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Geometry of entangled states
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Geometric properties of the set of quantum entangled states are investigated. We propose an explicit method
to compute the dimension of local orbits for any mixed state of the generalK3M problem and characterize the
set of effectively different states~which cannot be related by local transformations!. Thus, we generalize earlier
results obtained for the simplest 232 system, which lead to a stratification of the six-dimensional set of
N54 pure states. We define the concept of absolutely separable states, for which all globally equivalent states
are separable.
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I. INTRODUCTION

Recent developments in quantum cryptography and qu
tum computing evoke interest in the properties ofquantum
entanglement. Due to recent works by Peres@1# and Horo-
deckiet al. @2# there exists a simple criterion allowing one
judge, whether a given density matrixr, representing a
232 or 233 composite system, is separable. On the ot
hand, the general problem of finding sufficient and necess
conditions for separability in higher dimensions rema
open~see, e.g.,@3,4# and references therein!.

The question of how many mixed quantum states
separable has been raised in@5,6#. In particular, it has been
shown that the relative likelihood of encountering a se
rable state decreases with the system sizeN, while a neigh-
borhood of the maximally mixed state,r* ;I/N, remains
separable@5–7#.

From the point of view of a possible application, it is n
only important to determine whether a given state is
tangled, but also to quantify the degree of entanglem
Among several such quantities@8–11#, the entanglement of
formation introduced by Bennetet al. @12# is often used for
this purpose. The original definition, based on a minimi
tion procedure, is not convenient for practical use. Howev
in recent papers of Hill and Wootters@13,14# the entangle-
ment of formation is explicitly calculated for an arbitra
density matrix of the sizeN54.

Any reasonable measure of entanglement has to be in
ant with respect to local transformations@9#. In the problem
of d spin-1/2 particles, for whichN52d, there exist 4d

23d11 invariants of local transformations@15# and all
measures of entanglement can be represented as a funct
these quantities. In the simplest cased52 there exist nine
local invariants@15–18#. These real invariants fix a state u
to a finite symmetry group and nine additional discrete
variants~signs! are needed to make the characterization co
plete. Makhlin has proved that two states are locally equi
lent if and only if all these 18 invariants are equal@19#. Local
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symmetry properties of pure states of two and three qu
were recently analyzed by Carteret and Sudbery@20#. A re-
lated geometric analysis of the 232 composed system wa
recently presented by Brody and Hughston@21#.

The aim of this paper is to characterize the space of
quantum ‘‘effectively different’’ states, i.e., the states no
equivalent in the sense of local operations. In particular,
are interested in the dimensions and geometrical prope
of the manifolds of equivalent states. In a sense, our pap
complementary to@20#, in which the authors considerpure
states forthreequbits, while we analyze local properties o
mixedstates oftwo subsystems of arbitrary size.

We start our analysis by defining in Sec. II the Gra
matrix corresponding to any density matrixr. We provide an
explicit technique for computing the dimension of local o
bits for any mixed state of the generalK3M problem. In
Sec. III we apply these results to the simplest case of
232 problem. We describe a stratification of the si
dimensional~6D! manifold of the pure states and introduc
the concept of absolute separability. A list of nongene
mixed states ofN54 leading to submaximal local orbits i
provided in the Appendix.

II. THE GRAM MATRIX

A. 2Ã2 system

For pedagogical reasons, we shall start our analysis w
the simplest case of the 232 problem. The local transforma
tions of density matrices form a six-dimensional subgro
L5SU(2)^ SU(2) of the full unitary group U(4). Let W
denote a Hermitian density matrix of size 4 representin
mixed state. Identification of all states that can be obtain
from a given oneW by a conjugation by a matrix fromL
leads to the definition of the ‘‘effectively different’’ states
all effectively equivalent states being the points on the sa
orbit of SU(2)̂ SU(2) through their representativeW.

The manifoldWpure of N54 pure states, equivalent to th
complex projective spaceCP3 is six dimensional. Although
both the manifold of pure states and the group of local tra
formations are six dimensional, it does not mean that ther
only one nontrivial orbit onWpure . Indeed, at each poin
©2001 The American Physical Society07-1
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WPWpure , local transformationsU(s), parametrized by six
real variabless5(s1 , . . . ,s6), such thatU(0) equals iden-
tity, determine the tangent space to the orbit, spanned by
vectors:

WiªS ]W

]si
D

s50

5
]

]si
U~s!WU†~s!us50 . ~1!

The dimension of the tangent space~equal to the dimension
of the orbit! equals the number of the independentWi and, as
we shall see, is always smaller than six. Using the unita
of U(s) one easily obtains

WiªF S ]U

]si
D

s50

,WG5@ l i ,W#, ~2!

with l iª(]U/]si)s50, and establishes the hermiticity of eac
Wi .

Although the thus so obtainedWi depend on a particula
parametrization ofU(s), the linear space spanned by the
does not. In fact, we can choose some standard coordin
in the vicinity of identity for eachSU(2) component obtain-
ing

l k5 isk^ I , l k135I ^ isk , ~3!

wheresk , k51,2,3 stand for the Pauli matrices andI is the
232 identity matrix. Obviously, the anti-Hermitian matrice
l i , i 51, . . . ,6, form a basis of thesu% su Lie algebra. The
dimensionality of the tangent space can be probed by
rank of the real symmetric 636 Gram matrix

Cmnª
1

2
Tr WmWn ~4!

formed from the Hilbert-Schmidt scalar products ofWi ’s in
the space of Hermitian matrices. The most important par
our reasoning is based on transformation properties of
matrix C along the orbit. In order to investigate them let
assume thus, thatW8 andW are equivalent density matrice
i.e., there exists a local operationUPSU(2)^ SU(2) such
that W85UWU†. A straightforward calculation shows tha
the corresponding matrixC8 calculated at the pointW8 is
given by

Cmn8 5
1

2
Tr Wm8 Wn85

1

2
Tr~@ l m8 ,W#@ l n8 ,W# !, ~5!

where

l i8ªU†l iU, i 51, . . . ,6. ~6!

The transformation~6! defines a linear change of basis
the Lie algebrasu% su and as such is given by a 636 matrix
O, i.e., l i85( j 51

6 Oi j l j . It can be established thatO is a real
orthogonal matrix:O215OT, either by the direct calculation
using some parametrization of SU(2)^ SU(2) respecting Eq
~3!, or by invoking the fact thatsu% su is a real Lie algebra
and Eq. ~6! defines the adjoint representation of SU(
^ SU(2).
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Using the above, we easily infer that matricesC corre-
sponding to equivalent states are connected by orthog
transformation:C85OCOT. It is thus obvious that proper
ties of states that are not changed under local transformat
are encoded in the invariants ofC, which can thus serve a
measures of the local properties such as entanglement or
tillability. As shown in the following section, the above con
clusions remain valid,mutatis mutandis, if we drop the con-
dition of the purity of states and go to higher dimensions
the subsystems.

B. General case:KÃM system

A density matrixW ~and, a fortiori, the corresponding
matrix C) of a general bipartiteK3M system can be con
veniently parametrized in terms of (KM )221 real numbers
aj , ba , Gj a , j 51, . . . ,K221, a51, . . . ,M221 as

W5
1

~KM !2
I 1 iak~ek^ I !1 iba~ I ^ f a!1Gka~ek^ f a!,

~7!

whereek and f a are generators of the Lie algebrassuK and
suM fulfilling the commutation relations

@ej ,ek#5cjklel , @ f a , f b#5dabg f g , ~8!

normalized according to

Tr ejek522d jk , Tr f a f b522dab . ~9!

In the above formulas, we employed the summation conv
tion concerning repeated Latin and Greek indices. We a
used the same symbolI for the identity operators in differen
spaces as their dimensionality can be read from the form
without ambiguity. Positivity of the matrixW imposes cer-
tain constraints on the parametersaj , ba , andGj a .

By analyzing the effect of a local transformationL5V
^ UPSU(K) ^ SU(M ) upon W, we see thataª(aj ),
j 51, . . . ,K221 andb5(ba), a51, . . . ,M221 transform
as vectors with respect to the adjoint representations
SU(K) and SU(M ), respectively, whereasGª(Gi ,a) is a
vector with respect to both adjoint representations.

In analogy with the previously considered case of pu
232 states, we can choose the parametrization of the lo
transformations in such a way that the space tangent to
orbit at W is spanned by the vectors

Wi5@ei ^ I ,W#, Wa5@ I ^ f a ,W#. ~10!

The number of linearly independent vectors equals the
mensionality of the orbit. As before, this number is indepe
dent of the chosen parametrization and can be recovere
the rank of the corresponding Gram matrixC, which takes
now a block form respecting the division into Latin an
Greek indices

C5F A B

BT DG , ~11!

where
7-2
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GEOMETRY OF ENTANGLED STATES PHYSICAL REVIEW A63 032307
Ai j 5
1

2
Tr WiWj , Bia5

1

2
Tr WiWa , Dab5

1

2
Tr WaWb .

~12!

The Gram matrixC has dimensionK21M222, the
square matricesA andD are (K221) and (M221) dimen-
sional, respectively, while the rectangular matrixB has size
(K221)3(M221). The matrixC is non-negative definite
and the number of its positive eigenvalues gives the dim
sion of the orbit starting atW and generated by local trans
formations. A direct algebraic calculation gives

Ai j 5~2GkaGma1Makam!ciklcjml ,

Bia52GkbGmgcikmdagb ,

Dab5~2GmgGmd1Kbgbd!dagmdbdm . ~13!

In this way we arrived at the main result of this paper
Dimension Dl of the orbit generated by local operation

acting on a given mixed state,W of any K3M bipartite
system is equal to the rank of the Gram matrixC given by
Eqs.~11!–~13!.

If all eigenvalues ofC are strictly positive, the local orbi
has the maximal dimension equal toDl5K21M222. In the
low dimensional cases, it was always possible to find s
parametersaj andba , i.e., such a density matrixW that the
local orbit throughW was indeed of the maximal dimension
ality. We do not know if such an orbit exists in an arbitra
dimensionK3M , although we suspect that it is the case in
generic situation~i.e., all eigenvalues ofW different, non-
trivial form of the matrixG). In the simplest case 232 we
provide in the Appendix the list of all, nongeneric dens
matrices corresponding to submaximal local orbits. All oth
density matrices lead thus to the full~six! dimensional local
orbits.

This approach is very general and might be applied
multipartite systems of any dimension. Postponing these
citing investigations to a subsequent publication@22#, we
now come back to the technically simplest case of the or
nal 232-dimensional bipartite system.

III. LOCAL ORBITS FOR THE 2 Ã2 SYSTEM

A. Stratification of the 6D space of pure states

The pure states of a composite 232 quantum system
form a six-dimensional submanifoldWpure of the 15-
dimensional manifold of all density matrices in the fou
dimensional Hilbert space, i.e., the set of all Hermitian, no
negative 434 matrices with the trace one. Indeed, t
density matricesW andW8 of two pure states described b
four-component complex, normalized vectorsuw&^wu and
uw8&^w8u coincide, provided thatuw8&5Uuw&, whereU is a
unitary 434 matrix that commutes withW. Since W has
threefold degenerate eigenvalue 0, the set of unitary matr
rendering the same density matrix via the conjugationW8
5UWU†, can be identified as the six-dimensional quotie
space U(4)/@U(3)3U(1)#5CP3. The manifold of the pure
states itself is thus given as the set of all matrices obtai
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from W0ªuw0&^w0u, whereuw0&5@1,0,0,0#T by the conju-
gation by an element ofCP3 and conveniently parametrize
by three complex numbersx,y,z: uw&ªN@1,x,y,z#T, W
5W(x,y,z)ªuw&^wu, where N5(11uxu21uyu21uzu2)21/2

is the normalization constant, and we allow the parameter
take also infinite values of~at most! two of them. In more
technical terms, we consider thus the orbit ofU(4) through
the pointW0 in the space of Hermitian matrices.

In fact, since the normalization of density matrices do
not play a role in the following considerations, we shall ta
care of it at the very end and parametrize the manifold
pure states by four complex numbersv,x,y,z being the com-
ponents ofuw& ~the overbar denotes the complex conjug
tion!:

uw&5F v

x

y

z

G , W5uw&^wu5F vv̄ v x̄ v ȳ v z̄

xv̄ xx̄ xȳ xz̄

yv̄ yx̄ y ȳ yz̄

zv̄ zx̄ zȳ zz̄

G , ~14!

bearing in mind, when needed, that the sum of their abso
values equals one. In fact, equating one of the four coo
nates with a real constant yields one of four complex anal
maps that together cover the complex projective spaceCP3

~with which the manifold of the pure states can be identifie!
via standard homogeneous coordinates. This leads to a m
flexible, symmetric notation, and disposes of the need
infinite parameter values.

The dimensionality of the orbit given byrank ~C! is the
most obvious geometric invariant of the orthogonal transf
mations of C. As expected, it does not change along t
orbit. All invariant functions~or separability measures! can
be obtained in terms of the functionally independent inva
ants of the real symmetric matrixC under the action of the
adjoint representation of SU(2)̂SU(2). In particular, the
eigenvalues ofC are, obviously, such invariants. Substitutin
our parametrization of pure states density matrices~14! to
the definition ofC ~4! yields, after some straightforward a
gebra, the eigenvalues

l150, l258uvu2, l35l45112uvu,

l55l65122uvu, ~15!

where vªvz2xy. For any pure state one may explicitl
calculate the entropy of entanglement@12# or a related quan-
tity, called concurrence@14#. For the pure state~14! the con-
currence equals

c52uvu52uvz2xyu ~16!

andcP@0,1#. Thus the spectrum of the Gram matrix may
rewritten as

eig~C!5$0,2c2,11c,11c,12c,12c%. ~17!

The number of positive eigenvalues ofC determines the di-
mension of the orbit generated by local transformation.
already noted, the dimensionality of the orbit is alwa
7-3
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MAREK KUŚ AND KAROL ŻYCZKOWSKI PHYSICAL REVIEW A 63 032307
smaller than 6. In a generic case it equals 5, but forv50
(c50 separable states! it shrinks to 4 and foruvu51/2
(c51 maximally entangled states! it shrinks to 3. These re
sults have already been obtained in a recent paper by Car
and Sudbery@20#, who have shown that the exception
states~with local orbits of a nongeneric dimension! are char-
acterized by maximal~or minimal! degree of entanglement

In order to investigate more closely the geometry of va
ous orbits, let us introduce the following definition:

WVª$W5ww†:w5@v,x,y,z#TPC4,iwi25uvu21uxu2

1uyu21uzu251,u~vz2xy!u5V%. ~18!

It is also convenient to define a map from the space of s
vectors $w5@v,x,y,z#TPC4:iwi25uvu21uxu21uyu21uzu2

51% to the space of complex 232 matrices

X~w!5Fv y

x zG . ~19!

In terms ofX(w), the length of a vectorw and the bilinear
form v(w)ªvz2xy read thus:iwi25Tr X(w)X†(w) and
v(w)5detX(w). From the Hadmard inequality

udetX~w!u<@~ uvu21uxu2!~ uyu21uzu2!#1/2, ~20!

we infer uv(w)u< 1
2 . Indeed, sinceuvu21uxu21uyu21uzu2

51, the right-hand side of Eq.~20! equals its maximal value
of 1

4 for uvu21uxu25 1
2 5uyu21uzu2. A straightforward calcu-

lation shows also that a local transformationL5V^ U sends
w to w85Lw if and only if X(w8)5UX(w)VT. As an im-
mediate consequence, we obtain the conservation ofuv(w)u
under local transformation. Together with the obvious co
servation ofiwi @which, by the way, is also easily recovere
from iwi25Tr X(w)X†(w)#, it shows that the parametriza
tion ~18! is properly chosen. Moreover, it can be proved th
L acts transitively on submanifolds~18! of constantuvu, i.e.,
for each pair W5ww†, W5w8w8† such that uv(w)u
5uv(w8)u5V, there exists such a local transformationL
PL that W85L(W)ªLWL†, or, in other words, that the
manifold~18! of constantuvu is an orbit of the group of loca
transformationsL through a single pointW̄, i.e., WV

5L(W̄). To this end, it is enough to show that ea
WPWV can be transformed by a local transformation in
Wu5wuwu

† , where wu5@cos(u/2),0,0,sin(u/2)#T with sinu
52v @from the above-mentioned bound foruv(w)u we know
that it is sufficient to consider 0<u<p/2#. To this end we
invoke the singular value decomposition theorem, wh
states that for an arbitrary~in our case 232) matrixX, there
exist unitaryU8,V8 such that

X8ªU8XV8T5Fp 0

0 qG , p>q>0. ~21!

Let now V85ei jV, U85eihU, V,UPSU(2). We can re-
write Eq. ~21! as
03230
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UXVT5Fpeif 0

0 qeifG , p>q>0fª2~h1j!. ~22!

Substituting X5X(w) @Eq. ~19!#, we obtain p21q2

5Tr XX†5iwi251 and invoke the invariance ofpq
5udetXu5uv(w)u5sin 2u. This gives a unique solution
p5cosu, q5sinu in the interval 0<u<p/2. On the other
hand, as mentioned above, the transformation~22! corre-
sponds toLw5wu85@cos(u/2)eif,0,0,sin(u/2)eif#T, but ob-
viously Wu85wu8w8u

†5Wu5wuwu
† , i.e., finally, LWL†

5Wu , with L5V^ UPL as claimed. This is, obviously, a
restatement of the Schmidt decomposition theorem fo
32 systems.

Now we can give the full description of the geometry
the states. The line intoWu5wuwu

† , 0<u<p/2 connects all
‘‘essentially different’’ states. At eachu different from 0,p/2
it crosses a five-dimensional manifold of the states equ
lent under local transformations. The orbits of submaxim
dimensionality correspond to both ends of the line. Foru
5p/2 the orbit is three dimensional. The states belonging
these orbits are maximally entangled, sinceuvu51/2 corre-
sponds toc51.

In order to recover the whole orbit we should find th
actions of all elements of the group of local transformatio
on a representative of each orbit~e.g., one on the above
described line!. Since, however, the orbits always have d
mensions lower than the dimensionality of the group,
action is not effective, i.e., for each point on the orbit, the
is a subgroup ofL that leaves this point unmoved. This st
bility subgroup is easy to identify in each case. Taking t
into account we end up with the following parametrization
three-dimensional orbits of the maximally entangled state

Wp/45$W5ww†:w5w~a,x1 ,x2!%,

w~a,x1 ,x2!%5
1

A2F cosaeix1

sinaeix2

sinae2 ix2

2cosae2 ix1

G , ~23!

with 0<x i,2p, 0<a<p/2, which means that topologi
cally this manifold is a real projective spaceRP35S3/Z2,
whereZ2 is a two-element discrete group. This is related
the well-known result that for bipartite systems the ma
mally entangled states may be produced by an approp
operation performed locally, on one subsystem only. T
manifold of maximally entangled states~23! is cut by the
line of essentially different states at the origin of the coor
nate system (a,x1 ,x2).

The four-dimensional orbit corresponding tou50 con-
sists of separable states characterized by the vanishing
currencec50. The parametrization of the whole orbit, e
hibiting its S23S2 structure, is given by

w~a,b,x1 ,x2!5F cosa cosbeix1

cosa sinbeix2

sina cosbe2 ix2

sina sinbe2 ix1

G ,
7-4
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0<x i,2p,0<a,b,p/2. ~24!

The majority of states, namely, those that are neit
separable nor maximally entangled, belong to various fi
dimensional orbits labeled by the values of the parameteu
with 0,u,p/2. In this way we have performed a stratifi
cation of the 6D manifold of the pure states, depicted sc
matically in Fig. 1~b!.

For comparison we show in Fig. 1~a! the stratification of a
sphereS2, which consists of a family of 1D parallels and tw
poles. The zero-dimensional north pole onCP1 corresponds
to the 3D manifold of maximally entangled states inCP3,
while the 4D space of separable states may be assoc
with the opposite pole. In the case of the sphere~the earth!,
the symmetry is broken by distinguishing the rotation a
pointing to both poles. In the case ofN54 pure states, the
symmetry is broken by distinguishing the two subsystem
which determines both manifolds of maximally entangl
and separable states.

B. Dimensionality of global orbits

Before we use the above results to analyze the dimens
of local orbits for the mixed states of the 232 problem, let
us make some remarks on the dimensionality of the glo
orbits. The action of the entire unitary group U(4) depen
on the degeneracy of the spectrum of a mixed stateW. Let
W5VRV†, where V is unitary and the diagonal matrixR
contains non-negative eigenvaluesr i .

Due to the normalization condition TrW51 the eigenval-
ues satisfyr 11r 21r 31r 451. The space of all possibl
spectra thus forms a regular tetrahedron, depicted in Fig

FIG. 1. Stratification of the sphere along the Greenwich me
ian: ~a! stratification of the six-dimensional space of theN54 pure
states along the line of effectively different states,vP@0,1/2#; ~b!
the poles correspond to the distinguished submanifolds ofCP3, the
3D manifold of maximally entangled states, and the 4D manifol
separable states.
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Without loss of generality we may assume thatr 1>r 2>r 3
>r 4>0. This corresponds to dividing the 3D simplex in
24 equal asymmetric parts and to picking one of them. T
set, sometimes called the Weyl chamber@23#, enables us to
parametrize the entire space of mixed quantum states by
bal orbits generated by each of its points.

Note that the unitary matrix of eigenvectorsV is not de-
termined uniquely, sinceW5VRV†5VHRH†V†, whereH
is an arbitrary diagonal unitary matrix. This stability grou
of U is parametrized byN54 independent phases. Thus f
a generic case of all different eigenvaluesr i , ~which corre-
sponds to the interiorK1111 of the simplex!, the space of
global orbits has a structure of the quotient gro
U(4)/@U(1)4#. It hasDg51624512 dimensions.

If degeneracy in the spectrum ofW occurs, sayr 15r 2
.r 3.r 4, the stability groupH5U(2)3U(1)3U(1) is
4111156 dimensional@24#. In this case, corresponding t
the faceK211 of the simplex, the global orbitU/H hasDg
51626510 dimensions. The dimensionality is the same
the other faces of the simplex,K121 andK112. The important
case of pure states corresponds to the triple degeneracr 1
.r 25r 35r 4 for which the stability groupH equals U(3)
3U(1). Theorbits U/H5SU(4)/U(3) have a structure of
complex projective spaceCP3. This 6D manifold results thus
from all points of the Weyl chamber located at the edgeK13.
These parts of the asymmetric simplex are shown in Fig
the indices labeling each part give the number of degener
eigenvalues in decreasing order. For another edgeK22 of the

-

f
FIG. 2. The simplex of eigenvalues of theN54 density matri-

ces.~a! Pure states are represented by four corners of the tetr
dron, while its center denotes the maximally mixed stater* . Mag-
nification of the asymmetric part of the simplex, related to the W
chamber is shown in~b!. It can be decomposed into eight par
according to different kinds of degeneracies of the spectrum.
7-5
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MAREK KUŚ AND KAROL ŻYCZKOWSKI PHYSICAL REVIEW A 63 032307
simplex H5U(2)3U(2) and the quotient groupU/H is
162858 dimensional. In the last case of quadruple deg
eracy, corresponding to the maximally mixed stater* 5I/4,
the stability groupH5U(4), thusDl50. A detailed descrip-
tion of the decomposition of the Weyl chamber with resp
to the dimensionality of global orbits for arbitrary dime
sions is provided in@25#.

C. Dimensionality of local orbits

For K5M52 ~two qubit system!, ci jk522e i jk and
dabg522eabg , where eabg is, completely antisymmetric
tensor. Formulas~13! give in this case

A58@~Tr G8G8T!I 2G8G8T#18~ ia8i2
•I 2a8a8T!,

~25!

D58@~Tr G8G8T!I 2G8TG8#18~ ib8i2
•I 2b8b8T!,

~26!

and

BG8T5G8TB5216 detG8I , ~27!

where 3D vectorsa8, b8, and a 333 matrix G8 represent a
certainN54 mixed stateW in the form~7!. For later conve-
nience we denote the system variables by symbols w
primes. For detG8Þ0 the last equation givesB
5216 detG8T(G8T)21, but below we will show the more
convenient representation ofB.

SinceG8 is real, we can find its singular value decomp
03230
-

t

th

-

sition in terms of two real orthogonal matricesO1 , O2, and
a positive diagonal matrix

O1G8O2
T5G5F m1 0 0

0 m2 0

0 0 m3

G , m1>m2>m3>0.

~28!

If the determinant ofG8 is positive, then one can chooseO1
andO2 as proper orthogonal matrices~i.e., with the determi-
nants equal to one!. In this case the singular value decomp
sition ~28! corresponds to a local transformationW5U1
^ U2W(U1^ U2)†. In the opposite case of a negative dete
minant of G8, one of the matricesO1 or O2 also has a
negative determinant. Alternatively, we can assume thatO1
andO2 are proper orthogonal matrices~with positive deter-
minants! and, consequently, the singular value decompo
tion corresponds to a local transformation, but withm1
<m2<m3<0.

From ~26! and ~27! it follows that the above transforma
tion G5O1G8O2

T , if supplemented bya5O1a8 and b
5O2b8, induces the transformationC5C8(G8,a8,b8)
°C(G,a,b)5(O1% O2)C8(O1% O2)T, where

O1% O2ªFO1 0

0 O2
G , ~29!

leaving the spectrum ofC invariant. The explicit form of the
transformed matrix inferred from Eqs.~26!–~28! reads
C53
8~m2

21m3
2! 0 0 716m2m3 0 0

0 8~m1
21m2

3! 0 0 716m1m3 0

0 0 8~m1
21m2

2! 0 0 716m1m2

716m2m3 0 0 8~m2
21m3

2! 0 0

0 716m1m3 0 0 8~m1
21m3

2! 0

0 0 716m1m2 0 0 8~m1
21m2

2!

4
1F8„iai2

•I 2a~a!T
… 0

0 8~ ibi2
•I 2b~b!T!

GªCG1Ca,b , ~30!
bits

er

ong
-

which is the sum of two real positive definite matrices,CG
andCa,b . Their eigenvalues are, respectively,

r158~m11m2!2, r258~m11m3!2, r358~m21m3!2,

r458~m12m2!2, r558~m12m3!2, r658~m22m3!2,

~31!

and

n15n25iai2, n35n45ibi2, n55n650. ~32!
Although two parts,CG and Ca,b of C usually do not
commute and the eigenvaluesl1>•••>l6>0 of C cannot
be immediately found, we can investigate the possible or
of submaximal dimensionalities using the fact that bothCG
andCa,b are positive definite. It thus follows that the numb
of zero values among the eigenvaluesl1 , . . . ,l6 of C has to
be matched by at least the same number of zeros am
r1 , . . . ,r6 and amongn1 , . . . ,n6; moreover, the eigenvec
tors to the zero eigenvalues of the whole matrixC are also
the eigenvectors of the componentsCG andCa,b ~also, obvi-
ously, corresponding to the vanishing eigenvalues!
7-6
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The corankr 8CG
~the number of vanishing eigenvalues! of

CG equals

6 for m15m25m350⇔G50,

3 for m15m25m3ªmÞ0⇔G5mI ,

2 for mªm1.m25m350,

1 for mMªm1.m25m3ªmmÞ0,

or 0Þmªm15m2.m3 , ~33!

and is equal to 0 in all other cases, whereas forCa,b its
corankr 8Ca,b

reads

6 for a5b50,

4 for a50, bÞ0 or

aÞ0, b50,

2 for aÞ0, bÞ0. ~34!

As already mentioned, in a generic case all eigenvalue
the 6D Gram matrixC are positive and the dimension o
local orbits is maximal,dl56. On the other hand, the abov
decomposition of the Gram matrix is very convenient to a
lyze several special cases, for which some eigenvaluesC
reduce to zero and the local orbits are less dimensional
find all of them one needs to consider nine combinations
different ranks of the matricesCG andCa,b as shown in the
Appendix.

For any point of the Weyl chamber we know thus t
dimensionDg of the corresponding global orbit. Using th
above results for any of the globally equivalent statesW
~with the same spectrum!, we can find the dimensionDl of
the corresponding local orbit. This dimension may be st
dependent as explicitly shown for the case ofN54 pure
states. LetDm denote the maximal dimensionDl , where the
maximum is taken over all states of the global orbit. The
of effectively different states whichcannotbe linked by local
transformations has thus dimensionDd5Dg2Dm . For ex-
ample, the effectively different space of theN54 pure states
is one dimensional,Dd562551.

D. Special case: Triple degeneracy
and generalized Werner states

Consider the longest edgeK13 of the Weyl chamber,
which represents a class of states with triple degener
They may be written in the formrxªxuC&^Cu1(1
2x)r* , whereuC& stands forany pure state andxP(0,1).
The global orbits have the structure U(4)/@U(3)3U(1)#,
just as for the pure states, which are generated by the co
of the simplex, represented byx51. Also the topology of
the local orbits does not depend onx, and the stratification
found for pure states holds for each six dimensional glo
orbit generated by any single point of the edge.
03230
of

-

o
f

te

t

y.

er

l

The schematic drawing shown in Fig. 1 is still valid, b
now the term ‘‘maximally entangled’’ denotes the entang
ment maximal on the given global orbit. It decreases withx
as for Werner states, withuC& chosen as the maximally en
tangled pure state@27#. For these states the concurrence d
creases linearly,c(x)5(3x21)/2 for x.1/3 and is equal to
zero for x<1/3. Thus for sufficiently smallx ~sufficiently
large degree of mixing! all states are separable, also tho
belonging to one of the both 3D local orbits. This is cons
tent with the results of@5#, where it was proved that if
Tr r2,1/3 the 232 mixed stater is separable.

This condition has an appealing geometric interpretati
on one hand, it represents the maximal 3D ball inscribed
the tetrahedron of eigenvalues, as shown in Fig. 3. On
other, it represents the maximal 15D ballBM @in the sense of
the Hilbert-Schmidt metric, DHS

2 (r1 ,r2)5Tr(r12r2)2#,
contained in the 15D set of all mixed states forN54. Both
balls are centered at the maximally mixed stater* ~the cen-
ter of the eigenvalues simplex of sideA2), and have the
same radius 1/2A3. A similar geometric discussion of th
properties of the set of 232 separable mixed states wa
recently given in@26#.

To clarify the structure of effectively different states,
this case we consider generalized Werner states

r~x,u!ªxuCu&^Cuu1~12x!r* , ~35!

where the stateuCu&ª@cos(u/2),0,0,sin(u/2)# contains the
line of effectively different pure states foruP@0,p/2#. Note
that the caseu5p/2 is equivalent to the original Werne
states @27#. Entanglement of formationE for the states
r(x,u) may be computed analytically with the help of co
currence and the Wootters formula@14#. The results are too
lengthy to be reproduced here, so in Fig. 4 we present
plot E5E(x,u). The graph is done in polar coordinates,
the pure states are located at the circlex51. For each fixed
x, the space of effectively different states is represented b
quarter of the circle. Forx,1/3, entire circle is located in-
side the maximal ballBM , and all effectively different states
are separable. Points located along a circle centerd atr*
represent mixed states, which are described by the s

FIG. 3. Separability of the maximal 15D ball: all mixed stat
with spectra represented by points inside the ball inscribed in
3D simplex of eigenvalues of theN54 density matrices are sepa
rable.
7-7



fo
i-
y
.
ec
s

ap

en
t
at
-
t
-
ry
a

i
l
e

e
o

ue
w

n
asy
.

e

-

e-
a
ey
rbit

d

t
s to
axi-
m

en-
by

not
tum
x
ns-
f
al

r-
has

di-
gle
set
s of
t the

ese
ny
ma-
ve

di-

nt
must
n-
d

r
th
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spectrum and can be connected by a global unitary trans
mation U(4). In accordance with the recent results of H
roshima and Ishizaka@28#, the original Werner states enjo
the largest entanglement accesible by unitary operations

The convex setS of separable states contains a great s
tion of the maximal ball and touches the set of pure state
only two points. The actual shape ofS ~at this cross section!
looks remarkably similar to the schematic drawing that
peared in@6#. Moreover, the contour lines of constantE elu-
cidate important feature of any measure of entanglem
larger the shortest distance toS, the larger the entanglemen
@9#. Even though we are not going to prove that for any st
r, its shortest distance toS in the picture is strictly the short
est in the entire 15D space of mixed states, the geome
structure of the functionE5E(x,u) is in some sense pecu
liar. The contoursE5const are foliated along the bounda
of S, while both maximally entangled states are located
far from S as possible.

E. Absolutely separable states

Definingseparabilityof a given mixed stater, we implic-
itly assume that the product structure of the composite H
bert space is given,H5HA^ HB . This assumption is wel
justified from the physical point of view. For example, th
electron paramagnetic resonance~EPR! scenario distin-
guishes both subsystems in a natural way~‘‘left photon’’ and
‘‘right photon’’ !. Then we speak about separable~entangled!
states with respect to this particular decomposition ofH.
Note that any separable pure state may be considered
tangled if analyzed with respect to another decomposition
H.

On the other hand, one may pose a complementary q
tion, interesting merely from the mathematical point of vie
i.e., which states are separable with respect toany possible
decomposition of theN5K3M -dimensional Hilbert space
H. More formally, we propose the followingdefinition.
Mixed quantum stater is calledabsolutely separableif all

FIG. 4. Entanglement of formationE for the generalized Werne
statesrx,u represented in the polar coordinates. Intersection with
maximal ball centered atr* is separable~white!. Dashed horizontal
line, joining two maximally entangled states (*)~black!, represents
the original Werner states. EntanglementE of a mixed stater may
be interpreted as its distance from the set of separable states.
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globally similar statesr85UrU† are separable.
Unitary matrixU of sizeN represents a global operatio

equivalent to a different choice of both subsystems. It is e
to see that the most mixed stater* is absolutely separable
Moreover, the entire maximal ballBM5B(r* ,1/2A3) is ab-
solutely separable forN54. This is indeed the case, sinc
the proof of separability ofBM provided in@5# relies only on
properties of the spectrum ofr, invariant with respect to
global operationsU. Another much simpler proof of separa
bility of BM follows directly from inequality~9.21! of the
book by Mehta@29#.

Are there any 232 absolutely separable states not b
longing to the maximal ballBM? Recent results of Ishizak
and Hiroshima@30# suggest that this might be the case. Th
conjectured that the maximal concurrence on the local o
determined by the spectrum$r 1 ,r 2 ,r 3 ,r 4% is equal toc*
5max$0,r 12r 322Ar 2r 4%. This conjecture has been prove
for the density matrices of rank 1,2, and 3@30#. If it is true in
the general case then the conditionc* .0 defines the 3D se
of spectra of absolutely separable states. This set belong
the regular tetrahedron of eigenvalues and contains the m
mal ball BM . For example, a state with the spectru
$0.47,0.30,0.13,0.10% does not belong toBM but its c* is
equal to zero.

IV. CONCLUDING REMARKS

In order to analyze geometric features of quantum
tanglement, we studied the properties of orbits generated
local transformations. Their shape and dimensionality is
universal, but depends on the initial state. For each quan
state of arbitraryK3M problem we defined the Gram matri
C, the spectrum of which remains invariant under local tra
formation. The rank ofC determines the dimensionality o
the local orbit. For generic mixed states the rank is maxim
and equal toDl5K21M222, while the space of all glo-
bally equivalent states~with the same spectrum! is (KM )2

2KM dimensional. Thus the set of states effectively diffe
ent, which cannot be related by any local transformation,
Dd5(KM )22KM2(K21M222) dimensions.

For the pure states of the simplest 232 problem we have
shown that the set of effectively different states is one
mensional. This curve may be parametrized by an an
emerging in the Schmidt decomposition: it starts at a 3D
of maximally entangled states, crosses the 5D space
states of gradually decreasing entanglement and ends a
4D manifold of separable states.

We have presented an explicit parametrization of th
submaximal manifolds. Moreover, we have proven that a
pure state can be transformed by means of local transfor
tions into one of the states in this line. In such a way we ha
found a stratification of the 6D manifoldCP3 along the line
of effectively different states into subspaces of different
mensionality.

Since forN54 pure states the set of effectively differe
states is one dimensional, all measures of entanglement
be equivalent~and be functions of, say, concurrence or e
tropy of formation!. This is not the case for generic mixe

e

7-8



of
ru
ns

n

of
bl
ica
io
n

A
f
l

ab
-

I

h

re

ru-
and
s
ion
i-

ort
an

xi-
-

e

GEOMETRY OF ENTANGLED STATES PHYSICAL REVIEW A63 032307
states, for whichDd56. Hence there exist mixed states
the same entanglement of formation with the same spect
~globally equivalent!, which cannot be connected by mea
of local transformations.

It is known that some measures of entanglement do
coincide ~e.g., entanglement of formationE and distillable
entanglementEd @11#!. To characterize the entanglement
such mixed states one might, in principle, use six suita
selected local invariants. This seems not to be very pract
but especially for higher systems, for which the dimens
Dd of effectively different states is large and the bound e
tangled states exist~with Ed50 andE.0), one may con-
sider using some additional measures of entanglement.
such measures of entanglement have to be functions o
genvalues of the Gram matrixC or other invariants of loca
transformations@16,15,17–19#.

We analyzed the geometry of the convex set of separ
states. For the simplestN54 problem, it contains the maxi
mal 15D ball inscribed in the set of the mixed states.
corresponds to the 3D ball of radius 1/2A3 inscribed in the
simplex of eigenvalues. This property holds also for t
233 problem, for which the radius is 1/A30. For larger
problemsK3M5N>8, it is known that all mixed states in
the maximal ball„of radius @N(N21)#21/2

… are not distill-
able @5#, but the question of whether they are separable
mains open.
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APPENDIX: SUBMAXIMAL LOCAL ORBITS FOR
the2Ã2 PROBLEM

In this appendix we give the list of all possible subma
mal ranks of the Gram matrixC that determine the dimen
sion of the local orbitDl562r C . The symbolr X8 denotes
the corank; it is the number of zeros in the spectrum ofX. In
each submaximal case we provide the density matrixW,
Gram matrix C, and its eigenvaluesl i , i 51, . . . ,6 ex-
pressed as a function of the singular values of the matrixG8
and the vectorsa5O1a8 and b5O2b8, where orthogonal
matricesO1 and O2 are determined by the singular valu
decomposition ofG8.

In the general case the density matrixW5W(G,a,b)
5W(m1 ,m2 ,m3 ,a1 ,a2 ,a3 ,b1 ,b2 ,b3) is given by
W5
1

4
I 1F 2a32b32m3 2b12 ib2 2a12 ia2 2m11m2

2b11 ib2 2a31b31m3 2m12m2 2a12 ia2

2a11 ia2 2m12m2 a32b31m3 2b12 ib2

2m11m2 2a11 ia2 2b11 ib2 a31b32m3

G , ~A1!

where we use the rotated basis in whichG is diagonal. The characteristic equation of the density matrixW reads

det~W2% !5%42%31F3

8
22iai222ibi222TrG2G%21S 2

1

16
1iai21ibi21Tr G218aGb28 detGD%

1~ iai22ibi2!212 TrG42~Tr G2!22
1

8
iai22

1

8
ibi22

1

8
Tr G222aGb12 detG24iGai2

12~ iai21ibi2!TrG224iGbi218~a1b1m2m31a2b2m1m31a3b3m1m2!1
1

256
. ~A2!

It is interesting to note that the characteristic equation of the partially transposed matrixW̃5WT2 differs only by the signs of
three terms:

det~W2%̃ !5%̃42%̃31F3

8
22iai222ibi222 TrG2G %̃21S 2

1

16
1iai21ibi21Tr G218aGb18 detGD %̃

1~ iai22ibi2!212 TrG42~Tr G2!22
1

8
iai22

1

8
ibi22

1

8
Tr G222aGb22detG24iGai2

12~ iai21ibi2!TrG224iGbi228~a1b1m2m31a2b2m1m31a3b3m1m2!1
1

256
. ~A3!
7-9
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Let % i and %̃ i , i 51,2,3,4, denote the eigenvalues ofW and
W̃, respectively. Due to the Peres-Horodecki partial tra
pose criterion@1,2# positivity of %̃ i may be used to find unde
which conditionsW is separable.

In order to compute the concurrence of the density ma
W, let us define an auxiliary Hermitian matrix

W̄ªWs2^ s2W* s2^ s2 , ~A4!
re
.
lit

-

03230
-

x

where * represents the complex conjugation. Letj i ,i
51,2,3,4 denote the eigenvalues ofW̄, arranged in decreas
ing order. Then the concurrencec of W is given by@13,14#

cªmax~0,Aj12Aj22Aj32Aj4!. ~A5!

The Gram matrix C5C(G,a,b)
5C(m1 ,m2 ,m3 ,a1 ,a2 ,a3 ,b1 ,b2 ,b3) corresponding to the
density matrixW reads, in the general case,
C583
a2

21a3
21m2

21m3
2 2a1a2 2a1a3 22m2m3 0 0

2a1a2 a1
21a3

21m1
21m3

2 2a2a3 0 22m1m3 0

2a1a3 2a2a3 a1
21a2

21m1
21m2

2 0 0 22m1m2

22m2m3 0 0 b2
21b3

21m2
21m3

2 2b1b2 2b1b3

0 22m1m3 0 2b1b2 b1
21b3

21m1
21m3

2 2b2b3

0 0 22m1m2 2b1b3 2b2b3 b1
21b2

21m1
21m2

2

4 .

~A6!
Below we provide a list of the classes of states cor
sponding to the submaximal ranksr C of the Gram matrices
The list is ordered according to the increasing dimensiona
of local orbits;Dl5r C562r C8 .

Case 1. rC8 56, G50, a50, b50, C50:

l1,2,3,4,5,650, W5
1

4
I , %1,2,3,45

1

4
5%̃1,2,3,4,

j1,2,3,45
1

16
, ~A7!

thusW is separable and concurrencec is equal to zero.
Case 2. rC8 54, G50, aÞ0, b50:

l1,258iai2, l3,4,5,650, ~A8!

%1,25
1

4
1iai , %3,45

1

4
2iai , ~A9!

%̃1,25
1

4
1iai , %̃3,45

1

4
2iai . ~A10!

j1,2,3,45
1

16
2iai2, thus c50. ~A11!

W represents a density matrix foriai< 1
4 and then is sepa

rable (W̃>0).
Case 3. rC8 53, G5mI , a50, b50:

l1,2,3532m2, l4,5,650, ~A12!

%1,2,35
1

4
2m, %45

1

4
13m, ~A13!
-

y
%̃1,2,35

1

4
1m, %̃45

1

4
23m, ~A14!

j15
1

16
~12m11!2, j2,3,45

1

16
~124m!2, ~A15!

c5H 0 for m<
1

12

6m2
1

2
for

1

12
<m<

1

4
.

~A16!

W>0 for 2 1
12 <m< 1

4 andW is separable forumu< 1
12 .

Case 4. rC8 52, G50:

l1,258iai2, l3,458ibi2, l5,650; ~A17!

%15
1

4
1iai1ibi , %25

1

4
2iai2ibi ,

%35
1

4
1uiai2ibiu, %45

1

4
2uiai2ibiu; ~A18!

%̃15
1

4
1iai1ibi , %̃25

1

4
2iai2ibi ,

%̃35
1

4
1uiai2ibiu, %̃45

1

4
2uiai2ibiu; ~A19!

j1,25
1

16
1~ iai1ibi !2, j3,45

1

16
1~ iai2ibi !2, c50.

~A20!

W>0 for iai1ibi< 1
4 and is then separable.

Case 5. rC8 52,
7-10
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G5diag(m,0,0), a5@a,0,0#T, b5@b,0,0#T:

l1,258~a21m2!, l3,458~b21m2!, l5,650;
~A21!

%15
1

4
1a1b2m, %25

1

4
2a1b1m,

%35
1

4
2a2b2m, %45

1

4
1a2b1m; ~A22!

%̃15
1

4
1a1b2m, %̃25

1

4
2a1b1m,

%̃35
1

4
2a2b2m, %̃45

1

4
1a2b1m; ~A23!

j1,25S 1

4
1m D 2

2~a2b!2, j3,45S 1

4
2m D 2

2~a1b!2,

c50. ~A24!

W>0 for a5iai< 1
4 , b5ibi< 1

4 , umu< 1
4 ; then W is

separable.
Case 6. rC8 51, G5diag(m,0,0), a5@a,0,0#T:

l154@ ibi21m21A~m22ibi2!214m2b1
2#,

l254@ ibi21m22A~m22ibi2!214m2b1
2#,

l358~ ibi21m2!, l4,558~a21m2!, l650;
~A25!

%15
1

4
1a1Am21ibi222b1m,

%25
1

4
1a2Am21ibi222b1m,

%35
1

4
2a1Am21ibi212b1m,

%45
1

4
2a2Am21ibi212b1m; ~A26!

%̃15
1

4
1a1Am21ibi222b1m,

%̃25
1

4
1a2Am21ibi222b1m,

%̃35
1

4
2a1Am21ibi212b1m,

%̃45
1

4
2a2Am21ibi212b1m; ~A27!
03230
j1,25
1

16
1m22a22ibi2

1A4~a22m2!ibi214m2b1
212mab1,

j3,45
1

16
1m22a22ibi2

2A4~a22m2!ibi214m2b1
212mab1, ~A28!

so c50. If W represents a density matrix (W>0) then it is
separable.

Case 7. rC8 51, G5mI , b5ja:

l154$~j221!iai21@m21A16m41~j221!2iai2#1/2%,

l254$~j221!iai21@m22A16m41~j221!2iai2#1/2%,

l354$~j221!iai22@m21A16m41~j221!2iai2#1/2%,

l454$~j221!iai22@m22A16m41~j221!2iai2#1/2%,

l5532m2, l650; ~A29!

%15
1

4
2m1uj11uiai , %25

1

4
2m2uj11uiai ,

%35
1

4
1m1A4m21~j21!2iai2,

%45
1

4
1m2A4m21~j21!2iai2; ~A30!

%̃15
1

4
1m1uj21uiai , %̃25

1

4
1m2uj21uiai ,

%̃35
1

4
2m1A4m21~j11!2iai2,

%̃45
1

4
2m2A4m21~j11!2iai2; ~A31!

j15
1

16
1

m

2
15m22~j21!2iai2

1mA4~m11!2216~j21!2iai2,

j25
1

16
1

m

2
15m22~j21!2iai2

2mA4~m11!2216~j21!2iai2,

j3,45S 1

4
2m D 2

2~j11!2iai2. ~A32!
7-11
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If W>0 i.e., % i>0, i 51,2,3,4 thenumu< 1
4 and %̃ i>0,

i 51,3, henceW is nonseparable forA4m21(j11)2iai2

. 1
4 2m>uj11uiai or 1

4 ,uj21uiai .
Case 8. rC8 51,
G5diag(m1 ,m2 ,m2), a5@a,0,0#T, b5@b,0,0#T:

l1,254@a21b212m1
212m2

21A16m1
2m2

21~a22b2!2#,

l3,454@a21b212mM
2 12mm

2 2A16m1
2m2

21~a22b2!2#,

l5532m2
2 , l650; ~A33!

%15
1

4
2m11a1b, %25

1

4
2m12a2b,

%35
1

4
1m11A4m2

21~a2b!2,

%45
1

4
1m12A4m2

21~a2b!2; ~A34!

%̃15
1

4
1m12a1b, %̃25

1

4
1m11a2b,

%̃35
1

4
2m11A4m2

21~a1b!2,

%̃45
1

4
2m12A4m2

21~a1b!2; ~A35!

j1,25S 1

4
2m1D 2

2~a1b!2,

j35FAS 1

4
1m1D 2

2~a2b!212m2G2

,

j45FAS 1

4
1m1D 2

2~a2b!222m2G2

. ~A36!

If W>0, i.e., % i>0, i 51,2,3,4 thenum1u< 1
4 and %̃ i>0,

i 51,3, henceW is nonseparable forA4m2
21(a1b)2. 1

4

2m1>ua1bu or 1
4 ,b2a2m1.

Case 9. rC8 51, G5diag(m1 ,m1 ,m2), a5@0,0,a#T, b
5@0,0,b#T:
A

nt

in

03230
l1,254@a21b212m1
212m2

21A16m1
2m2

21~a22b2!2#,

l3,454@a21b212m1
212m2

22A16m1
2m2

21~a22b2!2#,

l5532m1
2 , l650; ~A37!

%15
1

4
2m21a1b, %25

1

4
2m22a2b,

%35
1

4
1m21A4m1

21~a2b!2,

%45
1

4
1m22A4m1

21~a2b!2; ~A38!

%̃15
1

4
1m21a2b, %̃25

1

4
1m22a1b,

%̃35
1

4
2m21A4m1

21~a1b!2,

%̃45
1

4
2m22A4m1

21~a1b!2; ~A39!

j1,25S 1

4
2m2D 2

2~a1b!2,

j35FAS 1

4
1m2D 2

2~a2b!212m1G2

,

j45FAS 1

4
1m2D 2

2~a2b!222m1G2

. ~A40!

If W>0, i.e., % i>0, i 51,2,3,4 thenum2u< 1
4 and %̃ i>0,

i 51,3, henceW is nonseparable forA4m1
21(a1b)2. 1

4

2m2>ua1bu or 1
4 ,b2a2m2.

Note that the dimensionalityDl given for each item holds
for a nonzero choice of the relevant parameters. Some ei
valuesl i may vanish under a special choice of parameter
these subcases are easy to find. There exists also symm
cases 28 and 68 for which the vectorsa andb are exchanged
The dimensionality of the local orbits remains unchang
and the formulas for eigenvalues hold, if one exchanges b
vectors.
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