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Adiabatic limit of inelastic transitions
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The widely used assumption that transitions induced by slowly changing perturbations are completely
described by the topology of adiabatic energy surfaces in the plane of a complex perturbation parameter is
reexamined. This assumption is the basis for the hidden crossings theory and most two-state models and yields
an exponential decrease of transition probabilities and cross sections with decreasing speed of the perturbation
v. We show that for a large class of problems, these approximations do not describe correctly transitions in the
adiabatic limit. Contributions neglected lead, instead, to dominant power-law dependences in inelastic colli-
sional cross sections;<v*. We illustrate the interplay between different contributions for a collisional model
system for which exact transition probabilities can be determined.
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Transitions between pairs of nearby energy levels of thevarying interactions are those involving parallel quasireso-
same symmetry due to slowly varying perturbations havenant diabatic states where the coupling between them is as-
been the subject of intense investigations since the early daysimed to be an exponential function Rf{7,8]. These also
of quantum theory dating back to the seminal works of Borncan be expressed in terms of the parameters of the complex
and FocK 1], Zwaan[2], Landau[3], Zener[4], and Stueck- adiabatic energy surfad®,10].
elberg[5]. Nonadiabatic transitions are introduced by allow- Common to all these models of nonadiabatic transitions is
ing the parameteR(t) and, hence, the Hamiltoniam(R) to  the assumption that the topology of the adiabatic energies
become slowly time dependent. The key parameter that cordetermines the dynamics of the system in the adiabatic limit.
trols the adiabaticity of the process is the speed of the paraFransitions between energy levels are exclusively associated
metric deformationy = |dR(t)/dt|. For an atomic collision, with branch points of the energy surface and any other con-
R is the internuclear distance and in the lilit-%, vgr  tributions are assumed to be negligible. A general approach
tends to the collision velocity;. Born and Fock showed that that exploits these ideas is known as the hidden crossings
transition probabilities should become exceedingly smallHC) or advanced adiabatic theof¢1,10,12,1% Although
when the Hamiltonian varies slowly in tim@owadays re- the basic principles were proposed by Zwadg],
ferred to as the adiabatic theorerand provided upper sStueckelberg[5], and Landau[3,6], Solov'ev [11,10]
bounds for transition rates as a functiorvgf. Subsequently,  elevated them to the level of a unified theory, applicable to
Landau arrived at the more quantitative conclusion that trang|oy heavy-particle collisions and other slow phenomena.
sition prol_)abilities for analytic Hamiltonians should decreaserys is achieved by three stepd) Defining a Hamiltonian
exponentially as expfconstbg). o in coordinates in which the nuclei are at rest such that the

The paradigm for non‘:adlabatlc tr@.nS’I’tIOI’lS is_the Cel'adiabatic eigenfunctions have the correct asymptotic behav-
corle Landal zenet) cunve closang Odel3,48 ot for R, (2 Extensivly stuing the topolgy of e

P bp y 0L#nique, multivalued adiabatic energy surface in the plane of

physics and chemistry. It assumes the crossing of a pair , i ,
diabatic energy levels at some valRe=R, and a constant COMPIEXR, whose various Riemann sheets for reayield

diabatic coupling in its vicinity. In the adiabatic representa-2ll adiabatic energy leveld3) Constructing theS matrix
tion this maps onto an avoided crossingRatof a pair of ~ Which accounts for th&-localized two-state transitions de-
adiabatic energy level((R) and E;(R) of the adiabatic fined by the branch points found i) and the adiabatic
HamiltonianH (R), while the coupling assumes the form of a @volution between the regions of localization along all pos-
Lorentzian peaked &, . AlthoughE;(R) andE;(R) cannot sible transition paths Whlch connect intial anq final s'tates
cross for real values d&, their continuation into the complex [12—-15. Numerous studies have revealed various series of
R plane do crosgbars denote complex variabjeshere the _branch_po_lnts Wh'.Ch connect the adiabatic energy branches
- - . . - in a pairwise fashion. The best known are tQeseries, as-
Hamiltonian H(R)_is_not Hermitian [2]. The splitting sociated with the top of the radial potential barrier between
AE(R)=E{(R) —E{(R) has zeroes &=R of the form of e colliding centers, and th§ series, associated with the
square-root branch points. These branch points define tr'tf‘entrifugal barrier in the united atom limit. In the former,
avoided crossings d& andE; at R.=Re{R.} and the local when a level crosses tHe-changing top of the barrier, the
maxima of the nonadiabatic coupling between a pair of adiaelectronic wave function changes its character from an
batic states. The LZ transition aroufR} can be fully de- atomic to a molecular onéor vice versa This sudden
scribed in terms ofR. and AE;;(R;)=E¢(R.) —Ei(Ry). change withR induces a transition since it leads to a local
Other examples for models of transitions induced by slowlymaximum of the nonadiabatic coupling
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Most models of nonadiabatic transitions can be related to the
topology of adiabatic energy surfaces. TQetype hidden
crossings correspond to the Landau-Zener model, the
Demkov model |s.descr|bed t.)y thietype h'dd?n Crossmg_s, through an avoided crossingn) Proper integration contodashed
Wh”e the Stype h'dden crossings are Som?t'mes assomateﬁine) to evaluate thes-matrix [Eq. (4)] illustrating the origin of the
with the Fano-Lichten promotion mechanisfih7]. These TP and HC contributions. The black dots indicate the branch points

types of hidden crossings always appear as promotional St the radial velocity neaR(0) and of the nonadiabatic matrix
ries. In addition, an isolated Landau-Zener narrow crossingjement neaR, (the vertical line indicates the branch LuThe

Corresponds to the case in Wh|Ch two adiabatic |eVe|S aCCi|'00pS around these points are infinitesima”y narrow.
dentally become almost degenerate close to the top of the

potential barrier and is characterized by a branch point Veryha key point is thaR(t) is not a monotonic function of
close to the reaR axis which does not belong to any series but (1) reverses its sign at the turning poifitP) att=0

[10] and describes tunneling through the barrier. .
As a consequence of the HC theory, transition probabili—and R(0). In terms of the parametd®, the Smatrix element

ties and cross sections are exponentially decreasing functiorti?comes’ up to an overall phase,

of 1/v, i.e.,~exp(—constw) [10]. In this paper we challenge

the hypothesis that such a trend should continue in general at S ——2Im fR(“

low velocities and, in particular, whemn— 0. We show that fi R(0)

for a large class of slowly varying time-dependent quantum

systems the adiabatic limit rather emerges from the “topol- " r{ J‘R AE;i(R")
exp i _—

FIG. 1. (a8 Schematic diagram of the incomplete passage

)
dR U (R)

ogy” of the radial velocity in the vicinity of the classical dR’ ] (4)
turning point. We find that the dominant contribution at low
velocities gives rise to a power-law behavior of collisional ) i
cross sectionsd; ;=vf) instead of an exponential. This be- T Oné now assumes that (R) vanishes at both integra-
havior is not related to other power-law dependences of colin limits R(0) andR(<) in Eq. (4) and along a loop in the
lisional cross sections, which are expected at very low colli COMPIeXR plane(Fig. 1) the R integral gives only a contri-
sion energies, due to trajectory acceleratfd@] or near bution due to a branch point & . Thus closing the contour
threshold[19]. To be specific, we employ in the following as integral in the upper half plane and isolating the contribution
the time-dependent parame®ft) the internuclear distance from the branclh point gives the perturbation theory limit of
in the formR(t) = Vb?+ (o1)2 for slow atomic collisions in the standard hidden crossings resak,16
the impact parameteb, approximatior] 20], thus employing _ _
straight-line trajectories with constant speed The elec-  Sr;i=S{'"=—2i exd — [Im{F; ;(Ro)}|Isin Re{F ;(R.)}],
tronic motion is described by the adiabatic electronic Hamil- 6)
tonianH(R) of such a collision system. We emphasize, how-
ever, that our basic findings are independent of the modevhere
system chosen and applicable to a wide range of physical
systems including chemical reactions, molecular dissocia- _ AE¢i(R)
tions, and interactions of atoms with slowly varying fields. Fii(Ro)= j dR——— (6)
Our point of departure is the first-order adiabatic pertur- ¢ lor
bation theory[1] within which the transition amplitudéor
Smatrix elementis given by and the contouC starts atR=R(0), continues on the real
axis up to R=R.—e¢€, encirclesR. and ends atR=R.
= dR (., , +e€, €>0 being infinitesimally small. The oscillation-
Sf,i:_fmdtaufvi[R(t)]eXF{'fodt AE¢(R(t ))}’ averaged HC  transition probability, |S;|?
(3) *exd—2Im{F;;(R))}|], decays exponentially with
v Y(~vg') asv—0. This velocity dependence obviously
where we assume in the following, for definiteness,results from taking the limitJ; ;(R(0))/AE;;(R(0))—0 in
AE¢i(R(t))>0. In the present case,z=v2t/\b?+ (vt)Z. the evaluation of Eq(4) prior to the limitvg—0.

RO) |vgl
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For any finite value of the coupling at the TP, contribution, gives the dominant adiabatic limit for the in-
U¢,i(R(0))#0, closing the contour of integration is more elastic cross section. Note that E¢8) and (10) are valid
involved. There exists an additional contribution to the tran-irrespective of the particular form of either the adiabatic cou-
sition amplitude due to the integral froR=R(0) to R  Ppling matrix elementU;;(R), or the adiabatic energies,
=R(0)+iR() along the line parallel to the imaginafy ~ Er,i(R). Being defined only by quantities &=0, it gives
axis in Fig. 1. Thus proper contour integratif2d], includ-  the leading contribution to the “radial” transition probability
ing this line, leads to an additional TP contribution to theirrespective of the existence of a hidden crossing between the
Smatrix element, termsi andf (i.e., even ifS{'’=0). This may be of particular

importance because it is a mechanism for direct excitation
Si=Sic+sff, (7)  between two distant energy levels.Uf;(0)=0, much like
o for homonuclear ion-atom collisions, higher-order contribu-
whereS[? is obtained replacin@R() by R=R(0)+iR(x)  tions proportional tod?Uy;(R)/dR?[r—o need to be taken
in Eq. (4). Expanding this integral for small impact param- into account, yielding a cross section dependence propor-
eters b<|AE;;(0)/v| and in the limit of low velocities ~tional tov®.

|v/AE; ;(0)[<1, It may appear that Eq4) is a peculiarity due to the time
dependence of ion-atom collisions in the impact parameter
P ) AE;¢;(0) method. This is, however, not the case. Incomplete passage
Sti=—2ibU¢;(0)K; bl, (8)  through avoided crossings is, in fact, generic. Examples in-

clude the ramping up and down of an external fi€lt)

whereK; is a modified Bessel function and the argumentffom F(—)=0 to Fn,,=F(0) and back td=()=0 fea-
“0” designatesR=0. The effect, described by E(®) maxi-  turing an effective turning point & (0), where the two lev-
mizes for b=0, yieldingS{ ~v/AE ;(0). It is instructive to els mixed by the field are usually not decoupled. Thus the TP
note that the same result f&" can be obtained when the EffeCt iS always present for an atom subject to a slow time-
integration is performed in Ec(S) rather than in Eq/(4), dependent electric field. For example, a direct application of
over a contour in the complex time dom4R1]. In this case, the present results can be performed for a half-cycle laser

the TP result in Eq(8) is associated with a contribution of PUIS€_with ~an_electric field envelope defined Hy

_ 2 2+2 2 2:2
the square root branch points of the radial velocity at the™ vai+ y°t - \/6} 12+ y°t7, yvherga.and y are control pa-
v rameters. Likewise, photodissociation starting at an equilib-

turning point, which is located att.= *ib. The deforma- - ) .

tion of the contour in Fig. 1 neaR(0) avoids the branch Mum distance of the mol_ecular constituents and approaching

point of the radial velocity . The existence of this branch INfinity, may feature the incomplete passage through (one

point has been recognized by several autfing22,23, but ~ Several avoided crossing) on the outbound trajectory.

its contribution to the integral in Eq4) was neglected or We have verified the significance of the TP transition to
nonadiabatic processes for a simple one-dimensi¢ha)

only partially taken into account24], in the phase foib L . .
_ . _ . L model of a collision system in which the target and the pro-
=0. The TP branch point @&=R(0) is real (unlike R.), o .

jectile are represented by harmonic wells,

which explains its dominant influence whenr-0.

Transitions near the turning point take place effectively p2 1 R\2
only inside the adiabatic cut-off radilsdefined by H(R)= 7+ 3 |X|— E) , (11
w <1, (9)  wherex andp are the position and momentum of the electron
v with respect to the center of mass of the collision system.

“Molecular” eigenstates, |¢, (R)), and energy levels,
n(R), of this system can be found in quantum mechanics
éxtbooks(see, e.g.[25]). In the limit R—0, the system
becomes a single harmonic oscillator wiE— (n+0.5). In
turn, for R— oo the system develops into two well-separated

i.e., when the characteristic frequeney=v/b of R(t) is at
least of the order of the energy gap between the energy leve
near the turning point. The total cross section due to the T
contribution follows from Eq(8) as

1 2 harmonic wells withe,,— ([ n/2]+ 0.5), wherdq ] denotes the

B o Zv? integer part. This system features o@ytype hidden cross-
UTF}:J' dbb|SfT'-°(b)|2=%7-r Uri(0) ’ 2 ings, which significantly simplifies the nonadiabatic dynam-
LU ! 3 "|AE;;(0)| \ AE;;(0)/ ics. The advantage of studying this simple collision system is

(100  that exact transition probabilities can be easily obtained by
numerically solving the time-dependent Safirger equa-
where Uy;(0) is the exact value of the nonadiabatic matrix tion (TDSE). Moreover, since turning-point effects could po-
element, Eq.(1). Remarkably, this contribution increases tentially be contaminated by the breakdown of the classical
with the fourth power ob, or equivalently, with the square trajectory description underlying the impact-parameter
of the translational kinetic energy of the electron in units ofmethod, we have embedded the model Hamiltonian, Eq.
the energy gap &=0. Its size is controlled by the ratio of (11), into a 3D model, in which the internuclear motion is
the nonadiabatic coupling to the energy splittindRat0. As  described quantum mechanicalB6,27. This quantum cou-
v—0, this term, unlike the exponentially suppressed HCpling (QC) problem can be solved exactly as well. Artifacts
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FIG. 2. Excitation probability froom=0 onton=2 for v =0.2 s 107 A
as a function of the impact parameter. The HC contribution to the = 10 attractive
transition probability is negligible for small impact parameters but 5 105k i
it dominates forb>uv/AE,;(0)~0.1 a.u. In the transition region, i L e ion -
TP+HC calculations can be smaller than the HC calculations be- 10_3_ |
cause of the destructive interference between the TP and HC am- 109 (b) S\ repulsive
plitudes. 1071 HC \\\ 7

10 . 1 . 1 . 1 . .
107 4 6 8 10 12
due to the classical description of the trajectory near the turn- 1 (a.u.)

ing point are therefore ruled out.

The TDSE transition probability as a function of the im-  FIG. 3. The cross sections for excitation fromw-0 onton=2
pact parameteb at a fixed velocityp =0.2 (Fig. 2), is per- andn=4 as a function of the inverse velocitia) HC calculations
fectly reproduced by th&matrix including both the HC and  are quite accurate far,<v <1, where y=0.15 andv4=0.25. For
TP contribution§Eq. (7)]. For comparison, the standard HC Un>0, HC gr.eatly underestlmate§ th.e cross section whllch Is pre-
result is also shown. Obviously, at large impact parametergom'”antly given by _the TP contribution. Coherent comblna}tlon of
outside the adiabatic cutoff for turning-point contributions the HC and TP amplitudes leads to complete agreement with exact
[Eq. (9)], the HC approximation works well. Inside the adia- | DSE and QC cross sections. Reorv,, the excitation cross sec-
batic radius, the TP contribution dominates and the HC apfon from n=0 ton=4 is determined by the TP contribution, de-
proximation breaks down. Likewise, the total cross sectionﬁned by the direct coupling between=0 andn=4 states aR

. . . . . =0. At larger velocities, this excitation process is governed by
It [Fig. 3@], as a function of the inverse collision velocity, sequential 8-2 and 2-4 HC transitions, since there is no branch

agrees yery well With. the TSDE result. Furthermore, the QCpoint directly connecting the levels=0 andn=4. (b) The HC
calculation for a typical reduced mass pf=1 amu also result is compared with QC calculations involving different inter-

agrees extremely well with the low-velocigmatrix includ-  clear interactions: attractin, (R) = — exp(— 2R)/R, repulsive
ing TP contributions. The crucial point to be noted is that they (R =exp(—2R)/R, and no interaction.

standard HC approximation leads to large discrepancies for

small v due to its exponential decay withuvl/while the ) ) ,

correct adiabatic limit features a power law ¢%). The TP dou'ble-harmonlc oscillator 'modeI: e, a frequency of the
effect is significant here already at abaut0.2 a.u. or a o_s;cnlator of the order of 1 yields _b(_)th imaginary parts of the
center-of-mass collision energy of about 1 keV/amu in thehidden crossings and energy splittingRat 0 of the order of

QC calculation. Since transitions near the TP in realistic col-l and, thus, small HC and TP contributions in the limit of
lisions can be influenced by the interaction potential betweegmall velocities.

the heavy nuclei, we have investigated the effect of the in- In summary, we have shown that the low velocity depen-
ternuclear interaction on the transition probabilities withindence of inelastic transition cross sections is, in general, not
the QC approach by incorporating a potentid} ,(R) exponential in the adiabatic limit, as suggested by the hidden
==*exp (—2R)/R, where the sign of the potential determines crossings theory and other models of nonadiabatic couplings,
whether the interaction is attractive or repulsive. Figut® 3 including those that include effects of turning point through
compares the results of such calculations with the one oltrajectory acceleration effectsl8]. Instead, the adiabatic
tained forV, {R)=0. As is intuitively expected, an attrac- limitis controlled by the ratio of the adiabatic coupling to the
tive (repulsive potential increasegdecreasesthe value of energy gap between energy levels near the turning point of
the cross section. The point to be noted, however, is that botthe perturbation. Whenever turning points exist within the
calculations for an attractive or a repulsive potential differ“adiabatic radius,” Eq(9), and this ratio at the turning point
from the HC predictions and the differences are, once agairis nonzero, deviations from the exponential velocity depen-
due to the TP contribution. Finally, we note that the smalldence are to be expected. This result holds irrespective of the
values of the cross sections in Fig. 3 and the probabilities inletailed properties of the curve-crossing systems under con-
Fig. 2 originate in the particular parameters used for thesideration. In the case of ion-atom collisions, cross sections
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