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Generation of eigenstates using the phase-estimation algorithm
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~Received 19 June 2000; published 5 February 2001!

The phase estimation algorithm is so named because it allows an estimation of theeigenvaluesassociated
with an operator. However, it has been proposed that the algorithm can also be used to generateeigenstates.
Here we extend this proposal for small quantum systems, identifying the conditions under which the phase-
estimation algorithm can successfully generate eigenstates. We then propose an implementation scheme based
on an ion trap quantum computer. This scheme allows us to illustrate two simple examples, one in which the
algorithm effectively generates eigenstates, and one in which it does not.
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I. INTRODUCTION

Since the inception of quantum computation@1#, people in
the field have endeavored to find tasks which a quan
computer could perform more efficiently than a classi
computer@2–5#. For a detailed introduction to the field o
quantum computation and information, see Ref.@6#. The al-
gorithm which has by far generated the most interes
Shor’s factoring algorithm@4#, as it enables the cracking o
the Rivest, Shamir, and Adleman~RSA! encryption system
@7#. Kitaev @8# generalized Shor’s algorithm, showing how
quantum computer can generate an eigenvalue of an arbi
unitary operator~in the limit of a large number of qubits, an
not necessarily efficiently!. Due to experimental difficulties
a large-scale quantum computer~if possible! will not be at-
tainable for a number of years. However, small-scale qu
tum computers are already available@9#. In this paper, we
show how a version of the phase-estimation algorithm can
implemented on a particular ‘‘small-scale’’ quantum com
puter: the ion trap quantum computer.

Given some unitary operatorU and an approximate eigen
state, the goal of the phase estimation algorithm@8,10# is to
obtain an eigenvalue ofU and leave the quantum system
the corresponding eigenstate@11,12#. To accomplish this
task, we shall need two quantum systems which can
coupled together. One we shall call the index system, and
other the target system. The index system is initially p
pared in the stateu0&. After performing the algorithm, the
index system will store an eigenvalue of the target sys
operator,U.

Traditionally both target and index systems have been
bit registers. In this paper the index system will remain
register of qubits; however, we shall allow the target syst
to be an arbitraryN-dimensional quantum system, whereN
may be equal to infinity. For a more generalized discuss
of combining continuous and discrete quantum computat
see Ref.@13#.

In Sec. II we briefly review the phase-estimation alg
rithm, and then derive analytical results which will allow u
to characterize the algorithm’s performance when using o
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a small number of qubits. In Sec. III we derive the Hamilt
nians necessary to investigate the number and displace
operators in an ion trap, and contrast the algorithm’s eff
tiveness with respect to the two different operators.

II. PHASE-ESTIMATION ALGORITHM

In what follows, we shall assume that our index system
a register ofm qubits. First, we need to be able to perfor
the operationL(U) on our coupled system.L(U) is com-
pletely described by defining its action on the standard b
states of the index system, coupled to an arbitrary tar
system state,

L~U !u j & I uc&T5II ^ U j
Tu j & I uc&T

5u j &U j uc&, ; j PZM , ~1!

whereZM5$0,1,2,...,M21% andM52m. As in the last line
of Eq. ~1!, we shall continue to omit the subscript notatio
when it is clear whether a ket or operator is referring to
target or index system. We begin the algorithm by initial
ing our quantum computer into the state

uC0&5u0&uc&. ~2!

Performing ap/2 rotation of each qubit in the index registe
results in the state

uC1&5
1

AM
(
j 50

M21

u j &uc&, ~3!

We now performL(U) on this state, giving

uC2&5L~U !uC1&5
1

AM
(
j 50

M21

u j &U j uc&. ~4!

The final steps in the algorithm are to perform the unita
quantum Fourier transform@14# on the index register, and
measure this register@18#. However, before applying this
transform we shall rewrite Eq.~4!. First we replaceuc& by its
representation as a sum of eigenvectors ofU,

uc&5(
k

ckufk&, ~5!:
©2001 The American Physical Society01-1
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wherek sums over the dimensionality of the target syste
Hence the stateuC2& can be written as

uC2&5
1

AM
(
j 50

M21

u j &U j(
k

ckufk&. ~6!

We shall write the eigenvalue associated withufk& aseifk.
Noting that U j applied to each eigenvectorufk& is simply
ei j fkufk&, and changing the order of the summations,
obtain

uC2&5(
k

ck

1

AM
(
j 50

M21

u j &ei j fkufk&. ~7!

Finally, for clarity, we exchange the order of the system
and replacefk with 2pvk /M , wherevkP@0,M ):

uC2&5(
k

ckufk&
1

AM
(
j 50

M21

e2p i j vk /Mu j &. ~8!

It is now not hard to show that taking the quantum Four
transform of the index register results in the state

uC3&5(
k

ckufk& (
j 50

M21

f ~vk , j !u j &, ~9!

where

f ~vk , j !

5H 1

M

sin~pvk!

sinS p
vk2 j

M D expS p i Fvk2
vkj

M G D , vkÞ j

1, vk5 j .

~10!

As we will see shortly, it is helpful to note that

u f ~vk , j !u>usinc~vk2 j !u, ~11!

for all vkP@0,M ) and j PZM . A plot of u f (vk , j )u is shown
in Fig. 1, whereM516 andj has been set to 5.

Finally, measuring the index register will, with a hig
probability, yield an approximate eigenvector. To understa
this, let us begin by looking at the most simplified ca
Suppose for a moment, that we havevkPZM for all k; then

f ~vk , j !5dvk2 j . ~12!

Thus Eq.~9! simplifies to

(
k

ckufk&uvk&. ~13!

If we add the assumption that no two values ofk give the
samevk ~i.e., we have no degeneracy@19#! then upon mea-
03230
.

e

,

r

d
.

suring the index register, we will obtainuvk&, and hence
eifk, with probability ucku2, and leave the target system
the eigenstateufk&.

Removing the assumption of zero degeneracy, measu
the index register still allows us to obtain some eigenva
e2p i j /M; however, the target system is now left in the sta

1

AN (
k8

ck8ufk8&, ~14!

wherek85$k:vk5 j %, andN5Sk8uck8u
2 is a normalization

constant.
Finally, we shall remove the assumption that thevk must

be elements ofZM . The probabilityP( j ), of measuring the
index register in some basis stateuj& is

P~ j !5(
k

z^fku^ j uC3& z2

5(
k

uckf ~vk , j !u2. ~15!

Having measured the index register to be in some stateu j &,
the target system is left in the state

uc j8&5(
k

ck8ufk&, ck85
ckf ~vk , j !

AN , ~16!

whereN5Skuckf (vk , j )u2.
In order to gain some useful information from Eqs.~15!

and~16!, let us assume that our initial target system stateuc&
is an approximate eigenstate ofufq& for someq such that

ucqu2[ z^fquc& z25p. ~17!

Remembering thatvq will be some real number between
and M, we definebvqc to be the nearestm-bit integer less
thanvq , anddvqe to be the nearestm-bit integer greater than

FIG. 1. A plot of u f u as a function ofvk , with M516 and j
55.
1-2
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vq , where moduloM has been assumed. The probability
measuring the index register in either the stateu bvqc& or
u dvqe& is

P~ bvqc or dvqe !5(
k

uckf ~vk ,bvqc !u2

1(
k

uckf ~vk ,dvqe !u2

>ucqf ~vq ,bvqc !u21ucqf ~vq ,dvqe !u2

>ucqu22 sinc2~0.5!.0.8p. ~18!

Hence, with a probability greater than 0.8p, we will obtain
an approximate eigenvalue associated withufq&, which dif-
fers in phase from the actual eigenvalue by less than 2p/2m.
Thus, if p is reasonably large, we have a high probability
finding the best estimate of the eigenvalue. However, as
shall see, largep does not imply that we will improve on th
approximate eigenstate.

Suppose we measure the index register in the s
u@vq#&, where@vq# denotes the closestm-bit integer tovq .
~N.B. This will occur with probability greater than 0.4p, as
u f (vq ,@vq#)u2.0.4.) The key question that we wish to a
dress in this paper is: has our initial approximate eigens
improved? Lettingp8[ucq8u

2, we are effectively asking wha
bounds can be placed onp8? For an arbitraryU it is obvious
that the upper bound ofp851 can be obtained by settin
uc&5ufq&. We now investigate the lower bound by dividin
the eigenstates into three disjoint sets:

Q5$q%,

G5$g:gÞq,uvg2@vq#u<1%, ~19!

H5$h:uvh2@vq#u.1%.

We now have

p85
pu f ~vq ,@vq# !u2

N , ~20!

with

N5pu f ~vq ,@vq# !u21 (
gPG

ucgu2u f ~vg ,@vq# !u2

1 (
hPH

uchu2u f ~vh ,@vq# !u2. ~21!

Using Eqs.~10! and ~19!, it is not hard to show that

0.4,u f ~vq ,@vq# !u2<1,

0<u f ~vg ,@vq# !u2<1, ~22!

0<u f ~vh ,@vq# !u2<l,
03230
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where l5u f (1.5,0)u2. As m increases,l tends to (2/3p)2

'0.045. However, for our analysis it is sufficient to note th
0.045,l,0.05 for m.3. Equation~22! leads to the lower
bound

p8>
pu f ~vq ,@vq# !u2

pu f ~vq ,@vq# !u21~12l!G1l~12p!
~23!

where G5Sgucgu2. Figure 2 contains a plot of this lowe
bound as a function ofG for u f (vq ,@vq#)u250.6 and various
values ofp. The circles indicate the points at which the min
mum of p8 equalsp. Thus we see that by endeavoring
makeG as small as possible, we increase the amplitude
ufq&. For a givenU anduc&, G can be made arbitrarily sma
by increasingm. However, we are interested in the perfo
mance of the algorithm for small values ofm. We shall now
look atG’s dependence onU anduc& by attempting to create
eigenvectors for both the number and displacement oper
in a ion trap.

III. AN ION-TRAP IMPLEMENTATION

We first derive the Hamiltonian forL(U), whereU is the
evolution operator associated with the number operator,
investigate the phase-estimation algorithm’s performance
various initial states. We then derive the Hamiltonian for t
more complicated case ofU being the displacement operato
For both of these examples the index register will be t
electronic levels ofm ions in a linear ion trap, and the targe
system will be the center-of-mass~CM! vibrational mode of
the ions.

A. Number operator

Consider the standard Hamiltonian of the on
dimensional harmonic oscillator,

H5\v~a†a1 1
2 !. ~24!

FIG. 2. The lower bound onp8 as a function ofG for
u f (vq ,@vq#)u250.6 and various values ofp. The circles indicate
the points at which the minimum ofp8 equalsp.
1-3
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wherea† and a are the creation and annihilation operato
Ignoring the overall phase contribution of the zero-ene
state, the unitary operator we will first be analyzing is

U~ t !5e2 iva†at. ~25!

In this case,L(U) is given by

L~U !5expS 2 i t

\ (
j 50

m21

H j D , ~26!

where

H j5\a†a2 jv~sz
~ j !1 1

2 !. ~27!

The inversion operator for each ion is defined bysz
( j )

5(u0&^0u2u1&^1u)/2. This Hamiltonian can be obtained fo
interaction times greater than the period of the CM vib
tional mode by applying a set of far-detuned standing w
pulses to the ion@15#.

We begin our analysis by initializing the CM mode
some phonon number stateun& @16#, and settingvt52p(1
21/M ). It is important to note that we are assuming that
the higher vibrational modes are in the vacuum state. Ass
ing no errors, applying the phase-estimation algorithm
sults in the index register being measured in the s
un modM & and the target system being left unchanged. If
now let vt be some arbitrary value, applying the algorith
will leave the target system unchanged, and the index sys
will be measured in the stateu j & with probability

P~ j !5U f S 2vtnM

2p
, j D U2

. ~28!

Let us consider the more interesting situation where
target system is initialized in some coherent stateua&. We can
utilize the phase-estimation algorithm to transform the s
of the target system into an approximation to a Fock sta

For example, suppose we use four index qubits,vt51,
and choose to approximate the Fock stateun59& by using
the coherent stateua53&. In this example we perhaps migh
think that ua53& is not a good approximate state becau
p'0.13; however, the fact thatG,0.035 indicates that the
algorithm should work well. Applying the algorithm an
measuring the index register in stateu9&, we obtain p8
'0.93. The initial and final target states for this scenario
shown in Fig. 3.

Having shown that the phase-estimation algorithm can
used to generate Fock states from coherent states, we
attempt to generate eigenstates of the displacement ope

B. Displacement operator

The displacement operator applied to the CM vibratio
mode is defined as

D~a!5exp~aa†2a* a!. ~29!
03230
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Thus the operator we wish to apply is

L~D !5expS 2 i t

\ (
j 50

m21

H j D , ~30!

whereH j are now defined as

H j5 i\~aa†2a* a!2 j~sz
~ j !1 1

2 !. ~31!

It was already shown@17# that conditional displacement op
erations such as the Hamiltonian in Eq.~31! can be per-
formed in an ion trap.

It is not hard to show that

D~dei @f1~p/2!#!ua,«&'ei2duaue2r
ua,«& ~32!

for large values of the squeezing parameterr, and wherea
5uaueif, «5re2if, and

ua,«&[S~«!D~a!u0& ~33!

is a squeezed coherent state. Thus the squeezed coh
statesua, «& form approximate eigenvectors of the displac
ment operatorD(dei @f1(p/2)#).

Without loss of generality we can setf50 in which case
the eigenstates of the displacement operator are simply
position eigenstates. It is then not hard to show that for sm
fixed m, G'12p, which leads top8'p. Thus applying the
phase-estimation algorithm to squeezed displaced states
not produce improved eigenstates of the displacement op
tor.

FIG. 3. Fock state distributions for the target system initially
a coherent state witha53, and the state of the system after app
ing the phase-estimation algorithm and measuring the four in
qubits.
1-4
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IV. CONCLUSION

We have shown that the phase-estimation algorithm
be used to generate eigenstates of the number operator,
when we severely limit the size of the index system. It wou
be interesting to see if an analogous implementation could
performed using cavity QED, allowing generation of phot
number states with only small numbers of trapped atoms.
have also shown that the algorithm’s performance depe
on the relation between the approximate eigenstate and
on

on

-

r,
J.
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spectrum of the operator. We can gauge the algorithm’s p
formance by calculating a parameterG.
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