k’] code withk’=k+2. Let G be a generator matrix of
give us asymptotically good nonbinary algebraic geometryP, and letG’ be such a matrix that
codes, and we provide that each of them contains its dual. G
Then we take a binary symbolwise expansion in a self-dual (G’
basis of the codewords of these algebraic geometry codes, so
that the resulting binary codes also contain their duals. Thes 3 generator matrix ob’. Denote byd, the second gen-
we put these codes into Steane’s constructibfi to con-  eralized weight oD, i.e., the minimum weight of the bit-
struct good symplectic codes. The corresponding quantuijise or of two different nonzero codewordsee[15—1§ for

codes are asymptotically good. properties and known bounds=orm the codeCC F3" with
To make the exposition simpler, we follow this path back-the generator matrix

wards. We have already explained how quantum codes are
related to symplectic codes. In Sec. Il we recall Steane’s G 0
construction of symplectic codes starting from triples 0 G
D'DDDD* of binary codes. Section Il explains how to G G
construct binary codes containing their duals from codes

over F,m with the same property. In Sec. IV we produce where the matrixG” is obtained fromG’ by permuting its
necessary algebraic geometry codes. Finally, in Sec. V wgows so that no row stays in its place.

Il. FROM BINARY CODES TO SYMPLECTIC CODES

sum up to get the parameters. Here is the resele Fig. 1 Fix the following F, linear isomorphism betweef3"
Theorem 1For anyde (0,75] andR lying on the broken and Fj, first mapping Ki,...Xn.Y1.....¥n) €F3" tO
line given by the piecewise linear function ((X1,Y1),---»(Xn,Yn)) € (F3)™ and then identifying 3 andF,
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by (0,0)=0, (0,1)=¢, (1,0)=¢, (1,1)=1. The image ofC

under this map i$CF}. Here is an estimate for its param-

eters[14,12.
Theorem 2The codeFCF} is a large symplectic code,

i.e., FOF® Its parameters areke=k+k’ and dg
=min(d,dy).
Proof. Let x=(ai,....an,bq,...,bp) and X’

=(ay,...,a,,b1...,b)). We choose the above identification

betweerF} andF3". In the basis of3" the formw(x,x’) is
given by w(x,x")=%;_1 ,ajbj +ajb;. Then suppose that
xe F®. This means thad(x,x’)=0 for anyx’ e F. In par-
ticular, this is true forx’'=(ay,...a,,0,...,0) and x’
=(0,...,.0b1,....by). We get 3;_; ,ajbj=0 for any
(b1,....b;) e D, and therefored;,...,a,) e D*CD. Analo-
gously, (04,...,b,) e D*CD, and we see thate F.

The value ofkg is obvious. Then we have to estimate.
LetxeF. Then

x=(ajy,...,an0,...,0 +(0,...,0by,...,b,)
+(ag,....a,,b1,....b}),
where @1,---,a,)eDbD, (by,...,b,) €D, and
(a1,....a,,b1,....b}) e D’. If the last summand is zero, the

number of nonzero pairg(,b;) is at leasd. If it is nonzero,
then both &,+as,...,a,+a/) and @,;+bg,...,.b,+b;) lie
in D’ and they are different since two generatordDdf not
lying in D cannot differ by an element @. Hence, the~,
weight of the sum is at least,. [
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Proof. The first statement is obvious. Let us prove the

second one. Let x=(X;,X3,...X,)eC and vy
=(Y1,Y2,---.yn) € C*+. Let
m
ijgl xVay,
m
yj:;l ya;.
Then
n
]241 Xjyj=xy=0.
Hence
n
0=Tr 2 xjyj)
j=1
n m m
=Tr(. > 2> Xi(j)ywaiat)
j=li=1t=1

m
> XDy Tr(aay)
1t=1

n
2,
j=11

n
>
i=1

Xi(J)yi(J) )
1

Corollary 1. The parameters of the corresponding quan-S0 We have proved thaD)" 2D It remains to note that

tum stabilizer cod€ satisfy
ko =k+k'—n, dq_=min(d,d;)=min(d,3d").

Proof. By Eq. (2) the dimensioeran—ka:n—(Zn
—kg)=k+k'—n. The first inequality is also that of E¢R).

To prove thatd,=3d’ write two different vectors one
below the other. Let the number of columig,0), (0,1,
(1,0, (1,1) equal, respectivelya;, a,, az, a4. Thend,
=a,taz+ta,. The weight of the first vector i®z+a,
=d’, of the secondh,+a,=d’, and of their suma,+a,
=d’. Summing up we get the result[]

To apply this construction one needs good binary codes

with D+ CD.

IIl. FROM NONBINARY TO BINARY CODES

The following theorem is due to Kasami and L[it9].
Theorem 3Let be a code oveF,m andC*CC. Let q;,
i=1,...m, be a self-dual basis d¥,m overF,, i.e.,

Tr(aiaj)= 5” .

the dimensions ob andD+ are complementary.

Of course, if we start from a tripl€’ DCDC* of codes
over F,m the same descent gives us a trigiéD DD D' of
binary codes.

IV. FROM ALGEBRAIC CURVES TO CODES

In this section we follow standard algebraic geometry
constructions presented i20], proving that they satisfy
some extra properties needed to use them in above construc-
tions. That is, we want a tripl€' DCDC* of codes over
F,m with good parameters. Let us start by looking for alge-
braic codes containing their duals.

Letwe (F3)". For a codeCC Fj we define

Ci=1xeF0: 2 wixy;=0 for anyyeC/.

Let X be a(smooth projective geometrically irreducible
algebraig curve of genug defined overr,, D be an effec-
tive divisor of degree, andP' ={Py,...,P, }CX(F,) a set
of Fy points such that su@pN P’ =J; we setP’' =P+
+P,. As usual,

L(D)={f e Fo(X):(f )+ D=0}U{0}

Let D andD* be codes obtained by the symbolwise binaryjs the space of functions associated with the divisor, and

expansion of code€ andC* in the basisy;. ThenD*CD
andD+ is the binary dual oD.

QD) ={we Q(X):(w)+D=0}U{0}
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that of differential forms.
Suppose thaa<n’/2+g/2— 1, then for any effective di-
visor £ of degree de§=n'+g—2—2a we have ded

PHYSICAL REVIEW A 63 032311

(211
ae

o+
Va-2'2 Jg-2

(6)

+P'—=2D—¢&) =g, and by the Riemann-Roch theorem therey, o exist families of codes with asymptotic parameters

exists anw € O (P’ —2D—&). Unfortunately, working over a
finite field, we cannot guarantee thatactually has poles at
all points of P'. However, the set of polesP
={P;,...,P,}C P’ consists ofn=n’—g points. PutP=P,
+---+P,. Of course, weQ(P-2D-¢). Let w
=(Re$1(w),...,Re$n(w)).

The algebraic geometry codg (X,D,P) is defined as the
image of the evaluation map

L(D)—Fg,
f>(f(P1),....f(Py)).

Put C=C.(X,D,P),,. For any two functionsf, g
eL(D) we havefgw e Q(P). Thereforefgw has no poles
except inP and, by the residue formulaw;f(P;)g(P;)
=3Re$ (w)=0. We have proved tha D C,,.

If q=2™, any element oﬁ:; is a square, in particular,
w;=v?. Let g, be coordinatewise multiplication by
=(v1,...,0p). Then the codeC’=g,(C) has the property
C'DC't.

Recall that ifa=2g—1 the parameters & andC’ are

k=n—a+g—1,
d=a—2g+2.

Summing up, we have proved the following theorem.

Theorem 4lf there exists a curve ovéi, of genusg with
at leastn’=4g F, points, then for anyn<n’—g and any
a=2g—1,..n/2+g—1 there is arin,k,d], codeC with

k=n—a+g—1, (4)

d=a—-2g+2, (5)

such thatC2C,, for somew e (F3)".

Moreover, ifq is a power of 2, there is such a code with

CDC*.

1
R=1— 7
at = @
P ®
= \/a_z,

with the auxiliary propertyC D Cy, for somew e (F¥)". If
is an even power of 2, there exist such codes with the stron-
ger propertyCDOC*.

To construct quantum codes we need a somewhat stronger
statement. Recall that we need a tri@léDCDC* .

If we take two divisors D'<D then
CL(X,D",P)CC.(X,D,P) and we have the opposite inclu-
sion for duals. The differential forr» with the above prop-
erties good forD is also good forD’. Taking D=aP, and
D'=a’'Py with a’ <a we prove a further corollary.

Corollary 3. Let g=22". Then for any pair of real num-
bers (@',a) such that 2/(2—-2)<a’' <a<1/2+1/(2™-2)
there exist families of triples of ?"-ary codesC’' DCDOC*
with asymptotic parameters

1
R'=1-a'+ 57—, ©)

2m—-2
! ! 2
=a ~om_p (10)
1
R=1-a+ m, (11
2
o=a— Py (12

HereR’ signifies the asymptotic rate ard the asymptotic
relative minimum distance of coddgs’, andR and & are
asymptotic parameters of cod€s

Remark Choosing anF, point P, and taking supf
=sup=sup’ =P, and P’ =X(Fy)\P, we see that the

Remark The codes wittC = C}, have been studied before above codes are polynomially constructible. This uses, of

by Driencourt, Michon, Katsman, Tsfasman, Stichtenot

and Scharlausee[20], Secs. 3.1.3 and 3.4.4Such codes
can be built on the whole length’. The necessity to con-

struct codes withCDC;, has never arisen before. It looks
more difficult, and in Theorem 4 we could do nothing better

than to sacrificay points.

pcourse, a difficult theorem of Vit and co-workergsee
[21,20).

V. SUMMING UP: QUANTUM CODES

We say that a quantum code can be constructed in poly-
nomial time if there exists a polynomial time algorithm con-

Applying, as usual, Theorem 4 to asymptotically goodstructing explicitly an encoder of the code and this encoder

families of curves oveF,, g being a square, such that

IX(Fg)]
9(Xx)

we get the following corollary.

—>\/a—1,

has polynomially many elementary quantum gates.

In [22] it is in fact shown that knowledge of the generator
matrix of the symplectic cod€ (also called generating op-
erators of the stabilizer group €J¢) suffices to construct a
polynomial complexity encoder. Moreover, this encoder con-
struction is, roughly speaking, a sequence of Gaussian elimi-

Corollary 2. Let g be an even power of a prime. Then for nations ofk X n matrices and hence it has polynomial com-

any

plexity. Any generator matrix of the cod2" could be used
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to construct a set of generator operatorsSgiolynomially. 8'=%a—1%. (18
Finally, it is shown in[21,20 that generator matrices of
algebraic geometry codes described in Sec. IV can be conFheir binary expansions have the saRendR’, and the
structed in polynomial time. Thus the associated quantunestimates for theisandé’ are divided by 2. By Corollary
stabilizer codes are also constructible in polynomial time. 1 the parameters of the quantum codes obtained are
To construct an asymptotically good quantum cQleve
start with a family of curves X over Fyzem with
IX(Fg)|/g(X)—2M—1. Each curve gives us a triple 1
C’'DCDOC! of algebraic geometry codeS over Foom as 8= 5—(a—2y). (20)
described in Sec. IV. Le€ be an[n,k,d code andC’' an 2m
[n,k’,d’] code. Binary expansions & andC’ with respect
to a self-orthogonal basis give us a tridlf DDDOD* of
binary codes witmpy,=np=2mn, ky,=2mk’, kp=2mk, 2 10
dp,=d’, dp=d (cf. Sec. ll). These codes give us symplec- Ro=1-sm—5— 3 M (21)
tic codes F, their parameters being2mn, 2m(k+k’),
=min{d,2d'}]. In their turn these give us quantum stabilizer With the restriction

Ro=R+R' —1=1+3y—3a, (19

Therefore, for anym=3 we get a polynomial bound

[[2mn,2m(k+k’—n),=min{d,3d’}]] codesQ. The corre- 1 /1 1
sponding asymptotic parameters are T (5— m) (22
Ro=R+R’'—1, (13 (e
So=min{8,26'}, 14 2 1 1 1
Q { 2 } ( ) 1—m—2RQ2———m—. (23)
, , . 2m-2 6 32mM-2
whereR, R, §, and §’ are the parameters of algebraic ge-
ometry Fo2m-ary codes. Theorem 1 now follows from Eqg21) and (23) by direct
It is time to use Corollary 3. Put’=2(a+vy), where computation.
y=1/(2™-2) (this choice ofa’ is optimal herg The re- In Fig. 1 we have presented the Gilbert-Varshamov type

strictions 2y<a’'<a<3i+1y are equal to F<a<3+vy. bound Eq(3) and the polynomial bound of Theorem 1 based
The asymptotic parameters of the algebraic geometry codas Egs.(21) and (23).
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ACKNOWLEDGMENTS
R=1-a+y, (15
The authors would like to thank M. Vyalyi for many fruit-
S=a—2vy, (16)  ful discussions, and S. Lvoski for finding an important gap in
the preliminary version of this paper. M.A.T. acknowledges
R'=1-3a+37y, (17)  partial financial support from RBRF Grant No. 99-01-01204.

[1] A. Ashikhmin, A. Barg, E. Knill, and S. Litsyn, IEEE Trans. [12] G. Cohen, S. Encheva, and S. Litsyn, IEEE Trans. Inf. Theory

Inf. Theory 46, 778 (2000. 45, 2495(1999.
[2] A. Ashikhmin and S. Litsyn, IEEE Trans. Inf. Theo#, 1206  [13] D. Gottesman, Phys. Rev. B4, 1862(1996.
(1999. [14] A. M. Steane, IEEE Trans. Inf. Theo#p, 2492(1998.
[3] A. Kitaev, A. Shen, and M. VyalyiClassical and Quantum [15] A. Ashikhmin, A. Barg, and S. Litsyn, IEEE Trans. Inf.
Calculations(MCCME-CheRho, Moscow, 199%in Russiap. Theory 45, 1258(1999.
[4] E. Knill and R. Laflamme, Phys. Rev. 85, 900 (1997. [16] G. Cohen, S. Litsyn, and G. Zeor, IEEE Trans. Inf. Theory
[5] A. R. Calderbank and P. W. Shor, Phys. Rev.54, 1098 40, 2090(1994.
(1996. ] o ] [17] M. A. Tsfasman and S. G. Vi, IEEE Trans. Inf. Theory1,
[6] D. Gottesman, Ph.D. thesis, California Institute of Technology, 1564 (1995
1997. :

[18] V. Wei, IEEE Trans. Inf. Theong7, 1412(1991).

[7]P. W. Shor, Phys. Rev. A2, 2493(1995. [19] T. Kasami and S. Lin, Linear Algebr. Appd8, 331(1988.

A. M. Proc. R. . L 4B2, 2551(1 . o . .
%g} A R Sct:%r;%ar:ic £ ,\f o&airc]):dﬁln, JS(X ?oaii (ar?:?D W [20] M. A. Tsfasman and S. G. Vi, Algebraic-Geometric Codes

Shor, Phys. Rev. LetZ8, 405 (1997). (Kluwer, Dordrecht, 1991 f .
[10] A. R. Calderbank, E. M. Rains, N. J. A. Sloane, and P. W.[21] G. L. Katsman, M. A. Tsfasman, and S. G. ulg IEEE

Shor, IEEE Trans. Inf. Theorg4, 1369(1998. Trans. Inf. Theoryd, 353(1984.
[11] A. M. Steane, Phys. Rev. Leff7, 793(1996. [22] R. Cleve and D. Gottesman, e-print quant-ph/9607030.

032311-5



