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Generation of eigenstates using the phase-estimation algorithm
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The phase estimation algorithm is so hamed because it allows an estimationeifj¢healuesassociated
with an operator. However, it has been proposed that the algorithm can also be used to gepenatates
Here we extend this proposal for small quantum systems, identifying the conditions under which the phase-
estimation algorithm can successfully generate eigenstates. We then propose an implementation scheme based
on an ion trap quantum computer. This scheme allows us to illustrate two simple examples, one in which the
algorithm effectively generates eigenstates, and one in which it does not.
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[. INTRODUCTION a small number of qubits. In Sec. Il we derive the Hamilto-
nians necessary to investigate the number and displacement

Since the inception of quantum computat[df, people in  operators in an ion trap, and contrast the algorithm’s effec-
the field have endeavored to find tasks which a quanturiveness with respect to the two different operators.
computer could perform more efficiently than a classical
computer[2-5]. For a detailed introduction to the field of Il. PHASE-ESTIMATION ALGORITHM
guantum computation and information, see R6f. The al- . .
gorithm which has by far generated the most interest is In yvhat foIIows,_we shaII assume that our index system is
Shor’s factoring algorithnj4], as it enables the cracking of a register _ofm qubits. First, we need to be able _to perform
the Rivest, Shamir, and AdlemdRSA) encryption system the operatlor_lA(U) on our coypled .system\(U) IS com-
[7]. Kitaev[8] generalized Shor's algorithm, showing how a pletely described by defining its action on the standard basis

guantum computer can generate an eigenvalue of an arbitral tes of the index system, coupled to an arbitrary target

unitary operatofin the limit of a large number of qubits, and stem state,

not necessarily efficient)y Due to experimental difficulties, AW —l®Uili

a large-scale quantum comput@rpossible will not be at- (W)= _ lihlv)r

tainable for a number of years. However, small-scale quan- =|jyUly), VijelZy, 1)

tum computers are already availah@. In this paper, we . ) )
show how a version of the phase-estimation algorithm can bwhereZy={0,1,2,..M—1} andM=2". As in the last line
implemented on a particular “small-scale” quantum com-Of EQ. (1), we shall continue to omit the subscript notation
puter: the ion trap quantum computer. when it is clear whether a ket or operator is referring to the

Given some unitary operattt and an approximate eigen- target or index system. We begin the algorithm by initializ-
state, the goal of the phase estimation algorifleni0] is to NG our quantum computer into the state
obtain an eigenvalue df and leave the quantum system in W)= |0)| ) @
the corresponding eigenstafé1,12. To accomplish this 0 =10)14).
task, we shall need two quantum systems which can bgetorming am/2 rotation of each qubit in the index register
coupled together. One we shall call the index system, and thg, ;

: A sults in the state

other the target system. The index system is initially pre-

pared in the staté0). After performing the algorithm, the 1 M1
index system will store an eigenvalue of the target system W)= — E 1)), (3
operator,U. VM =0

Traditionally both target and index systems have been qu- . o
bit registers. In this paper the index system will remain a/V€ now performA(U) on this state, giving

register of qubits; however, we shall allow the target system L M1

to be an arbitraryN-dimensional quantum system, whe¥e TV =AU, )= —— Ul 4
may be equal to infinity. For a more generalized discussion [W2)=AU)[¥) M jgo V). @

of combining continuous and discrete quantum computation,

see Ref[13]. The final steps in the algorithm are to perform the unitary

In Sec. Il we briefly review the phase-estimation algo-quantum Fourier transforriil4] on the index register, and
rithm, and then derive analytical results which will allow us measure this registgr18]. However, before applying this
to characterize the algorithm’s performance when using onlyransform we shall rewrite Ed4). First we replacéy) by its

representation as a sum of eigenvectorsof
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wherek sums over the dimensionality of the target system.

Hence the staté¥,) can be written as

M-1

2 |J>UJE Cl di)-

J—

We shall write the eigenvalue associated wigh) ase'?x.
Noting thatU’ applied to each eigenvectdep,) is simply

W)= (6)

e'l% ¢,), and changing the order of the summations, we 04

obtain

|W,)= 2 Ck 2 |1)€'1 %] ). (7)

Finally, for clarity, we exchange the order of the systems, g
0

and replacep, with 27w, /M, wherew,e[0,M):

M-1

|~1f2>=2 2 e?miaM] ), 8

Ck| d’k) \/—

It is now not hard to show that taking the quantum Fourie
transform of the index register results in the state

M-1
Vo) =2 el 2 Hwili), 9)
where
f(wk!j)
1 sin(moy) . W]
M - o] exp i L valiE w7 |
= sin| m— 71—
1, wk—j
(10
As we will see shortly, it is helpful to note that
|f (0, )]=[sind w—])], (17)

for all w,e[OM) andj eZy, . A plot of |f(wy,j)| is shown
in Fig. 1, whereM =16 andj has been set to 5.

Finally, measuring the index register will, with a high
probability, yield an approximate eigenvector. To understan

this, let us begin by looking at the most simplified case.

Suppose for a moment, that we hawge 7, for all k; then

fwi )= 00, (12
Thus Eq.(9) simplifies to
2 ad bl (13

If we add the assumption that no two valueskofjive the
samew (i.e., we have no degenerafiQ]) then upon mea-
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FIG. 1. A plot of |f| as a function ofw,, with M=16 and]
5.

suring the index register, we will obtaifw,), and hence
Tel%x, with probability |c,|2, and leave the target system in
the eigenstatéep,).

Removing the assumption of zero degeneracy, measuring
the index register still allows us to obtain some eigenvalue
e?™1/M: however, the target system is now left in the state

(14)

1
\/_N; Crr| dr),

wherek’ ={k:w,=j}, and NV=3/|c,/|? is a normalization
constant.

Finally, we shall remove the assumption that themust
be elements of,,. The probabilityP(j), of measuring the
index register in some basis stditeis

P(j):; (il (J ¥ 3) P

=Ek |cif (@)% (15)

Having measured the index register to be in some $fate
the target system is left in the state

d .
ckf(wy,j)

VN

|wj'>=§ Cild), = (16)

where V=3¢, f(wy,j)|?.

In order to gain some useful information from Eq§5)
and(16), let us assume that our initial target system sféte
is an approximate eigenstate |<qfq> for someq such that

|Cq|25|<¢q|¢>|2:p- (17)

Remembering thab, will be some real number between 0
and M, we define|wy| to be the nearest-bit integer less
thanw,, andfw,] to be the nearest-bit integer greater than
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wq, Where moduldV has been assumed. The probability of !

measuring the index register in either the stiie,|) or 09
[wq]) is 08
P(lwg] or [ogh)=2) [ekf(wy.[wg))]? T
k 5 06 :
2 '2 0.5
+2 e (i [g)] 2
K o 04
4 .
= cqf (gl @q)) |2+ Cqf (wg [wq])|? § 03 :
=c4|?2 siné(0.5)>0.8p. (18 02 :
Hence, with a probability greater than p,8we will obtain o : : ; ; § : : :
an approximate eigenvalue associated With), which dif- o 02 oa or 05 o 07 o5 oo 1
fers in phase from the actual eigenvalue by less that2?. S 7

Thus, if p is reasonably large, we have a high probability of , _
finding the best estimate of the eigenvalue. However, as we FIG. 2. ZTE% éowe(; bound o e an#nCt.'orl' Of.Gd.for
shall see, large does not imply that we will improve on the th(“’q’.[“’q])| _h'. har? various va l,’es (nl € circles indicate
approximate eigenstate. e points at which the minimum q¢f’ equalsp.

Suppose we measure the index register in the state

e where A =|f(1.5,0)2. As m increases)\ tends to (2/3r)?
|(E\leg]>',l'¥\i/2?/\r/ﬁl[ ((I))gg;L?revr\]/ﬁ;ef)rtgt()aagm?;';le)gtg:t?ﬁaerz t(?)(zqas ~0.045. However, for our analysis it is sufficient to note that

|f(wq,[wq])|2>0.4.) The key question that we wish to ad- 0.045< A <0.05 form>3. Equation(22) leads to the lower

dress in this paper is: has our initial approximate eigenstatgOund

improved? Lettingp’zlcc’1|2, we are effectively asking what 5
bounds can be placed @i? For an arbitraryJ it is obvious = plf(wq,[@q])]

that the upper bound gb’ =1 can be obtained by setting p|f(wq,[wq])|2+(1—)\)G+)\(1—p)
|4)=]|¢q). We now investigate the lower bound by dividing

(23

the eigenstates into three disjoint sets:
Q={q},
G={9:970.|wg—[wql|<1}, (19
H={h:[wp—[wy]|>1}.

We now have

f , )|?
p,: p| (wq [wq] |

N , (20)
with
N=plf(wq [aghl*+ 2 leg*|f(wg Lo
+ 2, lenl?lf(on [wg])I?. (21)
Using Egs.(10) and(19), it is not hard to show that
0.4<|f(wq,[w])|?<1,
0=lf(wg,[wq])|?<1, (22

0<|[f(wp,[wg])[*<N\,

where G=3,g|cy|?. Figure 2 contains a plot of this lower
bound as a function o for | f(w,[ @q])|*= 0.6 and various
values ofp. The circles indicate the points at which the mini-
mum of p’ equalsp. Thus we see that by endeavoring to
make G as small as possible, we increase the amplitude of
|¢q). For a givenU and|y), G can be made arbitrarily small
by increasingm. However, we are interested in the perfor-
mance of the algorithm for small values wf We shall now
look atG’s dependence ob and|y) by attempting to create
eigenvectors for both the number and displacement operator
in a ion trap.

Ill. AN ION-TRAP IMPLEMENTATION

We first derive the Hamiltonian fok (U), whereU is the
evolution operator associated with the number operator, and
investigate the phase-estimation algorithm’s performance for
various initial states. We then derive the Hamiltonian for the
more complicated case &f being the displacement operator.
For both of these examples the index register will be two
electronic levels ofnions in a linear ion trap, and the target
system will be the center-of-mag&M) vibrational mode of
the ions.

A. Number operator

Consider the standard Hamiltonian of the one-
dimensional harmonic oscillator,
H=fiw(a'a+1). (24)
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wherea' anda are the creation and annihilation operators. Initial State ) Final State
Ignoring the overall phase contribution of the zero-energy - .
state, the unitary operator we will first be analyzing is , 09t
0.121 v
. 0.8
_ alwa'at
Uit)=e : (25 01} Y 07l
In this case A (U) is given by 2008l f_g_o.a-
.. m— = =
—it Z0.06] E
A(U)=exp<—ﬁ > Hj), 26) 2 . £04
j=0 = [
0.04} 0.3
v
where v 02}
0.02 v
ta2) (o) 4 L Y v ol
Hi=ha'a2lo(o;’+3). (27 o . v o oo
0 10 20 30 0 10 20 30

Fock Basis Fock Basis

The inversion operator for each ion is defined by’

=(10)(0[ =[1)(1[)/2. This Hamiltonian can be obtained for  pG. 3. Fock state distributions for the target system initially in
interaction times greater than the period of the CM vibra-5 conherent state with =3, and the state of the system after apply-

tional mode by applying a set of far-detuned standing wavéng the phase-estimation algorithm and measuring the four index
pulses to the iof15]. qubits.

We begin our analysis by initializing the CM mode in
some phonon number state) [16], and settingwt=27(1
—1/M). It is important to note that we are assuming that all
the higher vibrational modes are in the vacuum state. Assum-
ing no errors, applying the phase-estimation algorithm re-

Thus the operator we wish to apply is

—it
A(D)=exp(7jzo Hj),

sults in the index register being measured in the state (30
[n modM) and the target system being left unchanged. If we
now let wt be some arbitrary value, applying the algorithm
will leave the target system unchanged, and the index systemihereH; are now defined as
will be measured in the stat¢) with probability
M L2 Hij=ifi(aa'—a*a)2l(c) +3). (3D
P(J)Z‘f(T,J) : (28

It was already showpl7] that conditional displacement op-
erations such as the Hamiltonian in E®1) can be per-
%ormed in an ion trap.

It is not hard to show that

Let us consider the more interesting situation where th
target system is initialized in some coherent sfajeWe can
utilize the phase-estimation algorithm to transform the state
of the target system into an approximation to a Fock state.

For example, suppose we use four index quhits+1,
and choose to approximate the Fock state-9) by using
the coherent statier=3). In this example we perhaps might )
think that|e=3) is not a good approximate state becausefor large values of the squeezing parameteand wherea
p~0.13; however, the fact th&<0.035 indicates that the =|al€'?, e=re*?, and
algorithm should work well. Applying the algorithm and
measuring the index register in stal®, we obtain p’
~0.93. The initial and final target states for this scenario are
shown in Fig. 3.

Having shown that the phase-estimation algorithm can bé @ squeezed coherent state. Thus the squeezed coherent
used to generate Fock states from coherent states, we ndigtes|a, &) form approximate eigenvectors of the displace-
attempt to generate eigenstates of the displacement operatorent operatoD (de'l#*(72)),

Without loss of generality we can sét=0 in which case
the eigenstates of the displacement operator are simply the
. ) o position eigenstates. It is then not hard to show that for small

The_ dlspl_acement operator applied to the CM vibrationakixeq m, G~1— p, which leads t@’~p. Thus applying the
mode is defined as phase-estimation algorithm to squeezed displaced states does

not produce improved eigenstates of the displacement opera-
(29)  tor.

D(dei[¢+("/2)])|a,s)%emdla‘eﬂw,s) (32)

|a,e)=S(e)D(a)|0) (33

B. Displacement operator

D(a)=exp aa'—a*a).
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IV. CONCLUSION spectrum of the operator. We can gauge the algorithm’s per-

We have shown that the phase-estimation algorithm Ca;}ormance by calculating a paramet@r

be used to generate eigenstates of the number operator, even
when we severely limit the size of the index system. It would
be interesting to see if an analogous implementation could be
performed using cavity QED, allowing generation of photon B.C.T. acknowledges support from the University of
number states with only small numbers of trapped atoms. W&ueensland Traveling Scholarship, and thanks S. Lloyd, S.
have also shown that the algorithm’s performance dependSchneider, M. Nielson, and D. F. V. James for helpful dis-
on the relation between the approximate eigenstate and thaissions.
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