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This paper represents one approach to making explicit some of the assumptions and conditions implied in
the widespread representation of numbers by composite quantum systems. Any nonempty set and associated
operations is a set of natural numbers or a model of arithmetic if the set and operations satisfy the axioms of
number theory or arithmetic. This paper is limitedkt@ry representations of lengthand to the axioms for
arithmetic moduldk-. A model of the axioms is described based on an abstrdld tensor product Hilbert
space’{ 2", Unitary maps of this space onto a physical parameter based product Ef&¥eare then
described. Each of these maps makes state’ ’AY, and the induced operators, a model of the axioms.
Consequences of the existence of many of these maps are discussed along with the dependence of Grover’s and
Shor’s algorithms on these maps. The importance of the main physical requirement, that the basic arithmetic
operations are efficiently implementable, is discussed. This condition states that there exist physically realiz-
able Hamiltonians that can implement the basic arithmetic operations and that the space-time and thermody-
namic resources required are polynomiaLin
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[. INTRODUCTION numbers are represented by states of physical systems.
In this paper considerations will be limited to quantum
As is well known numbers play an essential role in phys-systems. This is not a serious limitation because of the as-
ics and in many other disciplines. The results of both experisumed universal applicability of quantum mechanics or a
mental work and theoretical computations are often given agelated theory such as quantum-field-theory. In this case all
numbers. Comparison of these numbers is essential to thghysical systems are quantum systems and all states of these
validation process for any physical theory such as quantursystems arépure or mixedl quantum states. This is the case
mechanics. As inputs to or outputs of computations or exwhether the systems are microscopic or macroscopic or
periments, numbers correspond to states of physical systemshether macroscopic systems can be described by classical
From an information theoretic viewpoint, this correspon-mechanics.
dence is essential as these states carry information. As Lan- For quantum systems numbers are represented by tensor
dauer has emphasized, “Information is Physicfl]. Thisis  products of states of different degrees of freedom of a sys-
taken very seriously here. tem. Usually the system is composite with each degree of
However, the fact that many states of many physical sysfreedom associated with a component system. For micro-
tems correspond to numbers, has, for the most part, beestopic systems one condition systems must satisfy is that
assumed and used implicitly. There has been little attempt tthey have states for which the switching tirg,, is short
make explicit the assumptions and conditions involved incompared to the decoherence titgg; or tgy<tgec[5]- This
representing numbers by states of physical systems. is a dynamic condition as it is based on the Hamiltonian for
This paper represents one approach to making some of thbe systems including their interaction with other systems
assumptions and conditions explicit. The emphasis is on thand the environment.
mathematical and physical aspects in the representation of This condition eliminates many state spaces of micro-
numbers by states of physical systems. No new models afcopic quantum systems for representation of numbers. A
computation are presented. However making the assumpwo-dimensional example would be the state space based on
tions explicit does offer some insight into the importance oftwo highly excited states of nuclei that have half-lifes short
various conditions that may not have been realized so far. Acompared tdg,,. On the other hand, spin projection states of
example(Sec. V) is the essential role played by the condition spin-1/2 ground-state nuclei in molecules in a magnetic field
that there exist physically realizable dynamical operators thaare suitable and are used in nuclear magnetic resonance
can efficiently implement basic arithmetic operations. The(NMR) quantum computerk6—8§|.
fact that these conditions are satisfied for a wide variety of Macroscopic quantum systems are such thgt-tye. for
systems, as shown by the ubiquitous existence of computerall states of interest. In this case the systems are candidates
does not detract from their importance. for number representation for classical computation if the
Such a study is also relevant to the development of aystems have states that are stabilized by environmental in-
coherent theory of mathematics and physics together, whicheractions for times long compared to the switching time.
in one form or another, is a goal of many physici2s-4].  The widespread existence of macroscopic computers shows
Any such coherent theory must take account in detail of howthat botht,>t4.. and environmental stabilization occurs for
many quantum systems.
Because of the recent widespread interest in quantum
*Email address: pbenioff@anl.gov computing, the emphasis of this paper is on nhumber repre-
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sentation by states of microscopic quantum systems. Howrepresentation of the numbers as most arithmetic operations
ever most of the material also applies to macroscopic sysare inefficient in this representation.
tems. The question arises if the use B2"" can be bypassed

The first step in giving an exact meaning to the represenby modeling the axioms directly ok P"Y, where " has
tation of numbers by tensor product states of quantum sysan arbitrary tensor product structure. In general this is pos-
tems is to specify exactly what natural numbers are. Withousible as any structure satisfying the axioms is acceptable.
such a specification all computations are meaningless physkhe discussion of this in Sec. VI is based on a description of
cal operations. Here the axiomatic approach is used by deproperties of a set of operators indexed by a set of physical
fining a nonempty set as a set of all natural numbers if it is gparameters. The properties are also defined to address the
model of the axioms of number theory or arithmg®;10].  question of necessary and sufficient conditions to conclude
These axioms are discussed in the next section along witthat " must have a tensor product structure suitable for
changes needed to account for the limitation of this paper téengthLk-ary representations of numbers.
tensor product states with an arbitrary but fixed finite number A final section discusses some other aspects and open
L of components, ok-ary representations of length The  questions resulting from this paper. The importance of the
corresponding arithmetic becomes arithmetic moddilo efficient implementability condition in excluding most mod-

It is possible to model the axioms directly on a physicalels of modular arithmetic ofttP"Y is noted as are some as-
Hilbert spaceH P"Y describing a composite quantum systempects of the use of numbers to desctibary representations
with L components. However the literature on quantum comof lengthL [11].
puting makes much use of product qubit states of the form It must be emphasized that the work of this paper is one
|s) wheres is any function from 1,2... L to{0,1}. Since  attempt to make explicit the assumptions and conditions that
the Hilbert space of these states is a very useful referenc@e assumed implicitly in the representation of numbers by
base for discussing quantum computation that is independestates of quantum systems and in work in the literature on
of any physical model, this approach will be used here.  quantum computing. Examples of this work are given in pa-

To this end a purely mathematical model of these axiomgers by Beckmaret al. [12] and Vedralet al. [13] that de-
is described in Sec. Il that is based on a tensor producgcribe networks of quantum gates to carry out basic arith-
Hilbert spaceHafith:ngL:lHj of Lk dimensional Hilbert metic operations. The description is in terms of unitary
spacesH; . Unitary operators on this space are defined tgoperators or{ """ (extended to include ancillary qubitas
correspond to the basic arithmetic operations, successopfdered products of polynomially many elementary gate op-
plus, and times, whose properties are given by the axiom&rators. The distinction between physical models, with the
The presence df successor operators, one for each power ofssociated requirement of efficient physical implementation,
k, rather than just one as described by the axioms, is baseétnd mathematical models, is not maintainghd is not
on the condition of efficient implementation discussed lateneededin the papers. Also efficient physical implementabil-
on. ity implies more than minimizing the number of ancillary

Tensor product states of physical properties of micro-qubits and restriction to polynomially many gate operations.
scopic composite quantum systems belonging to the Hilberfhese aspects are discussed more in Secs. lll and V.
spaceH P are discussed in Sec. IWA priori these states, as
products over a label sétof L physical parameter values, do
not correspond to any number. Also operators on these states
are meaningless regarding any numerical interpretation. The first step in making explicit what is involved in the

This is remedied by describing tensor product preservingepresentation of numbers by quantum states is to define the
unitary operators fron#{2"" to HP". For each of these natural numbers. One method of doing this is to follow math-
operatorsH P", along with induced representations of the ematical logic and define any nonempty set to be a set of
operators for the basic arithmetic operations, becomes matural numbers if it is a model for the axioms of arithmetic
model for the axioms of modular arithmetic. or number theory9,10]. A model for any axiom system is a

So far nothing has been said about the physical realizabileollection of elements in which all the axioms are true.
ity of any of these models of the axioms. This is especially Here the main interest is models of arithmetic based on
relevant for the operators as they are many system nonlocélilbert spaces that are tensor products of an arbitrary but
operators. This is remedied in Sec. V where the importantixed number of component spaces. As a result the axioms to
condition of efficient implementability of the basic arith- be satisfied are those for arithmetic modiNowhere N is
metic operations is described. In essence the condition rerbitrary but fixed. This arithmetic satisfies some of the axi-
quires that a composite quantum system be such that themms for all natural numbers. Others need to be either deleted
exist physically realizable Hamiltonians that can implementor modified. It also satisfies axioms for a commutative ring
the basic arithmetic operations. In addition the space-timevith identity [11].
and thermodynamic resources required for implementation The exact form and content of axioms for modular arith-
must be polynomial irL. The importance of this condition metic is not important here. What is important is that both
rests in the fact that it is additional to and independent of thehe arithmetic and ring axioms have in common the required
axioms of arithmetic. To see this one notes that there arexistence of binary operations and X with certain prop-
many models of the axioms that do not satisfy this require-erties. Also an unary successor operat&ia required by the
ment. A simple physical model is any one based on an unargrithmetic axioms. The properties that the binary operations

II. THE AXIOMATIC DESCRIPTION OF NUMBERS
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must have include commutativity, associativity, the existenceind modular exponentiation are described1g,13.

of identities 0 andS(0) for + and X, and the distributivity It is also the case that in many physical models space and
of X relative to+. Also S commutes with+ andxXS(y)  time directions can be assigned to the abstract networks. In
=xXy+x for all x,y.! The arithmetic axioms defining an this case the spatial ordering of the qubit lines is part of any
order relation and the induction schema are not considered asapping of the abstract models basedd™" to physical
they are not needed for the purposes of this paper. Howevenodels based oft P"Y in which the corresponding compo-

it is useful to keep in mind that the ordering axioms establisment systems are distinguished by spatial positions. These
the discreteness of the natural numbers in the sense that therappings are examples of the mappingg’ ‘discussed in

is no number betweer and its success@(x). Sec. IV. The time ordering of the quantum gates corresponds
to mapping the ordering of gate operators in the abstract
model to a time-ordered product of physically implementable
quantum gate operators. This is part of the requirement of

The next step is the description of a purely mathematicaPhysical implementabilitySec. V.
model of these axioms based on whatever mathematical sys-
tems are appropriate for the physical systems being consid- A. Definitions of the V,-“
ered. Since interest here iskrary representations of length — : . .
L of natural numbers for comyposri)te quantum syster%s, a The definition of thev’ Lis straightforward. For eagfiet
model based on an abstract Hilbert spat®™ is needed. Ui Pe @ cyclic shift{16] of periodk that acts on the states
To this end let{*"""=®_,H; be anL-fold tensor product 1.1} according tou|l,j)=|1 + 1 modk,j). u; is the identity
Hilbert space, where{; is ak-dimensional Hilbert space. ~ °" all stategm, '), wherej’# . DefineV;"" by

For each, the basis states of interest’} have the form
[I,i), wherej denotes the label or property characterizing a  y+i=
qubyte and=0,1, ... k— 1. A product state basis i can . uL if j=L.
be given in the fornjs)= ®jL:1|s(j),j) wheres is any func-
tion from 1, ... L t0 O,...k—1. (Here qubits or qubytes Here Py_1);=|k—1,j)(k—1j|®1,; is the projection op-
[14,15 refer to quantum bits or bytes of information fer ~ erator for finding thej component statgk—1,j) and the
=2 ork=2, respectively. other components in any state,,; andu; satisfy the com-

The presence of the paramejen the state and not as a mutation relationu; P, ;= Py, 1;u; modk for m=0, ... k
subscript, as in®i_,|s(j));, is required as the action of —1. AlSO P(.y1);=1—Pc1;. This follows from the
operators corresponding to the basic arithmetic operation&ct that the label spaces for each qubyte are one dimensional
depends on the value ¢f It is not possible to express this SO that the operator 4®|j)(j|®1,; is the identity on
dependence if appears as a subscriptoéind not betweeh  the Hilbert space spanned by tkk states]s).
and). This definition is implicit in that\/fl is defined in terms

An important function of the axioms is to provide prop- of V]-le. An explicit definition is given by
erties of the unary operatioB and the binary operations

IlI. ABSTRACT HILBERT SPACE MODELS

qu>¢(,(,1),]+vj++11qu>(k,l),j if 1<j<L

and X . For reasons based on efficient implementati®ac. L L n-1 L
V), it is quite useful to definé different successor operators, VJ-+ = Z unp(;&kfl),n[[ UPk-1)+ H UP -1y, -
Vj"t, for j=1,... L. These operators are defined to corre- = =) =1 @

spond to the addition ok!~*modk", where V; ! corre-
sponds taSin the axioms. These operators and those-for
and X correspond to the basic arithmetic operations.

It is to be emphasized that definitions of the and X are
given to show their dependence on t‘biél. Also they are
required by the axioms of arithmetic. The purpose is defi}I
nitely not to present the definitions as something new as
these operators are widely used.

For instance the widely discussed networks of quantum
gates are examples of the abstract models considered here for
k=2. In the networks the states #2"h are represented by Also if j=L then (v Y)*=1. To show tha¥/;"* is a shift, let
horizontal qubit lines and ordered products of gate operatorks) be a product state such that for eaoh=1,2,... L
represent operators iB(H 2""). Specific examples of this the component states  [s(m),m),uy|s(m),m),
for the basic arithmetic operations of addition, multiplication (U)2[S(m),m), .. ., (Um)* " *[s(m),m) are pairwise ortho-

normal. It then follows from Eq(2) and the properties of the
un, that any product stat¢§> is orthogonal to the state

. . . . V:"1s) and thatv;"* is norm preserving on these stafés).
The importance of these axioms lies in the requirement of the'i 2 J . .
'mp ! 1es | qu Assume that Eq. (3) is valid. Then for each

existence of binary operations,X with certain properties. The LI+ i
fact that some of the axioms may be redundant is of no importanck (V} *) =1. This, and the facts that for all tensor prod-
here. uct stategs), VJ-“|§> is also a tensor product state, which is

In this equation the unordered product is used because for
anyp,q, UyPpncommutes withu,P, , for m#n. Also for
n=] the product factor witj<I<n—1 equals 1.

There are two basic properties the operat‘dfsl must
ave: they are cyclic shifts and, for eagkL, they satisfy

(Vi hk=Vih. ()
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orthogonal tgs), show that\/j+l is a cyclic shift. The exis- based on the requirement that an algorithm must be able to
tence of a tensor product basis that is common to alhe  distinguish components ¢$) from components ofw). This

follows from Eq.(3). can be achieved by settig) ® |w)=|s*w) wheres*w de-

To prove Eq.(3) it is easiest to use Ed1). Sincevﬁll notes the concatenation wfto s. That is,s*w is a function
commutes withu,P,,, for all I<j and the commutation rela- from 1...,2 0 0,... k=1, wheres*w(h)=s(h) for h
tionqutn’jUj:UjP;&(n_l)lj andpn’jUj:UjP(n_l)‘j hold, one <L andS*_W(h)ZW(h_L) fOf h>L )
has for eachm=k As defined thet operator is unitary on the Hilbert space

spanned by all pairs of length numeral expression states.
m m Thus a reversible implementation of it is possible where the
(Vfl)m=(uj)mIHl P#(kl),ﬁVﬁll(Uj)m( IEl P(kl),j)- procedure makes use of the procedures for implementing the

VJ-“. Equation(5) shows that the procedure can be carried

HereP. ;=1 P, ;. Form=k the term with the product of ©OUt by carrying out, for each=12, ... L, s, iterations of
the projection operators gives 0 and the sum of the projecY; = Wheres; is the numbes(j) associated with the qubyte
tion operators gives unity. The desired result follows fromstate|s(j),j) in [s)=®}_y|s(j).j). Since+ is unitary, so is
the fact that (.].)k: 1. Also (Vfl)k: 1 follows directly from  the adjoint+'. Since+ was defined to correspond to addi-
the definition ofv,"*. tion modulo k-, the adjoint corresponds to subtraction

The above shows that informally the action\sf * cor- modulok®. That is, if +|s)®|w)=|s)®|s+w) then+]s)
responds to addition mdd of k'~! on the product basis. ®lstw)=[5)®[w).
This cannot yet be proved as addition middhas not yet
been defined. Also the adjoin¥/{ )" of V;"* corresponds C. Times

. - L J71 -
informally to subtraction mol of k' ". This can be seen Here a definition of multiplication is given that is based

Fhyty+rlo
from the fact that ;) vy "= 1, where on efficient iteration of+ and is similar to the method taught
L n—1 L in primary school. The method is efficient relative to that for

+1yt T T T +.
Vi) Z’j P(Q&k*l)’nunlﬂi Ple-nath +I1:[j Ple-nath - Reversibility of the operations requires that the operator
(4) X be unitary.(Caution: the adjoint ofx is not division)
This means that both input product states and the product
state with the result must be preserved. It is also convenient
to have one extra product state for storing and acting on
intermediate results. This state begins and end®asFor

"hitial states of the form|s,w,0,0)= |§>®|w>®|9>®_|9>,

This result is obtained using the commutativity of the shifts
and projection operators for different component systems.
It should be noted that the opera’[c)w‘gl play an impor-
tant role in quantum computation. This is the case eve

though for each product stas), the staté\/j+1|s) is also a
product state and is not a linear superposition of these states. X|s,w,0,0)=|s,w,0,5X W), (6)
The importance comes from the fact that these operators, -0 T/

along with their efficient implementation, are used to define ) ) ) )
the basic arithmetic operations for a quantum computer anyN€re|SXw) is the state resulting from the action sf. It is
to carry out quantum algorithms. For example in Shor’s fac-SUPPOSed to correspond to the result of multiplying, L
toring quantum algorithni17], they are used in the step in the numbers corresponding to the stggsandw).

which the functionf,(s)=y*modN is calculated for each In order to definex explicitly one needs to be able to
component statgs). Y generate the statd&’ X w) corresponding to multiplica-

tion of w by ki~1. For eachj=1,... L these states are

added to themselves times. The final result is obtained by

adding all the resulting states so obtained. Details are pro-
It is straightforward to define the plust() operation in  vided in the Appendix.

terms of ther”. To ensure unitarity the definition will be

based on states of the forfs,w)=|s)®|w) that describe

two L qubyte product states.

B. Plus

D. Required properties of theVJ“, plus, times

To define the+ operation IetVJ-*'=(VJ-“)I represent As was noted the operatok$]+1,+,>< must satisfy the
iterations of\/j“. Then + is defined by properties expressed by the axioms for modular arithmetic.
These include the axioms for arithmefig, 10] modified for

+[sy@|w)=[s)@V, "V, 1 vV wy=[s,s+w).  modularity and the presence bfsuccessors, and possibly
(50  axioms for a commutative ring with identifyL 1].
Properties that must be satisfied include that expressed by
Here the numeral expressige+w) is defined to be that Eq. (3) and the requirements that the successor operations
generated fronw) by the action of the produdﬁjLzlvfsi. commute with+, [i.e., +(1@V, ) =(1@V; ") +], the ex-
Note that the diﬁ‘eren\/j+1 commute. istence of additive and multiplicative identities, which are
For pairs of product states, which are first used here, théhe states|0) and |1)=V;*|0), and the distributivity of

domains of the functions andw must be different. This is X over +. Also + and X are associative and commutative.
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Proof of these properties from the definitions and ).  excited electronic state of the ion. This type of generalization
which has already been proved, is straight forward andwill not be pursued here.
will not be given here. Note that the proofs of some of
the properties do use the corresponding properties of the A. Representation of Numbers and Arithmetic Operations
numbers appearing in the exponents. For example, to prove in P
that addition is commutativéer_w>= |M>' Egs.(5) and The goal here is for states i P" to represent numbers.

2 give [stw)=I_y(V;)**™|0) and |w+S)  However, it is clear thata priori, neither the product states
=111 (V] )" **]0). The equality of these two states fol- |t)=®,,4|t(a),a) nor linear superpositions of these states

lows from s, +w,=w,+ s, for eachh. represent numbers. For thig, the reason is that there is no
association between the labelsand powers ok; also there
IV. PHYSICAL HILBERT SPACE MODELS is no association between the range Betf t and the num-

bers 0,1... k—1.

The Hilbert space models described so far are purely ab- This can be remedied by use of unitary maps fref't™
stract in that they do not refer to any physical propertiesio /P that preserve the tensor product structure. One way
They do, however, serve as a common reference point fasf doing this is to letg and d be any bijectionsone-one
models based on physical properties of physical systemgnto) maps from 1,2...,L to Aand from 0,1... k—1 to
They also give a useful method to associate numbers witB. For each pairg,d, and eachj there is a corresponding
guantum states of these systems. unitary operatowg 4 ; that maps statefh,j) in H;, where

To begin, letA andB be sets oL andk different physical 0=h=k—-1 to states inHy;, according towgg4;lh,j)
parameters or values of some physical properties or observ=|d(h),g(j)). This induces a unitary operatoWVg g
ablesA andB. The A parameters are used to distinguish or = ® [_;Wg q ; from the product spack 2" to HP", where
label different components of a composite quantum system L o
andB is a set of values of a different physical property as- Wy, dlS) = ®7-1Wg,q,iS(i).])
sociated with each component system. For exanfpluld _ oL . S\ ed
be a set ol arbitrary locations of component spin-1/2 sys- ®J':1|d[§(”]’g(”> |§9>' )

tems on a two-dimensional surface aBe-{T,|} denoting Here|sg) is the physical parameter based staté¢df"” that

spin aligned along or opposite some axis of quamlzatlontorresponds, undew, 4 to the number statle_s) in 7 arith.

Another example, representative of NMR quantum computa- . . . .
P b g P This process can be inverted, using the adJMIigd to

tion [6—8|, hasA as a set of hyperfine splittings of nuclear- late phvsical ter statesHPMY ber states i
spin states anB={T, | }. Here the values oA must contain refﬂﬁ] poﬁsgc:asparame er state 0 humber states in

sufficient information so the physical process can distinguisiﬁ
between the different nuclear spins.

Ty — t
Let t be any function from A to B and |[t) Wgad|'£>_®afAWg,d,g‘1(a)|E(a)’a>
= ®aealt(d),a) be the corresponding tensor product state. _ 1 1 _,d7t
Let HPW=w,..H, be thek" dimensional Hilbert space = ®aeald [t(@)].9 (a)>_|39*1>' ®)

spanned by all the statgs). Each, is a k-dimensional g1 .
Hilbert space spanned by states of the fdtma), where Herel'gg_l) is the number state ifit 2" corresponding to

heB. the physical statdt). Note thatW$'d=Wg—1yd—1, where
The presence o& as a separate part in each componenig=! d~! are the inverses ofy and d, and Wg-14-14

state|t(a),a), and not as a state subscript adfita)),, is IWg do1(a)-

essential as an algorithm uses the valueab distinguish The operatorsW, 4 also induce representations of the

+, and X operators on the physical parameter states

the different component systems. This is based on the Vie\ﬁﬁ—l
HPMY. For theV;*, one defines/§"* by

that the state of the composite quantum system contains 3 J
the quantum information available to the algorithm. In par-
ticular the states must contain sufficient information so that
the algorithm can distinguish among the component systems.
This is espemally the case fof any alg_onthm wh_qse dy”a’.“"’i\n equivalent definition can be given by direct reference to
are described by a Hamiltonian that is self-adjoint and t'mpthe mansa d and the operatong. . . -
independent. This is an example of Landauer’s dictum “in- P P 9.d.j-
formation is physical”[1]. L n—1

This descrlptlonAcan be generalized in that the physical Vg:rlzz. ug(n)P#d(kfl),g(n)]:.[ ug(l)Pd(kfl),g(l)
property observablB of the component systems can depend n=l I=]
on the values of in A. An example of this, which also has L
different component systems replaced by different degrees of + H ud Pak_1) a(l) - (10)
freedom of one system, is shown by an ion trap example =y 9 (=1).8()
[18]. Here the states of one degree of freedom are the ground
and first excited state of the ion in the harmonic well trap.Here Pd(k,l),gu):wgmPk,uwgydv, and Ug()
The corresponding states of the other are the ground and firstwg,d,,u|w;d,, .

Ve =Wy gV tWY . (9)
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In a similar fashion one can use th&/,, to define Grover’s algorithm[19] and Shor’s algorithn{17] are
the operatort 4 4 acting on the physical parameter states inexamples of the two types of algorithi1]. Grover’s algo-
HPWYe H PN, The definition is based on that given for the rithm corresponds to a quantum search of a set of data, where

operator+ acting onH P HP" [Eq. (5)]. One has each element of the database corresponds to a quantum state.
The goal is to find the one unknown but unique state with
+g,d:(Wg,d®Wg,d)+(W;,d®W;d)- (11)  some property different from the others. Here the quantum

state representing each data element will be taken to be a
. , - ' . tensor product of qubit states. This is not necessary, as Lloyd
The operatorXq ¢ is defined similarly fromx as defined in [20] has shown. However, the price for this is the need for an

the Appendix A. exponential overhead of resources
It is clear from the above that there is no unique corre- P '

spondence between states in the arithmetic and physical Hil- Here the relevant feature of Grover's algorithm is that it
P . L phy can be both defined and implemented&R"™ with no ref-
bert spaces. There atd possible bijectiongy andk! pos-

ith
sible bijectionsd. Thus some or many of the!k! unitary erence to numbers represented by states(fi™. To see

. . . this letk=2 andB={1,]|} for spin up, spin down. The ini-
operatorsW, 4 associate a different physical parameter state. . a —
|§g) with the number statés). Conversely theg andd de- Tial state can be written ag=(1N)Zt|t), where |t)

+ > . =®,.alt(a),a) andN=2".
pendence ofVy 4 shows that many different number states Vol s ooe ) orithn{19] consists of itera-
|Eg> can be associated with the physical stdje The mul- Y Y d

ity of th q 3 ds on the sfsk tions of the unitary operator WI,WI; on HPY, Herel,
iplicity of these correspondences depends on the stafes _ . . - u o
or |t) and the choices of andd. 1—-2|1)(1| where|1) is the state with alL systems in the

It follows from the unitarity ofW, 4 that if the operators T State'lt_u:1_2|t_U><t_u| and W is the Walsh Hadamard
Viﬂ’ +, X, and the statefs) in H N satisfy the axioms transformat_ic_)n. Her{at_u> is the unknown produc_t state that is
of modular arithmetic, then so do the operataf§;"*,  to be amplified, andV=® a(1\2) (0, + o) is a tensor
+gdr Xgd, and states#sS) in %P, In this way all the Product of single qubit operators. The, o, are the Pauli
states|s) in HP" and the operator¥/§ ", 444, Xgq SPI operators ang=W|1). _
are a model of the axioms of modular arithmetic. The fact SNOr's algont_hn[l_?] folr fmdmg the two prime faptors of
that superposition of the staté_sg) plays an important role ?Ir?rgre nrurgbetr 'St thterd|ffrerenr':t|nnthr2£)|trls e_?ﬁientlalnthbat the n
in quantum computation does not affect this conclusion. f?onswoths gteuz ;?h?megrﬁﬁ; UMbErs. S can be see

This argument also applies to any unitary midpfrom P 9
H3MN 10 1P independent of whethad is tensor product 1
preserving or not. However mos+tlothhese maps are not of — » |§>|i_>:— > |§>|fm(s)>
interest because the operatdy®/;"U" are not physically N s VN s
implementable(Sec. V). Also the statedJ|s) may not be

stable or even preparable. N

Zl -

2 (W) 2 exp 2N fin(s)).

B. Grover’s and Shor’s algorithms (12)

Since the spacel 2"'™" and’{P", and arithmetic models Here|i) is the initial product state, usually shown as a con-
constructed on these spaces are unitarily equivalent, orgiant sequence ofs) f, is a numerical function defined by
might think that dynamically an algorithm is independent of f,(X) =m*modM, where m andv are relatively prime. The
the unitary map used. This is not true in general even if on@umberM, which is to be factored, antll are related by
restricts the maps to have the formWf 4; some algorithms = M*<2"<2M?[17,23.
are independent of these maps and others are not. Equation(12) shows that the dynamics of Shor’s algo-

To see this one notes that dynamically any quantum algorithm can be initially formulated as a unitary step operator
rithm carried out on a composite physical system must b&Jsy, acting onH arith However, physically, the dynamics is
sensitive to the values of the physical parameters for theepresented by the operatwg,dUShwg'd acting onH P".
system. This means that the physical dynamics of an algoFhis shows that physically the dynamical implementation of
rithm must be described by some evolution operator actinghor’s algorithm depends on the numberiggandd of the
on the states ir{P"Y or some other physical model of the physical parameter sefsandB.
system states. The physical dynamics are not described on More generally the requirement that the numerical func-
H A, tion calculated by the algorithm be invariant under any uni-

It follows that any algorithm that can be described intary map fromH 2" to 4 P"Y means that the physical imple-
terms of states based on physical parameters is independengntation of the algorithm depends on the unitary map. For
of the unitary mapdV, 4. The dynamics do not depend on example, leWV, 4 be a unitary map as defined by E@) and
these maps because what number a physical state represeAtise a set of space locations of spin-1/2 systems with spin up
is irrelevant to the algorithm. On the other hand, algorithms(1) spin down () representindgthroughd ) 0,1. Then the
that compute numerical functions must be described omlgorithm dynamics clearly depends gnas g determines
H3M as number is of the essence for these. It follows thatvhich space location is associated with which power of 2. A
the dynamics of these algorithms depends on the mMaps. similar argument holds for the dynamics dependencel.on
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Also the correct interpretation of the measurement of the Efficient implementability for the basic arithmetic opera-

output depends on botpandd. tions also implies that there exist Hamiltoniahk; ; and
g q that efficiently carry outt 4 g and X 4. Since the defi-

V. EFFICIENT IMPLEMENTABILITY OF ARITHMETIC nitions of + and X are given in terms of thés?’+l [Eq. (5)
OPERATIONS and Appendix 4, it follows that if the Vd 1 can be effi-

Probably the most important requirement is that of effi- ciently implemented, so caflg q andxXq 4. For MICToScopic
cient implementability of basic arithmetic operations. This systems the fact that the timés,t. required for these
means that, for states of a physical system to represent nurffPlementations are greater than those forfg"* means
bers, it must be possible to physically implement these opthat the values ok for whicht. <tge. andt><<tdec may be
erations and the implementation must be efficient. This inless than those possible for just tig*.
cludes at least the operations described by the axioms, as Another aspect of the efficient |mplementab|I|ty condition
efficient implementation of these is a necessary condition fois that the thermodynamic resources required to implement
states of a quantum system to represent numbers. va& L must be polynomial and not exponential jin This

In the case of thevg;j”, physical implementability takes account of the fact that all computations occur in a
means there must exist a physically realizable Hamiltoniamoisy environment and one must spend thermodynamic re-
Hg such that for some time,, Ug () =e |ngt] corre-  sources to protect the system fr_om errors. This is especially
sponds to carrying Om,d +1 on the states of the system. As the case for quantum computation fOI’.WhICh entanglements

d, +1 e +1 of states that develop as the computation progresses must be
Vg ~ is unitary, one hae 0i'i=Vgj . The presence of protected from decoheren§23—25. Methods of protecting
the indicesd,g shows the dependence HG, ontheWyq.  these states include the use of quantum error correction

Efficient implementation means that the timjlemust be  codes[26] and possibly generation and use of Einstein-
short. For microscopic systems this is equivalent to the conpodolsky-RoseEPR) pairs[27]. These considerations are
dition thatt; must be less than the decoherence ttje. If  another reason why it is important to minimize the time re-
the Ham|lt0n|an and system are such fb(é’g is carried out  quired to implemenvg:j”.
in a numbem; of basic switching steps of duratiah, then There are many physical systems where the resources

=1j/A<tgec/A [5] must hold. needed to implementy;"* (other than those involved in the

FOT macroscopic systems the efficiency requirement ighift) are eltherlndependent pbr are at most polynomial in
different astyec<A. In this casen; must be polynomial and | The needed resources do not depend exponentialjyoon
not exponential irL. This means that;=O(L®) with c=0 | These systems satisfy the requirement of efficient imple-
andc not too largeO() means “of the order of.” mentability. There are others that do not. Consider, for ex-

The efficiency requirement is much stricter for micro- ample, a one-dimensionélD) lattice of systems where the
scopic systems than for macroscopic ones. The reason is thiatensity of environmental interference and noise grows ex-
for most systems .. is small[5]. This is one reason why ponentially with j. Here the thermodynamic resources
quantum computers are so hard to implement compared t@eeded to protect the system from decoherence, etc., would
macroscopic computers. However, the requirementrthbe  grow exponentially withj. Another simpler type of system
polynomial inL would also apply to any microscopic system that would be excluded would be a row of isolated harmonic-
for which tgec/A is very large,(e.g.,tqec is several hours or  oscillator potentials each containing a single spinless par-
even longer. ticle. The proposed two qubit states are the ground and first

The above is rather general in that it assumes that for eacéxcited states in the well. However the spring constants of
j there is a distinct Ham|lton|ah1  to |mpIementVd -l the wells depend exponentially gnFor example, the spring
However for many systems all th\e‘d 1 may be |mple— constantp(j +1) of thej+ 1st well is related to that for the
mented by just one Hamlltom&ﬁg Wlth the different values jth well by p(j+1)=kp(j).
of j expressed by different states of some ancillary systems. For networks of quantum gates efficient implementation

The requirement of efficient implementation is the reasorpf the basic arithmetic operations has two components. The
that theVy"* are defined separately for eaj:mather than number of quantum gatesr step$ in the network must be
defining them fromvg,fl by Vd +1_ (Vd +1)k1 _ Here Polynomial inL, as in Rgfs.[lz,liﬂ, and the resources
Vs need_ed_to |mpleme.nt |nd|V|dua! qu_a_ntum gates must be poly-

1 nomial in the locations of the individual systems addressed
by each gate. In the physical models described above, this
second requirement is not satisfied as resources needed to

)~ corresponds to the successor operatlolnl‘” in axi-
omatic arithmetic[9,10]. The exponential dependence pn
shown by this equation shows that if efficient implementa-

d,+1 ;
tl?jn+\1/vere required just fowy’; then carrying out _O_f . implement a quantum gate between fltle andj’th qubits
V is not efficient as exponentlally many repetitions of

9.] k/d 1 depend exponentially onandj’. The fact that one would

the procedure fo would be required. not build such models or could not build such models for
For many phy5|cal systems, efficient implementation ofjgrgeL is not relevant here.

the V§* can be carried out by shifting the procedure for  The condition of efficient implementability also places re-
|mplementat|on ol/g'; * along pathg in A until a component  strictions on the values df allowed fork-ary representa-
system in the staﬂeg(m is encountered. At this pointimple- tions. In general values df are used that are quite small
mentation of\/ Lis started. (e.g., k=2, k=10, etc). Except for special casek=1
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(unary) representations are excluded as arithmetic operations (6) for just onea there are na’ such that {/,/)*=V,.

are exponentially hard. Also the value kfcannot be too The properties reflect those possessed byMfé, note
large. One reason is that there are physical limitations on thespecially Eq(3). Properties 3—6 can be used to establish a
amount of information that can be reliably stored and distinnumbering of the label sek with the maximum and mini-
guished per unit space-time voluri20]. Also the require- mum labels given by properties 5 and 6. The commutativity
ment of efficient implementation enters in that for lalge and cyclic shift propertief16] give the existence of a s&
(e.g., k=10°), even a simple process such as adding twaoof pairwise orthogonal subspaces of states such that for each

single digit numbers becomes quite lengthy. a and each subspag@in B, V.8 is in B and is orthogonal
to B. In the special case that the subspaced3iare one
VI. IS THE MODEL “H ®th NECESSARY? dimensional, the subspacgsin B correspond to pairwise

. . _ orthogonal stateg3) such that for eachB) in B, V,|8) and
The preceding was based on first constructing a purelygy are orthogonal.

mathematical Hilbert space mod&1"" for modular arith- One can use property 3 along with iterationg,)" for h
metic and then using this to construct a physical model on a0,1,.. k—1 for eacha to generate a cyclic ordering or
spaceH P that has the same tensor product structure agumbering of the states if and show that the set contains
H2"". The question arises if the purely mathematical modeL states. However none of this is sufficient to select a state
based orf arith g necessary. Can one go directly from the a5 the zero state. This must be done by making an arbitrary
axioms of modular arithmetic to physical models without thegpgice.

use of the model based d'_‘narith? . (7) There is a unique statigd,) in B which is the zero
In general this is possible as any structure, physical Ogiate. -

mathematical, that satisfies the axioms, is acceptable. How- Baged on this choice one can associate with each string of
ever, the intermediate mathematical models serve as a useffimpers, n_,n,_4,...n,, ....ny,n;=n with 0<n,<k

reference point for discussions. This is clear from the litera-_ 1 or eachl a unigue statég,). The association is given
ture in which much use is made of such a model. For, -
instance any reference to product qubit states
|0),/01101D...), etc. and linear superpositions of these L
states is implicitly using a model based ®ff"". |Bn) = [1 (Va)" Bo)
Another point, already noted, is that the axioms of arith- =1
metic, modular or not, make no mention of efficient imple-
mentability. Models based on unary representations are ju
as valid as are any others. This is true even if additiona
axioms are added giving the properties of Vfél operators.
This raises the following questions: Suppose one start

here the properties of thé, show that the stateg,,) for
%};fferent number stringa are orthogonal. N

The above can also be used to define addition as iffiFEq.
and show thatg,) is the additive identity. This and use of

With an arbitrary quantum Svstem with states in a ST4EEY the discus;ion in Sec. I suggests that these operators ar\d
yq 4 pd the associated states do satisfy the axioms of arithmetic

whose tensor product structufiéany) is unknown. Can op- o4l However examples can be constructed to show that
erators, indexed by value_s In a set qf physical parameters'f is very unlikely that the existence of operators with these
the system, be defined Wlt_h properties su_ch that they_ satis roperties are sufficient conditions fatP" to have a tensor
the axioms .Of modular amhmetlc? As will be seen in the roduct structure suitable féeary representations of length
following, this seems possible. If one also requires that thg ¢ one adds the additional requirement that these operators

opgr'ators gnd those for the bas'lc arithmetic ohperatlons bﬁe efficiently implementable, then it is an open question if all
efficiently implementable, does it follow that{P™ must  yos0 conditions are sufficient to require thaf" has a
have a tensor product structure based on the defmed_ OPEIgkhsor product structure suitable forary representations of
tors and their properties? At present, the answer is noltength L.
known.

To be specific, the interest is in constructing a model of
arithmetic modk" directly on the state spad&P" of a quan-
tum system where/P"Y has an arbitrary tensor product  Several points about the paper done here should be noted.
structure. A sef of L operatorsV, on HP" indexed by the  The state descriptions of composite quantum systems used in
physical parameteraeA is required to have properties that this paper have not taken account of whether or not the com-
are necessary conditions " to have the tensor product ponent systems are distinguishable by properties other than
structure suitable for lengthk-ary representations of num- those explicitly shown in the states. This is based on the

VII. DISCUSSION

bers. These properties are, consideration that the only properties used by a quantum
(1) eachV, is a cyclic shift; algorithm are those expressed explicitly in the states and op-
(2) the V, all commute with one another; erators representing the basic arithmetic operations. For in-
(3) for eachaeA, if (V,)"#1 there is a uniqua’+a distinguishable systems, it is suspected that taking account of
such that ¥)*=V, : their bosonic or fermionic nature, as has been done else-
(4) for eacha’, if there is ana#a’ such that ¥,)¥  where[28,29, will not change the results obtained. How-
=V, , thena s unique; ever, this must be investigated.
(5) there is just one for which (V,)*=1; The condition of efficient implementation of the basic
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arithmetic operations is the main restrictive condition ondynamics are exponentially smaller than those represented
states of quantum systems that represent numbers. As notby the system on which the dynamics is acting. States of a
it excludesk=1 and largek. It also greatly restricts which Composite quantum system satisfying the conditions for
unitary operators front 2" to HP"Y are allowed. To see kLary number representations of lendthrepresent the first
this, note that any unitary operatoy tensor product presery- K~ numbers. Numbers appearing in the dynamics range up to
ing or not, from 2" to 7 P"Y gives a model of the axioms kandL= Io_gkk . This expo_nenyal decreasell'.s a consequence
of modular arithmetic ot ""Y. The numbers are represented of the requirement of efficient implementability of arithmetic

. 100t operations.
by the stated)|s) and the basic operators yV; “U" and The conditions discussed in this paper, including the re-

(UeU)+(UT®UT") and similarly forx. However most of  quirement of efficient physical implementability, also apply
theseU can be excluded because the corresponding basig the quantum states of ancillary systems that are used to
operators ort{P" are not efficiently implementable. Also implement the dynamics of an algorithm. This is evident in
for mostU there is no way to physically prepare the statesany algorithm that interleaves evaluation of some numerical
U[s). This is the main reason for the restriction thatbe  function with carrying out an action until a specified function
tensor product preserving with the formbf, 4. value is reached. For instance, implementation of\fy L
Unfortunately there is no way to define exactly whidh  e.g., by use of a head or quantum robot with an on board
operators are allowed and which are not. The reason is thauantum compute36], would require a quantum computer
there is no way to precisely define the meaning of physicalith at leastO([log.(L)]+1) qubytes for am-ary repre-
realizability. One needs an hypothesis for physical realizabilsentation of numbers up to ([ — ] denotes the largest inte-
ity equivalent to the Church-Turing hypothef®d,32,3Qfor  ger in) Here the dynamics that carries out these operations is
computable functions. Earlier attempts to characterize realizsubject to all the requirements described so far. It is also part
able physical procedures as collections of instruction®f the dynamics for implementing§y ™"
[33,35, or state preparation and observation procedures as These considerations suggest that it may not be possible
instruction booklets or programs for robdt34] have not to describe the representation of numbers by states of a com-
been generally accepted. This problem also arises in descriposite quantum system without the use of states of other
ing exactly the class of tasks that a quantum rdi86] can  Systems already assumed to represent numbers. These states
carry out. are part of the dynamics of the basic arithmetic operations.

Another aspect of the representation of numbers by quan- Whether this is true or not is a question for the future.
tum states is that the sets of numbers 1 L and O, . ..k However, if this impossibility is the case, one is helped by
—1 have been used to descrikeary representations of Lhe chtt;t]hagthe ngml_aer of statets_ “eeded”to :ﬁpretshent num-
numbers of length. by quantum states. For example num- €rs In the dynamics IS exponentially smafler than theé num-

ST . ber of states representing numbers of the composite system
bers in either of these sets are used to descrlbevg-hb

: Iso th finiti ) ) on which the dynamics acts.
operations. Also the definitions of and X were given in Finally it should be noted that much of the discussion,

terms of numbers of iterations f* and +, respectively. inclyding the efficient implementability condition, which has

Two components of this should be noted. One is that thgyeen applied to microscopic quantum systems, also applies
rolg of these m(:mtlaers is limited to the dynamical implemens, macroscopic quantum systems. In this cagg<tg, SO
tation of theVg ™", +44, and Xg4. For example, any the [imitation that the number of steps 4styec/te, iS NOt
method based on a Hamiltoniadf, that implement&/§"* as  applicable. Instead efficient implementation means that there
a translation of a procedure for implementm@l+l byj sites  exists a dynamics such that the number of steps needed to
alongg requires motion along until the siteg(j) is reached. carry out arithmetic operations is polynomial lin Also the
This can be done by repeated subtraction of 1 fjpimter-  states of the system used to represent numbers are those that
leaved with motion of some system, such as a head or quamre stabilized by the interactions with the environment, the
tum robot{36], alongg until g(j) is reached. Also the “carry “pointer states”[37—39. The fact that these conditions are
1" operation, which is part of\/g;fl means that motion much less onerous than the limitations on microscopic sys-
along the remainind. —j elements of patly must be built tems is shown by the widespread use of macroscopic com-
into Hg. puters and counting devices and timers.

Similar arguments apply for the efficient carrying out of ~ In conclusion it is re-emphasized that this work is one
the + 4 4 operation as this requires up katerations of\/g'j*l approach to making explicit the assumptions and conditions
for eachj. One method of implementation requires' inter- involved in the repregentatlon of natural n_umbers by states.of
leaving the implementation of a procedure ngl with sub-  duantum systems. It is based on separating the mathematical

tractions of 1 from a statls;), Eq.(5), until |0;) is obtained.  ¢oncept of numbers, as models of a set of axioms, from the
Implementation of these operations by quantum systemgh_ys'cal. concept of eff'C'er.“ |mplementap|llty of the ba3|c_
means that numbers up toandk must also be represented arithmetic operations described by the axioms. Whether this
by quantum states of systems. These systems can either BBProach will turn out to be a good one or not depends on
mobile and part of the head or fixed external systems. Thul/ture work.
the arguments and conditions already discussed apply to
these representations too.
The other component is that the magnitudes of the num- Discussions with M. Peshkin on several points of this
bers represented by the states of systems that are part of theper were much appreciated. This work is supported by the
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APPENDIX: DEFINITION OF X Here +, , carries out the action defined in.Eqs) on the
mth andnth product state. Thenth state remains unchanged
The goal is to define a unitary times operator according tan this action.s;, is the numbes(h) in the state component
Eq. (6) based on efficient iteration of the operator. To this  |s(h),h) of |s). Note that since each operator in the right-
end defineQ;(2,3) forj= . L as operators on the sec- hand product of the equation is unitary, soXs
ond and th|rd product states that convisv,w0' ~1,7) to To see thatx as defined above does carry out the in-

|s,w,w0!,z). It has the effect of mu|t|p|ym¢W0]> by k. An tended multiplication operation on initial states of the form

efficient reversible implementation of this, acting on the stateSW.0.0) one carries out the action of thé.2 1 operators
shown ‘above. The steps give

|s,w,y,z) is obtained by subtraction, még of the L—|

+ 1st component qubyte state pf) from the Lth compo- +,3 (+34%
nent state ofy), shifting all the elements dfy) by one site |s,w,0,0) “Is,w,w,0) T |s,w,w,s;W)
and putting the result of the subtraction at the newly opened ~~ ~~ — ~~ T T
first site. This works because, [f)=|w0!~*) then |y, Q123 (+30)%
=|W, _j+1). The result|0, ), of the subtraction is moved to — |s,w,w0,s,W) _> |s,w,w0,s;t+s,t0) - - -

the first site ofly) after the shift. One has

QuL(2,3
- .. Lil
Qj(2'3)|§'W’X’Z>:|§’W’y_,’z>’ (A1) |§:ﬂ,9,51W+Szt0+ +5.t0 )
Note that Q. (2,3) acting on |—,w,w0-"' —) gives
where |y/,)=ly) for 1<j<L-1 and [y;) |—,w,0,—) in accordance with E¢(6) as|w0"-)=|0). Here
=]y )Olw ] J+l> Here@ denotes subtraction méd Note  |s;w) denotes s; iterations of adding |w) to [0);
thatQ (2,3) is unitary. alsostOJ*l denotes the result & additions ofw0’ 1) to

The operatorx is defined from theQ;(2,3) and+ by  the 4th product state.
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