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Geometric properties of the set of quantum entangled states are investigated. We propose an explicit method
to compute the dimension of local orbits for any mixed state of the gekexdll problem and characterize the
set of effectively different statgsvhich cannot be related by local transformatipighus, we generalize earlier
results obtained for the simplestx2 system, which lead to a stratification of the six-dimensional set of
N=4 pure states. We define the concept of absolutely separable states, for which all globally equivalent states
are separable.
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[. INTRODUCTION symmetry properties of pure states of two and three qubits
were recently analyzed by Carteret and Sudief}. A re-

Recent developments in quantum cryptography and quarated geometric analysis of thex2 composed system was
tum computing evoke interest in the propertiesqofantum  recently presented by Brody and Hughsf@d].
entanglementDue to recent works by Per¢$] and Horo- The aim of this paper is to characterize the space of the
deckiet al.[2] there exists a simple criterion allowing one to quantum “effectively different” states, i.e., the states non-
judge, whether a given density matrjx, representing a equivalent in the sense of local operations. In particular, we
2X 2 or 2X3 composite system, is separable. On the otheare interested in the dimensions and geometrical properties
hand, the general problem of finding sufficient and necessargf the manifolds of equivalent states. In a sense, our paper is
conditions for separability in higher dimensions remainscomplementary t¢20], in which the authors considgure
open(see, e.9.[3,4] and references thergin states forthree qubits, while we analyze local properties of

The question of how many mixed quantum states aremixedstates oftwo subsystems of arbitrary size.
separable has been raised§6]. In particular, it has been We start our analysis by defining in Sec. Il the Gram
shown that the relative likelihood of encountering a sepaimatrix corresponding to any density matgix\We provide an
rable state decreases with the system 8lzavhile a neigh-  explicit technique for computing the dimension of local or-
borhood of the maximally mixed state, ~I/N, remains bits for any mixed state of the generélx M problem. In
separablg5-7]. Sec. Il we apply these results to the simplest case of the

From the point of view of a possible application, it is not 2X2 problem. We describe a stratification of the six-
only important to determine whether a given state is endimensional(6D) manifold of the pure states and introduce
tangled, but also to quantify the degree of entanglementhe concept of absolute separability. A list of nongeneric
Among several such quantiti¢8—11], the entanglement of mixed states oN=4 leading to submaximal local orbits is
formationintroduced by Bennett al. [12] is often used for provided in the Appendix.
this purpose. The original definition, based on a minimiza-
tion procedure, is not convenient for practical use. However,
in recent papers of Hill and Woottef43,14 the entangle- Il. THE GRAM MATRIX
ment of formation is explicitly calculated for an arbitrary
density matrix of the siz&l=4.

Any reasonable measure of entanglement has to be invari- For pedagogical reasons, we shall start our analysis with
ant with respect to local transformatiof®. In the problem the simplest case of thex22 problem. The local transforma-
of d spin-1/2 particles, for whicilN=29, there exist 4 tions of density matrices form a six-dimensional subgroup
—3d+1 invariants of local transformationgl5] and all £=SU(2)®SU(2) of the full unitary group (4). Let W
measures of entanglement can be represented as a functiondefnote a Hermitian density matrix of size 4 representing a
these quantities. In the simplest cate 2 there exist nine mixed state. Identification of all states that can be obtained
local invariantd 15—-18. These real invariants fix a state up from a given oneéW by a conjugation by a matrix fronf
to a finite symmetry group and nine additional discrete in-leads to the definition of the “effectively different” states,
variants(signg are needed to make the characterization comall effectively equivalent states being the points on the same
plete. Makhlin has proved that two states are locally equivaerbit of SU(2)® SU(2) through their representativé.
lent if and only if all these 18 invariants are eq{#9]. Local The manifoldW,,,,. of N=4 pure states, equivalent to the

complex projective spacéP? is six dimensional. Although

both the manifold of pure states and the group of local trans-
*Email address: marek@cft.edu.pl formations are six dimensional, it does not mean that there is
"Email address: karol@cft.edu.pl only one nontrivial orbit onW,,e. Indeed, at each point

A. 2X2 system
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We Woyre, local transformations) (s), parametrized by six Using the above, we easily infer that matric@scorre-
real variabless=(s, . ..,Ss), such thatU(0) equals iden- sponding to equivalent states are connected by orthogonal
tity, determine the tangent space to the orbit, spanned by sitansformationC’=0CO". It is thus obvious that proper-
vectors: ties of states that are not changed under local transformations
are encoded in the invariants 6f which can thus serve as
) (0W) _d U(9WU' 1 measures of the local properties such as entanglement or dis-
s ), s, (SSWU'(8)]s=0- @ fillability. As shown in the following section, the above con-

clusions remain validmutatis mutandisif we drop the con-
The dimension of the tangent spa@gjual to the dimension dition of the purity of states and go to higher dimensions of
of the orbib equals the number of the independéntand, as  the subsystems.
we shall see, is always smaller than six. Using the unitarity

of U(s) one easily obtains B. General case:KXM system
A density matrixW (and, a fortiori, the corresponding
= —) W =1, W], (2)  matrix C) of a general bipartit& X M system can be con-
9Si) =0 veniently parametrized in terms oKM)?—1 real numbers
. - 2_ - 2_
with 1;:=(9U/ds;) s, and establishes the hermiticity of each 8js Doy Gjor =1, K= 1, @=1,... M7~ 1 as

W

i
Although the thus so obtained/; depend on a particular W= I +ia(ee®@l)+ib (1®f,) + Gy (ex®T,),

parametrization ofJ(s), the linear space spanned by them M)?
does not. In fact, we can choose some standard coordinates (7
in the vicinity of identity for eact5U(2) component obtain- wheree, andf, are generators of the Lie algebras, and
g suy fulfilling the commutation relations

Ik:iO'k®|, |k+3:|®i0-k1 (3)

[ej.edd=cjuer, [fo.fgl=dag,fy, ()
whereo, k=1,2,3 stand for the Pauli matrices aht the

X X ) . . " . normalized according to
2 X 2 identity matrix. Obviously, the anti-Hermitian matrices g

l;,i=1,...,6,form a basis of theu®su Lie algebra. The Treje=—28, Tri fz=—28,p. 9)
dimensionality of the tangent space can be probed by the
rank of the real symmetric 86 Gram matrix In the above formulas, we employed the summation conven-

tion concerning repeated Latin and Greek indices. We also
used the same symbbfor the identity operators in different
spaces as their dimensionality can be read from the formulas
without ambiguity. Positivity of the matrixV imposes cer-
formed from the Hilbert-Schmidt scalar productsWf's in  tain constraints on the parametexs b,, andGj,.

the space of Hermitian matrices. The most important part of By analyzing the effect of a local transformatidn=V

our reasoning is based on transformation properties of the U e SUK)®SU(M) upon W, we see thata:=(a;),
matrix C along the orbit. In order to investigate them let usj=1,... K?°~1 andb=(b,), a=1, ... M?2—1 transform
assume thus, that’" andW are equivalent density matrices, as vectors with respect to the adjoint representations of

i.e., there exists a Ioca! operatidhe SU(Z)Q SU(2) such  SU(K) and SUM), respectively, wherea& =(Gj,) is a
that W' =UWU'. A straightforward calculation shows that vector with respect to both adjoint representations.

1
Cmn’=§-|—r W,W, (4)

the corresponding matri€’ calculated at the pointV’ is In analogy with the previously considered case of pure
given by 2X 2 states, we can choose the parametrization of the local
1 1 transformations in such a way that the space tangent to the
Crl'nnZETr W&WGIETF([UWW]UG W), (5) orbit at W is spanned by the vectors
Wi=[el W], W, =[Iaf,,W]. (10
where

The number of linearly independent vectors equals the di-
I/:=U"U, i=1,....6. (6)  mensionality of the orbit. As before, this number is indepen-
dent of the chosen parametrization and can be recovered as
The transformatiori6) defines a linear change of basis in the rank of the corresponding Gram mat@x which takes
the Lie algebrau®su and as such is given by &6 matrix  now a block form respecting the division into Latin and

O, ie., Ii’=2f:10ijlj . It can be established th@tis a real Greek indices

orthogonal matrixO =0T, either by the direct calculation

using some parametrization of SU@P$U(2) respecting Eq. A B

(3), or by invoking the fact thatu®su is a real Lie algebra C:{BT D}' (11

and Eq. (6) defines the adjoint representation of SU(2)
®SU(2). where
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1
“Trww,,,

Bia:2

1
Dup=5Tr W,Wj.

1
=Tr Wi W] y ap = E
(12

Alj:2

The Gram matrixC has dimensionK?+M?—2, the
square matriceA andD are (K?—1) and M2—1) dimen-
sional, respectively, while the rectangular matBas size
(K2=1)X(M2-1). The matrixC is non-negative definite

PHYSICAL REVIEW A3 032307

from Woy:=|wg){(W|, where|wy)=[1,0,0," by the conju-
gation by an element dfP® and conveniently parametrized
by three complex numbers,y,z: |w):=A[1x,y,z]T, W
=W(X,y,2) =|w){(w|, where N'=(1+|x|?+]y|?+|z|?) 12

is the normalization constant, and we allow the parameters to
take also infinite values ofat mosj two of them. In more
technical terms, we consider thus the orbitlbf4) through

the pointW, in the space of Hermitian matrices.

and the number of its positive eigenvalues gives the dimen- In fact, since the normalization of density matrices does

sion of the orbit starting &V and generated by local trans-
formations. A direct algebraic calculation gives

Aij = (26, Gme + Mayam) Ciki Cimi »

Biaw=2GksCGm,Cikmdays

D.s=(2Gm,Gmst+Kb,bs)d,,,dss, - (13

In this way we arrived at the main result of this paper.

Dimension D of the orbit generated by local operations
acting on a given mixed stat&y/ of any K<M bipartite
system is equal to the rank of the Gram matthgiven by
Egs.(1D)—(13).

If all eigenvalues ofC are strictly positive, the local orbit
has the maximal dimension equally=K?+M?—2. In the

low dimensional cases, it was always possible to find sucti'@PS

parameters; andb,, i.e., such a density matriw/ that the
local orbit throughwW was indeed of the maximal dimension-
ality. We do not know if such an orbit exists in an arbitrary

dimensionK X M, although we suspect that it is the case in a

generic situation(i.e., all eigenvalues ofV different, non-
trivial form of the matrixG). In the simplest case22 we

provide in the Appendix the list of all, nongeneric density

matrices corresponding to submaximal local orbits. All othe
density matrices lead thus to the fdix) dimensional local
orbits.

not play a role in the following considerations, we shall take
care of it at the very end and parametrize the manifold of
pure states by four complex numbers,y,z being the com-
ponents of|w) (the overbar denotes the complex conjuga-
tion):

vv

v vX vy vz
X v XX Xy XZ
wy=| |, we=w=| — T2 g
y voYyX yy yz
z w zx zy 27

bearing in mind, when needed, that the sum of their absolute
values equals one. In fact, equating one of the four coordi-
nates with a real constant yields one of four complex analytic
that together cover the complex projective spaee
(with which the manifold of the pure states can be identjfied
via standard homogeneous coordinates. This leads to a more
flexible, symmetric notation, and disposes of the need for
infinite parameter values.

The dimensionality of the orbit given iank (C) is the
most obvious geometric invariant of the orthogonal transfor-
mations of C. As expected, it does not change along the

jorbit. All invariant functions(or separability measurggan

be obtained in terms of the functionally independent invari-
ants of the real symmetric matri@ under the action of the

This approach is very general and might be applied fodjoint representation of SU(2)SU(2). In particular, the

multipartite systems of any dimension. Postponing these e
citing investigations to a subsequent publicati®®], we
now come back to the technically simplest case of the orig
nal 2x 2-dimensional bipartite system.

Ill. LOCAL ORBITS FOR THE 2 X2 SYSTEM
A. Stratification of the 6D space of pure states

The pure states of a compositex2 quantum system
form a six-dimensional submanifoldV,,,. of the 15-
dimensional manifold of all density matrices in the four-

£gigenvalues o€ are, obviously, such invariants. Substituting

our parametrization of pure states density matrigey to

i_the definition ofC (4) yields, after some straightforward al-

gebra, the eigenvalues

A1=0, A,=8lw|?, \3=A;=1+2|0],

As=Ag=1—2|w|, (15)
where w:=vz—xy. For any pure state one may explicitly
calculate the entropy of entangleméh®] or a related quan-
tity, called concurrencgl4]. For the pure statél4) the con-

dimensional Hilbert space, i.e., the set of all Hermitian, non-currence equals

negative 4<4 matrices with the trace one. Indeed, the

density matricesV and W'’ of two pure states described by
four-component complex, normalized vectdw)(w| and
|[w’"){w’]| coincide, provided thaw’)=U|w), whereU is a
unitary 4xX4 matrix that commutes withW. Since W has

threefold degenerate eigenvalue 0, the set of unitary matrices

rendering the same density matrix via the conjugatgh

c=2|w|=2lvz—xy| (16)

andc e[ 0,1]. Thus the spectrum of the Gram matrix may be
rewritten as

eig(C)={0,2¢?,1+¢,1+c,1-c,1—c}. (17)

=UWUT', can be identified as the six-dimensional quotientThe number of positive eigenvalues @fdetermines the di-

space Y4)/[U(3)x U(1)]=CP3. The manifold of the pure mension of the orbit generated by local transformation. As
states itself is thus given as the set of all matrices obtainedlready noted, the dimensionality of the orbit is always
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smaller than 6. In a generic case it equals 5, butder0 pe 0
(c=0 separable statpst shrinks to 4 and for|w|=1/2 UXVT= 0 "
(c=1 maximally entangled stateg shrinks to 3. These re- q€
sults have already been obtained in a recent paper by Carterstibstituting X=X(w) [Eq. (19)], we obtain p®+q?
and Sudbery[20], who have shown that the exceptional =TrXX'=|w||?=1 and invoke the invariance ofpq
statewith local orbits of a nongeneric dimensjoare char-  =|detX|=|w(w)|=sin29. This gives a unique solution
acterized by maximalor minimal) degree of entanglement. p=-cosé, g=siné in the interval G< < =/2. On the other
In order to investigate more closely the geometry of vari-hand, as mentioned above, the transformati®2® corre-

. p=0=0¢:=—(7+§). (22

ous orbits, let us introduce the following definition: sponds toLW=W;,=[cos(ﬁ/Z)e‘"’,O,O,sin(9/2)ei¢]T, but ob-
viously Wj=wjw'l=W,=w,w}, ie. finally, LWL’
Wa={W=ww":w=[v,x,y,z]" e C4 |w]?=|v|?+|x|? =W,, with L=V®U e £ as claimed. This is, obviously, a
restatement of the Schmidt decomposition theorem for 2
+y[2+|2*=1)(vz—xy)| = Q}. (18  x2 systems.

Now we can give the full description of the geometry of
It is also convenient to define a map from the space of statghe states. The line intW(,=W0W];, 0< 6= /2 connects all

vectors {w=[v,x,y,z]"e C*:|w[*=[v|*+[x|*+]y|*+]2|*  “essentially different” states. At each different from Og/2
=1} to the space of complex>22 matrices it crosses a five-dimensional manifold of the states equiva-
lent under local transformations. The orbits of submaximal
vy dimensionality correspond to both ends of the line. Bor
X(w)= x z| (19) = 7/2 the orbit is three dimensional. The states belonging to

these orbits are maximally entangled, sinag=1/2 corre-
sponds tac=1.

In order to recover the whole orbit we should find the
actions of all elements of the group of local transformations
on a representative of each orljé.g., one on the above
described ling Since, however, the orbits always have di-
mensions lower than the dimensionality of the group, the
_ N _ 5 12 , . .» actionis not effective, i.e., for each point on the orbit, there
we infer |o(w)|<3. Indeed, sincefv|*+|x|*+|y|*+|7] is a subgroup of’ that leaves this point unmoved. This sta-
= 11 the rlgzht-hagd 15|de 0; E‘ng) equals its maximal value i subgroup is easy to identify in each case. Taking this
of § for [v]*+[x|*=3=|y[*+|Z|*. A straightforward calcu- 5 account we end up with the following parametrization of
lation shows also that a local transformatiorr V®U sends  three-dimensional orbits of the maximally entangled states:
w to w'=Lw if and only if X(w')=UX(w)V'. As an im-
mediate consequence, we obtain the conservatidm Qf)| Waa={W=ww"w=w(a,x1,x2)},
under local transformation. Together with the obvious con-

In terms ofX(w), the length of a vectow and the bilinear
form w(w):=vz—xy read thusijw|?=TrX(w)X"(w) and
w(w)=detX(w). From the Hadmard inequality

|detX(w)|<[(Jo[*+[x[))(|yI*+|2*1"% (20

servation of|w|| [which, by the way, is also easily recovered cosae'

from ||w]|?=Tr X(w)X'(w)], it shows that the parametriza- 1 | sinage'x2

tion (18) is properly chosen. Moreover, it can be proved that w(a,x1.x2)}= 7= nge 2 | (23
L acts transitively on submanifold48) of constanfw|, i.e., V2| sinae ,

for each pair W=ww', W=w'w'" such that |w(w)] —cosae '

=|lo(W")|=Q, there existsT such a local transformatibn
éefniﬁ‘r;?c; (V1v8) oIFE:\(l)Qs.;t_aLn\ﬂ{\c/ulT i grr; é?bgtgf{h\gorrgi’ thflt th? cally this manifold is a real projective spatd>=S°/Z,,

_ _ : 9 _p otloca whereZ, is a two-element discrete group. This is related to
transformations£ through a single pointW, i.e., Wo  the well-known result that for bipartite systems the maxi-
=L(W). To this end, it is enough to show that eachmally entangled states may be produced by an appropriate
We W, can be transformed by a local transformation intooperation performed locally, on one subsystem only. The
W,=w,w},, wherew,=[cos@?2),0,0,sin@/2)]" with siné  manifold of maximally entangled statég3) is cut by the
=2w [from the above-mentioned bound fes(w)| we know line of essentially different states at the origin of the coordi-
that it is sufficient to consider<@ < =/2]. To this end we nate systemd, x1,x2).
invoke the singular value decomposition theorem, which The four-dimensional orbit corresponding &=0 con-
states that for an arbitraijn our case X 2) matrix X, there  sists of separable states characterized by the vanishing con-
exist unitaryU’,V’ such that currencec=0. The parametrization of the whole orbit, ex-

hibiting its S?X S? structure, is given by

with 0<y;<2m, O<a=<m/2, which means that topologi-

0 _
X’:=U’XV’T=[E } p=q=0. (21 Cosa COSBQ'“
a ( ) coSa sinBe'x2
: . W(a, B x1.X2)=| Sy |
Let now V'=¢€'¢v, U'=¢€'"U, V,UeSU(2). We can re- sina cospe 4IX2
write Eq. (21) as sina sinBe™'X1
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a) (0001)

(0100)

(separable)

P=CP’ (1000)

1300)
FIG. 1. Stratification of the sphere along the Greenwich merid- Kzz
ian: (a) stratification of the six-dimensional space of the-4 pure

states along the line of effectively different statess [0,1/2]; (b)
the poles correspond to the distinguished submanifold#df the

3D manifold of maximally entangled states, and the 4D manifold of FIG. 2. The simplex of eigenvalues of the=4 density matri-
ces.(a) Pure states are represented by four corners of the tetrahe-
separable states.

dron, while its center denotes the maximally mixed stgte Mag-
nification of the asymmetric part of the simplex, related to the Weyl
O0=xi<2m0sa,B<m/2. (24) chamber is shown irfb). It can be decomposed into eight parts

o _according to different kinds of degeneracies of the spectrum.
The majority of states, namely, those that are neither

separable nor maximally entangled, belong to various five-

dimensional orbits labeled by the values of the parameter Without lOSS_ of generality we may assume tIn@l_arzzrg_
with 0< g< /2. In this way we have performed a stratifi- =r,=0. This corresponds to dividing the 3D simplex into

cation of the 6D manifold of the pure states, depicted sche24 equal asymmetric parts and to picking one of them. This

matically in Fig. 1b) set, sometimes called the Weyl champ28], enables us to
For comparison we show in Fig(d the stratification of a parametrize the entire space of mixed quantum states by glo-

sphereS?, which consists of a family of 1D parallels and two baINortb|tfhgtert1re]zrate<_jt by eacth_ of |fts points. OV td
poles. The zero-dimensional north pole GR* corresponds i (')ed a fhe lunl aryyrvi C);%Tf'sznéf_ﬁvf's 20 :
to the 3D manifold of maximally entangled statesGR?, ermined uniquely, Sincev= N , Where

while the 4D space of separable states may be associat- an-arbitrary di_agonal unita}ry matrix. This stability group
with the opposite pole. In the case of the sphighe earth, of U is parametrized bjN=4 independent phases. Thus for

the symmetry is broken by distinguishing the rotation axis® generic case .Of a[l different eigen_values (which corre-
pointing to both poles. In the case Nf=4 pure states, the sponds to _the interioK 1y, of the simpley, the space of
symmetry is broken by distinguishing the two subsystemsgIObaI orbits has a structure of the quotient group

4 _ - _ . .
which determines both manifolds of maximally entangledu(?l[u(l) ] It h_asl?]g—16 4=12 dimensions. B
and separable states. If degeneracy in the spectrum &% occurs, sayr,;=r,

>r3>r,, the stability groupH=U(2)XU(1)XU(1) is
4+ 1+ 1=6 dimensiona[24]. In this case, corresponding to
the faceK,,; of the simplex, the global orbitt/H hasD,
Before we use the above results to analyze the dimensions 16— 6= 10 dimensions. The dimensionality is the same for
of local orbits for the mixed states of thex2 problem, let the other faces of the simpleX,;,; andK ;5. The important
us make some remarks on the dimensionality of the globatase of pure states corresponds to the triple degeneracy,
orbits. The action of the entire unitary group U(4) depends>r,=r;=r, for which the stability groupH equals U(3)
on the degeneracy of the spectrum of a mixed sidtdet  XU(1). Theorbits U/H=SU(4)/U(3) have a structure of
W=VRV', whereV is unitary and the diagonal matriR ~ complex projective spadéP?. This 6D manifold results thus
contains non-negative eigenvalugs from all points of the Weyl chamber located at the e#gs.
Due to the normalization condition W=1 the eigenval- These parts of the asymmetric simplex are shown in Fig. 2;
ues satisfyr,+r,+rz+r,=1. The space of all possible the indices labeling each part give the number of degenerated
spectra thus forms a regular tetrahedron, depicted in Fig. Zigenvalues in decreasing order. For another édgeof the

B. Dimensionality of global orbits
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simplex H=U(2)XU(2) and the quotient groupJ/H is

PHYSICAL REVIEW A 63 032307

sition in terms of two real orthogonal matric€s, O,, and

16—8=8 dimensional. In the last case of quadruple degena positive diagonal matrix

eracy, corresponding to the maximally mixed staje=1/4,
the stability grougH =U(4), thusD,=0. A detailed descrip-

tion of the decomposition of the Weyl chamber with respect

to the dimensionality of global orbits for arbitrary dimen-
sions is provided in25].
C. Dimensionality of local orbits

For K=M=2 (two qubit systeny cjjx=—2¢ and
dopy=—2€43y, Wherg €apy is_, completely antisymmetric
tensor. Formula$l3) give in this case

A=8[(TrG'G'HI-G'G'T]+8(||la'||*>-I—a'a'"),

D=8[(TrG'G'NHI-G'TG']+8(||b’|?>-1-b'b'T),
(26)

and

BG' '=G'"B=-16detG’l, (27

where 3D vector®’, b’, and a 3X3 matrixG’ represent a
certainN=4 mixed stateV in the form(7). For later conve-

nience we denote the system variables by symbols with

primes. For deG'#0 the last equation givesB
=—16detG’"(G'") "%, but below we will show the more
convenient representation Bf

SinceG' is real, we can find its singular value decompo-

m1 O 0
0,G'0;=G=| 0 w2 O, wi=p,>us=0
0 0 wus
(28)

If the determinant of5’ is positive, then one can choo®g
andO, as proper orthogonal matricése., with the determi-
nants equal to oneln this case the singular value decompo-
sition (28) corresponds to a local transformatiéi=U;
®U,W(U,;®U,)". In the opposite case of a negative deter-
minant of G’, one of the matriceD, or O, also has a
negative determinant. Alternatively, we can assume @at
and O, are proper orthogonal matricéwith positive deter-
minants and, consequently, the singular value decomposi-
tion corresponds to a local transformation, but wijh
< wo<u3=0.

From (26) and (27) it follows that the above transforma-
tion G=0,G'0J, if supplemented bya=0,a’ and b

=0,b’, induces the transformationrC=C’(G’,a’,b’)
—C(G,a,b)=(0,©0,)C'(0,©0,)T, where
0,60, & ° 29
19 0= 0 0o, (29

leaving the spectrum df invariant. The explicit form of the
transformed matrix inferred from Eq&6)—(28) reads

[8(u5+u3) 0 0
0 8(pi+u3) 0
o 0 0 8(uitp3)
+16uou3 0 0
0 +16uq 3 0
I 0 0 F16wq o
) 8(la)*-1-a(@") 0
0 8([bf[>-1=b(b)T

which is the sum of two real positive definite matric€%
andC,,. Their eigenvalues are, respectively,

p1=8(m1tu)?  pr=8(mitu3)?  p3=8(uatus)?,
P6:8(M2_M3)2a

31

pa=8(u1— 2%  ps=8(pm1—u3)?,

and

vi=vy=[la]?  va=ws=[bl?% vs=ve=0. (32

F16uoums 0 0
0 +16mq 3 0
0 0 F16uq o
8(u5+ p3) 0 0
0 8(ui+ p3) 0
0 0 8(uitp3) |
=Cs+Cyp, (30

) :

Although two parts,Cs and C,, of C usually do not
commute and the eigenvalugs=---=\z=0 of C cannot
be immediately found, we can investigate the possible orbits
of submaximal dimensionalities using the fact that bGth
andC, , are positive definite. It thus follows that the number
of zero values among the eigenvalugs . . . A5 of Chas to
be matched by at least the same number of zeros among
p1, - - - pg @Nnd amongyy, .. .,vg; Moreover, the eigenvec-
tors to the zero eigenvalues of the whole mattixare also
the eigenvectors of the componefitg andC, ,, (also, obvi-
ously, corresponding to the vanishing eigenvalues
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The corank ’CG (the number of vanishing eigenvalues N=4 (0001)
Cg equals

6 for wui=p,=u3=0=G=0,
3 for wi=pr=ps=u#0G=yul,

2 for w=pi>po=wps=0,

1 for ppi=p1>po=ps=pun#0,
(1000)

or  OF pi=p1= po>p3, (33 (0100)
and is equal to O in all other cases, whereas Ggp, its FIG. 3. Separability of the maximal 15D ball: all mixed states
corankr’¢ X reads with spectra represented by points inside the ball inscribed in the
& 3D simplex of eigenvalues of thd=4 density matrices are sepa-
6 for a=b=0, rable.
4 for a=0, b#0or The schematic drawing shown in Fig. 1 is still valid, but
now the term “maximally entangled” denotes the entangle-
a#0, b=0, ment maximal on the given global orbit. It decreases with

as for Werner states, with?’) chosen as the maximally en-
tangled pure statg27]. For these states the concurrence de-
creases linearlyg(x) =(3x—1)/2 for x>1/3 and is equal to
ero forx=<1/3. Thus for sufficiently smalk (sufficiently
arge degree of mixingall states are separable, also those

the 6D Gram matrixC are positive and the dimension of belonging to one of the both 3D local orbits. This is consis-
local orbits is maximald,=6. On the other hand, the above ging . ’ ;
tent with the results of5], where it was proved that if

decomposition of the Gram matrix is very convenient to ana-_ . .
lyze several special cases, for which some eigenvalu€s of Tr?rhfsléir:zﬁic?r: iarg';ﬁd;taézi:]s seep:r:]aetilr(ia(; interpretation:
reduce to zero and the local orbits are less dimensional. To PP 99 P '

find all of them one needs to consider nine combinations o hneotgter;r?en(?r’o:fn roefpgiasgg\zlthss m:SX';?%IV\?nDi:allli ms?)crlgerz]dtrl]ne
different ranks of the matrice§g andC,}, as shown in the 9 ' g °

Appendix other, it represents the maximal 15D b@j}, [in the sense of

For any point of the Weyl chamber we know thus the € Hilbert-Schmidt metrlc,Dﬁs_(pl,pz)=Tr(p1—p2)2],
dimensionD,, of the corresponding global orbit. Using the contained in the 15D set of all mixed states for-4. Both
above results for any of the globally equivalent stags P2lls are centered at the maximally mixed stage(the cen-
(with the same spectrumwe can find the dimensiod, of  t€r of the eigenvalues simplex of S'd_&) , and have the
the corresponding local orbit. This dimension may be stat§a@me radius 1/23. A similar geometric discussion of the
dependent as explicitly shown for the caseNE4 pure Properties of the set of 22 separable mixed states was
states. LeD,, denote the maximal dimensidy , where the ~ recently given in26]. _ . _
maximum is taken over all states of the global orbit. The set 10 clarify the structure of effectively different states, in
of effectively different states whictannotbe linked by local  this case we consider generalized Werner states
transformations has thus dimensib=D,—D,,. For ex- ._
ample, the effectively different space of iNe- 4 pure states P, 0) =X )(W ol + (1=X)p, . (35)
is one dimensionaD =6—-5=1.

2 for a#0, b#0. (34

As already mentioned, in a generic case all eigenvalues

where the statéW,):=[cos@/2),0,0,sin@/2)] contains the
line of effectively different pure states fare[0,7/2]. Note
that the cased=w/2 is equivalent to the original Werner
states[27]. Entanglement of formatiorE for the states
Consider the longest edgié,; of the Weyl chamber, p(x,0) may be computed analytically with the help of con-
which represents a class of states with triple degeneracgurrence and the Wootters formylad]. The results are too
They may be written in the formp,:=x|W}¥|+(1 lengthy to be reproduced here, so in Fig. 4 we present the
—X)p, , Where|¥) stands forany pure state anate (0,1).  plot E=E(x,6). The graph is done in polar coordinates, so
The global orbits have the structure(4)/[U(3)XU(1)], the pure states are located at the cisciel. For each fixed
just as for the pure states, which are generated by the corngythe space of effectively different states is represented by a
of the simplex, represented by=1. Also the topology of quarter of the circle. For<1/3, entire circle is located in-
the local orbits does not depend &nand the stratification side the maximal baB,,, and all effectively different states
found for pure states holds for each six dimensional globahre separable. Points located along a circle centergl, at
orbit generated by any single point of the edge. represent mixed states, which are described by the same

D. Special case: Triple degeneracy
and generalized Werner states
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E globally similar statep’=UpU"T are separable.
1nZ Unitary matrixU of size N represents a global operation
06 equivalent to a different choice of both subsystems. It is easy

to see that the most mixed staig is absolutely separable.
Moreover, the entire maximal bally, =B(p, ,1/2,/3) is ab-
0.4 solutely separable foN=4. This is indeed the case, since
the proof of separability oB,, provided in[5] relies only on

0.5

03 properties of the spectrum gf, invariant with respect to

0.2 global operation®J. Another much simpler proof of separa-
bility of By, follows directly from inequality(9.21) of the

. book by Mehta[29].

0 Are there any X2 absolutely separable states not be-

longing to the maximal balBy,? Recent results of Ishizaka

FIG. 4. Entanglement of formatidi for the generalized Werner and Hiroshimgd30] suggest that this might be the case. They
states, , represented in the polar coordinates. Intersection with theconjectured that the maximal concurrence on the local orbit
maximal ball centered at, is separabléwhite). Dashed horizontal determined by the spectrugr,,r,,rs,r,} is equal toc*
line, joining two maximally entangled states (tlack, represents  =max0,r;—r3—2/r,r,}. This conjecture has been proved
the original Werner states. Entanglemé&ndf a mixed statep may for the density matrices of rank 1,2, and3®]. If it is true in
be interpreted as its distance from the set of separable states. o general case then the conditioh>0 defines the 3D set

of spectra of absolutely separable states. This set belongs to

spectrum and can be connected by a global unitary transfothe regular tetrahedron of eigenvalues and contains the maxi-
mation U(4). In accordance with the recent results of Hi- mal ball B,,. For example, a state with the spectrum

roshima and Ishizakf28], the original Werner states enjoy {0.47,0.30,0.13,0.10 does not belong td,, but its c* is
the largest entanglement accesible by unitary operations. equal to zero.

The convex sef of separable states contains a great sec-
tion of the maximal ball and touches the set of pure states at
only two points. The actual shape &f(at this cross section
looks remarkably similar to the schematic drawing that ap- In order to analyze geometric features of quantum en-
peared in[6]. Moreover, the contour lines of constd®elu-  tanglement, we studied the properties of orbits generated by
cidate important feature of any measure of entanglemenfpcal transformations. Their shape and dimensionality is not
larger the shortest distance & the larger the entanglement ynjversal, but depends on the initial state. For each quantum
[9]. Even though we are not going to prove that for any statestate of arbitraryk X M problem we defined the Gram matrix
p, its shortest distance ®in the picture is strictly the short-  C, the spectrum of which remains invariant under local trans-
est in the entire 15D space of mixed states, the geometriggrmation. The rank ofC determines the dimensionality of
structure of the functiofe=E(X, §) is in some sense pecu- the local orbit. For generic mixed states the rank is maximal
liar. The contoursE=const are foliated along the boundary and equal toD,=K2+M?2—2, while the space of all glo-
of S, while both maximally entangled states are located agally equivalent stateéwith the same spectrums (KM)?
far from S as possible. —KM dimensional. Thus the set of states effectively differ-
ent, which cannot be related by any local transformation, has
Dg=(KM)?—KM — (K?+M?-2) dimensions.

For the pure states of the simplest2 problem we have

Defining separabilityof a given mixed statp, we implic-  shown that the set of effectively different states is one di-

itly assume that the product structure of the composite Hilmensional. This curve may be parametrized by an angle
bert space is giveri{=H,®Hg. This assumption is well emerging in the Schmidt decomposition: it starts at a 3D set
justified from the physical point of view. For example, the of maximally entangled states, crosses the 5D spaces of
electron paramagnetic resonan¢EPR scenario distin- states of gradually decreasing entanglement and ends at the
guishes both subsystems in a natural Wégft photon” and 4D manifold of separable states.
“right photon”). Then we speak about separatgatangleg We have presented an explicit parametrization of these
states with respect to this particular decomposition6f  submaximal manifolds. Moreover, we have proven that any
Note that any separable pure state may be considered epure state can be transformed by means of local transforma-
tangled if analyzed with respect to another decomposition oftions into one of the states in this line. In such a way we have
H. found a stratification of the 6D manifoldP® along the line

On the other hand, one may pose a complementary ques{ effectively different states into subspaces of different di-
tion, interesting merely from the mathematical point of view, mensionality.

i.e., which states are separable with respeciry possible Since forN=4 pure states the set of effectively different
decomposition of thd\=K X M-dimensional Hilbert space states is one dimensional, all measures of entanglement must
‘H. More formally, we propose the followinglefinition be equivalen{and be functions of, say, concurrence or en-
Mixed quantum state is calledabsolutely separablé all tropy of formatior). This is not the case for generic mixed

IV. CONCLUDING REMARKS

E. Absolutely separable states
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states, for whickD4=6. Hence there exist mixed states of ACKNOWLEDGMENTS
the same entanglement of formation with the same spectrum
(globally equivalent which cannot be connected by means
of local transformations.

It is known that some measures of entanglement do n
coincide (e.g., entanglement of formatida and distillable

It is a pleasure to thank Pawet Horodecki for several cru-
cial comments and suggestions and Pawel Masiak and
Wojciech Stomczyski for inspiring discussions. One of us

0{K.'Z.) would like to thank the European Science Foundation

. and the Newton Institute for support allowing him to partici-
entanglemenE, [11]). To characterize the entanglement of bp 9 b

) . ) o ) : >Pate in the workshop o@uantum Informatiororganized in
such mixed states one might, in principle, use six suitablyamprigge, where this work was initiated. Financial support

selected local invariants. This seems not to be very practica{hrough research Grant No. 2 PO3B 044 13 of Komitet Badan
but especially for higher systems, for which the dimensionNaukOWyCh is gratefully acknowledged.

D4 of effectively different states is large and the bound en-
tangled states exigwith E;=0 andE>0), one may con-
sider using some additional measures of entanglement. All
such measures of entanglement have to be functions of ei-
genvalues of the Gram matri2 or other invariants of local In this appendix we give the list of all possible submaxi-
transformation$16,15,17-19 mal ranks of the Gram matri€ that determine the dimen-
We analyzed the geometry of the convex set of separablgion of the local orbitD,=6—rc. The symbolr} denotes
states. For the simplesdt=4 problem, it contains the maxi- the corank; it is the number of zeros in the spectrurX.oh
mal 15D ball inscribed in the set of the mixed states. Iteach submaximal case we provide the density matvix
corresponds to the 3D ball of radius Y2 inscribed in the Gram matrix C, and its eigenvalues;, i=1,...,6 ex-
simplex of eigenvalues. This property holds also for thepressed as a function of the singular values of the m&tfix
2x3 problem, for which the radius is {80. For larger and the vector@a=0;a’ and b=0,b’, where orthogonal
problemsk X M=N=8, it is known that all mixed states in matricesO, and O, are determined by the singular value

APPENDIX: SUBMAXIMAL LOCAL ORBITS FOR
the2X2 PROBLEM

the maximal ball(of radius[N(N—1)]"*?) are not distill-  decomposition ofz’.
able[5], but the question of whether they are separable re- In the general case the density mati¥=W(G,a,b)
mains open. =W(uq,m2,13,81,82,83,b01,05,b3) is given by
—ag—bz—uz  —by—ib, —a;—iay;  —uitpe
We 1 - —by+iby,  —aztbztus —ui—wm, —aj—ia (A1)
4 —aytia; —M1— M2 8g—bgtuz  —by—iby |
—p1t —aytia —by+iby, aztbz—pus

where we use the rotated basis in whighis diagonal. The characteristic equation of the density mafficeads

3 1
defW—p)=p%*— 03+ §—2||aj|2—2|\b||2—2TrG2 0%+ —1—6+||aj|2+||b||2+TrGZ+8aGb—8 detG | o

1 1 1
+(|lal|>=|b[|?)2+2 TrG*— (TrG?)?— §||aJ|2— §||bH2—§ TrG%—2aGb+ 2 detG—4||Gal?

+2(||all?+]|b]®) TrG?— 4| Gb|?+ 8(aib; moms+azboms g+ agbam o) + (A2)

256

It is interesting to note that the characteristic equation of the partially transposed Wattix2 differs only by the signs of
three terms:

-~ o~ o~ 3 ~ 1 ~
defW—p)=p0%—03%+ §—2||aj|2—2||b||2—2TrG2 QZ+<—E+||aJ|2+||b||2+TrGZ+8aGb+8detG 0

1 1 1
+(||al|>—|b[|?)2+2 TrG*— (TrG?)?— §||a||2— §||bH2—§Tr G2—2aGb—2detG—4|Ga4?
2 2 2 2 1
+2(||al[*+|b]|*) TrG*— 4||Gb]|*— 8(ayb; pous+ @by s+ agbgus po) + 256" (A3)
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Let o; and;, i=1,2,3,4, denote the eigenvalueswfand Where * represents the complex conjugation. L&t
W, respectlvely Due to the Peres-Horodecki partial trans= 1.2,3,4 denote the eigenvalueswf arranged in decreas-
pose criteriorf1,2] positivity of o; may be used to find under ing order. Then the concurrenceof Wis given by[13,14)

which conditionsW is separable. cr=max OE, — VE,— VEs— VEs). (A5)
In order to compute the concurrence of the density matrix '
W, let us define an auxiliary Hermitian matrix The Gram matrix C=C(G,a,b)
o =C(m1,m2,3,81,82,83,b1,b,,b3) corresponding to the
W:=Wo,® 0oW* 0,0 05, (A4) density matrixW reads, in the general case,
|
[a5+a5+u3+u3 —a @ —aag —2uopu3 0 0 ]
—a8; aj+aj+ it ps —apag 0 —2pipm3 0
—aag —aa aj+as+ui+pus 0 0 — 2z
C=8
—2pau3 0 0 b5+ b5+ ud+ uj —byb, —bbs
0 —2u1p3 0 —bsb; bi+b3+ui+ul —babs
L 0 0 — 2o —bsbs —bybs b§+b§+,ui+,u«§_
(A6)
|
Below we provide a list of the classes of states corre- ~ 1 _ 1
sponding to the submaximal rankg of the Gram matrices. Q12377 T Q=734 (A14)
The list is ordered according to the increasing dimensionality
of local orbits;D|=rc=6—r¢. 1 1
Case 1. £=6, G=0, a=0, b=0, C=0: §1=75(12u+ D)% &aa=5(1-40)%  (A15)
1 - 1
N1234560, W= 2 Q12347701234 0 for p< o
1 11 1 (A16)
€123 g (A7) b=z O k=g
1 1 H 1
thus W is separable and concurrencés equal to zero. W=0 for —;<p<3 a.ndW is separable fofu|< .
Case 2. £=4, G=0, a#0, b=0: Case 4. £=2, G=0:
— 2 _ 2 —N-
No=8llal2,  Nsas60, (A8) M2=8[al% A3.=8[bl%, Nse=0;  (AL7)
1 2 +lallbl, ex=3—lal~ b
01=7 +lal, 934— ~lal, (A9) ¢17g g |
~ 1 0 = lall=llblll, es=7—Ilal-[bll; (A18)
Grmg tlal, Bomglal.  (AL0) =g iAol e.=z~llal-lbll
1 Bu=g +lal+Ibl. 2o=5 Il
1=+ ) Qo=+~ - )
é1234 7 lal*,  thus c=0. (A11) 4 4
. . . . -1 -1
W represents a density matrix fal|<z and then is sepa- Q3=Z+|||al|—||b|||, Q4=Z—|||a||—||b|||; (A19)
rable (W=0).
Case 3. =3, G=ul, a=0, b=0: 1 1
, &= 75 H(lal+[b?  &sa=15+(lal=[b])?  c=o0.
)\1,2,3:32M ’ )\4,5,6201 (Alz) (AZO)
1 1 W=0 for |a]| +|b||<% and is then separable.
Q12577 M Qa=7 T3k, (AL3) Case 5. =2,
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G=diag(u,0,0),a=[a,0,0]", b=[b,0,0]":

Nio=8(a%+u?), N3s=8(b%+pu?), Nse=0;

(A21)

1
@=y—atb+u,

1
91:Z+a+b_ﬂ, 2

1 1
Qs=7-a=b—p, @u=yta-btu; (A22)
~ 1 ~ 1
~ 1 1
@s=7g—a-b—pu, Q4= gra-btur  (A23)

2

1 2
—(a—b)?, &3,= (Z‘M) —(a+b)?,

51,2— Z M

c=0. (A24)

W=0 for a=|a|<3%,
separable.
Case 6. =1, G=diag(u,0,0),a=[a,0,0]":

b=|b|<%, |u|<3; then W is

N =4[[b]2+ u2+ (2~ [b]?)2+ 4u2b3],

No=A4[[|b]| 2+ 2= (u?—||b]|?)2+ 4u2b7],

N3=8(|[b?+u?), Nss=8(a%+u?), A\e=0;
(A25)
1
91:Z+a+ w+|bl|*—2byu,
1 Vi 7
92:Z+a_\/ﬂ +1Ibl]*—2b;u,
1
03=7 —at Ju +[|bl|*+2byp,
1
0a=7 —a— Vu+|b]*+2byu; (A26)
~ 1
1= 3 +a+ WP H B 2By,
- 1 5 >
92=Z+a_ Vus+|bl|*—2byu,
1
84— —a+ V2T B 2Dy,
1 7
04= 2 a VK 2+ [bf#+ 20y p; (A27)

PHYSICAL REVIEW A3 032307

1
€17 75+ uP—a’—[bf?

V4@~ pu?)[bl|*+4u®bi+ 2puaby,

1
€sa= 15t P —a’—[bf?

—J4(a®~ p?)|b|*+4u*b3 +2uaby, (A28)

soc=0. If Wrepresents a density matrixM=0) then it is
separable.
Case 7. £=1, G=pul, b=¢a

M= (E2—1)||al?+ [ w2+ V16u®+ (£2—1)7 4|21V,

D)2+ [ w?—V16u*+(£2-1)7d*1¥3,
1)llal?—[ w2+ 16+ (£2— 1) 4?13,
1))~ [ 2 —V16u*+ (£2—1)2| 13,

(A29)

Np=4{(&~

Ng=4{(&~

Na=4{(&~

Ns=32u%, Ag=

1 1
0:=7-utle+llal, e -u-le+1llal,

1
Q0=+ ut \AZF G DA,

1
Qa=7 tu—Vap*+(E-1)%a% (A30)

.1 ~ 1
e1=ztu+|é-1flal, ex=7+n—|é-1[al,

1
Q=7 —uFVAu'+(E+1)%4l?,

~ 1
Qa=7— = Au+(E+ 1) (A31)

+uNA(p+1)%—-16(6—1)% 4,

+5,u

b= P 52 (- 1)
2=16 " 2 =

—uNA(p+1)*—16(—-1)%d?,

1 2
b 3u] ~Ervu 62
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If W=0 ie. 0,=0, i=1,2,34 then|u|<} and ¢;=>0,

i=1,3, henceW is nonseparable for/4u®+ (£+1)%|a*

>i—u=|é+1|[a] or z<[¢-1]]].
Case 8. =1,
G=diag(,LL1,/.L2,/.L2), a:[a,O’O]T, b:[b’oyo:lT:

N1o=A[@%+ b2+ 2pf+2us+ 16uips+(a%—b?)7),

Naa=A[a%+ 0%+ 2up +2uf— J16uius+ (22— b?)?],

As=32u3, A\g=0; (A33)

1 1
@1=y~mtath, @=j—pm—a-b,

1
Q3= Tpat V4us+(a—b)?,

1 2
Q4= T p1— VAuz+(a—b)? (A34)

~ 1 ~ 1
91:Z+/.L1_a+b, 92:Z+,U/1+a_b,

-1
Qz=7 Mt Vaus+(atb)?,

~ 1 5 5

1 2
§1,2:(Z_,U~1> —(a+b)?,
1
§3:{ \/ !
1
542[ \/

2
Z+M1) —(a—b)*=2pu,

2

2
—(a—b)*+ 2#2} :

2

If W=0, i.e., =0, i=1,2,3,4 thenu,<% and ¢,=0,
i=1,3, henceW is nonseparable for/4u2+(a+b)%>1

—u1=|a+bl or ;<b—a—pu;,.

Case 9. £=1, G=diag(ui,u1,u2), a=[0,0a]", b

=[0,0p]":

(A36)

PHYSICAL REVIEW A 63 032307

Nyo=4[a%+b?+2ud+2us+ V16uius+(a2—b?)?],

Ngg=4[a’+b*+2u]+2u;— \16uiuz+(a*~b?)?],

As=32ul, \g=0; (A37)

1 1
@1=7 ~m2tatb, @;=;—u,—a-b,
1 2 2
Qs=7 Tzt V4ui+(a—b)%,
1 2 2
Qa=7 Fua— Vaur+(@—b)% (A38)
~ 1 ~ 1
91=Z+,u2+a—b, QZ=Z+,u2—a+b,
.1 ,
03=7 — Mot V4ui+(atb)?,
~ 1 ~ 5
Q4ZZ_M2_\/4M1+(a+b) y (A39)

1 2
51,2:(2—,“2) —(at+h)?,
1
fgz{ \/(Z+M2
1
542[ \/(Z+M2

If W=0, i.e., 0;=0, i=1,2,3,4 then|u,/<% and 9;=0,
i=1,3, henceW is nonseparable for\/4,u21+(a+ b)?>1
—uo=la+b| or <b—a— u,.

Note that the dimensionality, given for each item holds
for a nonzero choice of the relevant parameters. Some eigen-
values\; may vanish under a special choice of parameters—
these subcases are easy to find. There exists also symmetric
cases 2 and 6 for which the vectors andb are exchanged.
The dimensionality of the local orbits remains unchanged,
and the formulas for eigenvalues hold, if one exchanges both
vectors.

2 2

—(a=b)*+2u,

2 2
—(a—b)z—zul} . (A40)
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