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Representation of natural numbers in quantum mechanics

Paul Benioff*
Physics Division, Argonne National Laboratory, Argonne, Illinois 60439

~Received 15 March 2000; revised manuscript received 19 May 2000; published 8 February 2001!

This paper represents one approach to making explicit some of the assumptions and conditions implied in
the widespread representation of numbers by composite quantum systems. Any nonempty set and associated
operations is a set of natural numbers or a model of arithmetic if the set and operations satisfy the axioms of
number theory or arithmetic. This paper is limited tok-ary representations of lengthL and to the axioms for
arithmetic modulokL. A model of the axioms is described based on an abstractL-fold tensor product Hilbert
spaceH arith. Unitary maps of this space onto a physical parameter based product spaceH phy are then
described. Each of these maps makes states inH phy, and the induced operators, a model of the axioms.
Consequences of the existence of many of these maps are discussed along with the dependence of Grover’s and
Shor’s algorithms on these maps. The importance of the main physical requirement, that the basic arithmetic
operations are efficiently implementable, is discussed. This condition states that there exist physically realiz-
able Hamiltonians that can implement the basic arithmetic operations and that the space-time and thermody-
namic resources required are polynomial inL.
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I. INTRODUCTION

As is well known numbers play an essential role in ph
ics and in many other disciplines. The results of both exp
mental work and theoretical computations are often given
numbers. Comparison of these numbers is essential to
validation process for any physical theory such as quan
mechanics. As inputs to or outputs of computations or
periments, numbers correspond to states of physical syst
From an information theoretic viewpoint, this correspo
dence is essential as these states carry information. As
dauer has emphasized, ‘‘Information is Physical’’@1#. This is
taken very seriously here.

However, the fact that many states of many physical s
tems correspond to numbers, has, for the most part, b
assumed and used implicitly. There has been little attemp
make explicit the assumptions and conditions involved
representing numbers by states of physical systems.

This paper represents one approach to making some o
assumptions and conditions explicit. The emphasis is on
mathematical and physical aspects in the representatio
numbers by states of physical systems. No new model
computation are presented. However making the assu
tions explicit does offer some insight into the importance
various conditions that may not have been realized so far
example~Sec. V! is the essential role played by the conditio
that there exist physically realizable dynamical operators
can efficiently implement basic arithmetic operations. T
fact that these conditions are satisfied for a wide variety
systems, as shown by the ubiquitous existence of compu
does not detract from their importance.

Such a study is also relevant to the development o
coherent theory of mathematics and physics together, wh
in one form or another, is a goal of many physicists@2–4#.
Any such coherent theory must take account in detail of h
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numbers are represented by states of physical systems.
In this paper considerations will be limited to quantu

systems. This is not a serious limitation because of the
sumed universal applicability of quantum mechanics o
related theory such as quantum-field-theory. In this case
physical systems are quantum systems and all states of t
systems are~pure or mixed! quantum states. This is the cas
whether the systems are microscopic or macroscopic
whether macroscopic systems can be described by clas
mechanics.

For quantum systems numbers are represented by te
products of states of different degrees of freedom of a s
tem. Usually the system is composite with each degree
freedom associated with a component system. For mic
scopic systems one condition systems must satisfy is
they have states for which the switching timetsw , is short
compared to the decoherence timetdec or tsw!tdec @5#. This
is a dynamic condition as it is based on the Hamiltonian
the systems including their interaction with other syste
and the environment.

This condition eliminates many state spaces of mic
scopic quantum systems for representation of numbers
two-dimensional example would be the state space base
two highly excited states of nuclei that have half-lifes sh
compared totsw . On the other hand, spin projection states
spin-1/2 ground-state nuclei in molecules in a magnetic fi
are suitable and are used in nuclear magnetic reson
~NMR! quantum computers@6–8#.

Macroscopic quantum systems are such thattsw@tdec for
all states of interest. In this case the systems are candid
for number representation for classical computation if
systems have states that are stabilized by environmenta
teractions for times long compared to the switching tim
The widespread existence of macroscopic computers sh
that bothtsw@tdec and environmental stabilization occurs fo
many quantum systems.

Because of the recent widespread interest in quan
computing, the emphasis of this paper is on number rep
©2001 The American Physical Society05-1
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sentation by states of microscopic quantum systems. H
ever most of the material also applies to macroscopic s
tems.

The first step in giving an exact meaning to the repres
tation of numbers by tensor product states of quantum
tems is to specify exactly what natural numbers are. With
such a specification all computations are meaningless ph
cal operations. Here the axiomatic approach is used by
fining a nonempty set as a set of all natural numbers if it
model of the axioms of number theory or arithmetic@9,10#.
These axioms are discussed in the next section along
changes needed to account for the limitation of this pape
tensor product states with an arbitrary but fixed finite num
L of components, ork-ary representations of lengthL. The
corresponding arithmetic becomes arithmetic modulokL.

It is possible to model the axioms directly on a physic
Hilbert spaceH phy describing a composite quantum syste
with L components. However the literature on quantum co
puting makes much use of product qubit states of the fo
us& wheres is any function from 1,2, . . . ,L to $0,1%. Since
the Hilbert space of these states is a very useful refere
base for discussing quantum computation that is indepen
of any physical model, this approach will be used here.

To this end a purely mathematical model of these axio
is described in Sec. III that is based on a tensor prod
Hilbert spaceH arith5 ^ j 51

L Hj of Lk dimensional Hilbert
spacesHj . Unitary operators on this space are defined
correspond to the basic arithmetic operations, succes
plus, and times, whose properties are given by the axio
The presence ofL successor operators, one for each powe
k, rather than just one as described by the axioms, is ba
on the condition of efficient implementation discussed la
on.

Tensor product states of physical properties of mic
scopic composite quantum systems belonging to the Hil
spaceH phy are discussed in Sec. IV.A priori these states, a
products over a label setA of L physical parameter values, d
not correspond to any number. Also operators on these s
are meaningless regarding any numerical interpretation.

This is remedied by describing tensor product preserv
unitary operators fromH arith to H phy. For each of these
operatorsH phy, along with induced representations of th
operators for the basic arithmetic operations, become
model for the axioms of modular arithmetic.

So far nothing has been said about the physical realiza
ity of any of these models of the axioms. This is especia
relevant for the operators as they are many system nonl
operators. This is remedied in Sec. V where the import
condition of efficient implementability of the basic arith
metic operations is described. In essence the condition
quires that a composite quantum system be such that t
exist physically realizable Hamiltonians that can implem
the basic arithmetic operations. In addition the space-t
and thermodynamic resources required for implementa
must be polynomial inL. The importance of this condition
rests in the fact that it is additional to and independent of
axioms of arithmetic. To see this one notes that there
many models of the axioms that do not satisfy this requ
ment. A simple physical model is any one based on an un
03230
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representation of the numbers as most arithmetic operat
are inefficient in this representation.

The question arises if the use ofH arith can be bypassed
by modeling the axioms directly onH phy, whereH phy has
an arbitrary tensor product structure. In general this is p
sible as any structure satisfying the axioms is accepta
The discussion of this in Sec. VI is based on a description
properties of a set of operators indexed by a set of phys
parameters. The properties are also defined to address
question of necessary and sufficient conditions to concl
that H phy must have a tensor product structure suitable
lengthLk-ary representations of numbers.

A final section discusses some other aspects and o
questions resulting from this paper. The importance of
efficient implementability condition in excluding most mod
els of modular arithmetic onH phy is noted as are some as
pects of the use of numbers to describek-ary representations
of lengthL @11#.

It must be emphasized that the work of this paper is o
attempt to make explicit the assumptions and conditions
are assumed implicitly in the representation of numbers
states of quantum systems and in work in the literature
quantum computing. Examples of this work are given in p
pers by Beckmanet al. @12# and Vedralet al. @13# that de-
scribe networks of quantum gates to carry out basic ar
metic operations. The description is in terms of unita
operators onH arith ~extended to include ancillary qubits! as
ordered products of polynomially many elementary gate
erators. The distinction between physical models, with
associated requirement of efficient physical implementati
and mathematical models, is not maintained~and is not
needed! in the papers. Also efficient physical implementab
ity implies more than minimizing the number of ancillar
qubits and restriction to polynomially many gate operatio
These aspects are discussed more in Secs. III and V.

II. THE AXIOMATIC DESCRIPTION OF NUMBERS

The first step in making explicit what is involved in th
representation of numbers by quantum states is to define
natural numbers. One method of doing this is to follow ma
ematical logic and define any nonempty set to be a se
natural numbers if it is a model for the axioms of arithme
or number theory@9,10#. A model for any axiom system is a
collection of elements in which all the axioms are true.

Here the main interest is models of arithmetic based
Hilbert spaces that are tensor products of an arbitrary
fixed number of component spaces. As a result the axiom
be satisfied are those for arithmetic moduloN where N is
arbitrary but fixed. This arithmetic satisfies some of the a
oms for all natural numbers. Others need to be either dele
or modified. It also satisfies axioms for a commutative ri
with identity @11#.

The exact form and content of axioms for modular ari
metic is not important here. What is important is that bo
the arithmetic and ring axioms have in common the requi
existence of binary operations1 and 3 with certain prop-
erties. Also an unary successor operationS is required by the
arithmetic axioms. The properties that the binary operati
5-2
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REPRESENTATION OF NATURAL NUMBERS IN . . . PHYSICAL REVIEW A63 032305
must have include commutativity, associativity, the existe
of identities 0 andS(0) for 1 and3, and the distributivity
of 3 relative to1. Also S commutes with1 andx3S(y)
5x3y1x for all x,y.1 The arithmetic axioms defining a
order relation and the induction schema are not considere
they are not needed for the purposes of this paper. How
it is useful to keep in mind that the ordering axioms estab
the discreteness of the natural numbers in the sense that
is no number betweenx and its successorS(x).

III. ABSTRACT HILBERT SPACE MODELS

The next step is the description of a purely mathemat
model of these axioms based on whatever mathematical
tems are appropriate for the physical systems being con
ered. Since interest here is ink-ary representations of lengt
L of natural numbers for composite quantum systems
model based on an abstract Hilbert spaceH arith is needed.
To this end letH arith5 ^ j 51

L Hj be anL-fold tensor product
Hilbert space, whereHj is a k-dimensional Hilbert space.

For eachj, the basis states of interest inHj have the form
u l , j &, wherej denotes the label or property characterizing
qubyte andl 50,1, . . . ,k21. A product state basis inH can
be given in the formus&5 ^ j 51

L us( j ), j & wheres is any func-
tion from 1, . . . ,L to 0, . . . ,k21. ~Here qubits or qubytes
@14,15# refer to quantum bits or bytes of information fork
52 or k>2, respectively.!

The presence of the parameterj in the state and not as
subscript, as in̂ j 51

L us( j )& j , is required as the action o
operators corresponding to the basic arithmetic operat
depends on the value ofj. It is not possible to express thi
dependence ifj appears as a subscript of& and not betweenu
and &.

An important function of the axioms is to provide pro
erties of the unary operationS and the binary operations1
and3. For reasons based on efficient implementation~Sec.
V!, it is quite useful to defineL different successor operator
Vj

11 , for j 51, . . . ,L. These operators are defined to cor
spond to the addition ofkj 21 modkL, where V1

11 corre-
sponds toS in the axioms. These operators and those for1
and3 correspond to the basic arithmetic operations.

It is to be emphasized that definitions of the1, and3 are
given to show their dependence on theVj

11 . Also they are
required by the axioms of arithmetic. The purpose is d
nitely not to present the definitions as something new
these operators are widely used.

For instance the widely discussed networks of quant
gates are examples of the abstract models considered he
k52. In the networks the states inH arith are represented b
horizontal qubit lines and ordered products of gate opera
represent operators inB(H arith). Specific examples of this
for the basic arithmetic operations of addition, multiplicati

1The importance of these axioms lies in the requirement of
existence of binary operations1,3 with certain properties. The
fact that some of the axioms may be redundant is of no importa
here.
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and modular exponentiation are described in@12,13#.
It is also the case that in many physical models space

time directions can be assigned to the abstract networks
this case the spatial ordering of the qubit lines is part of a
mapping of the abstract models based onH arith to physical
models based onH phy in which the corresponding compo
nent systems are distinguished by spatial positions. Th
mappings are examples of the mappings ‘‘g’’ discussed in
Sec. IV. The time ordering of the quantum gates correspo
to mapping the ordering of gate operators in the abst
model to a time-ordered product of physically implementa
quantum gate operators. This is part of the requiremen
physical implementability~Sec. V!.

A. Definitions of the Vj
¿1

The definition of theVj
11 is straightforward. For eachj let

uj be a cyclic shift@16# of period k that acts on the state
u l , j & according touj u l , j &5u l 11 modk, j &. uj is the identity
on all statesum, j 8&, where j 8Þ j . DefineVj

11 by

Vj
115H uj PÞ(k21),j1Vj 11

11 uj P(k21),j if 1< j ,L

uL if j 5L .
~1!

Here P(k21),j5uk21,j &^k21,j u ^ 1Þ j is the projection op-
erator for finding thej component stateuk21,j & and the
other components in any state.Pm, j anduj satisfy the com-
mutation relationuj Pm, j5Pm11,juj modk for m50, . . . ,k
21. Also P(Þk21),j512P(k21),j . This follows from the
fact that the label spaces for each qubyte are one dimens
so that the operator 1Þ j ^ u j &^ j u ^ 1Þ j is the identity on
the Hilbert space spanned by thekL statesus&.

This definition is implicit in thatVj
11 is defined in terms

of Vj 11
11 . An explicit definition is given by

Vj
115(

n5 j

L

unP(Þk21),n)
l 5 j

n21

ul P(k21),l1)
l 5 j

L

ul P(k21),l .

~2!

In this equation the unordered product is used because
anyp,q, umPp,m commutes withunPq,n for mÞn. Also for
n5 j the product factor withj < l<n21 equals 1.

There are two basic properties the operatorsVj
11 must

have: they are cyclic shifts and, for eachj ,L, they satisfy

~Vj
11!k5Vj 11

11 . ~3!

Also if j 5L then (VL
11)k51. To show thatVj

11 is a shift, let
us& be a product state such that for eachm51,2, . . . ,L
the component states us(m),m&,umus(m),m&,
(um)2us(m),m&, . . . , (um)k21us(m),m& are pairwise ortho-
normal. It then follows from Eq.~2! and the properties of the
um that any product stateus& is orthogonal to the state
Vj

11us& and thatVj
11 is norm preserving on these states@16#.

Assume that Eq. ~3! is valid. Then for each
j (Vj

11)kL2 j 11
51. This, and the facts that for all tensor pro

uct statesus&, Vj
11us& is also a tensor product state, which

e

ce
5-3
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PAUL BENIOFF PHYSICAL REVIEW A 63 032305
orthogonal tous&, show thatVj
11 is a cyclic shift. The exis-

tence of a tensor product basis that is common to all theVj
11

follows from Eq.~3!.
To prove Eq.~3! it is easiest to use Eq.~1!. SinceVj 11

11

commutes withul Pn,l for all l< j and the commutation rela
tionsPÞn, juj5uj PÞ(n21),j andPn, juj5uj P(n21),j hold, one
has for eachm<k

~Vj
11!m5~uj !

m)
l 51

m

PÞ(k2 l ), j1Vj 11
11 ~uj !

mS (
l 51

m

P(k2 l ), j D .

HerePÞn, j512Pn, j . Form5k the term with the product o
the projection operators gives 0 and the sum of the pro
tion operators gives unity. The desired result follows fro
the fact that (uj )

k51. Also (VL
11)k51 follows directly from

the definition ofVL
11 .

The above shows that informally the action ofVj
11 cor-

responds to addition modkL of kj 21 on the product basis
This cannot yet be proved as addition modkL has not yet
been defined. Also the adjoint (Vj

11)† of Vj
11 corresponds

informally to subtraction modkL of kj 21. This can be seen
from the fact that (Vj

11)†Vj
1151, where

~Vj
11!†5(

n5 j

L

P(Þk21),nun
†)

l 5 j

n21

P(k21),lul
†1)

l 5 j

L

P(k21),lul
† .

~4!

This result is obtained using the commutativity of the sh
and projection operators for different component system

It should be noted that the operatorsVj
11 play an impor-

tant role in quantum computation. This is the case e
though for each product stateus&, the stateVj

11us& is also a
product state and is not a linear superposition of these st
The importance comes from the fact that these operat
along with their efficient implementation, are used to defi
the basic arithmetic operations for a quantum computer
to carry out quantum algorithms. For example in Shor’s f
toring quantum algorithm@17#, they are used in the step i
which the functionf y(s)5ys modN is calculated for each
component stateus&.

B. Plus

It is straightforward to define the plus (1) operation in
terms of theVj

11 . To ensure unitarity the definition will be
based on states of the formus,w&5us& ^ uw& that describe
two L qubyte product states.

To define the1 operation letVj
1 l5(Vj

11) l representl
iterations ofVj

11 . Then1 is defined by

1us& ^ uw&5us& ^ VL
1sLVL21

1sL21
•••V2

1s2V1
1s1uw&5us,s1w&.

~5!

Here the numeral expressionus1w& is defined to be tha
generated fromw& by the action of the product) j 51

L Vj
1sj .

Note that the differentVj
11 commute.

For pairs of product states, which are first used here,
domains of the functionss andw must be different. This is
03230
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based on the requirement that an algorithm must be abl
distinguish components ofus& from components ofuw&. This
can be achieved by settingus& ^ uw&5us* w& wheres* w de-
notes the concatenation ofw to s. That is,s* w is a function
from 1, . . . ,2L to 0, . . . ,k21, wheres* w(h)5s(h) for h
<L ands* w(h)5w(h2L) for h.L.

As defined the1 operator is unitary on the Hilbert spac
spanned by all pairs of lengthL numeral expression state
Thus a reversible implementation of it is possible where
procedure makes use of the procedures for implementing
Vj

11 . Equation~5! shows that the procedure can be carri
out by carrying out, for eachj 51,2, . . . ,L, sj iterations of
Vj

11 wheresj is the numbers( j ) associated with the qubyt
stateus( j ), j & in us&5 ^ j 51

L us( j ), j &. Since1 is unitary, so is
the adjoint1†. Since1 was defined to correspond to add
tion modulo kL, the adjoint corresponds to subtractio
modulokL. That is, if 1us& ^ uw&5us& ^ us1w& then 1†us&
^ us1w&5us& ^ uw&.

C. Times

Here a definition of multiplication is given that is base
on efficient iteration of1 and is similar to the method taugh
in primary school. The method is efficient relative to that f
1.

Reversibility of the operations requires that the opera
3 be unitary.~Caution: the adjoint of3 is not division.!
This means that both input product states and the prod
state with the result must be preserved. It is also conven
to have one extra product state for storing and acting
intermediate results. This state begins and ends asu0&. For
initial states of the form,us,w,0,0&5us& ^ uw& ^ u0& ^ u0&,

3us,w,0,0&5us,w,0,s3w&, ~6!

whereus3w& is the state resulting from the action of3. It is
supposed to correspond to the result of multiplying, modkL,
the numbers corresponding to the statesus& andw&.

In order to define3 explicitly one needs to be able t
generate the statesukj 213w& corresponding to multiplica-
tion of w by kj 21. For each j 51, . . . ,L these states are
added to themselvessj times. The final result is obtained b
adding all the resulting states so obtained. Details are p
vided in the Appendix.

D. Required properties of theVJ
¿1 , plus, times

As was noted the operatorsVj
11 ,1,3 must satisfy the

properties expressed by the axioms for modular arithme
These include the axioms for arithmetic@9,10# modified for
modularity and the presence ofL successors, and possib
axioms for a commutative ring with identity@11#.

Properties that must be satisfied include that expresse
Eq. ~3! and the requirements that the successor operat
commute with1, @i.e., 1(1^ Vj

11)5(1^ Vj
11)1#, the ex-

istence of additive and multiplicative identities, which a
the statesu0& and u1&5V1

11u0&, and the distributivity of
3 over 1. Also 1 and3 are associative and commutativ
5-4
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REPRESENTATION OF NATURAL NUMBERS IN . . . PHYSICAL REVIEW A63 032305
Proof of these properties from the definitions and Eq.~3!,
which has already been proved, is straight forward a
will not be given here. Note that the proofs of some
the properties do use the corresponding properties of
numbers appearing in the exponents. For example, to p
that addition is commutative,us1w&5uw1s&, Eqs.~5! and

~2! give us1w&5)h51
L (Vj

11)sh1whu0& and uw1s&
5)h51

L (Vj
11)wh1shu0&. The equality of these two states fo

lows from sh1wh5wh1sh for eachh.

IV. PHYSICAL HILBERT SPACE MODELS

The Hilbert space models described so far are purely
stract in that they do not refer to any physical properti
They do, however, serve as a common reference point
models based on physical properties of physical syste
They also give a useful method to associate numbers
quantum states of these systems.

To begin, letA andB be sets ofL andk different physical
parameters or values of some physical properties or obs
ablesÂ and B̂. The A parameters are used to distinguish
label different components of a composite quantum sys
andB is a set of values of a different physical property a
sociated with each component system. For example,A could
be a set ofL arbitrary locations of component spin-1/2 sy
tems on a two-dimensional surface andB5$↑,↓% denoting
spin aligned along or opposite some axis of quantizati
Another example, representative of NMR quantum compu
tion @6–8#, hasA as a set of hyperfine splittings of nuclea
spin states andB5$↑,↓%. Here the values ofA must contain
sufficient information so the physical process can distingu
between the different nuclear spins.

Let t be any function from A to B and ut&
5 ^ aeAut(a),a& be the corresponding tensor product sta
Let H phy5 ^ aeAHa be the kL dimensional Hilbert space
spanned by all the statesut&. EachHa is a k-dimensional
Hilbert space spanned by states of the formuh,a&, where
heB.

The presence ofa as a separate part in each compon
stateut(a),a&, and not as a state subscript as inut(a)&a , is
essential as an algorithm uses the value ofa to distinguish
the different component systems. This is based on the v
that the state of the composite quantum system contain
the quantum information available to the algorithm. In p
ticular the states must contain sufficient information so t
the algorithm can distinguish among the component syste
This is especially the case for any algorithm whose dynam
are described by a Hamiltonian that is self-adjoint and ti
independent. This is an example of Landauer’s dictum ‘‘
formation is physical’’@1#.

This description can be generalized in that the phys
property observableB̂ of the component systems can depe
on the values ofa in A. An example of this, which also ha
different component systems replaced by different degree
freedom of one system, is shown by an ion trap exam
@18#. Here the states of one degree of freedom are the gro
and first excited state of the ion in the harmonic well tra
The corresponding states of the other are the ground and
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excited electronic state of the ion. This type of generalizat
will not be pursued here.

A. Representation of Numbers and Arithmetic Operations
in H phy

The goal here is for states inH phy to represent numbers
However, it is clear that,a priori, neither the product state
ut&5 ^ aeAut(a),a& nor linear superpositions of these stat
represent numbers. For theut&, the reason is that there is n
association between the labelsa and powers ofk; also there
is no association between the range setB of t and the num-
bers 0,1, . . . ,k21.

This can be remedied by use of unitary maps fromH arith

to H phy that preserve the tensor product structure. One w
of doing this is to letg and d be any bijections~one-one
onto! maps from 1,2, . . . ,L to A and from 0,1, . . . ,k21 to
B. For each pairg,d, and eachj there is a corresponding
unitary operatorwg,d, j that maps statesuh, j & in Hj , where
0>h>k21 to states inHg( j ) according to wg,d, j uh, j &
5ud(h),g( j )&. This induces a unitary operatorWg,d

5 ^ j 51
L wg,d, j from the product spaceH arith to H phy, where

Wg,dus&5 ^ j 51
L wg,d, j us~ j !, j &

5 ^ j 51
L ud@s~ j !#,g~ j !&5us g

d&. ~7!

Here us g
d& is the physical parameter based state inH phy that

corresponds, underWg,d to the number stateus& in H arith.
This process can be inverted, using the adjointWg,d

† to
relate physical parameter states inH phy to number states in
H arith. One has

Wg,d
† ut&5 ^ aeAwg,d,g21(a)

† ut~a!,a&

5 ^ aeAud21@ t~a!#,g21~a!&5ut g21
d21

&. ~8!

Here ut g21
d21

& is the number state inH arith corresponding to
the physical stateut&. Note that Wg,d

† 5Wg21,d21, where
g21,d21 are the inverses ofg and d, and wg21,d21,a

5wg,d,g21(a)
† .

The operatorsWg,d also induce representations of th
Vj

11 , 1, and3 operators on the physical parameter sta
in H phy. For theVj

11 , one definesVg, j
d,11 by

Vg, j
d,115Wg,dVj

11Wg,d
† . ~9!

An equivalent definition can be given by direct reference
the mapsg,d and the operatorswg,d, j :

Vg, j
d,115(

n5 j

L

ug(n)
d PÞd(k21),g(n) )

l 5 j

n21

ug( l )
d Pd(k21),g( l )

1)
l 5 j

L

ug( l )
d Pd(k21),g( l ) . ~10!

Here Pd(k21),g( l )5wg,d,l Pk21,lwg,d,l
† and ug( l )

5wg,d,lulwg,d,l
† .
5-5
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PAUL BENIOFF PHYSICAL REVIEW A 63 032305
In a similar fashion one can use theWg,d to define
the operator1g,d acting on the physical parameter states
H phy

^ H phy. The definition is based on that given for th
operator1 acting onH phy

^ H phy @Eq. ~5!#. One has

1g,d5~Wg,d^ Wg,d!1~Wg,d
†

^ Wg,d
† !. ~11!

The operator3g,d is defined similarly from3 as defined in
the Appendix A.

It is clear from the above that there is no unique cor
spondence between states in the arithmetic and physical
bert spaces. There areL! possible bijectionsg and k! pos-
sible bijectionsd. Thus some or many of theL!k! unitary
operatorsWg,d associate a different physical parameter st
us g

d& with the number stateus&. Conversely theg and d de-
pendence ofWg,d

† shows that many different number stat
ut g

d& can be associated with the physical stateut&. The mul-
tiplicity of these correspondences depends on the stateus&
or ut& and the choices ofg andd.

It follows from the unitarity ofWg,d that if the operators
Vj

11 , 1, 3, and the statesus& in H arith satisfy the axioms
of modular arithmetic, then so do the operatorsVg, j

d,11 ,
1g,d , 3g,d , and statesus g

d& in H phy. In this way all the
statesus g

d& in H phy and the operatorsVg, j
d,11 , 1g,d , 3g.d

are a model of the axioms of modular arithmetic. The f
that superposition of the statesus g

d& plays an important role
in quantum computation does not affect this conclusion.

This argument also applies to any unitary mapU from
H arith to H phy independent of whetherU is tensor product
preserving or not. However most of these maps are no
interest because the operatorsUVj

11U† are not physically
implementable~Sec. V!. Also the statesUus& may not be
stable or even preparable.

B. Grover’s and Shor’s algorithms

Since the spacesH arith andH phy, and arithmetic models
constructed on these spaces are unitarily equivalent,
might think that dynamically an algorithm is independent
the unitary map used. This is not true in general even if o
restricts the maps to have the form ofWg,d ; some algorithms
are independent of these maps and others are not.

To see this one notes that dynamically any quantum a
rithm carried out on a composite physical system must
sensitive to the values of the physical parameters for
system. This means that the physical dynamics of an a
rithm must be described by some evolution operator ac
on the states inH phy or some other physical model of th
system states. The physical dynamics are not describe
H arith.

It follows that any algorithm that can be described
terms of states based on physical parameters is indepen
of the unitary mapsWg,d . The dynamics do not depend o
these maps because what number a physical state repre
is irrelevant to the algorithm. On the other hand, algorith
that compute numerical functions must be described
H arith, as number is of the essence for these. It follows t
the dynamics of these algorithms depends on the mapsWg,d .
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Grover’s algorithm@19# and Shor’s algorithm@17# are
examples of the two types of algorithm@21#. Grover’s algo-
rithm corresponds to a quantum search of a set of data, w
each element of the database corresponds to a quantum
The goal is to find the one unknown but unique state w
some property different from the others. Here the quant
state representing each data element will be taken to b
tensor product of qubit states. This is not necessary, as L
@20# has shown. However, the price for this is the need for
exponential overhead of resources.

Here the relevant feature of Grover’s algorithm is that
can be both defined and implemented onH phy with no ref-
erence to numbers represented by states inH arith. To see
this let k52 andB5$↑,↓% for spin up, spin down. The ini-
tial state can be written asc5(1/AN)(tut&, where ut&
5 ^ aeAut(a),a& andN52L.

Dynamically Grover’s algorithm@19# consists of itera-
tions of the unitary operator2WI↑WItu on H phy. Here I ↑
5122u↑&^↑u whereu↑& is the state with allL systems in the
u↑& state.I tu

5122utu&^tuu and W is the Walsh Hadamard

transformation. Hereutu& is the unknown product state that
to be amplified, andW5 ^ aeA(1/A2)(sx1sz)a is a tensor
product of single qubit operators. Thesx , sz are the Pauli
spin operators andc5Wu↑&.

Shor’s algorithm@17# for finding the two prime factors of
a large number is quite different in that it is essential that
tensor product states represent numbers. This can be
from the steps of the algorithm

1

AN
(

s
us&u i &⇒ 1

AN
(

s
us&u f m~s!&

⇒ 1

N (
w

uw&(
s

exp22p iws/Nu f m~s!&.

~12!

Here u i & is the initial product state, usually shown as a co
stant sequence of 0s. f m is a numerical function defined b
f m(x)5mx modM , where m andM are relatively prime. The
numberM, which is to be factored, andN are related by
M2<2N<2M2 @17,22#.

Equation ~12! shows that the dynamics of Shor’s alg
rithm can be initially formulated as a unitary step opera
USh acting onH arith. However, physically, the dynamics i
represented by the operatorWg,dUShWg,d

† acting onH phy.
This shows that physically the dynamical implementation
Shor’s algorithm depends on the numberingsg andd of the
physical parameter setsA andB.

More generally the requirement that the numerical fun
tion calculated by the algorithm be invariant under any u
tary map fromH arith to H phy means that the physical imple
mentation of the algorithm depends on the unitary map.
example, letWg,d be a unitary map as defined by Eq.~7! and
A be a set of space locations of spin-1/2 systems with spin
(↑) spin down (↓) representing~throughd21) 0,1. Then the
algorithm dynamics clearly depends ong as g determines
which space location is associated with which power of 2
similar argument holds for the dynamics dependence ond.
5-6
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Also the correct interpretation of the measurement of
output depends on bothg andd.

V. EFFICIENT IMPLEMENTABILITY OF ARITHMETIC
OPERATIONS

Probably the most important requirement is that of e
cient implementability of basic arithmetic operations. Th
means that, for states of a physical system to represent n
bers, it must be possible to physically implement these
erations and the implementation must be efficient. This
cludes at least the operations described by the axioms
efficient implementation of these is a necessary condition
states of a quantum system to represent numbers.

In the case of theVg, j
d,11 , physical implementability

means there must exist a physically realizable Hamilton

Hg, j
d such that for some timet j , Ug, j

d (t j )5e2 iH g, j
d t j corre-

sponds to carrying outVg, j
d,11 on the states of the system. A

Vg, j
d,11 is unitary, one hase2 iH g, j

d t j5Vg, j
d,11 . The presence o

the indicesd,g shows the dependence ofHg, j
d on theWg,d .

Efficient implementation means that the timet j must be
short. For microscopic systems this is equivalent to the c
dition thatt j must be less than the decoherence timetdec. If
the Hamiltonian and system are such thatVg, j

d,11 is carried out
in a numbernj of basic switching steps of durationD, then
nj5t j /D,tdec/D @5# must hold.

For macroscopic systems the efficiency requiremen
different astdec!D. In this casenj must be polynomial and
not exponential inL. This means thatnj5O(Lc) with c>0
andc not too large.O() means ‘‘of the order of.’’

The efficiency requirement is much stricter for micr
scopic systems than for macroscopic ones. The reason is
for most systemstdec is small @5#. This is one reason why
quantum computers are so hard to implement compare
macroscopic computers. However, the requirement thatnj be
polynomial inL would also apply to any microscopic syste
for which tdec/D is very large,~e.g.,tdec is several hours or
even longer!.

The above is rather general in that it assumes that for e
j there is a distinct HamiltonianHg, j

d to implementVg, j
d,11 .

However for many systems all theVg, j
d,11 may be imple-

mented by just one HamiltonianHg
d with the different values

of j expressed by different states of some ancillary syste
The requirement of efficient implementation is the reas

that theVg, j
d,11 are defined separately for eachj rather than

defining them fromVg,1
d,11 by Vg, j

d,115(Vg,1
d,11)kj 21

. Here
Vg,1

d,11 corresponds to the successor operation ‘‘11’’ in axi-
omatic arithmetic@9,10#. The exponential dependence onj
shown by this equation shows that if efficient implemen
tion were required just forVg,1

d,11 , then carrying out of the
Vg, j

d,11 is not efficient as exponentially many repetitions
the procedure forVg,1

d,11 would be required.
For many physical systems, efficient implementation

the Vg, j
d,11 can be carried out by shifting the procedure f

implementation ofVg,1
d,11 along pathg in A until a component

system in the stateug( j )& is encountered. At this point imple
mentation ofVg,1

d,11 is started.
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Efficient implementability for the basic arithmetic oper
tions also implies that there exist HamiltoniansHg,d

1 and
Hg,d

3 that efficiently carry out1g,d and3g,d . Since the defi-
nitions of 1 and 3 are given in terms of theVj

11 @Eq. ~5!
and Appendix A#, it follows that if the Vg, j

d,11 can be effi-
ciently implemented, so can1g,d and3g,d . For microscopic
systems the fact that the timest1 ,t3 required for these
implementations are greater than those for theVg, j

d,11 means
that the values ofL for which t1,tdec and t3,tdec may be
less than those possible for just theVg, j

d,11 .
Another aspect of the efficient implementability conditio

is that the thermodynamic resources required to implem
Vg, j

d,11 must be polynomial and not exponential inj. This
takes account of the fact that all computations occur in
noisy environment and one must spend thermodynamic
sources to protect the system from errors. This is espec
the case for quantum computation for which entangleme
of states that develop as the computation progresses mu
protected from decoherence@23–25#. Methods of protecting
these states include the use of quantum error correc
codes @26# and possibly generation and use of Einste
Podolsky-Rosen~EPR! pairs @27#. These considerations ar
another reason why it is important to minimize the time
quired to implementVg, j

d,11 .
There are many physical systems where the resou

needed to implementVg, j
d,11 ~other than those involved in th

shift! are either independent ofj or are at most polynomial in
L. The needed resources do not depend exponentially onj or
L. These systems satisfy the requirement of efficient imp
mentability. There are others that do not. Consider, for
ample, a one-dimensional~1D! lattice of systems where th
intensity of environmental interference and noise grows
ponentially with j. Here the thermodynamic resource
needed to protect the system from decoherence, etc., w
grow exponentially withj. Another simpler type of system
that would be excluded would be a row of isolated harmon
oscillator potentials each containing a single spinless p
ticle. The proposed two qubit states are the ground and
excited states in the well. However the spring constants
the wells depend exponentially onj. For example, the spring
constantp( j 11) of the j 11st well is related to that for the
j th well by p( j 11)5kp( j ).

For networks of quantum gates efficient implementat
of the basic arithmetic operations has two components.
number of quantum gates~or steps! in the network must be
polynomial in L, as in Refs.@12,13#, and the resources
needed to implement individual quantum gates must be p
nomial in the locations of the individual systems addres
by each gate. In the physical models described above,
second requirement is not satisfied as resources neede
implement a quantum gate between thej th and j 8th qubits
depend exponentially onj and j 8. The fact that one would
not build such models or could not build such models
largeL is not relevant here.

The condition of efficient implementability also places r
strictions on the values ofk allowed for k-ary representa-
tions. In general values ofk are used that are quite sma
~e.g., k52, k510, etc.!. Except for special cases,k51
5-7
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PAUL BENIOFF PHYSICAL REVIEW A 63 032305
~unary! representations are excluded as arithmetic operat
are exponentially hard. Also the value ofk cannot be too
large. One reason is that there are physical limitations on
amount of information that can be reliably stored and dis
guished per unit space-time volume@20#. Also the require-
ment of efficient implementation enters in that for largek
~e.g., k5106), even a simple process such as adding t
single digit numbers becomes quite lengthy.

VI. IS THE MODEL H arith NECESSARY?

The preceding was based on first constructing a pu
mathematical Hilbert space modelH arith for modular arith-
metic and then using this to construct a physical model o
spaceH phy that has the same tensor product structure
H arith. The question arises if the purely mathematical mo
based onH arith is necessary. Can one go directly from t
axioms of modular arithmetic to physical models without t
use of the model based onH arith?

In general this is possible as any structure, physica
mathematical, that satisfies the axioms, is acceptable. H
ever, the intermediate mathematical models serve as a u
reference point for discussions. This is clear from the lite
ture in which much use is made of such a model. F
instance any reference to product qubit sta
u0&,u0110110 . . . &, etc. and linear superpositions of the
states is implicitly using a model based onH arith.

Another point, already noted, is that the axioms of ari
metic, modular or not, make no mention of efficient imp
mentability. Models based on unary representations are
as valid as are any others. This is true even if additio
axioms are added giving the properties of theVj

11 operators.
This raises the following questions: Suppose one st

with an arbitrary quantum system with states in a spaceH phy

whose tensor product structure~if any! is unknown. Can op-
erators, indexed by values in a set of physical parameters
the system, be defined with properties such that they sa
the axioms of modular arithmetic? As will be seen in t
following, this seems possible. If one also requires that
operators and those for the basic arithmetic operations
efficiently implementable, does it follow thatH phy must
have a tensor product structure based on the defined op
tors and their properties? At present, the answer is
known.

To be specific, the interest is in constructing a model
arithmetic modkL directly on the state spaceH phy of a quan-
tum system whereH phy has an arbitrary tensor produ
structure. A setA of L operatorsVa on H phy indexed by the
physical parametersaeA is required to have properties th
are necessary conditions forH phy to have the tensor produc
structure suitable for lengthLk-ary representations of num
bers. These properties are,

~1! eachVa is a cyclic shift;
~2! the Va all commute with one another;
~3! for eachaeA, if ( Va)kÞ1 there is a uniquea8Þa

such that (Va)k5Va8 ;
~4! for each a8, if there is anaÞa8 such that (Va)k

5Va8 , thena is unique;
~5! there is just onea for which (Va)k51;
03230
ns

e
-

o

ly

a
s
l

r
w-
ful
-
r
s

-

st
l

ts

or
fy

e
be

ra-
ot

f

~6! for just onea there are noa8 such that (Va8)
k5Va .

The properties reflect those possessed by theVj
11 , note

especially Eq.~3!. Properties 3–6 can be used to establis
numbering of the label setA with the maximum and mini-
mum labels given by properties 5 and 6. The commutativ
and cyclic shift properties@16# give the existence of a setB
of pairwise orthogonal subspaces of states such that for e
a and each subspaceb in B, Vab is in B and is orthogonal
to b. In the special case that the subspaces inB are one
dimensional, the subspacesb in B correspond to pairwise
orthogonal statesub& such that for eachub& in B, Vaub& and
ub& are orthogonal.

One can use property 3 along with iterations (Va)h for h
50,1, . . .k21 for eacha to generate a cyclic ordering o
numbering of the states inB and show that the set contain
kL states. However none of this is sufficient to select a s
as the zero state. This must be done by making an arbit
choice.

~7! There is a unique stateub0& in B which is the zero
state.

Based on this choice one can associate with each strin
numbers, nL ,nL21 , . . .nl , . . . ,n2 ,n15n with 0<nl<k
21 for eachl a unique stateubn&. The association is given
by

ubn&5)
l 51

L

~Val
!nlub0&,

where the properties of theVa show that the statesubn& for
different number stringsn are orthogonal.

The above can also be used to define addition as in Eq~5!
and show thatub0& is the additive identity. This and use o
the discussion in Sec. III suggests that these operators
the associated states do satisfy the axioms of arithm
modkL. However examples can be constructed to show t
it is very unlikely that the existence of operators with the
properties are sufficient conditions forH phy to have a tensor
product structure suitable fork-ary representations of length
L. If one adds the additional requirement that these opera
be efficiently implementable, then it is an open question if
these conditions are sufficient to require thatH phy has a
tensor product structure suitable fork-ary representations o
lengthL.

VII. DISCUSSION

Several points about the paper done here should be no
The state descriptions of composite quantum systems use
this paper have not taken account of whether or not the c
ponent systems are distinguishable by properties other
those explicitly shown in the states. This is based on
consideration that the only properties used by a quan
algorithm are those expressed explicitly in the states and
erators representing the basic arithmetic operations. For
distinguishable systems, it is suspected that taking accou
their bosonic or fermionic nature, as has been done e
where @28,29#, will not change the results obtained. How
ever, this must be investigated.

The condition of efficient implementation of the bas
5-8
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REPRESENTATION OF NATURAL NUMBERS IN . . . PHYSICAL REVIEW A63 032305
arithmetic operations is the main restrictive condition
states of quantum systems that represent numbers. As n
it excludesk51 and largek. It also greatly restricts which
unitary operators fromH arith to H phy are allowed. To see
this, note that any unitary operatorU, tensor product preserv
ing or not, fromH arith to H phy gives a model of the axiom
of modular arithmetic onH phy. The numbers are represente
by the statesUus& and the basic operators byUVj

11U† and
(U ^ U)1(U†

^ U†) and similarly for3. However most of
theseU can be excluded because the corresponding b
operators onH phy are not efficiently implementable. Als
for most U there is no way to physically prepare the sta
Uus&. This is the main reason for the restriction thatU be
tensor product preserving with the form ofWg,d .

Unfortunately there is no way to define exactly whichU
operators are allowed and which are not. The reason is
there is no way to precisely define the meaning of phys
realizability. One needs an hypothesis for physical realiza
ity equivalent to the Church-Turing hypothesis@31,32,30# for
computable functions. Earlier attempts to characterize rea
able physical procedures as collections of instructio
@33,35#, or state preparation and observation procedure
instruction booklets or programs for robots@34# have not
been generally accepted. This problem also arises in des
ing exactly the class of tasks that a quantum robot@36# can
carry out.

Another aspect of the representation of numbers by qu
tum states is that the sets of numbers 1, . . . ,L and 0, . . . ,k
21 have been used to describek-ary representations o
numbers of lengthL by quantum states. For example num
bers in either of these sets are used to describe theVj

11

operations. Also the definitions of1 and 3 were given in
terms of numbers of iterations ofVj

11 and1, respectively.
Two components of this should be noted. One is that

role of these numbers is limited to the dynamical implem
tation of the Vg, j

d,11 , 1g,d , and 3g,d . For example, any
method based on a HamiltonianHg

d that implementsVg, j
d,11 as

a translation of a procedure for implementingVg,1
d,11 by j sites

alongg requires motion alongg until the siteg( j ) is reached.
This can be done by repeated subtraction of 1 fromj, inter-
leaved with motion of some system, such as a head or q
tum robot@36#, alongg until g( j ) is reached. Also the ‘‘carry
1’’ operation, which is part ofVg, j

d,11 means that motion
along the remainingL2 j elements of pathg must be built
into Hg

d .
Similar arguments apply for the efficient carrying out

the1g,d operation as this requires up tok iterations ofVg, j
d,11

for each j. One method of implementation requires inte
leaving the implementation of a procedure forVg, j

11 with sub-
tractions of 1 from a stateusj&, Eq. ~5!, until u0 j& is obtained.

Implementation of these operations by quantum syste
means that numbers up toL andk must also be represente
by quantum states of systems. These systems can eith
mobile and part of the head or fixed external systems. T
the arguments and conditions already discussed appl
these representations too.

The other component is that the magnitudes of the nu
bers represented by the states of systems that are part o
03230
ted

ic

s

at
l

l-

z-
s
as

ib-

n-

e
-

n-

s

be
s
to

-
the

dynamics are exponentially smaller than those represe
by the system on which the dynamics is acting. States o
composite quantum system satisfying the conditions
k-ary number representations of lengthL, represent the first
kL numbers. Numbers appearing in the dynamics range u
k andL5 logk kL. This exponential decrease is a conseque
of the requirement of efficient implementability of arithmet
operations.

The conditions discussed in this paper, including the
quirement of efficient physical implementability, also app
to the quantum states of ancillary systems that are use
implement the dynamics of an algorithm. This is evident
any algorithm that interleaves evaluation of some numer
function with carrying out an action until a specified functio
value is reached. For instance, implementation of theVg, j

d,11 ,
e.g., by use of a head or quantum robot with an on bo
quantum computer@36#, would require a quantum compute
with at leastO(@ logm(L)#11) qubytes for anm-ary repre-
sentation of numbers up toL. (@2# denotes the largest inte
ger in.! Here the dynamics that carries out these operation
subject to all the requirements described so far. It is also
of the dynamics for implementingVg, j

d,11 .
These considerations suggest that it may not be poss

to describe the representation of numbers by states of a c
posite quantum system without the use of states of o
systems already assumed to represent numbers. These
are part of the dynamics of the basic arithmetic operation

Whether this is true or not is a question for the futu
However, if this impossibility is the case, one is helped
the fact that the number of states needed to represent n
bers in the dynamics is exponentially smaller than the nu
ber of states representing numbers of the composite sys
on which the dynamics acts.

Finally it should be noted that much of the discussio
including the efficient implementability condition, which ha
been applied to microscopic quantum systems, also app
to macroscopic quantum systems. In this casetdec!tsw so
the limitation that the number of steps is,tdec/tsw is not
applicable. Instead efficient implementation means that th
exists a dynamics such that the number of steps neede
carry out arithmetic operations is polynomial inL. Also the
states of the system used to represent numbers are thos
are stabilized by the interactions with the environment,
‘‘pointer states’’ @37–39#. The fact that these conditions ar
much less onerous than the limitations on microscopic s
tems is shown by the widespread use of macroscopic c
puters and counting devices and timers.

In conclusion it is re-emphasized that this work is o
approach to making explicit the assumptions and conditi
involved in the representation of natural numbers by state
quantum systems. It is based on separating the mathema
concept of numbers, as models of a set of axioms, from
physical concept of efficient implementability of the bas
arithmetic operations described by the axioms. Whether
approach will turn out to be a good one or not depends
future work.
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APPENDIX: DEFINITION OF Ã

The goal is to define a unitary times operator according
Eq. ~6! based on efficient iteration of the1 operator. To this
end defineQj (2,3) for j 51, . . . ,L as operators on the sec
ond and third product states that convertus,w,w0 j 21,z& to
us,w,w0 j ,z&. It has the effect of multiplyinguw0 j& by k. An
efficient reversible implementation of this, acting on the st
us,w,y,z& is obtained by subtraction, modk, of the L2 j
11st component qubyte state ofuw& from the Lth compo-
nent state ofuy&, shifting all the elements ofuy& by one site
and putting the result of the subtraction at the newly ope
first site. This works because, ifuy&5uw0 j 21& then uyL
5uwL2 j 11&. The result,u0L&, of the subtraction is moved to
the first site ofuy& after the shift. One has

Qj~2,3!us,w,y,z&5us,w,y8,z&, ~A1!

where uyj 118 &5uyj& for 1< j <L21 and uy18&
5uyL&*uwL2 j 11&. Here* denotes subtraction modk. Note
that Qj (2,3) is unitary.

The operator3 is defined from theQj (2,3) and1 by
-
,

d.

I.

ill

03230
r

o

e

d

3us,w,y,z&5QL~2,3!~13,4!
sLQL21~2,3!~13,4!

sL21 . . . ,

~13,4!
s2Q1~2,3!~13,4!

s112,3us,w,y,z&.

Here 1m,n carries out the action defined in Eq.~5! on the
mth andnth product state. Themth state remains unchange
in this action.sh is the numbers(h) in the state componen
us(h),h& of us&. Note that since each operator in the righ
hand product of the equation is unitary, so is3.

To see that3 as defined above does carry out the
tended multiplication operation on initial states of the for
us,w,0,0& one carries out the action of the 2L11 operators
shown above. The steps give

us,w,0,0&
12,3

→ us,w,w,0&
~13,4!

s1

→ us,w,w,s1w&

→
Q1~2,3!

us,w,w0,s1w&
~13,4!

s2

→ us,w,w0,s1t1s2t0&•••

→
QL~2,3!

us,w,0,s1w1s2t01•••1sLt0L21&.

Note that QL(2,3) acting on u2,w,w0L21,2& gives
u2,w,0,2& in accordance with Eq.~6! asuw0L&5u0&. Here
us1w& denotes s1 iterations of adding uw& to u0&;
alsosjw0 j 21 denotes the result ofsj additions ofuw0 j 21& to
the 4th product state.
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