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Operations, disturbance, and simultaneous measurability
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Quantum mechanics predicts the joint probability distributions of the outcomes of simultaneous measure-
ments of commuting observables, but the current formulation lacks the operational definition of simultaneous
measurements. In order to provide foundations of joint statistics of local general measurements on entangled
systems in a general theoretical framework, the question is answered as to under what condition the outputs of
two measuring apparatuses satisfy the joint probability formula for simultaneous measurements of their ob-
servables. For this purpose, all the possible state changes caused by measurements of an observable are
characterized, and the notion of disturbance in measurement is formalized in terms of operations derived by the
measuring interaction.
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[. INTRODUCTION surements of any pair of discrete observaldeand B, the
joint probability distribution of their outcomes is determined.
The probability distribution of the outcome of a measure-According to this probability distribution, iA and B com-
ment is determined by the observable to be measured and tRedte, we have the standard joint probability formula for the
state at the time of the measurement, but the joint probabilit)T'm_L‘It"’meousI meashurementA)fa_md B. Thus, unditggdpéo-
distribution of the outcomes of two successive measurement§ction Postulate, the successive measuremen
. . are considered effectively as their simultaneous measure-
on the same object depends on how the first measureme,

) : . ent.
disturbs the object. The disturbance depends not only on the If we would restrict the class of measurements to those

observable and the state, but also on the apparatus to be usggistying the projection postulate, any successive measure-
Thus theljomt probability distribution of successive measurements of commuting observables could be considered as a
ments will be closely related to how the apparatus disturbgjmyitaneous measurement. However, this approach has the
the object. It would be an interesting and significant problenyo|iowing limitations: (i) Some of the most familiar measur-
to investigate the relation between the disturbance and thigg apparatuses such as photon counters do not satisfy the
joint probability distribution, although to our knowledge projection postulate(ii) When the observable has a continu-
there has been no systematic approach to the problem. Thigis spectrum, no measurements satisfy the repeatability hy-
paper investigates, in particular, the relation between the digothesiq3,4], so that the projection postulate cannot be for-
turbance and the joint probability formula for simultaneousmulated properly for measurements of continuous
measurements. observables(iii) The measurement of a function of an ob-

In qguantum mechanics observables are represented by liservableC such asA=f(C) using the apparatus measuring
ear operators, for which the product operation is not necesS does not satisfy the projection postulate in geng2al
sarily commutative. Two observables are represented by In fact, Einstein, Podolsky, and RoséBPR [5] derived
commuting operators if and only if they are simultaneouslythe joint probability formula for the outcomes of measure-
measurable, and then quantum mechanics predicts the joiftents of two observables pertaining to entangled subsystems
probability distribution of the outcomes of their simultaneousP@sed onthe projection postulate. This EPR correlation is

measurementsee Ref[1] p. 228. But, it has not been an- indeed one instance of the joint probability formula for the
swered fully what measurement can' be considered as a Sﬁimultaneous measurement. The EPR correlation was experi-

multaneous measurement of those observables. aneﬂrfglZ;ggﬁﬂ%fﬂﬁﬂ,ﬁﬁfﬁ'rgfﬁﬁg H:r;l:/je\\//i%rléizoégR’s
sh<|33v tr?oewC:(;:ﬁ:qtu;?]rmggastel?\?ag\{:s iz\aebéwngezfsguur;n degfrsmjﬁo_riginal assumption that the measurements satisfy the projec-

v The first 9 tis based the fact that fon postulate. The recent realizations of quantum teleporta-
neously. The first argument 1S based on the tact that any, [8,9] were also optical realizations of the EPR correla-
commuting observable& and B have a third observabl€

) X tion that violate EPR’s assumption of the projection
for which A andB are functions o€ (see Ref[1], p. 173.In ogtylate. Thus, if we should be restricted to measurements

this case, the measurement@fgives also the outcomes of gatisfying the projection postulate, the scope of measurement
the A and theB measurements simultaneousfyef. [1], p.  theory would exclude most of the recent results in quantum
228). This argument gives one special instance of simultainformation processing using entanglemgha).
neous measurement, but it is quite open from this argument The modern measurement the¢8y4,11—16 extends the
how a pair of measuring apparatuses foend B makes a  scope from the measurements satisfying the projection pos-
simultaneous measurementAdfandB. tulate to more general measurements described by operations
The second argument assumes the projection postulatend effects, or more generally by operation-valued measures
proposed by Lders[2]. The projection postulate uniquely introduced from an axiomatic motivatiga7—19. Thus it is
determines the state after the measurement conditional uparatural to expect to have a well-defined way to calculate
the outcome of the measurement, so that for successive mearobabilities in any combinations of measuring apparatuses,
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once we have identified the operation-valued measure in thghe R. (Throughout this paper, “Borel set” can be replaced
general theory with the given model of measuring apparatusy “interval” for simplifying the presentation without any
However, determinations of the operation-valued measure S@ss of generality.

far have relied on the projection postuldte?] or the joint Let A be an observable @&. The spectral projection ok
probability formula[3,20]. Thus the foundations of the mod- corresponding to a Borel sét is denoted byEA(A). Ac-
ern approach in the present status involve the same difficultfording to the Born statistical formula, apparaf(&), with

as establiShing the jOint probablllty formula without assum-gn output Variab|a, is said tomeasurean observablé\ at

ing the projection postulate. the timet if the relation
In this paper we shall abandon the projection postulate as
a universal quantum rule and consider the following prob- Pra(t) e A} =TI EA(A)p(1)] (8]

lem: under what condition can a successive measurement of

two or more observables be considered as a simultaneougolds for the state(t) of the systemS at the timet. The

measurement of those observabl@$® prospective solution statep(t) is called theinput stateto apparatus\(a), and is

could be stated in the intuitive language that the precedinggken to be an arbitrary density operator.

measurement does not disturb the observable to be measuredThe relation between the present formulation based on

later. However, in the current quantum mechanics very littlespectral projections due to von Neumaftj and Dirac’s

is known about the disturbance caused by general measurrmulation[22] is as follows. If the observablé has the

ment beyond the projection postulate. In order to answer th@irac-type spectral decomposition

question in rigorous language, this paper will attempt to de-

velop a theory of disturbance in general measurements with _

determining the possible state changes caused by measure- A EV: % Ml’u’vx'u'szy" f MA.w)(N v,

ments of observables. The justification of the joint probabil-

ity formula and the EPR correlation will then follow without Where w varies over the discrete eigenvaluasyaries over

assuming the projection postulate. the continuous eigenvalues, ands the degeneracy param-
Section Il defines the simultaneous measurement for ater, then we have

pair of measuring apparatus. Sections Il and IV discuss si-

multaneous measurements under the repeatability hypothesis —a, \\_

and the projection postulate, indicating their limitations. The E (A)_EV: ,uze:A |M’V></'L’V|+§V: JA'A’WO\'VId)\'

following three sections develop the theory of general mea-

surement. Section V introduces the nonselective operations this case, we have

and their duals. Section VI discusses the Davies-Lewis pos-

tulate for the existence of operation-valued measures corre-

THEAM)p(D]=2 2 (u,v]p(0)|p,v)

sponding to apparatuses, and shows that the two justifica- S A

tions of their postulate known so far involve the same

difficulty encountered the one in establishing the joint prob- f

ability formula without assuming the projection postulate. EV A<)\’V|p(t)|)"y>d)\

Section VIl gives a justification of the Davies-Lewis postu-
late without assuming the projection postulate or the joint
probability formula, and proves the factoring property of
operation-valued measures. Section VIl formulates the dis- Any commuting observable& andB are simultaneously
turbance in the measurement, and establishes in rigorous lameasurable, and the joint probability distribution of the out-
guage the relation between the disturbance and the joirtomes of their simultaneous measurement is given by
probability formula. Sections IX and X apply the above re- , A B

sult to the EPR correlation and the minimum disturbing mea- Pria(t) e A,b(t) e A"} =THEYA)E>(A")p(D)], (2

surement. Section XI concludes the paper with some remarks .
on the uncertainty principle pap whereA andA’ are arbitrary Borel sets, aradandb denote

the output variables of the apparatuses measwiagdB at
time t, respectively.

B. Simultaneous measurements using one apparatus

Il. STATISTICAL FORMULA FOR SIMULTANEOUS A well-known proof of this formula from Eq(1) runs as
MEASUREMENTS follows (Ref. [1], p. 228. SinceA and B are commutable,
A. Born statistical formula there exist an observabl@and real-valued functionsandg

, such thatA=f(C) and B=g(C) (Ref.[1], p. 173. Their
To formulate the problem precisely, I&be a quantum spectral projections satisfy the relations
system with the Hilbert spack of state vectors. We shall

distinguish measuring apparatuses by their own output vari- EAA)=EC(f1(A)),
ables[21], denoting byA(x) the apparatus measuring the
systemS with the output variable, which, we assume, takes EB(A")=ES(g 1(A")).

values in the real lin®R. We shall denote by X(t) e A” the
probabilistic event that the outcome of the measurement ug-or the outcomec of the C measurement, one defines the
ing apparatusA(x) at timet is in a Borel setA in the real outcome of theA measurement to bg(c) and the outcome
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of the B measurement to bg(c). Let a, b, andc be the theorem, though an easy consequence of the definition,
output variables of the measurementsfpB, andC, respec- shows that the simultaneous measurability extended by the

tively. Then we have above definition is still consistent with the old one.
Theorem 1. If the successive measurement of A and B

Pla(t)eA,b(t)e A’} using apparatuses\(a) and A(b), respectively, is a simul-

_ 1 1 taneous measurement of observables A anthé& A and B

=Prc(t)ef *(A),c(t)eg ~(A")} commute.

_ -1 —1 A Proof. Suppose that Eq3) holds. By the positivity of

Preh) e (A)Ng (AN} probability, both sides are non-negative. Sipge¢) is arbi-
—THES(F4(A)Ng XA )p(1)] trary, the productEA(A)EB(A’) is a positive self-adjoint

operator so thaE”*(A) andEB(A’) commute. Since\ and

=TI EC(f~H(A)ES(@ 1 (A")p(t)] A" are arbitrary, it follows thafA and B commute. [ |

In the following two sections, we shall re-examine the
conventional approach from the operational point of view
before starting with the general considerations.

=TI EAA)EB(A)p(D)].

Thus their outcomes satisfy E), so that the measurement
of C at the timet gives a simultaneous measuremenfaind . SIMULTANEOUS MEASUREMENTS UNDER

B. THE REPEATABILITY HYPOTHESIS
C. Simultaneous measurements using two apparatuses A. von Neumann’s formulation
The above proof gives one special instance of simulta- The conventional approach to measurement theory sup-
neous measurement which uses one measuring appara ses that the measurement leaves the measured system in
with two output variables, but it is rather open when a pair of€ eigenstate 'correspon(_jmg. to thg outcome of the measure-
measuring apparatuses frand B makes a simultaneous ment[l,Z(%]. Thls assumption is equivalent to thepeatabil-
measurement ok andB ity hypothesigormulated by von Neuman(Ref.[1], p. 335
In order to formulate this problem precisely, suppose thaf*® fO_IIOV\_’S: I a physical quantity is measured twice in suc-
the observer measurds at the timet using the apparatus cession in a system, then we get the same value each time.
A(a). Let t+At be the time just after thé\(a) measure- .Even though the repeatability hypothesis was posed as a
universal law by von Neuman(Ref. [1], p. 213 based on

ment. This means precisely thiat At is the instant of the the experiment of Compton and Simmons. in the modern
time just after the interaction is turned off betwet(e) and € expeniment ot &-ompton a ons, € mode
approach it merely characterizes a class of measuring appa-

S, and that aftet + At the objectSis free from the apparatus ratuses. Thus, in what followgy saying that the apparatus

A(a). (Note that the last condition precludes the recoupling e " o
of the system with the apparatyis. A(a) satisfies the repeatability hypothesis, it is meant pre-

: cisely that the repeatability hypothesis holds for the repeated
Let A(b) be another apparatus measuring an obsenible . .
of S with output variableb. If the measurement using(b) measurement of A using the apparaitigg) for the first A

is turned on at the timé+ At, the two measurements are measurement.
called thesuccessive measuremearsingA(a) andA(b) (in
this ordej. Then thesuccessive measurement usiAga)
and A(b) is defined to be a simultaneous measurement of A Suppose that the systeBiis measured at timé by an
and B if and only if the joint probability distribution of their apparatug\(a). Lett+ At be the time just after the measure-
output variablesa and b satisfies the standard joint prob- ment. For any Borel set, let p(t+At|a(t) € A) be the state
ability formula att+ At of Sconditional upora(t) e A. Thus if the systen$
, A B\, is sampled randomly from the subensemble of the similar
Pra(t) e A,b(t+At) e A"} =T E®(A)E®(A")p(1)]. systems that yield the outcome of tAéa) measurement in
3 the Borel setA, thenSis in the statep(t+At|a(t) e A) at
time t+At. When Pfa(t) e A}=0, the statep(t+ At|a(t)
e A) is indefinite, and we lep(t+ At|a(t) e A) be an arbi-
Héarily chosen density operator for mathematical conve-

B. Repeatability hypothesis and joint probability

It should be noted that the validity of the above relation
depends on how the apparatdga) disturbsS during the
first measurement, but does not depend on the property of t e nee

apparatusA(b) as long asi(b) measures the observariie Suppose that the apparatdiga) measures a discrete ob-

in any input state. Therefore, the problem to be considered is . .

to find a necessary and sufficient condition on the apparatt%ervableA with e|genyaluesa1,a2 e a_mdthat theA(a)
A(a), measuringA, in order for successive measurements'neasurement at timeis followed |mm_e_d|ately by ap(\_(b)
usingA(a) and an arbitrary apparatus(b) measuringd to measuremer,wt meaggn@ The conditional probab|I|ty. of
satisfy Eq.(3). b(t+At) e A’, conditional upon the outcoma(t)=a,, is

In the conventional approach, von Neumaef. [1], p. the probability of obtaining the outcoma(t+At)e A’ in

224) proved that if two observables are simultaneously meath® Statep(t+Ala(t) =ay), so that we have

surable, then they are represented by commuting operators Prb(t+At) e A'la(t) =
under the repeatability hypothes{Fhe repeatability hypoth- bl Jea'lalt=an}
esis will be discussed in detail in Sec. )llThe following =TI{EB(A")p(t+At|a(t)=a,)]. (4
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The joint probability distribution of the outcomes of the suc- generate probe observate= =,,a,|£,){( &,|. The probe ob-
cessive measurement usidga) and A(b) is given by the servableis generally defined to be the quantum-mechanical

well-known relation observable in the apparatus that is to be correlated with the
measured observable by the measuring interaction, and am-
Pra(t)e A,b(t+At)e A’} plified in a later stage of the apparatus to the directly sensible
variable eventually read out by the obserj24]. In the con-
= > PHb(t+At)eA’|a(t)=a,}PHa(t)=a,}. ventional approach, the notion of the “pointer position” is
aneA used ambiguously instead, which sometimes means the
(5) “probe observable” and sometimes means the “directly sen-

sible variable.” LetP be the subsystem of the apparatus

Now, suppose thak is nondegenerate, and that apparatusA(a) that includes the probe observable and actually inter-
A(a) satisfies the repeatability hypothesis. Then the state dfcts with the measured syst&nSuppose thaP is prepared
the system just after thé\(a) measurement, conditional in the statd¢) just before measurement. Lidtbe the unitary

upon the outcome(t)=a,, is determined uniquely as the operator representing the time evolution of the composite

normalized eigenstate systemS+ P during the measuring interaction. The apparatus
A(a) satisfies the repeatability hypothesis if and onlyJif
corresponding to the eigensteag, provided Pfa(t)=a,} u: ® el fn ® 8
O e ] e a1 55 b0y B )€ Ml gy 2|0, ®)
From Egs.(4) and(6), we have wheree' n is an arbitrary phase factor.
2 Pb(t+At)e A’ |a(t) =a,Pa(t)=a,} D. Measurements violating the repeatability hypothesis
apelA

A typical model which does not satisfy E@8) is the
B photon-counting measurement in which, if the measurement
:aEEA (#nl EXAN)[¢n){bnlp(D)] bn) takes place in the number statg,)=|n), then the apparatus
" absorbs all the photons and outputs the amplified classical
energy proportional to the number of absorbed photons. In

— B ’
_anEsA T ) bnlEZ(A")| bn) this caselJ satisfies
X{¢nlp(D)]. U:[n)®[&)—[0)®[&p), 9
Thus, from Eq.(5) we have and hencdJ does not satisfy E(8).
For less idealized models of photon-counting measure-
Pra(t)e A,b(t+At)e A’} ment, we refer to Refd.25,2¢. For the case of measure-

ments of continuous observables, models of exact position
= > T ) bal EB(AT) | dp) bolp(t)]. (7) ~ Measurements that do not satisfy the repeatability hypothesis
apeA even approximately have also been constru¢fes27,28.
They were applied to the position monitoring that breaks the
If AandB commute, we have standard quantum lim{t27,29.

PHa(t) e A,b(t+At)e A’
{ j E. Significance of the repeatability hypothesis

= > Tt ) bal EB(A)p(1)] Given A, B, and|¢), generally the apparatus(a) mea-
aed sures the observablg, or equivalently satisfies Eql), if
=TI EAA)EB(A)p(1)], and only if U satisfies
and hence we obtain the joint probability formdigg. (3)]. Uil dn)@[&)—|dr) @[ &), (10

By the above, we conclude th#tthe apparatusA(a),
measuring a nondegenerate discrete observahlsatisfies
the repeatability hypothesis, the successive measurement

where{|¢,)} is an arbitrary family of normalized vectors,
J},‘?t necessarily orthogonal. Thus, if we do not assume the

ing A(a) and A(b) measuring an arbitrary observable B repeatability hypothesis, the measurement correlates causally

commuting with A is a simultaneous measurement of he input statg¢,) of the object before measurement with
and B the output stateg,) of the probe after measurement for some

orthonormal basi$|£,)}. On the other hand, the repeatabil-
ity hypothesis requires not only that the input sthtg) is
correlated to the output stat€,) causally, but also that in

Consider a model of a measuring process in which arthe composite system after the measurement the input state
observableA= =, a,| ¢,){ ¢,| with nondegenerate eigenval- |#,) and the output statgf,,) are entangled to have a com-
uesa, is measured by an apparatéiga) having the nonde- plete statistical correlation.

C. Repeatability hypothesis and measuring processes

032109-4



OPERATIONS, DISTURBANCE, AND SIMULTANEO . .. PHYSICAL REVIEW A 63 032109

It is stated quite often that to measure an observAlike  {|¢, )}, the state change depends on the method of mea-
to change the input state/) to an eigenstatép,) with the  surement even if the repeatability hypothesis holds.
probability |{ ¢, )|?. This does not follow from the Born In this case, the joint probability distribution of the out-
statistical formula[Eq. (1)], but assumes the repeatability comes of theA(a) measurement and the immediately follow-
hypothesis. Thus only when the measurement is assumed ilmg B measurement, using the apparaf(®), is given by
satisfy the repeatability hypothesis, can we say that the mea-
surement changes the state of the object probabilistically to

one of the eigenstates of the measured observable. PHa(t) e A,b(t+At)eA'}
Unless the repeatability hypothesis is assumed, it is, there-
fore, not a correct description that the measurement is to = 2 E Tr[|¢n,m)<¢n,m|EB(A')|¢n,m>
make a one-to-one correspondeiioeto make an entangle- aneA m
ment, in the modern languagbetween the state of the ob- X{ o mlp(D)]. (14)

ject before the measurement and the state of the probe after

the measurement as described by @4, by which the prob-

lem of measuring the object is transferred to the problem ofrom the relation
measuring the probg30,31. In what follows, a measure-

ment is calledrepeatableif it is carried out by an apparatus

satisfying the repeatability hypothesis.
fying the rep y hyp EN8)= 3 S [dnn)(dnnl,

IV. SIMULTANEOUS MEASUREMENTS UNDER

THE PROJECTION POSTULATE . . .
the joint probability formula, Eq(3), holds for the arbitrary

A. von Neumann's measurements of degenerate observables input statep(t) if and only if A’ andB commute. Although

For the observables with a nondegenerate purely discret® andB commute, there are many choices{pp,, )} such
spectrum, the repeatability hypothesis determines the statBatA’ andB do not commute. Thus, evenAandB com-
after measurement uniquely; however, when the observabl@ute andA(a) satisfies the repeatability hypothesis, the suc-
has degenerate eigenvalues, the state after measuremen€@ssive measurement usidda) and A(b) cannot be a si-
not determined uniquely but depends on the “actual measufmultaneous measurement AfandB in general.
ing arrangement’{Ref.[1], p. 348. von Neumanr{Ref.[1],

p. 348 considered the following means of measurement sat-
isfying the repeatability hypothesis: Lété, )} be an or-
thonormal basis, and l& be an observable represented by ~ The previous argument shows the existence of infinitely
many different ways of measuring the same observable,
which satisfies the repeatability hypothesis but does not sat-
isfy the joint probability formula for the simultaneous mea-
surement. Moreover, iders[2] pointed out that the observ-
Suppose that the observer performs a repeatable measueble corresponding to the identity operakas considered to
ment of a nondegenerate observahlegiven by be measured without changing the input state, but any one of
the above measurement for the identity changes the state
A’=2 an il o )bl 12 unreasonably. Lders suggeste_d that the above measgrement
M mA Y, mi for a degenerate observable is always more disturbing than
the desirable one. In order to determine the canonical way of
where alla,, ,, are different, and that if the outcome of th¢ ~ measuring even the degenerate observableggiisuproposed
measurement ia,, ,, then the outcome of thd measurement  the following hypothesislf an observable A is measured in
is taken to be,,. Then we have a repeatable measurement o# statep, then at the time just after measurement the object

B. Luders’s formulation

A:% an|¢n,m><¢n,m|- (11

A is left in the state
Suppose that the observalfiés measured at timein the

above way in a statévecto) |¢) using the apparatu&(a). E*a}pE*a}

Then, at timet + At, just after the measurement, the object is THEAalp]

left in the state(density operator

p(t+Atlatt)=a,) = —=—2—— > |cnml? dnmXbnml, provided that the object leads to the outcome a with

2 leqnl2m e THEAalp]>0.
m (13) In particular, if the object is measured in the vector state

|y, then the state after measurement is the vector state
wherec, n=(¢, ml#). This state depends not only on the EA{a}|#) up to normalization. Thus the eigenstate corre-
observableA and the outcome,, but also on the choice of sponding to the outcom&is uniquely chosen as the projec-
the orthonormal basi§ ¢, )} that satisfies Eq(11). Since  tion, and hence the above hypothesis is calledptiogection
there are infinitely many essentially different choices ofpostulate
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C. Projection postulate and joint probability psip(h)=p(t)®0. (17)
Suppose that a discrete observahlef S with eigenval- . . . )
uesa,,a,, ... is measured at the timeby the apparatus The time evolution of the composite syste& P during

A(a), measuringA satisfying the projection postulate. Then the interaction is described by a unitary operatbon H
the state of the system at tinter At just after theA(a) ® K. Hence, at the time just after the interactiom,At, the

measurement conditional upon the outcoa(®) =a,, is composite systerB+ P is in the state
EAfa ) p()EAa,) psip(t+A)=U[p(t)@o]U". (18
p(t+Atla(t)=a,)= i : (15) , : :
Tr EMa,p(t)] The outcome of this measurement is obtained by a measure-
] ment of an observablél of P at timet+ At. The observable
provided Pfa(t) =a,}>0. M is called theprobe observableThus, the output probabil-
From Egs.(5) and(15), we have ity distribution of the apparatu(a) is
Pria(t) e A,b(t+At) e A’} Pra(t) e Al=TH[I®EM(A)JU[p(D@a]UT}.  (19)
= > THEBRA)EMa,lp(H)EAa,}]. (16) We shall call the above description of the measuring pro-
aped cess the indirect measurement modetetermined by

(K,o,U,M). In this model, from Eq(18) the systenSis in

Thus the joint probability formula, Eq3), holds for the the state

arbitrary input statep(t) if and only if A and B commute.

Therefore, we have seen the following theorgth p(t+At)=Tr,C{U(p(t)®cr)UT} (20)
Theorem 2. The successive measurement of commuting

observables A and B using apparatuse®) andA(b) isa  at timet+At, where Tk is the partial trace ovek. The

Sim.ulta.neous measurement of A an,dlfBA\(a) satisfies the state Changﬁ(t).ﬁp(t_FAt) is determined independent|y of

projection postulate the outcome of the measurement, and is callechtireselec-
We have seen that in order for a successive measuremefife state change

of AandB to be a simultaneous measurement, the projection  As introduced previously, we have another type of state

postulate for the apparatus measurigs a sufficient con-  changep(t)—p(t+At|a(t) e A), where p(t+At|a(t) e A)

dition. If we restrict our attention to the measuring apparais the state at+ At of S conditional upora(t)  A. Since the

tuses satisfying the projection postulate, any successive megonditiona(t) e R makes no selection, we have
surement of commuting observables is a simultaneous

measurement, but, we have also seen that there are many p(t+Atla(t) e R)=p(t+At). (22
kinds of measuring apparatuses which do not satisfy the pro-

jection postulate. Now we shall turn to the problem of underFor A #R, the state change(t)—p(t+Atla(t) e A) is
what condition a successive measurement of two or morealled theselective state change

observables can be considered as a simultaneous measureiVe define the transformatiop— Tp for any trace class

ment. operatorp on the state spack of S by the relation

V. NONSELECTIVE OPERATIONS OF MEASURING Tp=Tr[U(p2a)U™]. (22

APPARATUSES
ThenT is a trace preserving completely positive linear trans-

Every measuring process is considered to include an inggrmation on the spacec(’H) of trace class operators Gt
teraction, called theneasuring interactiorbetween the mea- 11 12 2]. The transformatioT is determined by the appa-
sured system and the measuring apparatus. Let us consiqgfys preparation and the measuring interactids, and is
the following description of the measuring interaction arisingca|led thenonselective operatioaf the apparatus(a). The
in the measurement using the apparat(ig). In the follow-  onselective operatiof represents the open system dynam-

ing, the probe P is a microscopic subsystem of apparatusjcs of the systens from t to t+ At, and we have
A(a) that actually interacts witls. More precisely, we de-

fine the probeP to be the smallest subsystem Afa) such Tp(t)=p(t+At). (23
that the composite systef P is isolated during the mea-
suring interaction. Since we assume naturally 8ratA(a) is As the converse of definitiof22), it is well known that

isolated during the measuring interaction, the smallest sulfor every trace preserving completely positive linear trans-
system exists. The measurement is carried out by the inteformation onrc(#), there is an indirect measurement model
action between the systef and the probeP and by the such thatT is the nonselective operation of that model
subsequent measurement on the pieb®e assume that the [20,3,17.

probe system is a quantum mechanical system described by For any bounded linear transformatitnon 7c(), its

the Hilbert spacéC of state vectors. At the time of measure- dual L* is defined by

mentt, the probeP is in a fixed stater, so that the composite

system is in the state T (L*X)p]=Tr[ X(Lp)]
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for all pe 7c(H) andX e L(H), whereL(’H) stands for the called apositive superoperator valued (PSV) measiiré
space of bounded operators B Let T* be the dual of the satisfies conditiorta). Moreover, it is callechormalizedif it
nonselective operatioi. ThenT* is the normal unit pre- satisfies condition(b). Accordingly, the operation valued

serving completely positive linear transformation 6(-), measure ofA(a) is the normalized PSV measure satisfying
such that conditions(c) and (d).
The validity of the Davies-Lewis postulate for the appa-
TI(T*X)p] =T X(Tp)] (24 ratuses with indirect measurement models was previously

demonstratetbased orthe joint probability formula in Refs.
[20,3], where it was also shown that any normalized PSV
measures which are realizable by indirect measurement mod-
els are completely positive, and vice versa.

for all pe 7c(H) and X e L(H) (Ref.[11], p. 18. We call
T* the dual nonselective operatiorLet Xe £(H) and p
e 7¢(H). From Eq.(22) and a property of the partial trace,

we have
TIXTp]=TrXTr[U(p2o)U™] B. Determination of operation valued measures based
=TH(X®I )U(p®0')UT] on the projection postulate
+ In order to determine the operation valued measure corre-
=TrU' (XeHU(I®o)(p®1)] sponding to the given measuring apparatus, we need to de-
=T TrUT(Xe U ®a)]p]. scribe the measuring process 'by an indirect measurement
model. Then the measurement is divided into two processes:
Hence, from Eq(24), we have the measuring interaction in the object-probe composite sys-
tem, and the probe measurement. Given the indirect mea-
TI(T*X)p]=TTr{UT(XeHU(l®o)]p]. surement model, the current formulation has two arguments

to determine the operation valued measure: one relies on the

Sincep is arbitrary, we have projection postulatécf. Ref.[12] for yes-no measurements

T*X=Tr.JUT(Xe DUl ® 25 and the other relies on the joint probability formula
U (XehU(leo)] (25 [20,3.15.

for all Xe £(H). This characterizes the dual nonselective In the first approach, the probe measurement is explicitly
operation. assumed to satisfy the projection postulate. Consequently,
the operation valued measure is determined by the unitary

VI. OPERATION VALUED MEASURES operator of the measuring interaction and the projection op-

erator derived by the projection postulate with partial trace

A. Davies-Lewis postulates over the probe.

Davies and Lewig19] postulated:Given an apparatus The argument runs as follows. Assume that the apparatus

A(a) for S, there is a mapping\— X (A) from the Borel sets A(&) has the indirect measurement modél,¢,U,M),
to the positive linear transformations orc(#) satisfying where the probe observahli¢ is purely discrete with eigen-

the following conditions valuesa,. Let us suppose that the measuring interaction
(a) For any disjoint sequence of Borel setg and for any ~ Petween the syster8 and the apparatué(a) is turned on
perc(H), from t to t+At, and that the observer measures the probe

observableV at the timet+ At using the apparatu&(m).
Lett+At+ 7 be the time just after the measuring interaction

X(UnAn)P:; X(Ap)p. (263 s turned off between the prolfe and the apparatua(m).
The systemA(m) is considered as a subsystem Afa),
(b) For any p e c(H), including the later stages after the prad@eAssume that the
apparatu#\(m) satisfies the projection postulate and that the
TIIX(R)p]=Trlp]. (26b  outcome ism(t+At)=a,. Then, at timg+ At+ 7 the com-

(c) For any Borel setA posite systens+ P is in the state

Pra(t) e A}=TI[X(A)p(t)]. (260 psep(t At m(t+AD=ay)

_ (1@EMay})psip(t+ At (10 EM{a,})
T ®EMa})psip(t+AD]

(260) (27)

(d) For any Borel setA with PHa(t) e A}>0,

X(4)p(1)
TIX(A)p(H)]

We call the above mappinX:A~—X(A) the operation  Since the outcome of th&(m) measurement at timet+ At
valued measurer the operational distributionof apparatus is interpreted as the outcome of thga) measurement at
A(a). In general, we call any bounded linear transformationtime t, the conditionm(t+ At) =a, is equivalent to the con-
on 7c(H) a superoperatorfor H. Any mappingA—X(A) dition a(t)=a, . It follows that at timet + At+ 7 the system
from the Borel sets to the positive superoperatorsHors  Sis in the state

p(t+Atlat) e A)=
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p(t+At+7lat)=a,)
=Trps: p(t+At+7m(t+At)=a,)]. (29
From Egs.(18), (27), and(28), we have
p(t+At+ra(t)=a,)

T8 EYa,)U[p() @ 01U (10 EM{a,})]
- Ti(loEM{a))U[p(t)® o]UT]

(29
By the well-known relation
Trd(1@X)Y]=Tr [ Y(I®X)] (30)
for all Xe £L(K) andY e L(H®K), we have
Trel(loEM{a)U[p(h @ o JUT (10 EM{an})]
=Trd(le EM{ahulp(he]uT]. (3D

Hence we have an important relation

Trl(1®EM{a,h)U[p(t) @ ]UT]
Tr(Ie EM{a,hU[p(h®a]UTT
(32)

Let A be an arbitrary Borel set such that{&it) e A}>0.
Then we have, naturally,

p(t+At+ralt)=a,) =

p(t+At+7la(t)eA)

EAano=a&pa+Ap+ﬂan:a@

PHa(t)e A}
(33

From Egs.(19), (32), and(33), we have

Trl[| ®EM(A)JU[p(t) ® 0 ]UT]

Tri[1©EM(A)JU[p(t) @ 0 ]UT]
(34

p(t+At+ra(t)eA)=

To obtain the final result, suppose that #ém) measure-

ment is instantaneous, i.e==0, and that there is no interac-

tion betweenS and the outside ofA(a) from t to t+At
+ 7. Then, in this time interval, the state changesSadire

negligible due to thé\(m) measurement, the time evolution
of S, and the decoherence from the environment. Conse-

quently, we have
p(t+At|at) e A)=p(t+At+7|a(t) e A). (35
Therefore, we have reached the final form
Tre[[10EY(A)]U[p() ® o ]UT]

T EM(A)U[p(H@aUT]
(36)

p(t+Atla(t)ed)=

PHYSICAL REVIEW A 63 032109

From the above, the operation valued measurA(@) is
determined by

(37

for all Borel setsA and all trace class operatagss Further-
more, it follows easily from properties of partial trace that
satisfies conditionga)—(d).

Obviously, the above approach explicitly excludes the
possibility of measuring the probe by an apparatus not satis-
fying the projection postulate such as a photon counter. Ac-
cordingly, this approach cannot apply correctly to any mea-
surements with continuous probe observables such as the
position of the probe pointer, since no apparatuses measuring
continuous observables satisfy the repeatability hypothesis
[3,4]. Moreover, the argument assumes that the probe mea-
surement should be instantaneous.

X(8)p=Trd[1©EM(4)]U(p@o)U"]

C. Determination of operation valued measures based
on the joint probability formula

In the second approach, generalizing von Neumann’s ar-
gument on repeated measurements of the same observable
(Ref.[1], pp. 211-223 it is assumed that the observer again
measures an arbitrary observable of the object system at the
time just after the measuring interaction. Then one can con-
sider the joint probability distribution of the outcomes of the
probe measurement and the second object measurement
[20,3,13. By assuming that the above joint probability dis-
tribution satisfies the joint probability formula for the simul-
taneous measurement, we can determine the operation val-
ued measure.

Since the joint probability formula is well formulated
even in the case where the probe observable has a continuous
spectrum, the second approach can be applied to measure-
ments of continuous observables. Moreover, in the case of
the discrete probe observable, the second approach leads to
the same operation-valued measure as the first approach, so
that the second approach is consistent with the first.

The argument in the second approach runs as follows. Let
A(a) be an apparatus described by the indirect measurement
model (C,o,U,M). Suppose that the systefis measured
at time t by the apparatu#\(a). Suppose that at timé
+ At, just after the measuring interaction, the observer were
to measure an arbitrary observaBl®f the same objec$ by
an apparatué\(b). The conditional probability ob(t+ At)

e A’ given a(t) e A is the probability ofb(t+At)eA’ in
the statep(t+Ala(t) e A), so that the joint probability dis-
tribution of a(t) andb(t+ At) satisfies

Pra(t) e A,b(t+At) e A’}
=TI EB(A")p(t+At|a(t) e A)]PHa(t) € A}.
(38

For any Borel set\, let X(A,p(t)) be the trace class opera-

tor defined by
X(A,p(t))=PrHa(t)e Alp(t+Atla(t) e A). (39

From Eq.(38), we have
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Pra(t) e A,b(t+At) e A’} =TI EB(A")X(A,p(1))]. to take advantage of operation-valued measures for the jus-
(40) ftification of the joint probability formula. In conventional
measurement theory, a similar kind of circular argument has
On the other hand, by the indirect measurement model theen known as the infinite regress of the von Neumann
outputa(t) of this measurement is obtained by a measurechain. Despite the above difficulties, in the following sec-
ment of the probe observabilé at timet+ At. Let A(m) be  tions we shall show an alternative approach without any fear
the apparatus measurifg at the timet+At. Then, the of a circular argument.
probabilistic event ‘a(t) e A” is equivalent to the probabi-
listic event “m(t+ At) e A” and hence we have VII. STATISTICAL APPROACH

TO THE OPERATION VALUED MEASURES
Pria(t) e A,b(t+At) e A’}

—Pm(t+At) e A,bt+At) eA’}. (41

A. Existence of the operation valued measures

In what follows, we shall prove the Davies-Lewis postu-

Since the observablsl of P and the observablB of S are Iate_ Wit_hout assuming the joint probability formu_la or the
simultaneously measurable, if thgm) andA(b) measure- Projection postulate. Let us suppose that the sySésrmea-

ments can be considered to be simultaneous, we have ~ Sured at timet by the apparatug\(a), and at timet+ At
immediately after this measurement an observébtd S is

P{m(t+At)e A,b(t+At)eA’} measured using an appara#@). Then the joint probabil-
B A M ity distribution of the outcomes of th&e andB measurements
=Tr[E°(A")®E"(A)]pssp(t+AD)] satisfies Eq(38). For any Borel sef\, let X(A,p(t)) be the
=Tr[EB(A")®EM(A)]U[p(H) @ o ]UT]. trace class operator defined by E89). Then, from Eq(38),
X(A,p(t)) satisfies Eq.40). Since the input state(t) is
By the property of partial trace, we have assumed to be an arbitrary density operator,(B§). defines
the transformatiorX(A) that mapsp(t) to X(A,p(t)). From
P{m(t+At)e A,b(t+At)e A’} Egs.(39) and (40), X(A) satisfies the relations
=TI E*(A")Tr[1©EM(A)]U[p(t)® o ]UT]. X(A)p(t)=PHa(t) e Alp(t+Atjat)eA) (45
(42) and
SinceB and A’ are arbitrary, from Eq940)—(42) we have Pra(t) e A,b(t+At) e A} =TI EB(A)X(A)p(t)].

XA, p(0))=Trl[1eEM(A)U[p(H®a]UT]. (43

Suppose that the input staggt) is a mixture of density
Suppose that Pa(t) e A}>0. From Eq.(39), we have operatorsp; andp,, i.e.,

X(A,p(1)) p(t)=ap;+(1-a)p,, (47)

p(t+Atla(t) e )= iy

where 0< a<1. This means that at timethe measured ob-

Tr [ 19 EM(A)U[ p(t)® 0 ]U ] ject S is sampled randomly from an ensemble of similar
= v P systems described by the density operatowith probability
TH1®EY(A)JU[p(h®a]U'] «, and from another ensemble described by the density op-

Hence we have shown that relati@®6) holds for the appa- eratorp, with probability 1~ . Thus we have, naturally,

ratusA(a) given in this argument. LeX be the mapping  Pra(t)e A,b(t+At)e A’ |p(t)=ap;+(1—a)p,}
A—X(A) defined by relatio37) for the present apparatus.

ThenX satisfies conditionga) and (b) by the properties of =aPra(t) e A,b(t+At) e A'[p(t)=p,}
partial trace as before. From E@3), we have +(1— a)PHat) e A,b(t+At) e A’|p(t)=p,),
X(A)p(t)=X(A,p(1)), (44) (48

and henceX satisfies conditionéc) and(d). ThusX satisfies where P{E|F} stands for the conditional probability &
the Davies-Lewis postulate for the appara#iga) given  givenF. From Eqgs(46) and(48), we have

above. B/ s
We have shown that the determinatidB7) of the TTEP(A)X(8)Lapy (1= a)pe]]
operation-valued measure holds without assuming the pro-  =aTr{EB(A")X(A)p ]+ (1—a) T EB(A")X(A)p,]
jection postulate for the probe measurement. Nevertheless, in
order to justify formula(37) generally, we need to justify the =TrEB(A")[aX(A)p;+(1—a)X(A)p,]].

joint probability formula without assuming the projection
postulate. This puts a serious constraint on the theoretica
device to explore our problem. Indeed, because of the threat X(A)[ap;+(1—a)p,]=aX(A)pi+(1—a)X(A)p,.
of a circular argument, the above arguments do not enable us (49

inceB andA’ are arbitrary, we have
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It follows that X(A) is an affine transformation from the Sincep(t) is arbitrary, we conclude
space of density operators to the space of trace class opera-

tors, so that it can be extended to a unique positive superop- X(A)*I=EAA) (52
erator[21].

We have proved that for any apparaf@) measuringd ~ for any Borel setA. _ o _
there is uniquely a familyX(A)| A eB(R)} of positive su- ~ We say that a PSV measuxeis A compatibleif X satis-
peroperators such that Eq45) and (46) hold, whereB(R)  fies relation(52). By the above, the operation-valued mea-
stands for the collection of all Borel sets. sure of the apparatus(a) measuringA is anA compatible

By the countable additivity of probability, ih=U,A, PSV measure. Now we are ready to state the following im-
for disjoint Borel sets\,,, we have portant relations for operation valued measui’s.

Theorem 3. Let A be an observable and Ytbe an
Pla(t)e A,b(t+At)e A’} A-compatible PSV measuré&hen, for any Borel seA and

any trace class operatgs we have
=2 P ed, btrAneAT. (50 X(8)p=X(RI[EAA)p]=X(R)[pEA(A)]
From Egs.(46) and (50), we have =X(R)[EAA)pEAA)], (53)

and for any bounded operatBrwe have
TEB(A")X(A)p(t)]= 2 TIEB(A)X(Ay)p(1)]
n X(A)*B=[X(R)*B]EAA)=EA(A)X(R)*B

T EB(A) S X(A,)p(1) ], =EAA)[X(R)*BIEA(A). (54)
n
. _ A proof of the above theorem was given in RE3] for
SinceB andA’ are arbitrary, we have the case wher&X(A) is completely positive, and another
proof was given in Ref.32] for the case whera is discrete.
X(A)p(t)=; X(A,)p(t). ;I;)klulivgsneral proof necessary for the above theorem runs as

_ _ _ - _ Proof. Let C be a bounded operator such thatQ=I,
Sincep(t) is arbitrary, condition(@) holds for arbitrary den-  ang letA e B(R). We define

sity operatorp, and hence by linearity, conditiof@® holds

for all pe 7c(H). Conditions(c) and (d) are obvious from A;1=X(A)*C, AL=X(A)*(I-C),
Eq. (39). From condition(c), we have Ay=X(R—A)*C, Ayp=X(R—A)*(1-C),
TIX(R)p(t)]=1. P,=EAA), P,=1—EAA),
Q:=X(R)*C, Q,=1-X(R)*C.

Sincep(t) is arbitrary, conditior(b) holds for arbitrary den-
sity operatorp, and hence by linearity, conditiofio) holds
for all p e 7¢c(H). Thus the mappingk:A—X(A)p satisfies i o :
the Davies-Lewis postulate. I;[Aijélil;j]—o. It :‘Iolllc_)r\:vs thatQ;=A4;+A,; commutes with

It should be noted that the present derivation rely on nei- 1 andr, as well. Thus
ther the existence of the indirect measurement model, the
joint probability formula, nor the projection postulate. The
crucial assumption in the above argument is &@), which On the other hand, we havB;A;=I and 3;P,Q =,
follows from the basic principle underlying the notion of the \yhancea = P.Q. . It follows that her
mixture of states. Thus we can conclude thaéry measur- e
ing apparatus has the operation valued measure satisfying X(A)*C=EA(A)X(R)*C.
the Davies-Lewis postulate

Then, fori,j=1,2, we have &A;;<P;, so that[A;;,P;]

Aij = PIAljgple .

By taking the adjoint, we also have

B. Basic properties of the operation valued measures

* * A
Let A(a) be a measuring apparatus for the systemith X(A)TC=[X(R)*CIEHA).

the operation-valued measuxe Let us assume that the ap-
paratusA(a) measures an observabde In this case, from
Eg. (1) and condition(c), we have

Since any bounded operat@ can be represented b
=Eﬁ:0)\ncn with positive operators € C,<| and complex
numbers\,,, we have
— A

TIX(A)p()]=THEAA)p(1)]. (51) X(A)* B=EAAIX(RI*B=[X(R)*BIEAA)
Let X(A)* be the dual ofX(A). Then we have

for any AeB(R) and Be £(H). By multiplying EA(A)

T X(A)*Dp((H) =T EAA) p(1)]. from both sides, we also have
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X(A)*B=EAA)[X(R)*B]EA(A). Therefore, we conclude that satisfies Eq(37).
From Egs.(37) and (53), we have the following expres-
Hence relationg54) hold. Relations(53) follow easily by  sjons forX:

taking the duals oK(A)* andX(R)*. |

By the above theorem, the operation valued meaXuoé X(A)p=Tre[[I@EM(A)]U(p2o)UT] (613
an arbitrary apparatu$\(a) measuringA is determined
uniquely by the nonselective operatidr= X(R) of A(a). A =Tre[U[p() EAA) @ ]UT] (61b)
mathematical theory of PSV measures was introduced by A .
Davies and Lewig19] based on conditionga) and (b) as =Tr [U[E(A)p(t)@o]U'] (610
mathematical axioms; see also Dav|d4]. Their relations A A +
with measuring processes were established in Refs. =Tr [U[E™(A)p(HE (L)@ o]UT]. (610

[3,4,13,14,20,34 and applied to analyzing various measur-

ing processes in Ref§15,27,28,35 Thus, if Pfa(t) e A}>0, we obtain the following relations:

. . TI’K[U®EM(A)]U[p(t)®O']UT]
C. Operation valued measures of indirect measurement p(t+Atla(t) e A)= (629

models TIEA(A)p(1)]

Suppose that the apparatdga) measuringA, has an in-
direct measurement mode{’(o,U,M). In this case, we can

_ TrdULp(DEAA) @ 0]UT]

determine the operation valued measiref the apparatus THEAA)p(1)] (62b)
A(a) without assuming the joint probability distribution or
the projection postulate, as follows.
Let X be the operation valued measure of the apparatus TrJU[EAA)p(H) @ a]UT]
A(a). ThenX satisfies condition&a)—(d), and henceX is an = THEAA)p(1)] (620
A-compatible PSV measure. It follows from Theorem 3 that
X satisfies
X(A)p=X(R)[EA(A)p], (55) _ Tr[U[EAA)p(HEA(A) @ 0]UT]
. . TITEAA)p(1)]
whereA € B(R) andp € 7¢(H). SinceA(a) has the indirect (620

measurement modelk{,o,U,M), relation (20) holds. By
condition(d) and Eqs.(20) and(21), we have VIIl. DISTURBANCE IN MEASUREMENT
X(R)p() =Tre[U[p(t) ® o ]UT]. A. Disturbance and simultaneous measurability

Sincep(t) is arbitrary andX(R) is linear, the above relation Let B be an arbitrary observable & We say that the

can be extended to trace class operatofeom density op- measurement using an apparaf\(&) does not disturtthe

eratorsp(t), so that we have observableB if the nonselective state change does not per-
turb the probability distribution oB; that is, we have

X(R)p=Tr{U(p@o)U"] (56) _ _
TIHEB(A)p(t+At)]=THEB(A)e HAV 5(1)eHAUR]
for all p e 7c(H). Now, we consider the expression (63
EM)p=Tr[I®EM(A)JU(p2o)UT], (57)  for any Borel setA, whereH is the Hamiltonian of the

systemS. The measurement is said to instantaneou# the
whereA e B(R) andp e rc(H). Then we can show, purely quration At of the measurement is negligible on the time

mathematically, that the mappirgA—£(A) defined above  gcqle of the time evolution of the systeSn Thus the instan-

is anA-compatible PSV measure satisfying taneous measurement using the apparat@ does not dis-
5(R)p=TI’K[U(p®(T)UT] (58) turb B |f and Only |f
B — B
Thus¢ satisfies the assumptions of Theorem 3, and hence we THE"(A)p(t+AD]=THE"(A)p(1)] (64)
have for any Borel setA.
&(A)p=ER)[EAA)p]. (59) Let X be the operation-valued measure of the apparatus
A(a), andT=X(R) be the nonselective operation Afa).
From Egs.(56) and (58), we have Then, from condition(d), we have
ER)=X(R) (60) p(t+At)=Tp(t) (65)
and hence from Eqg55) and(59) we have and hence Eq64) is equivalent to
E(A)p=ERI[EA(A)p]=X(R)[EA(A)p]=X(A)p. TIEB(A)Tp()]=THEP(A)p(1)]. (66)
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Let T* be the dual nonselective operation&ffa). It follows
from Eq. (66) that Eq.(64) is equivalent to

TIEB(A)p(t+At)]
=T EB(A)Tr[U[p(t)® 0 ]U™]

Tr[[T* EB(A)]P(U]:Tr[EB(A)P(t)] (67) :TI'[[EB(A)®|]U[p(t)®0’]UT]
Sincep(t) is arbitrary, Eq.(64) is equivalent to =TH{UTTEB(A)@1TU(I® o) p(t)®1]]
T*EB(A)=EB(A). (68) =T Tr JUTTEB(A)21TU(I®0)]p(1)].

Thus we conclude thahe instantaneous measurement usingHence Eq(64) is equivalent to
the apparatusA(a) with nonselective operatiom does not
disturb the observable B if and only if E@8) holds for any
Borel setA. Now we are ready to state the answer to our
problem.

Theorem 4. LeA(a) be an apparatus measuring an ob-
servable A instantaneously, and la{b) be an arbitrary
apparatus measuring an observable Bhen the successive
measurement using(a) and A(b) is a simultaneous mea- for any Borel setA.
surement of A and B if and only A(a) does not disturb B Obviously, from Eq.(72), if U andB®| commute, i.e.,

Proof. It suffices to show the equivalence between Egs.
(3) and 68. From Eq946) and (55), we have

Tr(TrUTER(A)@1]U(1® o) }p(1) =T EB(A)p(D)].
Sincep(t) is arbitrary, Eq.64) is equivalent to

Tr{UTTEB(A)®1TU(1® o)} =EB(A) (72)

[U,EB(A)®I1]=0 (73

Pla(t)e A,b(t+At)e A’}
=TI EB(A")X(A)p(1)]
=TIEB(A)X(R)[p() EA(A)]]
=Tr[T*E®(A")]p(HEA(A)]
=TrEAA)[T*ER(A")]p(D)]
Thus the joint probability distribution oA andB is given by
Pa(t) e A,b(t+At) e A’} =TI EAA)[T*EB(A")]p(1)].
(69)

If Eq. (68) holds, Eq.(3) follows immediately from Eq(69).
Conversely, suppose that E) holds. By substitutingA
=R in Eq. (3), we have

Pra(t) e R,b(t+At)e A'}=TIEB(A")p(t)]. (70)
On the other hand, from E@69) we have

Pra(t) e R,b(t+At) e A'}=Tr[[T*EB(A")]p(1)].
(71)

Sincep(t) is arbitrary, from Eqs(70) and(71) we obtain Eq.

(68). Therefore, Eqs(3) and(68) are equivalent. [ |

for any Borel sefA, then theA measurement does not disturb
the observabl®. However, Eq(73) is not a necessary con-
dition for nondisturbing measurement. In the case wheiz

a pure stater=|£)(&|, from Eq.(72) we have the following
theorem.

Theorem 6. LeA(a) be an apparatus measuring an ob-
servable A instantaneously with indirect measurement model
(K,|®){P|,U,M). The ApparatusA(a) does not disturb an
observable B if and only if

[U,EB(A)®I]|y@®)=0 (74)
for any Borel setA and any state vectoy of S.

Proof. First, we note that in the case where=|D){D]|,

relation(72) holds if and only if

(yo®|UTTERA) @ 1]U[ye®)=(JEP(A)|y) (79)

holds for any state vectaf. Suppose that Eq474) holds. We
have

UEB(A)®I]|ye@®)=[EB(A)= I U|ya®).
Multiplying U™ from the left, we have

[EB(A)@1][ped)=UT[ER(A) @l JU[yed),

From Theorems 1 and 4, we can see that if the apparatus

A(a), instantaneously measuring an observakl&oes not

and, hence, we have E(.5). Thus if Eq.(74) holds for any

disturb an observablB, thenA andB necessarily commute. Borel setA and any state vectoy, then A(a) does not

Therefore, we can conclude the following statement.

disturbB. Conversely, suppose tha(a) does not disturlis.

Theorem 5. Every apparatus measuring an observabl@hen, from Eq.(72), with o=|®)(®|, we have
disturbs all the observables that do not commute with the

measured observable.

B. Disturbance in indirect measurements

(¢'@D|UTTEB(A)®1TU|p2 D)
=(¢'@D|EB(A)®1|p2 D)

From Eq.(20), and by the property of the partial trace, we for any vectors¢,¢’ € H. Let ¢ be a state vector. Ifs)

have

=|y) and|¢')=EB(A)|#), we have
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<¢®¢|[EB(A)® ITUTTEB(A) I U|yed) In order to compare this result with the argument given by
5 EPR[5], let us consider the special case wh€randD are
=(y@®|EP(A)@ 1|y ). (76)  nondegenerate observables in their own subsystems and the

initial statep(t) is a pure state. In this case, the stafe) is

By taking a complex conjugate, we have represented by a state vectd(t) in the Hilbert spaceH

(pe®|UTTEB(A)®ITUIEB(A) @1 ]|po ®) =H,®H, as
= (Y@ ®[EP(A)0l|ye®). (77 p(O) =T () (P (t)].
From Egs.(75—(77), we have Let us suppose that the observabandD have the spec-

tral decompositions
IHER(A)®1-UTEB(A)®1]U} | yo @)|?

= (y2®|EB(A) 01 [yod) C=2 anl gn){(l,
—(ya®|[EB(A)@ I JUTTER(A) @1 U]y @)
—(yo®|UTTEB(A)® 1 JU[EB(A) @1 ]|po ®) D=2 byl ém)( -
freB
Hye@|UTE M) el ]Ulye®) EPR expanded’ (t) using the basi§¢,} of H, as
=0.
Thus we have ‘I’(t):; | n® 7n), (79
[EB(A)®I]|'/’®¢>: UT[EB(A)®|]U|‘/’®®>' where 7,, are uniquely determined vectors i, not neces-

sarily orthogonal and, according to EPR, are to be regarded
merely as coefficients of the expansion¥(t) into a series
UTEB(A)®1]1—[EB(A)® 11U o d)=0, of orthogonal vectorgp,,. Then EPR considered the process
{UIES Q)@ =[EX M) @1]Uye @) of “reduction of the wave packet”

Multiplying U from the left, we have

and hence we have EG74). Therefore, we conclude that if
A(a) does not disturlB, then Eq.(74) holds for any Borel @ 1 )—N|b.® 80
setA and any state vectap of S. [ | zn: |60 700Nl 60 7o), (80

where N is the normalization constant determined up to a

IX. LOCAL MEASUREMENTS OF OBSERVABLES
phase factor by

OF TWO ENTANGLED SYSTEM

— -1

If the two observables to be measured belong to two dif- N={[¢n® 7l ™, (81)
ferent subsystems, then they commute each other, and the, siated that the state after the measurement conditional
measurement of one is not con5|dgred to disturb the other_lupon the outcome(t) =a, is determined as
general, so that the result obtained in Sec. VIII applies to this
situation. The purpose of this section is to state this fact in W (t+Atla(t)=a,)=N|$,® 7,), (82
the rigorous language.

Let C be an observable of an syst@pwith Hilbert space  Where
‘H,, andD an observable of another syst&Snwith Hilbert _ _
spaceH,. Suppose that the composite syst8mS,;+S, is [P (t+Atla(t) =a))(W (t+Atfat) =a,)
in a statep(t) at timet. Let us suppose that one measures the =p(t+At|a(t)=a,). (83
observableC at timet using an apparatu&(a) and that at
time t+ At, just after theC measurement, one measui2s From this, we have the joint probability formula
using any apparatus(b) measuringd. We assume that after
time t there is no interaction betwe& andS,. Pra(t)=a,,b(t+At)=bp} = ¢n® &n| W ()P, (84)

First we shall consider the case where the measurement of )

C satisfies the projection postulate. In this case, in the comwhich is a special case of EG(8). _ _

posite systen®,,, the observabl&=C®1, is measured at Now, let us show that the EPR argument is equivalent to
time t, and the observablB=1,®D is measured immedi- the argument based on the projection postulate forAhe
ately after theA measurement, wheilg andl, are the iden- Measurement. From the prolectlon postulate, if the out(;ome
tity operators or{; and’H,, respectively. From Theorem 2 ©f the A(a) measurement i, the state of the composite

the joint probability distribution satisfies system at the time just after the measurement is
PHa(t) e A,b(t+At) e A’} =Tr[[ES(A)®EP(A")]p(t)]. W(t+A _ o (a1 ¥ (1) g5
79 (trata=a =g aervol
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Then, from Eq.(79), we have X. MINIMUM DISTURBING MEASUREMENTS

_ Classical measurements are usually considered to disturb
([ bnl @12)¥ (1) =[50 ® 7). (86) no measured systems. This does not mean, however, that no
Thus we have shown that E(82) is the consequence from classical m_easurement disturbs the _system, but thgt among
the projection postulate E85). all the possible measurements the minimum (_1|st_urb|ng mea-
In the following, we shall consider the general case. Fosurément does not disturb the system in principle. In this
instance, consider the case where fmeasurement leaves Section, we shall introduce the notion of the minimum dis-
the systens, in a fixed statep, independent of the outcome UrPing measurement in quantum mechanics, and show that
such as the vacuum state after photon counting. Does Er(gjls is equivalent to a measurement satisfying the projection
(78 hold even in this case? The answer to this questioOStulate.
might depend on the method of measuridgHowever, if the For an apparatus\(x), we denote byD(x) the set of
measurement oA is carried out so as not to affect the systemOPServables that are d|sturbe9 Ag(x), |.e.,BiD(x) is the set
S,, then from the result in Sec. VIII we will be able to Of observablesB such thatT*E"(A)#E"(A) for some

conclude relatior(78). In order to ensure that the measure- Borel*sgtA, whereT is the nonselective operation 8{(x)
ment of A does not affect the systeSy, we introduce the andT™ its dual. LetA be an observable of the systepand
following condition. let A(a) be an apparatus measuriAginstantaneously. The
We will say that the apparatus(a), measuring, is local apparatuA(a) is caIIedmmlmum dls'turblngf D(a) CD(X)
in the systenS; if the measuring interaction is confined in fOr @ny apparatug\(x) measuringA instantaneously. Then
the systemS, and the apparatu(a), as formulated pre- We have the following statement. _ .
cisely as follows. LetC be the Hilbert space of the prolie Theorem 8. Le\(a) be an apparatus measuring a dis-
in apparatusA(a), and suppose that is prepared in state ~ Cr€te observable A instantaneoushhe apparatusA(a) is
at timet of the measurement, and letbe the unitary opera- Minimum disturbing if and only iA(a) satisfies the projec-
tor of K®H,®H, representing the time evolution of the tion postulate.

composite syster+P. Then the apparatus(a) is said to Proof. Le_t C(A) be the set of observables that do not
be local in the systens, if we have commute withA. From Theorem 5, we have
[U,1,®X®1,]=0 87 C(A)CD(x) (89

for any apparatus\(x) measuringA instantaneously, where
superscript stands for the complement in the set of observ-
ables. LetA(a) be an apparatus measurirdy instanta-
neously. Suppose that(a) satisfies the projection postulate.
Then, from Theorem 2, we have

for any bounded operatof on H,, wherel ¢ is the identity
on IC.

Theorem 7. Suppose that the composite systen$,;
+S, is in statep(t) at time t of the measurememhtet C and
D be observables &, andS,, respectivelylf the apparatus
A(a), measuring A~C®]I, instantaneouslyis local in the D(a)CC(A)C 90
systemS,; then Eq.(78) holds (@) CCA), (0

Proof. Let o be the state of the probe atFrom Theorem
5 it suffices to show thaf\(a) does not disturb the observ-
ableB=1®D. By assumption, we have

and hence from Eq89) we conclude tha#\(a) is minimum
disturbing and

[U,EB(A)®1]=[U,1;®EP(A)®I1,]=0 D(a)=C(A)". (91

for any Borel setA. Thus relation(73) holds, so thatA(a) Conversely, suppose that(a) is minimum disturbing. We
does not disturb the observabB=1,®D. Therefore, Eq. have an indirect measurement model that measiiiastan-
(78) follows from Theorem 4. B taneously and satisfying the projection postul@g Hence
From the above theorem, we also have the followingthere is an apparatus(x) measuringA instantaneously such
statementAny pair of local instantaneous measuring appa- that D(x) =C(A)°. By assumptionA(a) is minimum dis-
ratuses of A~C®I, and B=1,®D satisfies the joint prob- turbing, so thatD(a)=C(A)°. Then the operation valued
ability formula measureX of A(a) is such thaiX(R)*EB(A’)=EB(A") for
all BeC(A) andA’ € B(R). Thus we have
Pra(t)e A,b(t)e A’}=Tr[ES(A)®EP(A")]p(t)] (89

TITEB(A")X(A)p(t
regardless of the order of the measurement, where we iden- [EXADX(A)p(b]

tify t with t+At. =Tr[[X(A)*EB(A")]p(1)]

In the EPR papef5], the so-called EPR correlation is
derived theoretically under the assumption that the pair of _ 2 T X{al*EB(A")]p(1)]
measurements satisfies the projection postulate, but the acA

present result concludes that the EPR correlation holds for

any pair of local instantaneous measurements, as experi- _ TH(EA AV X(R)* EB(AYIEA aY) o(t
ments have already suggested. aze:A LERaIX(R) (ADIEHapp(V)]
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= EA TIEAalEB(A")EA{a}p(1)]

=Tr EB(A’)aZA EAla}p(t)EA{al|.

SinceB and A’ are arbitrary, we have

X(Mp(t)= 2 ENalp(VENal,

and hence

>, EMalp(t)EAa}

aeA

A A)=
P AR T e

ThusA(a) satisfies the projection postulate.

PHYSICAL REVIEW A 63 032109

ing the projection postulate, which can eventually be called
the minimum disturbing measurements

Xl. CONCLUDING REMARKS

As anticipated from the ordinary interpretation of the un-
certainty principle or the principle of complementarity for-
mulated by the noncommutativity of observables, every mea-
surement of an observable disturbs every observable that
does not commute with the measured observable. It should
be noted, however, that this does not imply a prevailing in-
terpretation of the Heisenberg uncertainty principle that the
measurement of the position with accuraeymust bring
about an indeterminacy=7/2¢ in the value of the momen-
tum (Ref. [1], p. 239. In fact, we can construct an indirect
measurement model of the postion measurement that
counters the above statemé¢B6]; this model has complete
accuracye=0, but disturbs the momentum arbitrarily small
if the input state is arbitarily close to the momentum eigen-
state. This example suggests that the relation between the
accuracy and the disturbance is more complicated than the

We refer to Refs[3,19] for different approaches to the relatione;=#/2 suggested by the Robertson uncertainty re-
minimum disturbance condition. The present approach leadation [37]. A detailed investigation will be presented in a
to the simplest characterization of the measurements satisfyerthcoming paper.
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