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Universal manipulation of a single qubit
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We find the optimal universal way of manipulating a single qubit,uc(q,w)&, such that (q,w)→(q2a,w
2b). Such optimal transformations fall into two classes. For 0<a<p/2, the optimal map is the identity and
the fidelity varies monotonically from 1~for a50) to 1

2 ~for a5p/2). Forp/2<a<p, the optimal map is the
universal-NOT gate and the fidelity varies monotonically from12 ~for a5p/2) to 2

3 ~for a5p). The fidelity 2
3

is equal to the fidelity of measurement. It is therefore rather surprising that for some values ofa the fidelity is
lower than2

3 . For instance, a universal square root ofNOT operation is more difficult to approximate than the
universalNOT gate itself.

DOI: 10.1103/PhysRevA.63.032304 PACS number~s!: 03.67.Lx
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A unit of classical information is a bit, i.e., 0 or 1. Qua
tum information consists of qubits that are a superposition
the statesu0& and u1&. Classical and quantum informatio
differs in many ways. While classical information can
copied perfectly, the same is not true with qubits@1–3#. An-
other feature that distinguishes classical and quantum in
mation is a measurement. Unlike classical information,
unknown single qubit cannot be measured to give comp
information about the qubit. In order to get the maximu
information about an unknown qubit, we measure the qu
along any chosen basis$uf&,uf'&%. If the result isuf&, then
we guess the unknown qubit to beuf&, and if the result is
uf'&, then we guessuf'&. Averaging over all possibleuf& ’s
~assuming a uniform distribution over the Bloch sphere!, the
fidelity is equal to2

3 . We cannot achieve a higher fidelity b
using generalized measurements and hence2

3 is the optimal
measurement fidelity of an unknown qubit.

A qubit in Bloch vector notation is

uc~q,w!&[S cos~q/2!

e2 iw sin~q/2!
D . ~1!

The most general linear transformation on (q,w) is

~q,w!→~q2a,w2b! ~2!

with 0<a<p and 0<b<2p. If q50,p, thenw is unde-
fined. For definiteness, we will takew50 in such cases
Since, when taking averages over the Bloch sphere, th
anomalous cases are of measure zero, we need not pa
special attention to them. This general transformation can
composed from two transformations. First

~q,w!→~q2a,w! ~3!

and then w→w2b. The transformation onw can be
achieved perfectly by a unitary operation and so is of l
interest to us. However, the transformation onq cannot be
achieved unitarily. To find the fidelity of general linear tran
formations of the form~2!, it suffices to consider only the
nonunitary part~3!. We are interested only in universal tran
formations. These are those transformations for which
fidelity is independent ofq andw of the input state. Further
1050-2947/2001/63~3!/032304~3!/$15.00 63 0323
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more, we will assume that the input distribution is unifor
over the Bloch sphere. Since the area element sinqdqdw is
not preserved in form~except whenq50,p), the output will
not be uniform. In taking averages, we intergrate over a u
form distribution of the input variables that corresponds
integrating over a nonuniform distribution of the output va
ables.

Changing bits 0 to 1 and 1 to 0 is aNOT gate in the
classical information case. In the quantum case, chang
uc&5au0&1bu1& to uc'&5b* u0&2a* u1& requires antiuni-
tary transformation, which is not allowed in quantum m
chanics. In@4–6#, it was shown that universal-NOT ~U-NOT!
operation can be achieved with23 fidelity for a single input.
This fidelity is the same as the measurement fidelity. Th
showed that the U-NOT operation is no better than measurin
a qubit first and then preparing an orthogonal state. In Blo
vector notation, the U-NOT gate corresponds to transformin
uc(q,w)& to uc(q2p,w)&. This is a special case of th
transformation~3! with a5p. Now consider the genera
case in which we transformuc(q,w)& to uc(q2a,w)&. Na-
ively, it may seem that the fidelity should be at least2

3 , since
one could measure a qubit with23 fidelity and prepare a stat
in an appropriate direction. We will show in this paper th
this is not so.

Let us take an example wherea53p/4. Therefore, for a
given unknown stateuc&, we want to prepare a state as clo
as possible touc8&5uc(q23p/4,w)&. We choose a random
state

uf~m,n!&[S cos~m/2!

e2 in sin~m/2!
D ~4!

and measureuc(q,w)& on the basis of$uf&,uf'&%. If we get
uf&, we prepareuf8&[uf(m23p/4,n), and if we getuf'&,
then uf8'& is prepared. As a density matrix, the state w
prepare by this method is

r (1)5 z^cuf& z2uf8&^f8u1 z^cuf'& z2uf8'&^f8'u. ~5!

We take the average ofr (1) over uniform distributions ofuf&
on the Bloch sphere to obtainr (1) and then the fidelity is
given by
©2001 The American Physical Society04-1
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F5
1

4pE0

pE
0

2p

^c8ur (1)uc8& sinqdqdw50.5833 . . . .

~6!

This value is lower than2
3 . Can we do any better? If we

prepareuf'& when the result isuf& and prepareuf& for
uf'&, i.e.,

r (2)5 z^cuf& z2uf'&^f'u1 z^cuf'& z2uf&^fu, ~7!

then

F5
1

4pE0

pE
0

2p

^c8ur (2)uc8& sinqdqdw50.6178 . . . .

~8!

This fidelity is still lower than2
3 but higher than the value in

Eq. ~6!. This rather surprising result is due to the differe
phase angles ofuc& and uf&. If z^cuf& z25 2

3 , then the rota-
tion uc(q,w)&→uc(q2p,w)& and uf(m,n)&→uf(m
2p,n& yields the same fidelity z^c(q2p,w)uf(m
2p,n)& z25 2

3 . However, if the rotation is over some oth
angleaÞp or 0, thenz^c(q2a,w)uf(m2a,n)& z2 may not
be 2

3 becausew and n are not necessarily the same. If th
phase anglesw and n are the same, then for anya, z^c(q
2a,w)uf(m2a,w)& z25 2

3 . For p/2<a<p in uc(q
2a,w)&, r (2) yields the fidelity

F (2)5 1
12 @61cos~p2a!1cos~p1a!#. ~9!

For 0<a<p/2, we consider the usual measurement den
matrix,

r (3)5 z^cuf& z2uf&^fu1 z^cuf'& z2uf'&^f'u, ~10!

and the fidelity is given as

F (3)5 1
2 1 1

6 cosa. ~11!

For p/2<a<p, we will show thatF (2) in Eq. ~9! is indeed
the optimal fidelity.uc(q2a,w)& for 0<a<p/2 can be ob-
tained with better fidelity thanF (3) in Eq. ~11!. We expect
this since fora50, the identity operation givesuc& with
fidelity 1.

By considering the most general type of transformation
a single qubit, we will find the one that maximizes the fid
ity for the transformation~3!. We will follow the method of
Bužek et al. @5#. The most general operation available to
is to perform unitary evolution on the single qubit and so
ancilla prepared in a known stateuQ& ~this is taken to be
normalized!. This gives

u0&uQ&→u1&uA&1u0&uB&,
~12!

u1&uQ&→u0&uÃ&1u1&uB̃&,

where uA&,uÃ&,uB&,uB̃& may not be normalized. From th
normalization and the orthogonality of~12!, uAu21uBu2

5uÃu21uB̃u251 and ^AuB̃&1^BuÃ&50. We let uc& trans-
form under~12!, trace over the ancilla, and obtain a dens
03230
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matrix r (out) for our qubit. The fidelity is then given by
F5^c8ur (out)uc8&, where uc8&5uc(q2a,w)&. When ex-
pressed explicitly in terms ofq, w, uA&, uB&, uÃ&, anduB̃&,
this expression for the fidelity has 48 terms. We can comp
coefficients of those terms dependent one6 iw and e62iw.
These coefficients must vanish in order for the transform
tion in ~12! to be independent ofw ~which we require for
universality!, ^AuÃ&5^AuB&5^B̃uÃ&5^ÃuB&5^B̃uA&50.
Of those terms remaining, some have a dependence oq.
These terms must also vanish~by universality!. This leaves
only two terms giving us an expression for the fidelity:

F5sin2
a

2
uÃu21cos2

a

2
uB̃u2

5S cos2
a

2
2sin2

a

2 D uB̃u21sin2
a

2
. ~13!

By comparing coefficients of functions ofq of those terms
having aq dependence and setting them to zero, we obt
the following conditions:

2uÃu222uB̃u21^B̃uB&1^BuB̃&50, ~14!

2uBu222uAu22^B̃uB&2^BuB̃&50, ~15!

uAu21uÃu22uBu22uB̃u21^BuB̃&1^B̃uB&50, ~16!

S cos2
a

2
22 sin2

a

2 D uÃu21S sin2
a

2
22 cos2

a

2 D uB̃u2

1sin2
a

2
uBu21cos2

a

2
uAu21S cos2

a

2
2sin2

a

2 D ^B̃uB&

1S cos2
a

2
2sin2

a

2 D ^BuB̃&50. ~17!

From Eqs.~14! and ~15! and the normalization condition o
the transformations in~12!,

uAu25uÃu2, uBu25uB̃u2, ~18!

which then implies Eq.~17! is equal to Eq.~15!. From Eq.
~16!, with h5Re(̂ BuB̃&)/uB̃u2 ~thereforeuhu<1),

uB̃u25
1

22h
. ~19!

For p/2<a<p, uB̃u2 needs to be minimum to give a max
mum fidelity in Eq.~13!. Therefore, withh521, the fidelity
is

F5 1
3 cos2

a

2
1 2

3 sin2
a

2
, ~20!

which is the same as Eq.~9!. Therefore, forp/2<a<p, the
4-2
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measurement-based preparation as inr (2) is indeed optimal.
The transformation satisfying Eqs.~14!–~18! and~20! is the
same as the U-NOT transformation of Buzˇek et al. in @4,5#.
The fidelity in Eq. ~20! has the highest value of23 when
a5p ~U-NOT gate! and the lowest 1

2 when a5p/2
@U-SQRT~NOT! gate#. The graph fora and F is shown in
Fig. 1, where the measurement@i.e., withr (2) in Eq. ~7!# and
the quantum schemes yield the identical result. For 0<a

<p/2, uB̃u2 needs to be maximum to have the maximu
fidelity in Eq. ~13!. Therefore, with the choice ofh51,

FIG. 1. A graph ofF versusa is shown. For 0<a<p/2, the
upper curve corresponds to the optimal quantum scheme and
lower curve represents the measurement scheme. Forp/2<a<p,
both measurement and optimal quantum schemes yield the iden
results.
03230
F5cos2
a

2
. ~21!

This transformation is simply a trivial identity map and it h
a maximum fidelity of 1 whena50 and a minimum of12
whena5p/2. A graph ofa andF for 0<a<p/2 is shown
in Fig. 1. In this case, the quantum scheme has a hig
fidelity than the measurement scheme.

It follows that for a general transformation linear in th
spherical coordinates, namely (q,w)→(q2a,w2b), the
procedures that optimize fidelity fall into two distinct classe
~i! For 0<a<p/2, the optimal procedure is the identity ma
that performs better than a measurement-based schem
this range, the maximum fidelity~equal to 1! is achieved, not
surprisingly, whena50. ~ii ! For p/2<a<p, the U-NOT

transformation is optimal. This procedure performs only
well as a measurement-based scheme. In this range,
maximum fidelity ~equal to 2

3 ) is achieved, perhaps a little
surprisingly, only for the casea5p, which, if b50, corre-
sponds to a universalNOT operation. Sincew can be varied
linearly by a unitary transformation,b can take any value in
either of these two classes. Therefore, our result shows
the U-SQRT~NOT! operation is harder to approximate tha
the U-NOT gate. In fact, U-SQRT~NOT! is the most difficult
transformation yielding a fidelity of12 .
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