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Adiabatic limit of inelastic transitions
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The widely used assumption that transitions induced by slowly changing perturbations are completely
described by the topology of adiabatic energy surfaces in the plane of a complex perturbation parameter is
reexamined. This assumption is the basis for the hidden crossings theory and most two-state models and yields
an exponential decrease of transition probabilities and cross sections with decreasing speed of the perturbation
v. We show that for a large class of problems, these approximations do not describe correctly transitions in the
adiabatic limit. Contributions neglected lead, instead, to dominant power-law dependences in inelastic colli-
sional cross sections,s}v4. We illustrate the interplay between different contributions for a collisional model
system for which exact transition probabilities can be determined.
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Transitions between pairs of nearby energy levels of
same symmetry due to slowly varying perturbations ha
been the subject of intense investigations since the early
of quantum theory dating back to the seminal works of Bo
and Fock@1#, Zwaan@2#, Landau@3#, Zener@4#, and Stueck-
elberg@5#. Nonadiabatic transitions are introduced by allo
ing the parameterR(t) and, hence, the HamiltonianH(R) to
become slowly time dependent. The key parameter that c
trols the adiabaticity of the process is the speed of the p
metric deformation,vR5udR(t)/dtu. For an atomic collision,
R is the internuclear distance and in the limitR→`, vR
tends to the collision velocity,v. Born and Fock showed tha
transition probabilities should become exceedingly sm
when the Hamiltonian varies slowly in time~nowadays re-
ferred to as the adiabatic theorem! and provided upper
bounds for transition rates as a function ofvR . Subsequently,
Landau arrived at the more quantitative conclusion that tr
sition probabilities for analytic Hamiltonians should decrea
exponentially as exp(2const/vR).

The paradigm for nonadiabatic transitions is the c
ebrated Landau-Zener~LZ! ‘‘curve crossing’’ model@3,4,6#
which has found widespread applications in many area
physics and chemistry. It assumes the crossing of a pa
diabatic energy levels at some valueR5Rc and a constan
diabatic coupling in its vicinity. In the adiabatic represen
tion this maps onto an avoided crossing atRc of a pair of
adiabatic energy levels,Ef(R) and Ei(R) of the adiabatic
HamiltonianH(R), while the coupling assumes the form of
Lorentzian peaked atRc . AlthoughEi(R) andEf(R) cannot
cross for real values ofR, their continuation into the comple
R̄ plane do cross~bars denote complex variables! where the
Hamiltonian H(R̄) is not Hermitian @2#. The splitting
DĒf i(R̄)5Ēf(R̄)2Ēi(R̄) has zeroes atR̄5R̄c of the form of
square-root branch points. These branch points define
avoided crossings ofEf andEi at Rc5Re$R̄c% and the local
maxima of the nonadiabatic coupling between a pair of ad
batic states. The LZ transition aroundRc can be fully de-
scribed in terms ofR̄c and DEf ,i(Rc)5Ef(Rc)2Ei(Rc).
Other examples for models of transitions induced by slow
1050-2947/2001/63~3!/032103~5!/$15.00 63 0321
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varying interactions are those involving parallel quasire
nant diabatic states where the coupling between them is
sumed to be an exponential function ofR @7,8#. These also
can be expressed in terms of the parameters of the com
adiabatic energy surface@9,10#.

Common to all these models of nonadiabatic transition
the assumption that the topology of the adiabatic energ
determines the dynamics of the system in the adiabatic lim
Transitions between energy levels are exclusively associ
with branch points of the energy surface and any other c
tributions are assumed to be negligible. A general appro
that exploits these ideas is known as the hidden cross
~HC! or advanced adiabatic theory@11,10,12,13#. Although
the basic principles were proposed by Zwaan@2#,
Stueckelberg @5#, and Landau @3,6#, Solov’ev @11,10#
elevated them to the level of a unified theory, applicable
slow heavy-particle collisions and other slow phenome
This is achieved by three steps:~1! Defining a Hamiltonian
in coordinates in which the nuclei are at rest such that
adiabatic eigenfunctions have the correct asymptotic beh
ior for R→`. ~2! Extensively studying the topology of th
unique, multivalued adiabatic energy surface in the plane
complexR̄, whose various Riemann sheets for realR yield
all adiabatic energy levels.~3! Constructing theS matrix
which accounts for theR-localized two-state transitions de
fined by the branch points found in~2! and the adiabatic
evolution between the regions of localization along all po
sible transition paths which connect intial and final sta
@12–15#. Numerous studies have revealed various series
branch points which connect the adiabatic energy branc
in a pairwise fashion. The best known are theQ series, as-
sociated with the top of the radial potential barrier betwe
the colliding centers, and theS series, associated with th
centrifugal barrier in the united atom limit. In the forme
when a level crosses theR-changing top of the barrier, the
electronic wave function changes its character from
atomic to a molecular one~or vice versa!. This sudden
change withR induces a transition since it leads to a loc
maximum of the nonadiabatic coupling
©2001 The American Physical Society03-1
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U f ,i~R!5 K f f~R!U d

dRUf i~R!L , ~1!

whereH(R)uf i , f(R)&5Ei , f(R)uf i , f(R)&. The maximum of
the coupling is a projection of a pole ofU f ,i(R̄) at R̄c such
that in its vicinity @10,16#

U f ,i~R!.U f ,i
HC~R!5

1

2

Im$R̄c%

~R2Re$R̄c%!21~ Im$R̄c%!2
. ~2!

Most models of nonadiabatic transitions can be related to
topology of adiabatic energy surfaces. TheQ-type hidden
crossings correspond to the Landau-Zener model,
Demkov model is described by theP-type hidden crossings
while the S-type hidden crossings are sometimes associa
with the Fano-Lichten promotion mechanism@17#. These
types of hidden crossings always appear as promotiona
ries. In addition, an isolated Landau-Zener narrow cross
corresponds to the case in which two adiabatic levels a
dentally become almost degenerate close to the top of
potential barrier and is characterized by a branch point v
close to the real-R axis which does not belong to any seri
@10# and describes tunneling through the barrier.

As a consequence of the HC theory, transition probab
ties and cross sections are exponentially decreasing func
of 1/v, i.e.,;exp(2const/v) @10#. In this paper we challenge
the hypothesis that such a trend should continue in gener
low velocities and, in particular, whenv→0. We show that
for a large class of slowly varying time-dependent quant
systems the adiabatic limit rather emerges from the ‘‘top
ogy’’ of the radial velocity in the vicinity of the classica
turning point. We find that the dominant contribution at lo
velocities gives rise to a power-law behavior of collision
cross sections (s i , f}vR

n) instead of an exponential. This be
havior is not related to other power-law dependences of
lisional cross sections, which are expected at very low co
sion energies, due to trajectory acceleration@18# or near
threshold@19#. To be specific, we employ in the following a
the time-dependent parameterR(t) the internuclear distanc
in the formR(t)5Ab21(vt)2 for slow atomic collisions in
the impact parameter,b, approximation@20#, thus employing
straight-line trajectories with constant speedv. The elec-
tronic motion is described by the adiabatic electronic Ham
tonianH(R) of such a collision system. We emphasize, ho
ever, that our basic findings are independent of the mo
system chosen and applicable to a wide range of phys
systems including chemical reactions, molecular disso
tions, and interactions of atoms with slowly varying fields

Our point of departure is the first-order adiabatic pert
bation theory@1# within which the transition amplitude~or
S-matrix element! is given by

Sf ,i52E
2`

`

dt
dR

dt
U f ,i@R~ t !#expF i E

0

t

dt8DEf ,i„R~ t8!…G ,
~3!

where we assume in the following, for definitene
DEf ,i„R(t)….0. In the present case,vR5v2t/Ab21(vt)2.
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The key point is thatR(t) is not a monotonic function oft
but vR(t) reverses its sign at the turning point~TP! at t50
andR(0). In terms of the parameterR, theS-matrix element
becomes, up to an overall phase,

Sf ,i522i ImH E
R(0)

R(`)

dRUf ,i~R!

3expF i E
R(0)

R DEf ,i~R8!

uvR8u
dR8G J . ~4!

If one now assumes thatU f ,i(R) vanishes at both integra
tion limits R(0) andR(`) in Eq. ~4! and along a loop in the
complexR plane~Fig. 1! the R integral gives only a contri-
bution due to a branch point atR̄c . Thus closing the contou
integral in the upper half plane and isolating the contribut
from the branch point gives the perturbation theory limit
the standard hidden crossings result@14,16#

Sf ,i.Sf ,i
HC522i exp@2uIm$F f ,i~R̄c!%u#sin@Re$F f ,i~R̄c!%#,

~5!

where

F f ,i~R̄c!5E
C
dR

DEf ,i~R!

uvR8u
~6!

and the contourC starts atR5R(0), continues on the rea
axis up to R5Rc2e, encircles R̄c and ends atR5Rc
1e, e.0 being infinitesimally small. The oscillation
averaged HC transition probability, uSf ,i u2

}exp@22uIm$F f ,i(R̄c)%u#, decays exponentially with
v21(;vR

21) as v→0. This velocity dependence obvious
results from taking the limitU f ,i„R(0)…/DEf ,i„R(0)…→0 in
the evaluation of Eq.~4! prior to the limit vR→0.

FIG. 1. ~a! Schematic diagram of the incomplete passa
through an avoided crossing.~b! Proper integration contour~dashed
line! to evaluate theS-matrix @Eq. ~4!# illustrating the origin of the
TP and HC contributions. The black dots indicate the branch po
of the radial velocity nearR(0) and of the nonadiabatic matri
element nearRc ~the vertical line indicates the branch cut!. The
loops around these points are infinitesimally narrow.
3-2
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For any finite value of the coupling at the TP
U f ,i„R(0)…5” 0, closing the contour of integration is mor
involved. There exists an additional contribution to the tra
sition amplitude due to the integral fromR̄5R(0) to R̄
5R(0)1 iR(`) along the line parallel to the imaginaryR̄
axis in Fig. 1. Thus proper contour integration@21#, includ-
ing this line, leads to an additional TP contribution to t
S-matrix element,

Sf ,i5Sf ,i
HC1Sf ,i

TP, ~7!

whereSf ,i
TP is obtained replacingR(`) by R̄5R(0)1 iR(`)

in Eq. ~4!. Expanding this integral for small impact param
eters b,uDEf ,i(0)/vu and in the limit of low velocities
uv/DEf ,i(0)u!1,

Sf ,i
TP.22ibU f ,i~0!K1S DEf ,i~0!

v
bD , ~8!

where K1 is a modified Bessel function and the argume
‘‘0’’ designatesR50. The effect, described by Eq.~8! maxi-
mizes for b50, yieldingSf ,i

TP;v/DEf ,i(0). It is instructive to
note that the same result forSf ,i

TP can be obtained when th
integration is performed in Eq.~3! rather than in Eq.~4!,
over a contour in the complex time domain@21#. In this case,
the TP result in Eq.~8! is associated with a contribution o
the square root branch points of the radial velocity at
turning point, which is located atv t̄ c56 ib. The deforma-
tion of the contour in Fig. 1 nearR(0) avoids the branch
point of the radial velocityvR . The existence of this branc
point has been recognized by several authors@18,22,23#, but
its contribution to the integral in Eq.~4! was neglected or
only partially taken into account@24#, in the phase forb
50. The TP branch point atR5R(0) is real ~unlike R̄c),
which explains its dominant influence whenv→0.

Transitions near the turning point take place effectiv
only inside the adiabatic cut-off radiusb defined by

D Ef ,i ~0! b

v
&1, ~9!

i.e., when the characteristic frequencyv'v/b of R(t) is at
least of the order of the energy gap between the energy le
near the turning point. The total cross section due to the
contribution follows from Eq.~8! as

s f ,i
TP5E

0

`

dbbuSf ,i
TP~b!u25

64

3
pU U f ,i~0!

DEf ,i~0!
U2S 1

2
v2

DEf ,i~0!
D 2

,

~10!

whereU f i(0) is the exact value of the nonadiabatic mat
element, Eq.~1!. Remarkably, this contribution increase
with the fourth power ofv, or equivalently, with the squar
of the translational kinetic energy of the electron in units
the energy gap atR50. Its size is controlled by the ratio o
the nonadiabatic coupling to the energy splitting atR50. As
v→0, this term, unlike the exponentially suppressed H
03210
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contribution, gives the dominant adiabatic limit for the i
elastic cross section. Note that Eqs.~8! and ~10! are valid
irrespective of the particular form of either the adiabatic co
pling matrix element,U f ,i(R), or the adiabatic energies
Ef ,i(R). Being defined only by quantities atR50, it gives
the leading contribution to the ‘‘radial’’ transition probabilit
irrespective of the existence of a hidden crossing between
termsi andf ~i.e., even ifSf ,i

HC50). This may be of particular
importance because it is a mechanism for direct excita
between two distant energy levels. IfU f i(0)50, much like
for homonuclear ion-atom collisions, higher-order contrib
tions proportional tod2U f i(R)/dR2uR50 need to be taken
into account, yielding a cross section dependence pro
tional to v8.

It may appear that Eq.~4! is a peculiarity due to the time
dependence of ion-atom collisions in the impact parame
method. This is, however, not the case. Incomplete pass
through avoided crossings is, in fact, generic. Examples
clude the ramping up and down of an external fieldF(t)
from F(2`)50 to Fmax5F(0) and back toF(`)50 fea-
turing an effective turning point atF(0), where the two lev-
els mixed by the field are usually not decoupled. Thus the
effect is always present for an atom subject to a slow tim
dependent electric field. For example, a direct application
the present results can be performed for a half-cycle la
pulse with an electric field envelope defined byF
5Aa21g2t22Aa2/21g2t2, wherea and g are control pa-
rameters. Likewise, photodissociation starting at an equi
rium distance of the molecular constituents and approach
infinity, may feature the incomplete passage through one~or
several! avoided crossing~s! on the outbound trajectory.

We have verified the significance of the TP transition
nonadiabatic processes for a simple one-dimensional~1D!
model of a collision system in which the target and the p
jectile are represented by harmonic wells,

H~R!5
p2

2
1

1

2 S uxu2
R

2 D 2

, ~11!

wherex andp are the position and momentum of the electr
with respect to the center of mass of the collision syste
‘‘Molecular’’ eigenstates, ufn (R)&, and energy levels
En(R), of this system can be found in quantum mechan
textbooks~see, e.g.,@25#!. In the limit R→0, the system
becomes a single harmonic oscillator withEn→(n10.5). In
turn, for R→` the system develops into two well-separat
harmonic wells withEn→(@n/2#10.5), where@ # denotes the
integer part. This system features onlyQ-type hidden cross-
ings, which significantly simplifies the nonadiabatic dyna
ics. The advantage of studying this simple collision system
that exact transition probabilities can be easily obtained
numerically solving the time-dependent Schro¨dinger equa-
tion ~TDSE!. Moreover, since turning-point effects could p
tentially be contaminated by the breakdown of the class
trajectory description underlying the impact-parame
method, we have embedded the model Hamiltonian,
~11!, into a 3D model, in which the internuclear motion
described quantum mechanically@26,27#. This quantum cou-
pling ~QC! problem can be solved exactly as well. Artifac
3-3
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P. S. KRSTIĆ, C. O. REINHOLD, AND J. BURGDO¨ RFER PHYSICAL REVIEW A63 032103
due to the classical description of the trajectory near the tu
ing point are therefore ruled out.

The TDSE transition probability as a function of the im
pact parameterb at a fixed velocityv50.2 ~Fig. 2!, is per-
fectly reproduced by theS-matrix including both the HC and
TP contributions@Eq. ~7!#. For comparison, the standard H
result is also shown. Obviously, at large impact parame
outside the adiabatic cutoff for turning-point contributio
@Eq. ~9!#, the HC approximation works well. Inside the adi
batic radius, the TP contribution dominates and the HC
proximation breaks down. Likewise, the total cross sect
s f ,i @Fig. 3~a!#, as a function of the inverse collision velocit
agrees very well with the TSDE result. Furthermore, the
calculation for a typical reduced mass ofm51 amu also
agrees extremely well with the low-velocityS-matrix includ-
ing TP contributions. The crucial point to be noted is that
standard HC approximation leads to large discrepancies
small v due to its exponential decay with 1/v, while the
correct adiabatic limit features a power law ('v4). The TP
effect is significant here already at aboutv50.2 a.u. or a
center-of-mass collision energy of about 1 keV/amu in
QC calculation. Since transitions near the TP in realistic c
lisions can be influenced by the interaction potential betw
the heavy nuclei, we have investigated the effect of the
ternuclear interaction on the transition probabilities with
the QC approach by incorporating a potentialVnuc(R)
56exp (22R)/R, where the sign of the potential determin
whether the interaction is attractive or repulsive. Figure 3~b!
compares the results of such calculations with the one
tained forVnuc(R)50. As is intuitively expected, an attrac
tive ~repulsive! potential increases~decreases! the value of
the cross section. The point to be noted, however, is that b
calculations for an attractive or a repulsive potential dif
from the HC predictions and the differences are, once ag
due to the TP contribution. Finally, we note that the sm
values of the cross sections in Fig. 3 and the probabilitie
Fig. 2 originate in the particular parameters used for

FIG. 2. Excitation probability fromn50 onton52 for v50.2
as a function of the impact parameter. The HC contribution to
transition probability is negligible for small impact parameters b
it dominates forb.v/DE21(0);0.1 a.u. In the transition region
TP1HC calculations can be smaller than the HC calculations
cause of the destructive interference between the TP and HC
plitudes.
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double-harmonic oscillator model: i.e., a frequency of t
oscillator of the order of 1 yields both imaginary parts of t
hidden crossings and energy splitting atR50 of the order of
1 and, thus, small HC and TP contributions in the limit
small velocities.

In summary, we have shown that the low velocity depe
dence of inelastic transition cross sections is, in general,
exponential in the adiabatic limit, as suggested by the hid
crossings theory and other models of nonadiabatic couplin
including those that include effects of turning point throu
trajectory acceleration effects@18#. Instead, the adiabatic
limit is controlled by the ratio of the adiabatic coupling to th
energy gap between energy levels near the turning poin
the perturbation. Whenever turning points exist within t
‘‘adiabatic radius,’’ Eq.~9!, and this ratio at the turning poin
is nonzero, deviations from the exponential velocity dep
dence are to be expected. This result holds irrespective o
detailed properties of the curve-crossing systems under
sideration. In the case of ion-atom collisions, cross secti

e
t

-
m-

FIG. 3. The cross sections for excitation fromn50 onton52
andn54 as a function of the inverse velocity.~a! HC calculations
are quite accurate forvn,v,1, where v250.15 andv450.25. For
vn.v, HC greatly underestimates the cross section which is p
dominantly given by the TP contribution. Coherent combination
the HC and TP amplitudes leads to complete agreement with e
TDSE and QC cross sections. Forv,v4, the excitation cross sec
tion from n50 to n54 is determined by the TP contribution, de
fined by the direct coupling betweenn50 and n54 states atR
50. At larger velocities, this excitation process is governed
sequential 022 and 224 HC transitions, since there is no branc
point directly connecting the levelsn50 and n54. ~b! The HC
result is compared with QC calculations involving different inte
nuclear interactions: attractiveVnuc(R)52exp(22R)/R, repulsive
Vnuc(R)5exp(22R)/R, and no interaction.
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were found here to display a power-law dependence on
collision velocity. Work is under way to unambiguous
identify TP effects in inelastic transitions in realistic syste
under a slow time-dependent perturbation.
-
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