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Operations, disturbance, and simultaneous measurability
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Quantum mechanics predicts the joint probability distributions of the outcomes of simultaneous measure-
ments of commuting observables, but the current formulation lacks the operational definition of simultaneous
measurements. In order to provide foundations of joint statistics of local general measurements on entangled
systems in a general theoretical framework, the question is answered as to under what condition the outputs of
two measuring apparatuses satisfy the joint probability formula for simultaneous measurements of their ob-
servables. For this purpose, all the possible state changes caused by measurements of an observable are
characterized, and the notion of disturbance in measurement is formalized in terms of operations derived by the
measuring interaction.
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I. INTRODUCTION

The probability distribution of the outcome of a measu
ment is determined by the observable to be measured an
state at the time of the measurement, but the joint probab
distribution of the outcomes of two successive measurem
on the same object depends on how the first measurem
disturbs the object. The disturbance depends not only on
observable and the state, but also on the apparatus to be
Thus the joint probability distribution of successive measu
ments will be closely related to how the apparatus distu
the object. It would be an interesting and significant probl
to investigate the relation between the disturbance and
joint probability distribution, although to our knowledg
there has been no systematic approach to the problem.
paper investigates, in particular, the relation between the
turbance and the joint probability formula for simultaneo
measurements.

In quantum mechanics observables are represented by
ear operators, for which the product operation is not nec
sarily commutative. Two observables are represented
commuting operators if and only if they are simultaneou
measurable, and then quantum mechanics predicts the
probability distribution of the outcomes of their simultaneo
measurement~see Ref.@1# p. 228!. But, it has not been an
swered fully what measurement can be considered as
multaneous measurement of those observables.

In the current formulation we have two arguments
show how commuting observables can be measured sim
neously. The first argument is based on the fact that
commuting observablesA and B have a third observableC
for whichA andB are functions ofC ~see Ref.@1#, p. 173!. In
this case, the measurement ofC gives also the outcomes o
the A and theB measurements simultaneously~Ref. @1#, p.
228!. This argument gives one special instance of simu
neous measurement, but it is quite open from this argum
how a pair of measuring apparatuses forA and B makes a
simultaneous measurement ofA andB.

The second argument assumes the projection postu
proposed by Lu¨ders @2#. The projection postulate uniquel
determines the state after the measurement conditional u
the outcome of the measurement, so that for successive
1050-2947/2001/63~3!/032109~15!/$15.00 63 0321
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surements of any pair of discrete observablesA and B, the
joint probability distribution of their outcomes is determine
According to this probability distribution, ifA and B com-
mute, we have the standard joint probability formula for t
simultaneous measurement ofA andB. Thus, under the pro-
jection postulate, the successive measurements ofA and B
are considered effectively as their simultaneous meas
ment.

If we would restrict the class of measurements to tho
satisfying the projection postulate, any successive meas
ments of commuting observables could be considered a
simultaneous measurement. However, this approach has
following limitations: ~i! Some of the most familiar measu
ing apparatuses such as photon counters do not satisfy
projection postulate.~ii ! When the observable has a contin
ous spectrum, no measurements satisfy the repeatability
pothesis@3,4#, so that the projection postulate cannot be fo
mulated properly for measurements of continuo
observables.~iii ! The measurement of a function of an o
servableC such asA5 f (C) using the apparatus measurin
C does not satisfy the projection postulate in general@2#.

In fact, Einstein, Podolsky, and Rosen~EPR! @5# derived
the joint probability formula for the outcomes of measur
ments of two observables pertaining to entangled subsyst
based onthe projection postulate. This EPR correlation
indeed one instance of the joint probability formula for t
simultaneous measurement. The EPR correlation was ex
mentally tested by optical experiments@6,7#. However, those
optical experiments use photon counting, and violate EP
original assumption that the measurements satisfy the pro
tion postulate. The recent realizations of quantum telepo
tion @8,9# were also optical realizations of the EPR corre
tion that violate EPR’s assumption of the projectio
postulate. Thus, if we should be restricted to measurem
satisfying the projection postulate, the scope of measurem
theory would exclude most of the recent results in quant
information processing using entanglement@10#.

The modern measurement theory@3,4,11–16# extends the
scope from the measurements satisfying the projection p
tulate to more general measurements described by opera
and effects, or more generally by operation-valued meas
introduced from an axiomatic motivation@17–19#. Thus it is
natural to expect to have a well-defined way to calcul
probabilities in any combinations of measuring apparatus
©2001 The American Physical Society09-1
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MASANAO OZAWA PHYSICAL REVIEW A 63 032109
once we have identified the operation-valued measure in
general theory with the given model of measuring appara
However, determinations of the operation-valued measur
far have relied on the projection postulate@12# or the joint
probability formula@3,20#. Thus the foundations of the mod
ern approach in the present status involve the same diffic
as establishing the joint probability formula without assu
ing the projection postulate.

In this paper we shall abandon the projection postulate
a universal quantum rule and consider the following pro
lem: under what condition can a successive measuremen
two or more observables be considered as a simultane
measurement of those observables?The prospective solution
could be stated in the intuitive language that the preced
measurement does not disturb the observable to be mea
later. However, in the current quantum mechanics very li
is known about the disturbance caused by general meas
ment beyond the projection postulate. In order to answer
question in rigorous language, this paper will attempt to
velop a theory of disturbance in general measurements
determining the possible state changes caused by mea
ments of observables. The justification of the joint probab
ity formula and the EPR correlation will then follow withou
assuming the projection postulate.

Section II defines the simultaneous measurement fo
pair of measuring apparatus. Sections III and IV discuss
multaneous measurements under the repeatability hypoth
and the projection postulate, indicating their limitations. T
following three sections develop the theory of general m
surement. Section V introduces the nonselective operat
and their duals. Section VI discusses the Davies-Lewis p
tulate for the existence of operation-valued measures co
sponding to apparatuses, and shows that the two justi
tions of their postulate known so far involve the sam
difficulty encountered the one in establishing the joint pro
ability formula without assuming the projection postula
Section VII gives a justification of the Davies-Lewis post
late without assuming the projection postulate or the jo
probability formula, and proves the factoring property
operation-valued measures. Section VIII formulates the
turbance in the measurement, and establishes in rigorous
guage the relation between the disturbance and the
probability formula. Sections IX and X apply the above r
sult to the EPR correlation and the minimum disturbing m
surement. Section XI concludes the paper with some rem
on the uncertainty principle.

II. STATISTICAL FORMULA FOR SIMULTANEOUS
MEASUREMENTS

A. Born statistical formula

To formulate the problem precisely, letS be a quantum
system with the Hilbert spaceH of state vectors. We sha
distinguish measuring apparatuses by their own output v
ables @21#, denoting byA(x) the apparatus measuring th
systemS with the output variablex, which, we assume, take
values in the real lineR. We shall denote by ‘‘x(t)PD ’’ the
probabilistic event that the outcome of the measurement
ing apparatusA(x) at time t is in a Borel setD in the real
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line R. ~Throughout this paper, ‘‘Borel set’’ can be replace
by ‘‘interval’’ for simplifying the presentation without any
loss of generality.!

Let A be an observable ofS. The spectral projection ofA
corresponding to a Borel setD is denoted byEA(D). Ac-
cording to the Born statistical formula, apparatusA(a), with
an output variablea, is said tomeasurean observableA at
the timet if the relation

Pr$a~ t !PD%5Tr@EA~D!r~ t !# ~1!

holds for the stater(t) of the systemS at the timet. The
stater(t) is called theinput stateto apparatusA(a), and is
taken to be an arbitrary density operator.

The relation between the present formulation based
spectral projections due to von Neumann@1# and Dirac’s
formulation @22# is as follows. If the observableA has the
Dirac-type spectral decomposition

A5(
n

(
m

mum,n&^m,nu1(
n
E lul,n&^l,nudl,

wherem varies over the discrete eigenvalues,l varies over
the continuous eigenvalues, andn is the degeneracy param
eter, then we have

EA~D!5(
n

(
mPD

um,n&^m,nu1(
n
E

D
ul,n&^l,nudl.

In this case, we have

Tr@EA~D!r~ t !#5(
n

(
mPD

^m,nur~ t !um,n&

1(
n
E

D
^l,nur~ t !ul,n&dl.

B. Simultaneous measurements using one apparatus

Any commuting observablesA andB are simultaneously
measurable, and the joint probability distribution of the o
comes of their simultaneous measurement is given by

Pr$a~ t !PD,b~ t !PD8%5Tr@EA~D!EB~D8!r~ t !#, ~2!

whereD andD8 are arbitrary Borel sets, anda andb denote
the output variables of the apparatuses measuringA andB at
time t, respectively.

A well-known proof of this formula from Eq.~1! runs as
follows ~Ref. @1#, p. 228!. SinceA and B are commutable,
there exist an observableC and real-valued functionsf andg
such thatA5 f (C) and B5g(C) ~Ref. @1#, p. 173!. Their
spectral projections satisfy the relations

EA~D!5EC
„f 21~D!…,

EB~D8!5EC
„g21~D8!….

For the outcomec of the C measurement, one defines th
outcome of theA measurement to bef (c) and the outcome
9-2
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of the B measurement to beg(c). Let a, b, and c be the
output variables of the measurements ofA, B, andC, respec-
tively. Then we have

Pr$a~ t !PD,b~ t !PD8%

5Pr$c~ t !P f 21~D!,c~ t !Pg21~D8!%

5Pr$c~ t !P f 21~D!ùg21~D8!%

5Tr@EC
„f 21~D!ùg21~D8!…r~ t !#

5Tr@EC
„f 21~D!…EC

„g21~D8!…r~ t !#

5Tr@EA~D!EB~D8!r~ t !#.

Thus their outcomes satisfy Eq.~2!, so that the measuremen
of C at the timet gives a simultaneous measurement ofA and
B.

C. Simultaneous measurements using two apparatuses

The above proof gives one special instance of simu
neous measurement which uses one measuring appa
with two output variables, but it is rather open when a pair
measuring apparatuses forA and B makes a simultaneou
measurement ofA andB.

In order to formulate this problem precisely, suppose t
the observer measuresA at the timet using the apparatu
A(a). Let t1Dt be the time just after theA(a) measure-
ment. This means precisely thatt1Dt is the instant of the
time just after the interaction is turned off betweenA(a) and
S, and that aftert1Dt the objectS is free from the apparatu
A(a). ~Note that the last condition precludes the recoupl
of the system with the apparatus.!

Let A(b) be another apparatus measuring an observabB
of S with output variableb. If the measurement usingA(b)
is turned on at the timet1Dt, the two measurements ar
called thesuccessive measurementusingA(a) andA(b) ~in
this order!. Then thesuccessive measurement usingA(a)
and A(b) is defined to be a simultaneous measurement o
and B if and only if the joint probability distribution of thei
output variablesa and b satisfies the standard joint prob
ability formula

Pr$a~ t !PD,b~ t1Dt !PD8%5Tr@EA~D!EB~D8!r~ t !#.
~3!

It should be noted that the validity of the above relati
depends on how the apparatusA(a) disturbsS during the
first measurement, but does not depend on the property o
apparatusA(b) as long asA(b) measures the observableB
in any input state. Therefore, the problem to be considere
to find a necessary and sufficient condition on the appar
A(a), measuringA, in order for successive measuremen
usingA(a) and an arbitrary apparatusA(b) measuringB to
satisfy Eq.~3!.

In the conventional approach, von Neumann~Ref. @1#, p.
224! proved that if two observables are simultaneously m
surable, then they are represented by commuting opera
under the repeatability hypothesis.~The repeatability hypoth-
esis will be discussed in detail in Sec. III.! The following
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theorem, though an easy consequence of the definit
shows that the simultaneous measurability extended by
above definition is still consistent with the old one.

Theorem 1. If the successive measurement of A an
using apparatusesA(a) and A(b), respectively, is a simul-
taneous measurement of observables A and B, then A and B
commute.

Proof. Suppose that Eq.~3! holds. By the positivity of
probability, both sides are non-negative. Sincer(t) is arbi-
trary, the productEA(D)EB(D8) is a positive self-adjoint
operator so thatEA(D) andEB(D8) commute. SinceD and
D8 are arbitrary, it follows thatA andB commute. j

In the following two sections, we shall re-examine th
conventional approach from the operational point of vie
before starting with the general considerations.

III. SIMULTANEOUS MEASUREMENTS UNDER
THE REPEATABILITY HYPOTHESIS

A. von Neumann’s formulation

The conventional approach to measurement theory s
poses that the measurement leaves the measured syst
the eigenstate corresponding to the outcome of the meas
ment@1,23#. This assumption is equivalent to therepeatabil-
ity hypothesisformulated by von Neumann~Ref. @1#, p. 335!
as follows: If a physical quantity is measured twice in su
cession in a system, then we get the same value each ti

Even though the repeatability hypothesis was posed a
universal law by von Neumann~Ref. @1#, p. 213! based on
the experiment of Compton and Simmons, in the mod
approach it merely characterizes a class of measuring a
ratuses. Thus, in what follows,by saying that the apparatu
A(a) satisfies the repeatability hypothesis, it is meant p
cisely that the repeatability hypothesis holds for the repea
measurement of A using the apparatusA(a) for the first A
measurement.

B. Repeatability hypothesis and joint probability

Suppose that the systemS is measured at timet by an
apparatusA(a). Let t1Dt be the time just after the measur
ment. For any Borel setD, let r„t1Dtua(t)PD… be the state
at t1Dt of S conditional upona(t)PD. Thus if the systemS
is sampled randomly from the subensemble of the sim
systems that yield the outcome of theA(a) measurement in
the Borel setD, thenS is in the stater„t1Dtua(t)PD… at
time t1Dt. When Pr$a(t)PD%50, the stater„t1Dtua(t)
PD… is indefinite, and we letr„t1Dtua(t)PD… be an arbi-
trarily chosen density operator for mathematical con
nience.

Suppose that the apparatusA(a) measures a discrete ob
servableA with eigenvaluesa1 ,a2 , . . . , andthat theA(a)
measurement at timet is followed immediately by anA(b)
measurement measuringB. The conditional probability of
b(t1Dt)PD8, conditional upon the outcomea(t)5an , is
the probability of obtaining the outcomeb(t1Dt)PD8 in
the stater„t1Dua(t)5an…, so that we have

Pr$b~ t1Dt !PD8ua~ t !5an%

5Tr@EB~D8!r~ t1Dtua~ t !5an!#. ~4!
9-3
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MASANAO OZAWA PHYSICAL REVIEW A 63 032109
The joint probability distribution of the outcomes of the su
cessive measurement usingA(a) and A(b) is given by the
well-known relation

Pr$a~ t !PD,b~ t1Dt !PD8%

5 (
anPD

Pr$b~ t1Dt !PD8ua~ t !5an%Pr$a~ t !5an%.

~5!

Now, suppose thatA is nondegenerate, and that appara
A(a) satisfies the repeatability hypothesis. Then the stat
the system just after theA(a) measurement, conditiona
upon the outcomea(t)5an , is determined uniquely as th
normalized eigenstate

r„t1Dtua~ t !5an…5ufn&^fnu ~6!

corresponding to the eigenstatean , provided Pr$a(t)5an%
.0 ~Ref. @1#, pp. 215–217!.

From Eqs.~4! and ~6!, we have

(
anPD

Pr$b~ t1Dt !PD8ua~ t !5an%Pr$a~ t !5an%

5 (
anPD

^fnuEB~D8!ufn&^fnur~ t !ufn&

5 (
anPD

Tr@ ufn&^fnuEB~D8!ufn&

3^fnur~ t !#.

Thus, from Eq.~5! we have

Pr$a~ t !PD,b~ t1Dt !PD8%

5 (
anPD

Tr@ ufn&^fnuEB~D8!ufn&^fnur~ t !#. ~7!

If A andB commute, we have

Pr$a~ t !PD,b~ t1Dt !PD8%

5 (
anPD

Tr@ ufn&^fnuEB~D8!r~ t !#

5Tr@EA~D!EB~D8!r~ t !#,

and hence we obtain the joint probability formula@Eq. ~3!#.
By the above, we conclude thatif the apparatusA(a),

measuring a nondegenerate discrete observable A, satisfies
the repeatability hypothesis, the successive measuremen
ing A(a) and A(b) measuring an arbitrary observable B
commuting with A is a simultaneous measurement o
and B.

C. Repeatability hypothesis and measuring processes

Consider a model of a measuring process in which
observableA5(nanufn&^fnu with nondegenerate eigenva
uesan is measured by an apparatusA(a) having the nonde-
03210
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generate probe observableB5(nanujn&^jnu. The probe ob-
servableis generally defined to be the quantum-mechani
observable in the apparatus that is to be correlated with
measured observable by the measuring interaction, and
plified in a later stage of the apparatus to the directly sens
variable eventually read out by the observer@24#. In the con-
ventional approach, the notion of the ‘‘pointer position’’
used ambiguously instead, which sometimes means
‘‘probe observable’’ and sometimes means the ‘‘directly se
sible variable.’’ Let P be the subsystem of the apparat
A(a) that includes the probe observable and actually in
acts with the measured systemS. Suppose thatP is prepared
in the stateuj& just before measurement. LetU be the unitary
operator representing the time evolution of the compo
systemS1P during the measuring interaction. The appara
A(a) satisfies the repeatability hypothesis if and only ifU
satisfies

U:ufn& ^ uj&°eiunufn& ^ ujn&, ~8!

whereeiun is an arbitrary phase factor.

D. Measurements violating the repeatability hypothesis

A typical model which does not satisfy Eq.~8! is the
photon-counting measurement in which, if the measurem
takes place in the number stateufn&5un&, then the apparatus
absorbs all the photons and outputs the amplified class
energy proportional to the number of absorbed photons
this case,U satisfies

U:un& ^ uj&°u0& ^ ujn&, ~9!

and henceU does not satisfy Eq.~8!.
For less idealized models of photon-counting measu

ment, we refer to Refs.@25,26#. For the case of measure
ments of continuous observables, models of exact posi
measurements that do not satisfy the repeatability hypoth
even approximately have also been constructed@15,27,28#.
They were applied to the position monitoring that breaks
standard quantum limit@27,29#.

E. Significance of the repeatability hypothesis

Given A, B, and uj&, generally the apparatusA(a) mea-
sures the observableA, or equivalently satisfies Eq.~1!, if
and only if U satisfies

U:ufn& ^ uj&°ufn8& ^ ujn&, ~10!

where $ufn8&% is an arbitrary family of normalized vectors
not necessarily orthogonal. Thus, if we do not assume
repeatability hypothesis, the measurement correlates cau
the input stateufn& of the object before measurement wi
the output stateujn& of the probe after measurement for som
orthonormal basis$ujn&%. On the other hand, the repeatab
ity hypothesis requires not only that the input stateufn& is
correlated to the output stateujn& causally, but also that in
the composite system after the measurement the input
ufn& and the output stateujn& are entangled to have a com
plete statistical correlation.
9-4
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It is stated quite often that to measure an observableA is
to change the input stateuc& to an eigenstateufn& with the
probability u^fnuc&u2. This does not follow from the Born
statistical formula@Eq. ~1!#, but assumes the repeatabili
hypothesis. Thus only when the measurement is assume
satisfy the repeatability hypothesis, can we say that the m
surement changes the state of the object probabilisticall
one of the eigenstates of the measured observable.

Unless the repeatability hypothesis is assumed, it is, th
fore, not a correct description that the measurement is
make a one-to-one correspondence~or to make an entangle
ment, in the modern language! between the state of the ob
ject before the measurement and the state of the probe
the measurement as described by Eq.~8!, by which the prob-
lem of measuring the object is transferred to the problem
measuring the probe@30,31#. In what follows, a measure
ment is calledrepeatableif it is carried out by an apparatu
satisfying the repeatability hypothesis.

IV. SIMULTANEOUS MEASUREMENTS UNDER
THE PROJECTION POSTULATE

A. von Neumann’s measurements of degenerate observables

For the observables with a nondegenerate purely disc
spectrum, the repeatability hypothesis determines the s
after measurement uniquely; however, when the observ
has degenerate eigenvalues, the state after measurem
not determined uniquely but depends on the ‘‘actual mea
ing arrangement’’~Ref. @1#, p. 348!. von Neumann~Ref. @1#,
p. 348! considered the following means of measurement
isfying the repeatability hypothesis: Let$ufn,m&% be an or-
thonormal basis, and letA be an observable represented b

A5(
n,m

anufn,m&^fn,mu. ~11!

Suppose that the observer performs a repeatable mea
ment of a nondegenerate observableA8 given by

A85(
n,m

an,mufn,m&^fn,mu, ~12!

where allan,m are different, and that if the outcome of theA8
measurement isan,m then the outcome of theA measuremen
is taken to bean . Then we have a repeatable measuremen
A.

Suppose that the observableA is measured at timet in the
above way in a state~vector! uc& using the apparatusA(a).
Then, at timet1Dt, just after the measurement, the object
left in the state~density operator!

r~ t1Dtua~ t !5an!5 1

(
m

ucn,mu2
(
m

ucn,mu2ufn,m&^fn,mu,

~13!

wherecn,m5^fn,muc&. This state depends not only on th
observableA and the outcomean but also on the choice o
the orthonormal basis$ufn,m&% that satisfies Eq.~11!. Since
there are infinitely many essentially different choices
03210
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$ufn,m&%, the state change depends on the method of m
surement even if the repeatability hypothesis holds.

In this case, the joint probability distribution of the ou
comes of theA(a) measurement and the immediately follow
ing B measurement, using the apparatusA(b), is given by

Pr$a~ t !PD,b~ t1Dt !PD8%

5 (
anPD

(
m

Tr@ ufn,m&^fn,muEB~D8!ufn,m&

3^fn,mur~ t !#. ~14!

From the relation

EA~D!5 (
anPD

(
m

ufn,m&^fn,mu,

the joint probability formula, Eq.~3!, holds for the arbitrary
input stater(t) if and only if A8 andB commute. Although
A andB commute, there are many choices of$ufn,m&% such
that A8 andB do not commute. Thus, even ifA andB com-
mute andA(a) satisfies the repeatability hypothesis, the su
cessive measurement usingA(a) and A(b) cannot be a si-
multaneous measurement ofA andB in general.

B. Lüders’s formulation

The previous argument shows the existence of infinit
many different ways of measuring the same observa
which satisfies the repeatability hypothesis but does not
isfy the joint probability formula for the simultaneous me
surement. Moreover, Lu¨ders@2# pointed out that the observ
able corresponding to the identity operatorI is considered to
be measured without changing the input state, but any on
the above measurement for the identity changes the s
unreasonably. Lu¨ders suggested that the above measurem
for a degenerate observable is always more disturbing t
the desirable one. In order to determine the canonical wa
measuring even the degenerate observables, Lu¨ders proposed
the following hypothesis:If an observable A is measured i
a stater, then at the time just after measurement the obj
is left in the state

EA$a%rEA$a%

Tr@EA$a%r#
,

provided that the object leads to the outcome a w
Tr@EA$a%r#.0.

In particular, if the object is measured in the vector st
uc&, then the state after measurement is the vector s
EA$a%uc& up to normalization. Thus the eigenstate cor
sponding to the outcomea is uniquely chosen as the projec
tion, and hence the above hypothesis is called theprojection
postulate.
9-5
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C. Projection postulate and joint probability

Suppose that a discrete observableA of S with eigenval-
uesa1 ,a2 , . . . is measured at the timet by the apparatus
A(a), measuringA satisfying the projection postulate. The
the state of the system at timet1Dt just after theA(a)
measurement conditional upon the outcomea(t)5an is

r„t1Dtua~ t !5an…5
EA$an%r~ t !EA$an%

Tr@EA$an%r~ t !#
, ~15!

provided Pr$a(t)5an%.0.
From Eqs.~5! and ~15!, we have

Pr$a~ t !PD,b~ t1Dt !PD8%

5 (
anPD

Tr@EB~D8!EA$an%r~ t !EA$an%#. ~16!

Thus the joint probability formula, Eq.~3!, holds for the
arbitrary input stater(t) if and only if A and B commute.
Therefore, we have seen the following theorem@2#.

Theorem 2. The successive measurement of comm
observables A and B using apparatusesA(a) and A(b) is a
simultaneous measurement of A and B, if A(a) satisfies the
projection postulate.

We have seen that in order for a successive measure
of A andB to be a simultaneous measurement, the projec
postulate for the apparatus measuringA is a sufficient con-
dition. If we restrict our attention to the measuring appa
tuses satisfying the projection postulate, any successive m
surement of commuting observables is a simultane
measurement, but, we have also seen that there are m
kinds of measuring apparatuses which do not satisfy the
jection postulate. Now we shall turn to the problem of und
what condition a successive measurement of two or m
observables can be considered as a simultaneous mea
ment.

V. NONSELECTIVE OPERATIONS OF MEASURING
APPARATUSES

Every measuring process is considered to include an
teraction, called themeasuring interaction, between the mea
sured system and the measuring apparatus. Let us con
the following description of the measuring interaction arisi
in the measurement using the apparatusA(a). In the follow-
ing, the probe P is a microscopic subsystem of apparat
A(a) that actually interacts withS. More precisely, we de-
fine the probeP to be the smallest subsystem ofA(a) such
that the composite systemS1P is isolated during the mea
suring interaction. Since we assume naturally thatS1A(a) is
isolated during the measuring interaction, the smallest s
system exists. The measurement is carried out by the in
action between the systemS and the probeP and by the
subsequent measurement on the probeP. We assume that the
probe system is a quantum mechanical system describe
the Hilbert spaceK of state vectors. At the time of measur
mentt, the probeP is in a fixed states, so that the composite
system is in the state
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rS1P~ t !5r~ t ! ^ s. ~17!

The time evolution of the composite systemS1P during
the interaction is described by a unitary operatorU on H
^ K. Hence, at the time just after the interaction,t1Dt, the
composite systemS1P is in the state

rS1P~ t1Dt !5U@r~ t ! ^ s#U†. ~18!

The outcome of this measurement is obtained by a meas
ment of an observableM of P at timet1Dt. The observable
M is called theprobe observable. Thus, the output probabil
ity distribution of the apparatusA(a) is

Pr$a~ t !PD%5Tr$@ I ^ EM~D!#U@r~ t ! ^ s#U†%. ~19!

We shall call the above description of the measuring p
cess the indirect measurement modeldetermined by
(K,s,U,M ). In this model, from Eq.~18! the systemS is in
the state

r~ t1Dt !5TrK$U~r~ t ! ^ s!U†% ~20!

at time t1Dt, where TrK is the partial trace overK. The
state changer(t)°r(t1Dt) is determined independently o
the outcome of the measurement, and is called thenonselec-
tive state change.

As introduced previously, we have another type of st
changer(t)°r„t1Dtua(t)PD…, where r„t1Dtua(t)PD…

is the state att1Dt of S conditional upona(t)PD. Since the
conditiona(t)PR makes no selection, we have

r„t1Dtua~ t !PR…5r~ t1Dt !. ~21!

For D5” R, the state changer(t)°r„t1Dtua(t)PD… is
called theselective state change.

We define the transformationr°Tr for any trace class
operatorr on the state spaceH of S by the relation

Tr5TrK@U~r ^ s!U†#. ~22!

ThenT is a trace preserving completely positive linear tran
formation on the spacetc(H) of trace class operators onH
@11,12,21#. The transformationT is determined by the appa
ratus preparations and the measuring interactionU, and is
called thenonselective operationof the apparatusA(a). The
nonselective operationT represents the open system dyna
ics of the systemS from t to t1Dt, and we have

Tr~ t !5r~ t1Dt !. ~23!

As the converse of definition~22!, it is well known that
for every trace preserving completely positive linear tra
formation ontc(H), there is an indirect measurement mod
such thatT is the nonselective operation of that mod
@20,3,12#.

For any bounded linear transformationL on tc(H), its
dual L* is defined by

Tr@~L* X!r#5Tr@X~Lr!#
9-6
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for all rPtc(H) andXPL(H), whereL(H) stands for the
space of bounded operators onH. Let T* be the dual of the
nonselective operationT. Then T* is the normal unit pre-
serving completely positive linear transformation onL(H),
such that

Tr@~T* X!r#5Tr@X~Tr!# ~24!

for all rPtc(H) and XPL(H) ~Ref. @11#, p. 18!. We call
T* the dual nonselective operation. Let XPL(H) and r
Ptc(H). From Eq.~22! and a property of the partial trace
we have

Tr@XTr#5Tr†XTrK@U~r ^ s!U†#‡

5Tr@~X^ I !U~r ^ s!U†#

5Tr@U†~X^ I !U~ I ^ s!~r ^ I !#

5Tr†TrK@U†~X^ I !U~ I ^ s!#r‡.

Hence, from Eq.~24!, we have

Tr@~T* X!r#5Tr†TrK@U†~X^ I !U~ I ^ s!#r‡.

Sincer is arbitrary, we have

T* X5TrK@U†~X^ I !U~ I ^ s!# ~25!

for all XPL(H). This characterizes the dual nonselecti
operation.

VI. OPERATION VALUED MEASURES

A. Davies-Lewis postulates

Davies and Lewis@19# postulated:Given an apparatus
A(a) for S, there is a mappingD°X(D) from the Borel sets
to the positive linear transformations ontc(H) satisfying
the following conditions.

~a! For any disjoint sequence of Borel setsDn and for any
rPtc(H),

X~ønDn!r5(
n

X~Dn!r. ~26a!

~b! For any rPtc(H),

Tr@X~R!r#5Tr@r#. ~26b!

~c! For any Borel setD,

Pr$a~ t !PD%5Tr@X~D!r~ t !#. ~26c!

~d! For any Borel setD with Pr$a(t)PD%.0,

r„t1Dtua~ t !PD…5
X~D!r~ t !

Tr@X~D!r~ t !#
. ~26d!

We call the above mappingX:D°X(D) the operation
valued measureor theoperational distributionof apparatus
A(a). In general, we call any bounded linear transformat
on tc(H) a superoperatorfor H. Any mappingD°X(D)
from the Borel sets to the positive superoperators forH is
03210
n

called apositive superoperator valued (PSV) measureif it
satisfies condition~a!. Moreover, it is callednormalizedif it
satisfies condition~b!. Accordingly, the operation valued
measure ofA(a) is the normalized PSV measure satisfyin
conditions~c! and ~d!.

The validity of the Davies-Lewis postulate for the app
ratuses with indirect measurement models was previou
demonstratedbased onthe joint probability formula in Refs.
@20,3#, where it was also shown that any normalized PS
measures which are realizable by indirect measurement m
els are completely positive, and vice versa.

B. Determination of operation valued measures based
on the projection postulate

In order to determine the operation valued measure co
sponding to the given measuring apparatus, we need to
scribe the measuring process by an indirect measurem
model. Then the measurement is divided into two proces
the measuring interaction in the object-probe composite s
tem, and the probe measurement. Given the indirect m
surement model, the current formulation has two argume
to determine the operation valued measure: one relies on
projection postulate~cf. Ref. @12# for yes-no measurements!,
and the other relies on the joint probability formu
@20,3,15#.

In the first approach, the probe measurement is explic
assumed to satisfy the projection postulate. Conseque
the operation valued measure is determined by the uni
operator of the measuring interaction and the projection
erator derived by the projection postulate with partial tra
over the probe.

The argument runs as follows. Assume that the appar
A(a) has the indirect measurement model (K,s,U,M ),
where the probe observableM is purely discrete with eigen
values an . Let us suppose that the measuring interact
between the systemS and the apparatusA(a) is turned on
from t to t1Dt, and that the observer measures the pro
observableM at the timet1Dt using the apparatusA(m).
Let t1Dt1t be the time just after the measuring interacti
is turned off between the probeP and the apparatusA(m).
The systemA(m) is considered as a subsystem ofA(a),
including the later stages after the probeP. Assume that the
apparatusA(m) satisfies the projection postulate and that t
outcome ism(t1Dt)5an . Then, at timet1Dt1t the com-
posite systemS1P is in the state

rS1P„t1Dt1tum~ t1Dt !5an…

5
~ I ^ EM$an%!rS1P~ t1Dt !~ I ^ EM$an%!

Tr@~ I ^ EM$an%!rS1P~ t1Dt !#
.

~27!

Since the outcome of theA(m) measurement at timet1Dt
is interpreted as the outcome of theA(a) measurement a
time t, the conditionm(t1Dt)5an is equivalent to the con-
dition a(t)5an . It follows that at timet1Dt1t the system
S is in the state
9-7
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r~ t1Dt1tua~ t !5an!

5TrK@rS1P~ t1Dt1tum~ t1Dt !5an!#. ~28!

From Eqs.~18!, ~27!, and~28!, we have

r„t1Dt1tua~ t !5an…

5
TrK†~ I ^ EM$an%!U@r~ t ! ^ s#U†~ I ^ EM$an%!‡

Tr†~ I ^ EM$an%!U@r~ t ! ^ s#U†
‡

.

~29!

By the well-known relation

TrK@~ I ^ X!Y#5TrK@Y~ I ^ X!# ~30!

for all XPL(K) andYPL(H^ K), we have

TrK†~ I ^ EM$an%!U@r~ t ! ^ s#U†~ I ^ EM$an%!‡

5TrK†~ I ^ EM$an%!U@r~ t ! ^ s#U†
‡. ~31!

Hence we have an important relation

r„t1Dt1tua~ t !5an…5
TrK†~ I ^ EM$an%!U@r~ t ! ^ s#U†

‡

Tr†~ I ^ EM$an%!U@r~ t ! ^ s#U†
‡

.

~32!

Let D be an arbitrary Borel set such that Pr$a(t)PD%.0.
Then we have, naturally,

r„t1Dt1tua~ t !PD…

5

(
anPD

Pr$a~ t !5an%r„t1Dt1tua~ t !5an…

Pr$a~ t !PD%
.

~33!

From Eqs.~19!, ~32!, and~33!, we have

r„t1Dt1tua~ t !PD…5
TrK†@ I ^ EM~D!#U@r~ t ! ^ s#U†

‡

Tr†@ I ^ EM~D!#U@r~ t ! ^ s#U†
‡

.

~34!

To obtain the final result, suppose that theA(m) measure-
ment is instantaneous, i.e.,t'0, and that there is no interac
tion betweenS and the outside ofA(a) from t to t1Dt
1t. Then, in this time interval, the state changes ofS are
negligible due to theA(m) measurement, the time evolutio
of S, and the decoherence from the environment. Con
quently, we have

r„t1Dtua~ t !PD…5r„t1Dt1tua~ t !PD…. ~35!

Therefore, we have reached the final form

r~ t1Dtua~ t !PD!5
TrK†@ I ^ EM~D!#U@r~ t ! ^ s#U†

‡

Tr†@ I ^ EM~D!#U@r~ t ! ^ s#U†
‡

.

~36!
03210
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From the above, the operation valued measure ofA(a) is
determined by

X~D!r5TrK†@ I ^ EM~D!#U~r ^ s!U†
‡ ~37!

for all Borel setsD and all trace class operatorsr. Further-
more, it follows easily from properties of partial trace thatX
satisfies conditions~a!–~d!.

Obviously, the above approach explicitly excludes t
possibility of measuring the probe by an apparatus not sa
fying the projection postulate such as a photon counter.
cordingly, this approach cannot apply correctly to any m
surements with continuous probe observables such as
position of the probe pointer, since no apparatuses measu
continuous observables satisfy the repeatability hypoth
@3,4#. Moreover, the argument assumes that the probe m
surement should be instantaneous.

C. Determination of operation valued measures based
on the joint probability formula

In the second approach, generalizing von Neumann’s
gument on repeated measurements of the same obser
~Ref. @1#, pp. 211–223!, it is assumed that the observer aga
measures an arbitrary observable of the object system a
time just after the measuring interaction. Then one can c
sider the joint probability distribution of the outcomes of th
probe measurement and the second object measure
@20,3,15#. By assuming that the above joint probability di
tribution satisfies the joint probability formula for the simu
taneous measurement, we can determine the operation
ued measure.

Since the joint probability formula is well formulate
even in the case where the probe observable has a contin
spectrum, the second approach can be applied to mea
ments of continuous observables. Moreover, in the case
the discrete probe observable, the second approach lea
the same operation-valued measure as the first approac
that the second approach is consistent with the first.

The argument in the second approach runs as follows.
A(a) be an apparatus described by the indirect measurem
model (K,s,U,M ). Suppose that the systemS is measured
at time t by the apparatusA(a). Suppose that at timet
1Dt, just after the measuring interaction, the observer w
to measure an arbitrary observableB of the same objectS by
an apparatusA(b). The conditional probability ofb(t1Dt)
PD8 given a(t)PD is the probability ofb(t1Dt)PD8 in
the stater„t1Dua(t)PD…, so that the joint probability dis-
tribution of a(t) andb(t1Dt) satisfies

Pr$a~ t !PD,b~ t1Dt !PD8%

5Tr@EB~D8!r~ t1Dtua~ t !PD!#Pr$a~ t !PD%.

~38!

For any Borel setD, let X„D,r(t)… be the trace class opera
tor defined by

X„D,r~ t !…5Pr$a~ t !PD%r„t1Dtua~ t !PD…. ~39!

From Eq.~38!, we have
9-8
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Pr$a~ t !PD,b~ t1Dt !PD8%5Tr@EB~D8!X„D,r~ t !…#.
~40!

On the other hand, by the indirect measurement mode
output a(t) of this measurement is obtained by a measu
ment of the probe observableM at timet1Dt. Let A(m) be
the apparatus measuringM at the time t1Dt. Then, the
probabilistic event ‘‘a(t)PD ’’ is equivalent to the probabi-
listic event ‘‘m(t1Dt)PD ’’ and hence we have

Pr$a~ t !PD,b~ t1Dt !PD8%

5Pr$m~ t1Dt !PD,b~ t1Dt !PD8%. ~41!

Since the observableM of P and the observableB of S are
simultaneously measurable, if theA(m) andA(b) measure-
ments can be considered to be simultaneous, we have

Pr$m~ t1Dt !PD,b~ t1Dt !PD8%

5Tr†@EB~D8! ^ EM~D!#rS1P~ t1Dt !‡

5Tr†@EB~D8! ^ EM~D!#U@r~ t ! ^ s#U†
‡.

By the property of partial trace, we have

Pr$m~ t1Dt !PD,b~ t1Dt !PD8%

5Tr@EB~D8!TrK†@ I ^ EM~D!#U@r~ t ! ^ s#U†
‡.

~42!

SinceB andD8 are arbitrary, from Eqs.~40!–~42! we have

X„D,r~ t !…5TrK†@ I ^ EM~D!#U@r~ t ! ^ s#U†
‡. ~43!

Suppose that Pr$a(t)PD%.0. From Eq.~39!, we have

r„t1Dtua~ t !PD…5
X„D,r~ t !…

Tr@X„D,r~ t !…#

5
TrK†@ I ^ EM~D!#U@r~ t ! ^ s#U†

‡

Tr†@ I ^ EM~D!#U@r~ t ! ^ s#U†
‡

.

Hence we have shown that relation~36! holds for the appa-
ratus A(a) given in this argument. LetX be the mapping
D°X(D) defined by relation~37! for the present apparatus
Then X satisfies conditions~a! and ~b! by the properties of
partial trace as before. From Eq.~43!, we have

X~D!r~ t !5X„D,r~ t !…, ~44!

and henceX satisfies conditions~c! and~d!. ThusX satisfies
the Davies-Lewis postulate for the apparatusA(a) given
above.

We have shown that the determination~37! of the
operation-valued measure holds without assuming the
jection postulate for the probe measurement. Nevertheles
order to justify formula~37! generally, we need to justify the
joint probability formula without assuming the projectio
postulate. This puts a serious constraint on the theore
device to explore our problem. Indeed, because of the th
of a circular argument, the above arguments do not enab
03210
e
-

o-
in

al
at
us

to take advantage of operation-valued measures for the
tification of the joint probability formula. In conventiona
measurement theory, a similar kind of circular argument
been known as the infinite regress of the von Neuma
chain. Despite the above difficulties, in the following se
tions we shall show an alternative approach without any f
of a circular argument.

VII. STATISTICAL APPROACH
TO THE OPERATION VALUED MEASURES

A. Existence of the operation valued measures

In what follows, we shall prove the Davies-Lewis post
late without assuming the joint probability formula or th
projection postulate. Let us suppose that the systemS is mea-
sured at timet by the apparatusA(a), and at timet1Dt
immediately after this measurement an observableB of S is
measured using an apparatusA(b). Then the joint probabil-
ity distribution of the outcomes of theA andB measurements
satisfies Eq.~38!. For any Borel setD, let X„D,r(t)… be the
trace class operator defined by Eq.~39!. Then, from Eq.~38!,
X„D,r(t)… satisfies Eq.~40!. Since the input stater(t) is
assumed to be an arbitrary density operator, Eq.~39! defines
the transformationX(D) that mapsr(t) to X„D,r(t)…. From
Eqs.~39! and ~40!, X(D) satisfies the relations

X~D!r~ t !5Pr$a~ t !PD%r„t1Dtua~ t !PD… ~45!

and

Pr$a~ t !PD,b~ t1Dt !PD8%5Tr@EB~D8!X~D!r~ t !#.
~46!

Suppose that the input stater(t) is a mixture of density
operatorsr1 andr2 , i.e.,

r~ t !5ar11~12a!r2 , ~47!

where 0,a,1. This means that at timet the measured ob
ject S is sampled randomly from an ensemble of simi
systems described by the density operatorr1 with probability
a, and from another ensemble described by the density
eratorr2 with probability 12a. Thus we have, naturally,

Pr$a~ t !PD,b~ t1Dt !PD8ur~ t !5ar11~12a!r2%

5aPr$a~ t !PD,b~ t1Dt !PD8ur~ t !5r1%

1~12a!Pr$a~ t !PD,b~ t1Dt !PD8ur~ t !5r2%,

~48!

where Pr$EuF% stands for the conditional probability ofE
given F. From Eqs.~46! and ~48!, we have

Tr†EB~D8!X~D!@ar11~12a!r2#‡

5aTr@EB~D8!X~D!r1#1~12a!Tr@EB~D8!X~D!r2#

5Tr†EB~D8!@aX~D!r11~12a!X~D!r2#‡.

SinceB andD8 are arbitrary, we have

X~D!@ar11~12a!r2#5aX~D!r11~12a!X~D!r2 .
~49!
9-9
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It follows that X(D) is an affine transformation from th
space of density operators to the space of trace class o
tors, so that it can be extended to a unique positive supe
erator@21#.

We have proved that for any apparatusA(a) measuringA
there is uniquely a family$X(D)u DPB(R)% of positive su-
peroperators such that Eqs.~45! and ~46! hold, whereB(R)
stands for the collection of all Borel sets.

By the countable additivity of probability, ifD5ønDn
for disjoint Borel setsDn , we have

Pr$a~ t !PD,b~ t1Dt !PD8%

5(
n

Pr$a~ t !PDn ,b~ t1Dt !PD8%. ~50!

From Eqs.~46! and ~50!, we have

Tr@EB~D8!X~D!r~ t !#5(
n

Tr@EB~D8!X~Dn!r~ t !#

5TrFEB~D8!(
n

X~Dn!r~ t !G .
SinceB andD8 are arbitrary, we have

X~D!r~ t !5(
n

X~Dn!r~ t !.

Sincer(t) is arbitrary, condition~a! holds for arbitrary den-
sity operatorr, and hence by linearity, condition~a! holds
for all rPtc(H). Conditions~c! and ~d! are obvious from
Eq. ~39!. From condition~c!, we have

Tr@X~R!r~ t !#51.

Sincer(t) is arbitrary, condition~b! holds for arbitrary den-
sity operatorr, and hence by linearity, condition~b! holds
for all rPtc(H). Thus the mappingX:D°X(D)r satisfies
the Davies-Lewis postulate.

It should be noted that the present derivation rely on n
ther the existence of the indirect measurement model,
joint probability formula, nor the projection postulate. Th
crucial assumption in the above argument is Eq.~48!, which
follows from the basic principle underlying the notion of th
mixture of states. Thus we can conclude thatevery measur-
ing apparatus has the operation valued measure satisfy
the Davies-Lewis postulate.

B. Basic properties of the operation valued measures

Let A(a) be a measuring apparatus for the systemS with
the operation-valued measureX. Let us assume that the ap
paratusA(a) measures an observableA. In this case, from
Eq. ~1! and condition~c!, we have

Tr@X~D!r~ t !#5Tr@EA~D!r~ t !#. ~51!

Let X(D)* be the dual ofX(D). Then we have

Tr@„X~D!* I …r~ t !#5Tr@EA~D!r~ t !#.
03210
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Sincer(t) is arbitrary, we conclude

X~D!* I 5EA~D! ~52!

for any Borel setD.
We say that a PSV measureX is A compatibleif X satis-

fies relation~52!. By the above, the operation-valued me
sure of the apparatusA(a) measuringA is anA compatible
PSV measure. Now we are ready to state the following
portant relations for operation valued measures@33#.

Theorem 3. Let A be an observable and letX be an
A-compatible PSV measure. Then, for any Borel setD and
any trace class operatorr we have

X~D!r5X~R!@EA~D!r#5X~R!@rEA~D!#

5X~R!@EA~D!rEA~D!#, ~53!

and for any bounded operatorB we have

X~D!* B5@X~R!* B#EA~D!5EA~D!X~R!* B

5EA~D!@X~R!* B#EA~D!. ~54!

A proof of the above theorem was given in Ref.@3# for
the case whereX(D) is completely positive, and anothe
proof was given in Ref.@32# for the case whereA is discrete.
The general proof necessary for the above theorem run
follows.

Proof. Let C be a bounded operator such that 0<C<I ,
and letDPB(R). We define

A115X~D!* C, A125X~D!* ~ I 2C!,

A215X~R2D!* C, A225X~R2D!* ~ I 2C!,

P15EA~D!, P25I 2EA~D!,

Q15X~R!* C, Q25I 2X~R!* C.

Then, for i , j 51,2, we have 0<Ai j <Pi , so that@Ai j ,Pi #
5@Ai j ,Pj #50. It follows thatQj5A1 j1A2 j commutes with
P1 andP2 as well. Thus

Ai j 5PiAi j <PiQj .

On the other hand, we have( i j Ai j 5I and ( i j PiQj5I ,
whenceAi j 5PiQj . It follows that

X~D!* C5EA~D!X~R!* C.

By taking the adjoint, we also have

X~D!* C5@X~R!* C#EA~D!.

Since any bounded operatorB can be represented byB
5(n50

3 lnCn with positive operators 0<Cn<I and complex
numbersln , we have

X~D!* B5EA~D!X~R!* B5@X~R!* B#EA~D!

for any DPB(R) and BPL(H). By multiplying EA(D)
from both sides, we also have
9-10
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X~D!* B5EA~D!@X~R!* B#EA~D!.

Hence relations~54! hold. Relations~53! follow easily by
taking the duals ofX(D)* andXO (R)* . j

By the above theorem, the operation valued measureX of
an arbitrary apparatusA(a) measuringA is determined
uniquely by the nonselective operationT5X(R) of A(a). A
mathematical theory of PSV measures was introduced
Davies and Lewis@19# based on conditions~a! and ~b! as
mathematical axioms; see also Davies@11#. Their relations
with measuring processes were established in R
@3,4,13,14,20,34#, and applied to analyzing various measu
ing processes in Refs.@15,27,28,35#.

C. Operation valued measures of indirect measurement
models

Suppose that the apparatusA(a) measuringA, has an in-
direct measurement model (K,s,U,M ). In this case, we can
determine the operation valued measureX of the apparatus
A(a) without assuming the joint probability distribution o
the projection postulate, as follows.

Let X be the operation valued measure of the appara
A(a). ThenX satisfies conditions~a!–~d!, and henceX is an
A-compatible PSV measure. It follows from Theorem 3 th
X satisfies

X~D!r5X~R!@EA~D!r#, ~55!

whereDPB(R) andrPtc(H). SinceA(a) has the indirect
measurement model (K,s,U,M ), relation ~20! holds. By
condition ~d! and Eqs.~20! and ~21!, we have

X~R!r~ t !5TrK†U@r~ t ! ^ s#U†
‡.

Sincer(t) is arbitrary andX(R) is linear, the above relation
can be extended to trace class operatorsr from density op-
eratorsr(t), so that we have

X~R!r5TrK@U~r ^ s!U†# ~56!

for all rPtc(H). Now, we consider the expression

E~D!r5TrK†@ I ^ EM~D!#U~r ^ s!U†
‡, ~57!

whereDPB(R) andrPtc(H). Then we can show, purel
mathematically, that the mappingE:D°E(D) defined above
is anA-compatible PSV measure satisfying

E~R!r5TrK@U~r ^ s!U†#. ~58!

ThusE satisfies the assumptions of Theorem 3, and hence
have

E~D!r5E~R!@EA~D!r#. ~59!

From Eqs.~56! and ~58!, we have

E~R!5X~R! ~60!

and hence from Eqs.~55! and ~59! we have

E~D!r5E~R!@EA~D!r#5X~R!@EA~D!r#5X~D!r.
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Therefore, we conclude thatX satisfies Eq.~37!.
From Eqs.~37! and ~53!, we have the following expres

sions forX:

X~D!r5TrK†@ I ^ EM~D!#U~r ^ s!U†
‡ ~61a!

5TrK†U@r~ t !EA~D! ^ s#U†
‡ ~61b!

5TrK†U@EA~D!r~ t ! ^ s#U†
‡ ~61c!

5TrK†U@EA~D!r~ t !EA~D! ^ s#U†
‡. ~61d!

Thus, if Pr$a(t)PD%.0, we obtain the following relations:

r„t1Dtua~ t !PD…5
TrK†@ I ^ EM~D!#U@r~ t ! ^ s#U†

‡

Tr@EA~D!r~ t !#
~62a!

5
TrK†U@r~ t !EA~D! ^ s#U†

‡

Tr@EA~D!r~ t !#
~62b!

5
TrK†U@EA~D!r~ t ! ^ s#U†

‡

Tr@EA~D!r~ t !# ~62c!

5
TrK†U@EA~D!r~ t !EA~D! ^ s#U†

‡

Tr@EA~D!r~ t !#
.

~62d!

VIII. DISTURBANCE IN MEASUREMENT

A. Disturbance and simultaneous measurability

Let B be an arbitrary observable ofS. We say that the
measurement using an apparatusA(a) does not disturbthe
observableB if the nonselective state change does not p
turb the probability distribution ofB; that is, we have

Tr@EB~D!r~ t1Dt !#5Tr@EB~D!e2 iHDt/\r~ t !eiHDt/\#
~63!

for any Borel setD, where H is the Hamiltonian of the
systemS. The measurement is said to beinstantaneousif the
duration Dt of the measurement is negligible on the tim
scale of the time evolution of the systemS. Thus the instan-
taneous measurement using the apparatusA(a) does not dis-
turb B if and only if

Tr@EB~D!r~ t1Dt !#5Tr@EB~D!r~ t !# ~64!

for any Borel setD.
Let X be the operation-valued measure of the appara

A(a), andT5X(R) be the nonselective operation ofA(a).
Then, from condition~d!, we have

r~ t1Dt !5Tr~ t ! ~65!

and hence Eq.~64! is equivalent to

Tr@EB~D!Tr~ t !#5Tr@EB~D!r~ t !#. ~66!
9-11
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Let T* be the dual nonselective operation ofA(a). It follows
from Eq. ~66! that Eq.~64! is equivalent to

Tr†@T* EB~D!#r~ t !‡5Tr@EB~D!r~ t !#. ~67!

Sincer(t) is arbitrary, Eq.~64! is equivalent to

T* EB~D!5EB~D!. ~68!

Thus we conclude thatthe instantaneous measurement us
the apparatusA(a) with nonselective operationT does not
disturb the observable B if and only if Eq.~68! holds for any
Borel setD. Now we are ready to state the answer to o
problem.

Theorem 4. LetA(a) be an apparatus measuring an ob
servable A instantaneously, and letA(b) be an arbitrary
apparatus measuring an observable B. Then the successiv
measurement usingA(a) and A(b) is a simultaneous mea
surement of A and B if and only ifA(a) does not disturb B.

Proof. It suffices to show the equivalence between E
~3! and 68. From Eqs.~46! and ~55!, we have

Pr$a~ t !PD,b~ t1Dt !PD8%

5Tr@EB~D8!X~D!r~ t !#

5Tr†EB~D8!X~R!@r~ t !EA~D!#‡

5Tr†@T* EB~D8!#r~ t !EA~D!‡

5Tr†EA~D!@T* EB~D8!#r~ t !‡

Thus the joint probability distribution ofA andB is given by

Pr$a~ t !PD,b~ t1Dt !PD8%5Tr@EA~D!@T* EB~D8!#r~ t !#.

~69!

If Eq. ~68! holds, Eq.~3! follows immediately from Eq.~69!.
Conversely, suppose that Eq.~3! holds. By substitutingD
5R in Eq. ~3!, we have

Pr$a~ t !PR,b~ t1Dt !PD8%5Tr@EB~D8!r~ t !#. ~70!

On the other hand, from Eq.~69! we have

Pr$a~ t !PR,b~ t1Dt !PD8%5Tr†@T* EB~D8!#r~ t !‡.
~71!

Sincer(t) is arbitrary, from Eqs.~70! and~71! we obtain Eq.
~68!. Therefore, Eqs.~3! and ~68! are equivalent. j

From Theorems 1 and 4, we can see that if the appar
A(a), instantaneously measuring an observableA, does not
disturb an observableB, thenA andB necessarily commute
Therefore, we can conclude the following statement.

Theorem 5. Every apparatus measuring an observa
disturbs all the observables that do not commute with
measured observable.

B. Disturbance in indirect measurements

From Eq.~20!, and by the property of the partial trace, w
have
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r

.

us

le
e

Tr@EB~D!r~ t1Dt !#

5Tr†EB~D!TrK†U@r~ t ! ^ s#U†] ‡

5Tr†@EB~D! ^ I #U@r~ t ! ^ s#U†
‡

5Tr†U†@EB~D! ^ I #U~ I ^ s!@r~ t ! ^ I #‡

5Tr†TrK†U†@EB~D! ^ I #U~ I ^ s!‡r~ t !‡.

Hence Eq.~64! is equivalent to

Tr„TrK$U†@EB~D! ^ I #U~ I ^ s!%r~ t !…5Tr@EB~D!r~ t !#.

Sincer(t) is arbitrary, Eq.~64! is equivalent to

TrK$U†@EB~D! ^ I #U~ I ^ s!%5EB~D! ~72!

for any Borel setD.
Obviously, from Eq.~72!, if U andB^ I commute, i.e.,

@U,EB~D! ^ I #50 ~73!

for any Borel setD, then theA measurement does not distu
the observableB. However, Eq.~73! is not a necessary con
dition for nondisturbing measurement. In the case wheres is
a pure states5uj&^ju, from Eq.~72! we have the following
theorem.

Theorem 6. LetA(a) be an apparatus measuring an ob
servable A instantaneously with indirect measurement mo
(K,uF&^Fu,U,M ). The ApparatusA(a) does not disturb an
observable B if and only if

@U,EB~D! ^ I #uc ^ F&50 ~74!

for any Borel setD and any state vectorc of S.
Proof. First, we note that in the case wheres5uF&^Fu,

relation ~72! holds if and only if

^c ^ FuU†@EB~D! ^ I #Uuc ^ F&5^cuEB~D!uc& ~75!

holds for any state vectorc. Suppose that Eq.~74! holds. We
have

U@EB~D! ^ I #uc ^ F&5@EB~D! ^ I #Uuc ^ F&.

Multiplying U† from the left, we have

@EB~D! ^ I #uc ^ F&5U†@EB~D! ^ I #Uuc ^ F&,

and, hence, we have Eq.~75!. Thus if Eq.~74! holds for any
Borel set D and any state vectorc, then A(a) does not
disturbB. Conversely, suppose thatA(a) does not disturbB.
Then, from Eq.~72!, with s5uF&^Fu, we have

^f8^ FuU†@EB~D! ^ I #Uuf ^ F&

5^f8^ FuEB~D! ^ I uf ^ F&

for any vectorsf,f8PH. Let c be a state vector. Ifuf&
5uc& and uf8&5EB(D)uc&, we have
9-12
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^c ^ Fu@EB~D! ^ I #U†@EB~D! ^ I #Uuc ^ F&

5^c ^ FuEB~D! ^ I uc ^ F&. ~76!

By taking a complex conjugate, we have

^c ^ FuU†@EB~D! ^ I #U@EB~D! ^ I #uc ^ F&

5^c ^ FuEB~D! ^ I uc ^ F&. ~77!

From Eqs.~75!–~77!, we have

i$EB~D! ^ I 2U†@EB~D! ^ I #U%uc ^ F&i2

5^c ^ FuEB~D! ^ I uc ^ F&

2^c ^ Fu@EB~D! ^ I #U†@EB~D! ^ I #Uuc ^ F&

2^c ^ FuU†@EB~D! ^ I #U@EB~D! ^ I #uc ^ F&

1^c ^ FuU†@EB~D! ^ I #Uuc ^ F&

50.

Thus we have

@EB~D! ^ I #uc ^ F&5U†@EB~D! ^ I #Uuc ^ F&.

Multiplying U from the left, we have

$U@EB~D! ^ I #2@EB~D! ^ I #U%uc ^ F&50,

and hence we have Eq.~74!. Therefore, we conclude that
A(a) does not disturbB, then Eq.~74! holds for any Borel
setD and any state vectorc of S. j

IX. LOCAL MEASUREMENTS OF OBSERVABLES
OF TWO ENTANGLED SYSTEM

If the two observables to be measured belong to two
ferent subsystems, then they commute each other, and
measurement of one is not considered to disturb the othe
general, so that the result obtained in Sec. VIII applies to
situation. The purpose of this section is to state this fac
the rigorous language.

Let C be an observable of an systemS1 with Hilbert space
H1 , andD an observable of another systemS2 with Hilbert
spaceH2 . Suppose that the composite systemS5S11S2 is
in a stater(t) at timet. Let us suppose that one measures
observableC at time t using an apparatusA(a) and that at
time t1Dt, just after theC measurement, one measuresD
using any apparatusA(b) measuringD. We assume that afte
time t there is no interaction betweenS1 andS2 .

First we shall consider the case where the measureme
C satisfies the projection postulate. In this case, in the c
posite systemS12, the observableA5C^ I 2 is measured a
time t, and the observableB5I 1^ D is measured immedi
ately after theA measurement, whereI 1 and I 2 are the iden-
tity operators onH1 andH2 , respectively. From Theorem
the joint probability distribution satisfies

Pr$a~ t !PD,b~ t1Dt !PD8%5Tr†@EC~D! ^ ED~D8!#r~ t !‡.

~78!
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In order to compare this result with the argument given
EPR@5#, let us consider the special case whereC andD are
nondegenerate observables in their own subsystems an
initial stater(t) is a pure state. In this case, the stater(t) is
represented by a state vectorC(t) in the Hilbert spaceH
5H1^ H2 as

r~ t !5uC~ t !&^C~ t !u.

Let us suppose that the observablesC andD have the spec-
tral decompositions

C5(
n

anufn&^fnu,

D5(
m

bmujm&^jmu.

EPR expandedC(t) using the basis$fn% of H1 as

C~ t !5(
n

ufn^ hn&, ~79!

wherehn are uniquely determined vectors inH2 not neces-
sarily orthogonal and, according to EPR, are to be regar
merely as coefficients of the expansion ofC(t) into a series
of orthogonal vectorsfn . Then EPR considered the proce
of ‘‘reduction of the wave packet’’

(
n

ufn^ hn&°Nufn^ hn&, ~80!

where N is the normalization constant determined up to
phase factor by

N5ifn^ hni21, ~81!

and stated that the state after the measurement condit
upon the outcomea(t)5an is determined as

C„t1Dtua~ t !5an…5Nufn^ hn&, ~82!

where

uC„t1Dtua~ t !5an…&^C„t1Dtua~ t !5an…u

5r„t1Dtua~ t !5an…. ~83!

From this, we have the joint probability formula

Pr$a~ t !5an ,b~ t1Dt !5bm%5 z^fn^ jmuC~ t !& z2, ~84!

which is a special case of Eq.~78!.
Now, let us show that the EPR argument is equivalen

the argument based on the projection postulate for thA
measurement. From the projection postulate, if the outco
of the A(a) measurement isan , the state of the composit
system at the time just after the measurement is

C~ t1Dtua~ t !5an!5
~ ufn&^fnu ^ I 2!C~ t !

i~ ufn&^fnu ^ I 2!C~ t !i . ~85!
9-13
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Then, from Eq.~79!, we have

~ ufn&^fnu ^ I 2!C~ t !5ufn^ hn&. ~86!

Thus we have shown that Eq.~82! is the consequence from
the projection postulate Eq.~85!.

In the following, we shall consider the general case. F
instance, consider the case where theA measurement leave
the systemS1 in a fixed statef1 independent of the outcom
such as the vacuum state after photon counting. Does
~78! hold even in this case? The answer to this ques
might depend on the method of measuringA. However, if the
measurement ofA is carried out so as not to affect the syste
S2 , then from the result in Sec. VIII we will be able t
conclude relation~78!. In order to ensure that the measur
ment of A does not affect the systemS2 , we introduce the
following condition.

We will say that the apparatusA(a), measuringA, is local
in the systemS1 if the measuring interaction is confined
the systemS1 and the apparatusA(a), as formulated pre-
cisely as follows. LetK be the Hilbert space of the probeP
in apparatusA(a), and suppose thatP is prepared in states
at timet of the measurement, and letU be the unitary opera
tor of K^ H1^ H2 representing the time evolution of th
composite systemS1P. Then the apparatusA(a) is said to
be local in the systemS1 if we have

@U,I 1^ X^ I K#50 ~87!

for any bounded operatorX on H2 , whereI K is the identity
on K.

Theorem 7. Suppose that the composite systemS5S1
1S2 is in stater(t) at time t of the measurement. Let C and
D be observables ofS1 andS2 , respectively. If the apparatus
A(a), measuring A5C^ I 2 instantaneously, is local in the
systemS1 then Eq.~78! holds.

Proof. Let s be the state of the probe att. From Theorem
5 it suffices to show thatA(a) does not disturb the observ
ableB5I ^ D. By assumption, we have

@U,EB~D! ^ I K#5@U,I 1^ ED~D! ^ I K#50

for any Borel setD. Thus relation~73! holds, so thatA(a)
does not disturb the observableB5I 1^ D. Therefore, Eq.
~78! follows from Theorem 4. j

From the above theorem, we also have the follow
statement:Any pair of local instantaneous measuring app
ratuses of A5C^ I 2 and B5I 1^ D satisfies the joint prob-
ability formula

Pr$a~ t !PD,b~ t !PD8%5Tr†@EC~D! ^ ED~D8!#r~ t !‡ ~88!

regardless of the order of the measurement, where we id
tify t with t1Dt.

In the EPR paper@5#, the so-called EPR correlation i
derived theoretically under the assumption that the pair
measurements satisfies the projection postulate, but
present result concludes that the EPR correlation holds
any pair of local instantaneous measurements, as ex
ments have already suggested.
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X. MINIMUM DISTURBING MEASUREMENTS

Classical measurements are usually considered to dis
no measured systems. This does not mean, however, th
classical measurement disturbs the system, but that am
all the possible measurements the minimum disturbing m
surement does not disturb the system in principle. In t
section, we shall introduce the notion of the minimum d
turbing measurement in quantum mechanics, and show
this is equivalent to a measurement satisfying the projec
postulate.

For an apparatusA(x), we denote byD(x) the set of
observables that are disturbed byA(x), i.e., D(x) is the set
of observablesB such that T* EB(D)5” EB(D) for some
Borel setD, whereT is the nonselective operation ofA(x)
andT* its dual. LetA be an observable of the systemS, and
let A(a) be an apparatus measuringA instantaneously. The
apparatusA(a) is calledminimum disturbingif D(a),D(x)
for any apparatusA(x) measuringA instantaneously. Then
we have the following statement.

Theorem 8. LetA(a) be an apparatus measuring a dis
crete observable A instantaneously. The apparatusA(a) is
minimum disturbing if and only ifA(a) satisfies the projec-
tion postulate.

Proof. Let C(A) be the set of observables that do n
commute withA. From Theorem 5, we have

C~A!c,D~x! ~89!

for any apparatusA(x) measuringA instantaneously, where
superscriptc stands for the complement in the set of obse
ables. Let A(a) be an apparatus measuringA instanta-
neously. Suppose thatA(a) satisfies the projection postulate
Then, from Theorem 2, we have

D~a!,C~A!c, ~90!

and hence from Eq.~89! we conclude thatA(a) is minimum
disturbing and

D~a!5C~A!c. ~91!

Conversely, suppose thatA(a) is minimum disturbing. We
have an indirect measurement model that measuresA instan-
taneously and satisfying the projection postulate@3#. Hence
there is an apparatusA(x) measuringA instantaneously such
that D(x)5C(A)c. By assumption,A(a) is minimum dis-
turbing, so thatD(a)5C(A)c. Then the operation valued
measureX of A(a) is such thatX(R)* EB(D8)5EB(D8) for
all BPC(A) andD8PB(R). Thus we have

Tr@EB~D8!X~D!r~ t !#

5Tr†@X~D!* EB~D8!#r~ t !‡

5 (
aPD

Tr†@X$a%* EB~D8!#r~ t !‡

5 (
aPD

Tr†~EA$a%@X~R!* EB~D8!#EA$a%!r~ t !‡
9-14
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5 (
aPD

Tr†EA$a%EB~D8!EA$a%r~ t !‡

5TrFEB~D8! (
aPD

EA$a%r~ t !EA$a%G .
SinceB andD8 are arbitrary, we have

X~D!r~ t !5 (
aPD

EA$a%r~ t !EA$a%,

and hence

r~ t1DtuaPD!5

(
aPD

EA$a%r~ t !EA$a%

Tr@EA~D!r#
.

ThusA(a) satisfies the projection postulate. j
We refer to Refs.@3,19# for different approaches to the

minimum disturbance condition. The present approach le
to the simplest characterization of the measurements sat
03210
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ing the projection postulate, which can eventually be cal
the minimum disturbing measurements.

XI. CONCLUDING REMARKS

As anticipated from the ordinary interpretation of the u
certainty principle or the principle of complementarity fo
mulated by the noncommutativity of observables, every m
surement of an observable disturbs every observable
does not commute with the measured observable. It sho
be noted, however, that this does not imply a prevailing
terpretation of the Heisenberg uncertainty principle that
measurement of the position with accuracye must bring
about an indeterminacyh5\/2e in the value of the momen
tum ~Ref. @1#, p. 239!. In fact, we can construct an indirec
measurement model of the postion measurement
counters the above statement@36#; this model has complete
accuracy,e50, but disturbs the momentum arbitrarily sma
if the input state is arbitarily close to the momentum eige
state. This example suggests that the relation between
accuracy and the disturbance is more complicated than
relationeh>\/2 suggested by the Robertson uncertainty
lation @37#. A detailed investigation will be presented in
forthcoming paper.
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