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Destruction of quantum coherence through emission of bremsstrahlung
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The emergence of decoherence in quantum electrodynamics is investigated. On combining superoperator
methods with functional techniques from field theory, the degrees of freedom of a thermal radiation field are
eliminated and the influence phase functional is derived which governs the reduced dynamics of the matter
variables. Employing a prototypical interference device, a decoherence functional is developed which provides
a gauge invariant relativistic measure for the degree of decoherence. It is demonstrated that the decoherence
functional describes the destruction of quantum coherence through the emission of bremsstrahlung which is
caused by the relative motion of the interfering components of a superposition. Explicit analytical expressions
for the vacuum and the thermal contribution to the decoherence functional and for the corresponding coherence
lengths are determined. These expressions reveal that bremsstrahlung leads to a fundamental decoherence
mechanism which dominates for short times and which is present even in the electromagnetic field vacuum at
zero temperature. The influence of bremsstrahlung on the center of mass coordinate of a system of many
identical charged particles is also studied and is shown to lead to a strong suppression of quantum coherence.
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I. INTRODUCTION 0 i iy - .
SiP(0==7[Hs,p(O]~ 2 [R{P,p(1)}]

The interaction of a quantum mechanical system with its
environment generally leads to a partial or total destruction _ 2M vk T [R,[R p(H1] 1)
of the interference between different components of the wave #2 o '
function. In the theory of open quantum systefi$ this
destruction of quantum coherence is explained by an invesHere, R denotes the particle position amlits canonically
tigation of the reduced density matrix. The latter representsonjugated momentum while
the quantum state of an open system as it is obtained after an
average over the degrees of freedom of its environment and H _i
the resulting loss of information on the entangled state of the ST 2Mm
combined total system. Many theoretical studies performed
on the basis of various system-plus-reservoir modsé, is the system Hamiltonian with an external potentalThe
e.g., Refs[2—6]) have shown that under quite general physi-guantity y represents the relaxation ratd,the total massT
cal conditions the environment induces an extremely rapidhe temperature of the environment, akglthe Boltzmann
transition of a coherent superposition to an incoherent statigtonstant. It is well known that this equation leads to a sup-
tical mixture. This transition is called decoherence and th'€ssion of quantum coherence given through the factor
associated decoherence time arises as the time scale of an 2
exponential decay of the off-diagonal elements in the re- D:ex;{—y E
duced density matrix. An important result of the theoretical
investigations is that the decoherence time can differ sub-
stantially from the corresponding relaxation time of the sys-which multiplies the off-diagonal terms of the reduced den-
tem [2],. which signifies the fundamer?tal'dis'tinction betW.eensity matrix P(tf ,ﬁ,ﬁ’) in the position representation_ The
the_ notions o_f decoheren_ce and of dissipation. Several '”t%'lapsed time is denoted ly, whileAR=|I§— §,| measures
esting experimental studies of decoherence have been pgfe distance to the diagonal of the density matrix. According

formed, e.g., in experiments on Scilnger cat states of a to the master Eq(1) the relevant length is given by the
cavity field modd 7] and on single trapped ions in a control- thermal wavelength

lable environmeni8].

To give a prominent example let us consider a quantum N=Ay=7/\2MkgT (4)
particle whose motion can be described by the Brownian
motion master equatiof®], a high-temperature Markovian of the Brownian particle. Equatiaf3) implies an exponential
guantum master equation for the reduced density maftix ~ loss of coherence on a time scale given by the decoherence
given by time

P2+ V(R) 2)

ts 3
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yth 2 this problem, which consider a single-electron coupled to the
TD=TR(ﬁ (5) radiation field within the dipole approximgtion, have been
proposed by Barone and Calde[rtHL], by Dur and Spohn
Here, we have introduced the relaxation time=1/y asso- 12}, and by the authorgl3]. In Ref.[11] it is emphasized
ciated with the damping process describing by the rate that the electromagnetic field provides a super-Ohmic envi-
Simple estimates on the basis of E§) then lead to the ronment. In fact, if one invokes the dipole approximation for
conclusion that for macroscopic objects and distant& the matter-field coupling the spectral density of the radiation
the decoherence timg, becomes smaller than the relaxation modes is seen to increase with the third power of the fre-
time 7 by many orders of magnitud&]. Alternatively, one quency. Such types of reservoirs are known to lead to impor-
can characterize decoherence by introducing a timetant modifications of the simple physical mechanisms indi-
dependent coherence lengtlit;) by writing the decoher- cated abové14]. The result found in Ref11] differs from
ence factor as the one derived here, which is due to the use of a different
initial condition for the coupled system. For a single electron
moving in a harmonic potential the results obtained in Refs.
: (6) [12] and[13] coincide in the high-temperature limit. How-
ever, the authors of Refl12] argue that there might be no

p[ (AR)?
D=exp —
2L(tp)?

For quantum Brownian motion this yields decoherence effect in the vacuum case, whereas it has been
o shown in Ref.[13] that the electromagnetic field vacuum
Y 1 h 12 a1 does lead to a loss of coherence.
L(t)ew= oty TETE () It will be shown in this paper that the underlying physical

V2rte V2ot JaMigT mechanism for the loss of coherence described by the deco-
which is seen to decrease with the inverse square root of tHeerence functional is the emission of bremsstrahlung through
temperature and of the elapsed time. the matter currents. In fact, to observe an interference pattern

If one considers a quantum state of a composite objedeetween two spatially separated components of the state vec-
which represents a spatial superposition of two different lotor, these components must be moved to one location. It is
cations of its center of mass coordinate, decoherence resuliisus the unavoidable creation of bremsstrahlung that causes a
from spontaneous or thermally induced transitions involvingloss of coherence, that is, it is the relative motion of the
internal degrees of freedom, or from the scattering of arinterfering components of a quantum superposition which is
incoming flux of real particles off the object. In these cages responsible for this decoherence process. As a result, a su-
represents the-_transition or the scattering rate, whereas t@rposition of two wave packets with zero velocity does not
relevant length\ is given by the wavelength of the radiation decohere and thus the conventional picture of decoherence as
or by the de Broglie wavelength of the scattered partii3¢s a decay of the off-diagonal peaks in the corresponding den-

In this paper we study the emergence of decoherence isity matrix does not apply to this decoherence mechanism.
guantum electrodynamicQED) from an open system’s Moreover, the time dependence for decoherence through
viewpoint. More precisely, we consider the electromagnetidremsstrahlung is profoundly different from that given by
radiation field as environment and investigate its influenceghe conventional theories and clearly exhibits the highly non-
on the coherence of the matter variables. It will be demonMarkovian character of the process.
strated that the radiation degrees of freedom give rise to a A crucial step in the analysis of the decoherence func-
further decoherence mechanism which cannot be modeled tional is to investigate its infrared and ultraviolet structure. It
any way as a Markovian process and which leads to a physwill be shown that a careful physical interpretation leads to
cal picture for the destruction of coherence which differsthe result that the decoherence functional is ultraviolet and
substantially from the one indicated above. To study thisnfrared convergent for finite temperatures as well as in the
mechanism, we consider a prototypical interference devicegacuum case. In addition, the analysis reveals that decoher-
and ask for the reduction of the interference contrast inducednce through bremsstrahlung is in a certain sense the most
by the presence of a thermal radiation field. It is shown thafundamental process since it always dominates for short
the radiation field leads to a loss of coherence which can bémes and for large particle numbers and because it occurs
described by a gauge invariant relativistic decoherence funeven in the vacuum state of the electromagnetic field, that is,
tional, a certain functional of the matter current densitiesat zero temperature and without real photons in the initial
This functional is Lorentz covariant at finite temperaturesstate. An important conclusion is that the electromagnetic
and invariant at zero temperature, that is for the electromagdield vacuum leads to a drastic suppression of the capability
netic field vacuum. of states of many identical charged particles to interfere.

The obtained decoherence functional has been already de- The paper is organized as follows. In Sec. Il we combine
rived in an interesting article by Ford.O] for the case of field theoretic methods with a superoperator approach to de-
zero temperature, with the aim to determine the influence ofive an exact, relativistic representation for the reduced den-
conducting boundaries on electron coherence. In contrassjty matrix pertaining to the matter degrees of freedom. This
here we are interested in the vacuum and thermally inducerkpresentation involves an influence phase functional that
decoherence itself, that is in the loss of coherence which isompletely describes the influence of the electromagnetic ra-
present even without boundaries. Other related approaches digation field on the matter dynamics.
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Our central goal in Sec. Il is the derivation of the rela- To be specific we choose the Coulomb gauge in the fol-
tivistic decoherence functional which provides a quantitativdowing which means that the Hamiltonian density takes the
measure for the degree of the coherence of a quantum supdorm [15—17
position. In addition, we shall develop an appropriate tech-
nique which allows the explicit determination of the deco- H(X)=He(X) + Hy(X). 9
herence functional for simple interference devices. Thereby,
special attention is paid to demonstrate that the decoherenq‘fere
measure is ultraviolet as well as infrared finite. The expres-
sions obtained for the vacuum and thermal coherence lengths .
of QED will be compared with the corresponding ones of the Hy(X) = J#(X)AL(X) (10
conventional theories. . . .

Finally, we investigate in Sec. IV the destruction of the represents the density of the interaction of the matter current
coherence of many-particle states. It will be argued thatdensityi*(x) with the transversal radiation field,
while the decoherence effect is small for single electrons at

nonrelativistic speed, it is drastically amplified for certain A%(x)=(0A(X)), V-A(x)=0, (12)
superpositions of many-particle states. Our conclusions are
drawn in Sec. V. and
Il. THE INFLUENCE PHASE FUNCTIONAL OF QED He(x)=32j%(x)A%(x)
Employing functional techniques, we shall derive in this jo(x° X)j O(x 0,)7)
section a superoperator representation for the influence phase f dBy——m——— (12
functional of QED which completely describes the reduced 47"|X_Y|
matter dynamics under the influence of a thermal radiation
field. The influence phase will be given in the form of ais the Coulomb energy density such that
functional of the super-operators of the matter current den-
sity, involving certain Green functions of the radiation field. jo(x X)]O(X ,y)
c(x9=3% f d3x f dPy———————— (13
4m|x—y|

A. Elimination of the radiation degrees of freedom

Our aim is to eliminate the variables of the electromag-is the instantaneous Coulomb energy.
netic radiation field to obtain an exact representation for the Qur first step consists in the decomposition of the chro-
reduced density matrigy, of the matter degrees of freedom. nological time-ordering operatdr.  into a time-ordering op-
The starting point is the following formal equation which eratorT! for the matter current and a time-ordering operator
relates the density matrig,(ts) of the matter at some final TA for the electromagnetic field,
time t; to the density matrixp(t;) of the combined matter-

field system at some initial timg, T =TI TA (14)
t
pm(tf):Trf{TH exp{ ft d*xL(x) P(h)}- (8)  This enables one to write E¢B) as
The Liouville superoperatof(x) is defined by the relation pm(tf)=T';_<trf(Tf*_ exp{ ftfd4x

L(x)p=—i[H(x),p],
: - , X[Le(X)+ Ly(X)]
wherep is any density operator of the combined system and
‘H(x) denotes the Hamiltonian density. Space-time coordi-
nates are denoted by=x*=(x°x)=(t,x) and the inner Wwhere we have introduced the Liouville super-operators for
product of two four vectors is written asy=x”yM=x0y0 the densities of the Coulomb field and of the transversal

—x-y. All fields are taken to be in the interaction picture. field,

The dynamics of the interaction picture matter degrees of

freedom may also contain an external classical field, for ex- Lo(X)p=—i[Hc(X),pl, Ly(X)p=—i[[*(X)AL(X),p].
ample, an external potenti&(x). The chronological time- 1
ordering operator for the interaction picture fields is denoted _

by T_ and Tk stands for the trace over the variables of theThe current§* commute under the time orderifid_. We
radiation field. Throughout the paper we use Heavisidemay therefore treat them formally as commuticgumber
Lorentz units, such that=c=1 and the fine structure con- fields under the time-ordering symbol. Since the superopera-
stant is given byx=e?/4mhc~1/137. Occasionally, we will tor £(x) only contains matter variables, the corresponding
reintroduce factors of and#. contribution can be pulled out of the trace. Hence we have

p(ti)] ) , (15
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pm<tf)=TL(exr{ ft dtxLex) pm(tf>=TL(exp[ f:fd‘lXLc(X)

Xtrf{T’: exp[ ft L) p(tn]). (17 -4 ft T ft (L) A, (), A (X)]
We now proceed by eIiminatjng the time-ordering of the X J#(X) I (X)) + Ejtfdzletfdg(,a(t_t,)
A fields. With the help of the Wick theorefi8] we get 2]y, t;
Tﬁex;{ J‘fd4xﬁtr(x) X[AL(),A, (X )13 (037 (X')
4
:exp{%J:dtiJt:fdzxx/[gtr(x),ct,(x')]e(t—t’) thf[exr{ Jt:fd“XEtr(X) p(ti)})- (23)

This is an exact formal representation for the reduced density
. (19 matrix of the matter variables. Note that the time ordering of
the radiation degrees of freedom has been removed and that

t
Xexp{ f fd“xLitr(x)
g
) o they enter Eq(23) only through the functional
In order to determine the commutator of the Liouville super-

operators we invoke the Jacobi identity which yields for an
W[J, ,J_]=tr{ ex f
t

t
arbitrary test density, _ d4X£tr(X)P(ti)} } . (29

[Li(X), L(X") ] p= L(X) Lie(X" ) p— Lo(X") Ler(X) p since the commutator of th& fields is ac-number function.

=- X), x'), .
[P (), [ (X7, 1] B. The influence superoperator

+H[Hu(X"),[Hu(x),p]] The functional(24) involves an average over the field
= —[[Hy(X), Ho(x")],p]. (190  Vvariables with respect to the initial stagt;) of the com-
bined matter-field system. It therefore contains all correla-
b@ons in the initial state of the total system. Here, we are
interested in the destruction of coherence. Our central goal is
thus to investigate how correlations are built up through the
interaction between matter and radiation field. We therefore
consider now an initial state of low entropy which is given
by a product state of the form

The commutator of the transversal energy densities may
simplified to read

[Hu(X), He(X")]=#()]"(X)[ALX),AL(X)], (20

since the contribution involving the commutator of the cur-

rents vanishes by virtue of the time-ordering operatbr. p(t)=pm(t)®ps, (25)
Thus it follows from Eqs(19) and(20) that the commutator
of the Liouville superoperators may be written as wherep(t;) is the density matrix of the matter at the initial
time and the density matrix; of the radiation field describes
[La(X), Lo(x)]p= =A%), A, X IHX)j"(X"),p]. an equilibrium state at temperatufeSince we are using the

(21 Coulomb gauge here we may write the latter state as

. . 1
It is useful to introduce current superoperatdrs(x) and pr=—-exp(— BH/), (26)
J_(x) by means of Zg

22) whereH; denotes the Hamiltonian of the free radiation field

and the quantity;=tr;[ exp(—B8H;)] is the partition function
with 8=1/kgT. In the following we shall denote the average
of some quantity® with respect to the thermal equilibrium
state(26) by

() p=j#(x)p, IL(X)p=pj*(x).

ThusJ_ (x) is defined to be the current density acting from
the left, whileJ_(x) acts from the right on an arbitrary den-
sity. With the help of these definitions we may write the

commutator of the Liouville superoperators as (0)s=tre{ Opy}. (27)
[L(X), LX) ]=—[AL(X),A,(X")]IE(X)IL(X") The influence of the special choid@5) for the initial
) . condition can be eliminated by pushirtg— —«~ and by

FLALX),ALX)]IE(X)IZ(X). switching on the interaction adiabatically. This is the usual

procedure used in quantum field theory in order to define
Inserting this result into Eq.18), we can write Eq(17) as asymptotic states and tf@matrix. The matter and the field
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variables are then described iasfields obeying free field
equations with renormalized mass.
For an arbitrary initial conditionp(t;) the functional

WI[J, ,J_] can be determined, for example, by means of a

cumulant expansion. Since the initial stdg5) is Gaussian

PHYSICAL REVIEW 83 032102

Correspondingly, we define a commutator superoperator
J.(X) and an anticommutator superoperalgfx),

JEX)p=[j*(x),pl, IEX)p={j*(x),p}, (32

with respect to the field variables and since the LiouvilleWhich are related to the previously introduced superoperators

superoperatol’,(x) is linear in the radiation field, the cu-
mulant expansion terminates after the second order term.

addition, a linear term does not appear in the expansion be-

cause ofA,(x))s=0. Thus we immediately obtain
W[J,,J_]
1t t
=ex;{§fti d“xfti A* (LX) Let(X) )5 | pm(ti)
(28)

Inserting the definition for the Liouville superoperatdy(x)

JE(x) by

In

Je(x)=JE(x) —IE(x),  Ja(x)=JE(x)+IE(x).

(33

In terms of these quantities we can now write E2P) as
pmlt) =T exp(i®[c,Ja])pm(t), (34)

where the influence phase functiorl J.,J,] is given by

t t t
D[, ,3,]= ft_fd4xcc(x)+ Jt_fd“xﬁd“x’

into the exponent of this expression one finds after some

algebra
t ty
%ﬁ dAXft, d4x,<£tr(x)£tr(xl)>fpm
ty ty
=1 [ate b 00X 1T =

ty ty
—%f d4xf A% [(AL(X)AL(X)) 4 (X) I (X))
t; tj
F(ALOAL(X"))IE(X)IZ(X")
—(AL (XA LX) (X)L (X")
—(AL)ALX))IE (X)L (X)) pm-

On using this result together with E(R8), Eq. (23) can be
cast into the form

—Ti Y o4 E o (Y4
pm(t)) =T, | ex d*XLe(X) + > d* [ d'x
g 1§ 1§

X{=(O(t—t")[AL(X),A,(X")]
F(ALXDALX)) 1) IE(X)IL(X) +(6(t—t")
XLALDALX )] = (AL)ALX)) ) IE(X)
XIZ(X) + (ALXDALX)) 5 (X)IZ(X)

F(ALOOA (X)) I (x)I% (X'}

)Pm(ti)- (29

At this point it is useful to introduce the commutator func-
tion

D(X=x") ., =i[AL(X),A,(X")], (30)
and the anticommutator function
Dl(x_X,)/LVE<{A/L(X)!AV(X,)}>f . (31)

x| 5D (), (X))

1
— §D1(X_ x’)w\]é‘(x).]g(x’)] . (39

These equations provide an exact representation for the den-
sity matrix of the matter variables which takes on the desired
form: It represents the influence of the radiation field on the
matter dynamics in terms of the two fundamental two-point
correlation functionsD(x—x") and D(x—x"). One ob-
serves that the motion of the matter is determined by a time-
ordered exponential function whose exponebfJ;,J,] is a
bilinear functional of the current superoperatdigx) and
Ja(X). Note that the double space-time integral in B8p) is
already a time-ordered integral since the integration over
=X, extends over the time interval frotnto t=X,. The first
part of the influence phase involving the commutator func-
tion describes dissipative effects ai{x—x') is usually
called dissipation kernel in the context of nonrelativistic
guantum Brownian motiofil9]. The anticommutator func-
tion D,(x—x") is often referred to as noise kernel and it is
the corresponding part of the influence phase which is re-
sponsible for the decoherence through bremsstrahlung, as
will be discussed in the next section.

The representatiof84) immediately yields the following
second-order equation of motion for the density matrix of the
matter degrees of freedom,

d
Gion(0= [ XL (0

t
+f dsxf d*x’
g

i
X| 5D(x=X") ., ) IEX D)

1
—5Dl(x—X’)MyJé‘(X)Jé(X’)pm(t’) . (36
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It must be noted that this equation still provides a non- We finally remark that several alternative strategies could
Markovian master equation since it involves the nonlocalbe used to arrive at an expression of the fdi386) as, for
dissipation and noise kernels. Various well-known masteexample, path integral technique&l] or Schwinger’s closed
equations encountered in quantum optics and solid statéme-path metho@22]. A similar expression for the influence
physics can be derived from this equation. For example, thehase functional has been given, for example, in 23]
quantum optical master equatiph] is obtained from it by  without the Coulomb term and for the special case of zero
performing the Markovian and the rotating wave approxima-temperature. In our derivation we have combined superop-
tion. erator techniques with methods from field theory, which
Invoking the nonrelativisti¢dipole) approximation of Eq. seems to be the most direct way to obtain an operator repre
(36) one is led to the following equation of motion for a sentation of the reduced density matrix.
single electron with mass:

IIl. DECOHERENCE THROUGH EMISSION

d i t R R
(D= f dt'D(t—t")[p(H) {P(t),pm(t')}] OF BREMSSTRARLUNG
dt 2m2 t

In this section we wish to develop a relativistic formula-
1 tion for the loss of coherence induced by the emission of
- dt’Dl(t—t’)[5(t),[5(t’),pm(t’)]], bremsstrahlung. The starting point of our discussion is Eq.
2m?Jy; (35) for the influence phase functional. The aim is to deduce
(37) from that equation a quantitative, relativistically covariant
measure for the degree of coherence of a superposition of

wherep(t) represents the interaction picture momentum Op_spatiqlly separated states. This can be achieved with the help
erator canonically conjugated to the electron’s position coorfj"c a S|mp]1e mr:erference} deV|hce which is used t?]quar;]tlf)r/] the
dinatex(t). The dissipation and the noise kernel of E8j7) egree of coherence of such a superposition through the re-

can be exoressed in terms of the spectral densit sulting interference contrast. A similar approach has been
P P y employed in Ref.[2] to study decoherence in quantum

o2 Brownian motion.
J(a))=—2w®(ﬂ—w) (38)
3m A. Introducing the decoherence functional

as integrals over the photon frequencigs The influence phase given in E(B5) provides an exact
expression as long as the electromagnetic field variables are
in a Gaussian state, as, for example, the equilibrium state
(26), and as long as the initial state of the combined system
is given by a low-entropy factorizing stat25). In Ref.[13]

o we have obtained exact analytical expressions for the single-
Dl(t—t’)=j dwd(w)coth Bw/2)cosw(t—t"), (400  electron propagator function within the non-relativistic di-

0 pole approximation. These expressions take into account the

where we have introduced an ultraviolet frequency cutbff finite width as well as the spreading of the wave packets. In
The role of this cutoff for decoherence phenomena will bethe general case, the formal BG5) is, however, much too

. . . . . . fcomplicated to be evaluated exactly and one must restore to
discussed in detail in the following section. The equation Of 2rious approximation schemes
motion (37) should be contrasted to the quantum Brownian PP '

. ) . For the purpose of defining a measure for the degree of
motion master Eq.1). Note that Eq(37) is formulated in the . .
interaction picture, while Eq(1) is written in the Schiio decoherence we shall employ the prototypical interference

dinger picture. One easily verifies that B@7) yields the device which is sketched in Fig. 1. A charged particle, say an

. : . . _electron, is emitted by the sour€and can move along two
following equation for the expectation value of the particle . .
position: different world linesy,; andy, to reach a screen & where

an interference pattern is observed. These paths represent
42 d rt d two quantum alternatives whose probability amplitudes may
m_<;(t)>+_J dt’'D(t—t") —(X(t")) = —(VV(X)). be described by two wave packét®(t;)) and |W,(t;)).
dt? dtJy, dt’ With the help of the superposition principle we find that the
(41)  wave function

D(t—t’)=fowde(w)Sinw(t—t'), (39

One observes that this is the Ehrenfest equation of motion |V (1)) =|P1(t)+|P,(t)) (42
corresponding to the classical Abraham-Lorentz equation for

an electror{20]. The second term which contains the dissi- describes the physical situation depicted in the figure. Alter-
pation kernelD(t—t") describes the radiative damping of natively, the electron state can be represented in terms of the
the particle motion. It can be shown that this term leads to anlensity matrixp,,(t;) = | W (t;) (¥ (t;)| which may be written
electromagnetic mass renormalization and to a damping terms

involving the third derivative of the position coordinate

[11,13. P(ti) =p1a(t) + poti) + p1oti) + pou(ti), (43
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S of such a characteristic time we have a natural upper cutoff
Qax for the frequency spectrum of the emitted radiation
which is of the order

Q ¢ 45
max T_p = 0'_0’ (45)
|\IJ1> |\IJ2> where the length scale, represents the order of the minimal

wavelength of the radiation. Our above requirement thus
takes the form

This also implies that the characteristic acceleration tine
Q is large compared toc/c. It is known from classical elec-
trodynamics that this condition ensures that the energy radi-
FIG. 1. Sketch of a prototypical interference device which isated is small compared to the kinetic energy of the particle
employed to introduce the decoherence functional. An electrorand that therefore radiative damping effects are sf2).
emerges from the sourd@ and can follow two possible paths The second condition is that the motion of the current can
andy,, which leads, in general, to an interference pattern observethe reasonably described within a semiclassical approxima-
on a screen ab The two quantum alternatives may be describedtion. This leads to the requiremedw/v<1, wherev is a
through the wave packet¥;) and|V5). typical velocity andAv the velocity uncertainty. Assuming
that the wave packets represent states of minimal uncertainty
where pij(ti):|\I!i(ti)><llfj(ti)|_ One observes the emer- with spatial widthAx one is led to the condition
gence of the interference terpy(t;) + po4(t;). Remember

that we are working in the interaction picture and that we Av h <1 47)

therefore havep(t;) =p.,(t) for all times in the case of a v MmuAX
vanishing coupling between matter and electromagnetic
field. or, equivalently,

Our aim is to determine with the help of the influence _
superoperator the structure of the electron density matgix @<1 (49
in the presence of the electromagnetic radiation field. An Ax
essential simplification is achieved if the matter current den-
sity can be treated as a classical current. This approximatiofhere\ 45=7#/mv is the de Broglie wavelength. This is the
can be justified under the following conditions. First, we typical condition for a semiclassical treatment.

assume that the wavelengih=c/w of the photons emitted In view of these conditions we now assume tha{t;)
by the currents is large compared to the Compton waverepresents a state which is an approximate eigenstate of the
length \ ¢ of the electron, current density. Thus, ip(t;) is a pure state,
Pm(t) =W (1)) (¥ (1)), (49
— — *h
A>Ne=r (44 we suppose that
JEOO W (1)~ sH )W (1)), (50)

and thus also large in comparison to the classical electron ) ) )
. = . . , . where s#(x) is a classical current density. Hence we also
radius r.=ahc. This requirement is equivalent tédw

. ) . have to the same degree of accuracy,
<md?. In this low energy regime one may neglect pair cre-
ation and annihilation amplitudes and treat the matter current -
. . . ; JE t)=[i*(X),pm(ti)]1=0. 51
density as a given classical fidltl6,17]. The same procedure e ()pm(t) =[17(x).pm(t)] G

is used, for example, in the nonperturbative analysis of rarpe injtial statep,(t;) does not necessarily have to be a pure
diative corrections in the low frequency limgee Sec. lIB. 40 |t suffices to require E¢G1), where

In an experiment of the type sketched in Fig. 1 the paths
involve an acceleration of the electron through a certain field (M0 =t i 4(X) (1)} = $#(X) (52

of force. This force gives rise to a certain characteristic ac-

celeration timer, . We definer, as the inverse of the highest s the expectation value of the current density. In any case we
frequency in the spectrum of the force acting on the electronimmediately obtain with the help of E¢51) and expression

In the following we callr, the preparation time since it can (35) for the influence phase

be interpreted as the time required to set into motion the

interfering wave packets. As a consequence of the existence Pt~ pm(ti). (53
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This equation states that the system is essentially unaffectadore precisely, of the associated current dens#fgs) and

by the radiation field, i.e., by virtue of our assumption thatsfzt(x), The real part ofP leads to a distortion of the inter-
the initial state is a current eigenstate, the dynamics of th@erence pattern. What is interesting in the present context is
density matrix is that of a free system. The same conclusiothe imaginary part of the phase functional which yields a
has been obtained in Ref13], where the dynamics of suppression of the interference contrast. Thus we observe
Gaussian wave packets was investigated using the exact anfat it is the functional

lytical expression for the propagator function in the dipole

approximation. t % o4, ,
Let us now return to the interference device and assume I'ls1.5]= _%ft_ d4xﬁ d*'Dy(x=X") .,

that the superpositiori42) consists of two current eigen- ' '

states, X[sf(X)=s5(x) ][s1(X") =s3(x")]  (57)
JHO)| W1 (1)) =sE(x) | P4 (t)), which measures the degree of decoherence, and which will

54)  therefore be referred to as decoherence functional. Alterna-

JHO)| W o(t))=~s5(x) | P,(th)), tively, we can writel” in terms of the current difference,

wheres;(x) ands,(x) are classical current densities. These 1

currents are assumed to be concentrated within two world cH(x)= T[S’f (X)=s5(x)], (58

tubes around the pathg andy, of the interference device, 2

respectively. By virtue of Eq(54) we have as follows:

JE(X)p1(t)=JIE(X)po(t;) =0,

I‘[C]: _%ftfd4xftfd4xrDl(X_Xr)MvC#(X)CV(X,).
JE(X)paoAt) =[S (X) =S5 (X) ] prati), ti ti

(59

JE(X) paalti) ~[S7(X) +85(X) ]p1ati), The above expressions lead to several physically interesting
interpretations which will be discussed in the next subsec-

and tion. Explicit formulas for the decoherence functional will be
Lc(X) pr(t)=Le(X)pa(t)) =0, obtained in Sec. Il C.
Lc(X)praAti)~—i[Hca(X) = Hea(X) ] paaAti), B. Physical interpretation
where Let us first discuss the transformation properties of the

decoherence functional. Expressi@9) describes the loss of
SOZ(XO f)soz(xo 9) coherence for physical situations like the one sketched in
127 2T (55  Fig. 1. We take, to be the time corresponding @, that is
4m|x—y| as the time at which the wave packet is separated into two
components, whilé; denotes the final time when both pack-
are the Coulomb energy densities associated with the curregis are recombined & It is obvious that the current differ-
densitiessy’(x) and s5(x), respectively. We may suppose encec*(x) vanishes for times prior t, and for times later
that the corresponding Coulomb energies for both possiblghan the final timet;. In fact, the support of the current
paths are equal to each other. The expres¢8 for the  differencect(x) lies in the interior of a closed world tube

Hc1,2(x):%f d®y

influence phase functional now immediately leads to around the lood which is formed by followingy, in the
. ositive andy, in the negative direction. Formally, we write
ot =pa(t) + polt) + eXBi D) pyalty e o o 9 Y
+exp —id* t), 56
R(—i0*)poa(ty) (56) —yimys. (60
where

Current conservation therefore enables us to write the deco-
herence functional as follows:

o= f:fd“xfd“x’%D(x—x’)w[s’f(x)—sfz‘(x)]
' ' I‘[c]=—%f d4xf d*x'D(x—X"),,cH(x)c"(x"),

t t
x[s{(x’)+s§(x’)]—%f fd‘*xf "y (61)
15 15
, . . where the covariant form for the anti-commutator function
XDy(X=X") 4, [1(X) =s5(X)][s1(X") =s5(X")]. can be used,
We see here that the electromagnetic field affects the inter- Dy(X—X"),,=—0,,D1(x—x"), (62

ference terms through a complex phdses,,s,] which is a
functional of the two possible classical pathsandy,, or,  with the scalar function
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d3k An equation of the form(67) has been derived by Ford

Di(x—x")= f —3{exp[—ik(x—x’)] [10] using a different technique. We remark that there are,

2(27)°w however, two substantial differences. First, we note that Egs.

iy (61) and(67) involve the temperature-dependent Green func-
Fexilik(x=x")Jjcoth fu/2). (63 tion D4(x—x"),,, of the electromagnetic fielssee Eqs(31)

Equation (61) shows that the decoherence functional pro-2nd(63)], whereas Ford's expression only involves the zero-
vides a decoherence measure which is both relativisticallfgmperature Green function defined as a vacuum expectation
covariant and gauge invariant. In addition, it is Lorentz in- value. Equation67) is therefore more general than the ex-

variant in the vacuum case. To see this we recall that at zergr€Ssion given by Ford. In particular, it allows to study the

temperature the anticommutator function is given by the infull temperature dependence of decoherence and enables one

variant function to compare the influence of the vacuum field wi.th that of the
thermal field(see the next subsectiprSecond, it must be
d3k emphasized that it is the influence of conducting boundaries
Dy(X—X")yac= f {exd —ik(x—x")] on the loss of coherence what is investigated in Rid]. To
2(2m)%w this end, the difference of the Green function satisfying the

boundary conditions to the vacuum Green function is substi-

+exik(x=x)1} tuted into Eq.(67). This means that the difference between

1 1 decoherence with and without boundaries is studied in Ref.
= —pP— (64) [10], whereas here the vacuum decoherence itself will be
27 (x—x')? examined.
o For the physical interpretation of the decoherence func-
where P denotes the principal value. tional it is useful to introduce the Feynman propagator and

The form (61) suggests an interesting representation folits complex conjugatedT . denotes the antichronological
the decoherence functional in terms of a double loop integrame-ordering operator

[10]. To this end, we consider a current density of the form
IDE(X=X") 1 =(T_[AL(OAX")])s

s“(x)zefidru“(r)&(x—y(r)), (65) =0(t—t")[AL(X),A,(X)]
. . . . . +<AV(X’)A/L(X)>f ’
wherey(_r) is some timelike world line parameterized by the 68)
proper timer, and iD* (X=X") =~ (Tﬂ[AM(X)Ay(X,)Df
72 — 4! !
uﬂ(T)z dydj.T) , uﬂuﬂ: 1, _a(t t )[A/J,(X)!Av(x )]

- <AM(X)AV(X,)>f ’

is the four velocity. Apart from the assumption of an |deal-aS well as the two-point correlation functions

ized line density this formula neglects the spin contribution
to the current. In fact, one has from the Gordon decomposi- D, (x—X') .y =(A,0A,(X)s,

tion of the Dirac current density24], (69)

_ D_(X=X") 1= (A, (X")AL(X))s .

— e — — ie —

“=ayyt = — Mol — (DM - HY ).

S vy 2m[¢(p ZCad Zmp”wa ¥) Expressing the anticommutator function in terms of the
(66)  Feynman propagator,

The first part on the right-hand side represents the convection Dy(x—X"),,=iDp(x—x"),,,—iDE(x—X')
current density which leads to E@5), while the second part

is known as the spin current density. The spin current densityye obtain for the influence phase fact&?7) the following
can be neglected as long as the length scales involved in th&pression:

problem under consideration are large compared to the

(70

My

Compton wavelengthl0O]. Under this condition the decoher- exp(i®P[s;,S:])=A[s1]A[S,]*
ence functional61) can be expressed as a double integral
over the closed path xexp{éj d4xJ d*x’
e2
Mlel=——4 3€dxﬂ fﬁdx’vol(x—x')w. (67) X[D _(Xx=X") ,,S1(X)s5(X")
[ [

+D 4 (x=x"),,85(x)s1(x") ]|, (71)

Again, this representation exhibits the manifest Lorentz co-
variance and the gauge invariance of the decoherence func-
tional. where we have introduced the definition
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i and virtual photons become indistinguishable in the low fre-
A[]]=9XF{— Ef d4Xf d*% De(Xx—X") ] “(X¥)j"(X") |- quency limit. Infrared divergences can be shown to cancel
72) provided a finite resolutiof},,, for the photodetection is
introduced: Insisting on the perturbative picture, one could
At zero temperaturd\[j] is the vacuum-to-vacuum ampli- say that there is always an infinite number of quanta, namely
tude[25] in the presence of a classical current denpftfx).  those whose frequency is lower th&ly,,, which escapes
The first term on the right-hand side in EJ) is thus the ~undetected and cannot be observed in principle.
product of the vacuum-to-vacuum amplitudes in the presence Our analysis treats the matter current classically but it is
of the current densities? ands% , respectively. This contri- Nnonperturbativé16]. In view of the above considerations it
bution describes virtual processes in which photons are emitS obvious that the decoherence functioddlc] does not
ted and reabsorbed by either the currghor by s& . Corre- !ead to mf_rared d!v_erge_nce§ since it describes a process tak-
spondingly, the exponential on the right-hand side of EqN9 place in the finite time interval petvyeen the ;pht_tmg of
(71) is the contribution of the emission of at least one pho-tN€ Wave packet dp and the recombination &. This gives
ton. These processes also contribute to the decoherence furfiS€ 0 @ natural frequency resolution of the order
tional since a photon can be emitted by both currents and
carries away information on the path taken by the electron. Q. ~ 1
Moreover, at finite temperatures thermally induced emission ™oti—ty
and absorption processes occur. It will be seen in the next
subsection that the radiation field shows the typical spectrumfhe emergence of this effective infrared cutoff will be seen

(75

of bremsstrahlung. explicitly in the calculations of the next subsection, where it
With the help of Eq.(70) we can write the decoherence Will be demonstrated that the arising integrals over the pho-
functional as ton frequencies converge at the lower limit-0. In addi-

tion we also have an ultraviolet cutofl ., which has al-

i 4 i ) Y ready been introduced in E@5). This cutoff can accounted

I'[c]=- Ef d Xf d™x'De(x—X") 4,c4(x)c"(x") tc.c., for by the introduction of a finite widtlr, characterizing the
(73  current world tube, as will be seen in the next subsection.

where c.c. means complex conjugated. Thus we see that at C. Determination of the decoherence functional
zero temperature the decoherence factor can be expressed a . . .
P P %Ne wish to derive here explicit formulas for the decoher-

exp(T[c])=A[c]A[c]*. (74) ence fL_mcti_onaI corresponding to the interference de_vice de-
picted in Fig. 1. On using Eq$61), (62), and(63) we find

Obviously, we havd'[c]<0, andl'[c]=0 for s{=s%, that

3
is for a vanishing current difference?=0. Equation(74) Ic]= _f d°k coth Bwl2)[ — c*(K)c,,(K)* ]
gives rise to another interesting interpretation: The decoher- 2(2m)%w K ’
ence factor which multiplies the interference term is given by (76)

the no-photon emission probability in the presence of the

current densityc”. This current is the same as the currentwhere we use the notatide= (w,k) = (|k|,k) for the wave

which would be created by two particles with oppositevector and

charges+e/\/2, one moving along/; and the other along

yo. The smaller is the vacuum-to-vacuum amplitude for this 4 ,

current density the larger is the reduction of the interference C#(k)zf d*x exp( —ikx)c#(x) (77)

contrast. This must have been expected since it is the differ-

ence between the currentg ands, which determines the s the Fourier transform of the current difference.

extent to which the two possible paths can be distinguished, et us first show explicitly how a finite width of the cur-

and, thus, the degree of the loss of coherence. rent world tubes gives rise to an ultraviolet cutoff scale. To
These interpretations in terms of the emitted photons mushjs end, the currentst(x) ands(x) are taken to be con-

be taken, however, with some care. The reason is that Weentrated within world tubes of spatial exterg around the

consider here processes on a finite time scale and not trangjprig linesy, (7) andy,(7). To be specific we write
tions between asymptotic states. It is well known that certain

matter currents emit an infinite number of long-wavelength

(soft) photons whose frequencies approach zero, while their S‘f,z(X)=eJ druf A7)0, (X—Y1,A7)), (78
total energy adds up to a finite value. This is the so-called

infrared catastrophfl5,16 which arises in the perturbative
calculation of radiative corrections to any process involving
charged matter. The complete removal of infrared diver- - -
gences requires a nonperturbative treatment in which the am- 5 (x—x’) = 5(x—x}) ex _ X))
plitudes for the emission of real and virtual soft photons are 7o (2mwa3)®? 203
summed to all orders, such that the processes involving real (79

where

2
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is a smeared function described by a Gaussian with width a)
0. Using Eq.(78) in Eq. (77) we find for the Fourier trans-
form of the current difference

b)

as

U Uy b
K(k)=

fdru”(a-)exp[ ikyi(7)]

1
exp{ - E(r%wz .

(80

aq as

— j druy(m)exdg —iky,(7)]

U1 Us

We see that the finite widtlry of the current world tubes
yields an effective ultraviolet cutoff) ,,~oq 1 as given in
Eqg. (45). Our main interest is an estimation of the decoher- g, 2. (a) The closed loop used for an explicit determination
ence funCtiOI‘la| fOI’ some SpeCifiC Situations. We therefor%f the decoherence functioni[[c]_ The |00p consists of four
ignore in the following the specific form of the cutoff func- straight world line segments with four velocitias,u,,us,u,. The
tion in Eq.(80) and work with a sharp cutoff at the maximal vertices are located at the space-time pois; ,a,,as. As indi-
frequencyw = ... It will be seen below that the final ex- cated, the loop corresponds to the total tinig.Ab) A single line
pression forl'[c] depends or) ., only through In(} .. segment with initial point, endpointb, and four velocityu.
This extremely weak logarithmic dependence shows that the
precise value ofr, or of the preparation time, is rather ie
irrelevant. The important point to note here is that the emer-c(k)=—1{ +
gence of an effective ultraviolet cutoff has a clear physical V2
origin. u
Thus we now write Eq(76) as

ag

u, ; . u, . )
ku1 [e—lkal_ e—|ka0] + ku2 [e—|ka2_ e—lkal]

u B .
4 [e—lkaz_ e—|ka3] .

3 —ika. —ika
e 3— 0]—
L 1 kug

ku

e2

_ Qmax (86)
I'[c]= 16773-[0 dww coth Bw/2)

It should be noted thak,c*(k)=0 as required by current
conservation. Note further that‘(k) shows the correct be-
fdﬂ )= c”(k)c (k) 1, (81 havior under Lorentz transformations, in particular, one finds
that c#(k) transforms intoc*(k)exp(—ikb) under a space-
where time translations by the four vectdr. If we now use the
symmetry properties of the loop we arrive at

e . i

uz

ku

9’( k), (87)

and dQ(R) denotes the element of the solid angle into the

direction of the unit vectok=k/|k|. For simplicity let us where we have introduced

consider the case that the lodpconsists of four straight G(k) = e kaz(1 — gik(az~ag)y (1 — giklaz—ay))

world line segmentgsee Fig. 2a)]. The four vertices of the

loop are denoted byg,a;,a,,as, Whereas the correspond-  Using these results one is led to the following expression
ing four velocities arei;,u,,us,u,. We further assume that for the decoherence functional:

the arrangement is symmetric, that is,

a Omax dw
Ui=Uygy, u,=us, (83) F[C]:_ZJ —COtf(,Bw/Z)
8m=Jo W

and

Uy Uy
Ku, ku, |g(k)|2 (89)

a;—qp=ap—az, a—a;=az—ap. (84) Jdﬂ(k)w

For a single line segment with initial poiat endpointb, and e denote the time interval associated with a single line
four velocity u [see Fig. 20)] we obtain element of the loop by, that is we sety=—t; and t
b u —1t,=2t; [see Fig. 2a)]. Then we have
J’ dxexp(—ikx)=i—[e KP—e Tka], (85) I I
a ku k(az_a3):wtf(l_k'v4), k(az_al):wtf(l_k'vz).

With the help of this formula the Fourier transfori®2) of In order to estimate further the expressi@®) we approxi-
the current difference is found to be mate

032102-11



HEINZ-PETER BREUER AND FRANCESCO PETRUCCIONE

k(ap—ag)~k(a;—a;)~wty, (89

which leads to

1
(1—cos<utf)—Z(1—cos 2wts) |.

G(k)[>=8

This allows us to estimate the decoherence functi(®®)las
follows:

o Qmax dw
I'cl~ —ZJ — coth( Bw/2)
7°J0 w

X

1
(1—coswt;)— Z(l—cos Zutf)}

U, uyl?

e K (90)

xf dQ (k) w?

PHYSICAL REVIEWGS 032102

that it gives rise to an effective infrared cutoff of the order
Qin~1k;, as discussed in the previous subseciwee Eq.
(75]. We also observe that the vacuum frequency integral
increases weakly with the logarithm €f ...t . As indicated
in EQ. (95) we keep for simplicity in the following only the
leading contribution in our expressions. It should be kept in
mind, however, that one can include without difficulties the
terms of higher order which vanish in the linfi,,,,t;—.

To determine the thermal contributidfy, we first write
Eq. (93) as follows:

. 1 tf IBQmax .
Fth_Ejo dtJ'0 dx[ coth(x/2) — 1]sin(tx/B), (96)

where we have introduced the integration variakte SBw
= w/kgT. For temperature¥ obeying

KeT<7€) 1 97

Let us first concentrate on the integral over the photon freg,o upper limit of the integral over can be shifted to infin-

guenciesw, that is on the first integral on the right-hand side

of Eq. (90). The integrand is proportional @, which is a
typical signature for the spectrum of bremsstrahl{@g]. In

addition to vacuum bremsstrahlung there may be thermall

induced emission and absorption procedde, which are

embodied in the factor cotB@/2). At zero temperature

(vacuum field this factor may be replaced by 1.

In order to calculate the frequency integral it turns out to
be useful to decompose it into a vacuum contribution and a
thermal contribution which vanishes fér=0. We therefore

write

O'max dw
FEJ o coth Bw/2)(1—coswts)=Fct Fi,
0
(91
where
Qma\x dw
Fra= J — (1—coswt;) (92
0 w
is the vacuum contribution, while

Fa= f Oﬂm‘"‘x d?w[cotr( Bwl2)—1](1-cosoty) (93

is the thermal contribution. The frequency integfgl. can
be evaluated as follows. Substituting: wt; we get

=
Q maxtf ’
(99

Qmads dX
Fvac= fo 7(1_COSX):In(ngaxtf)+o

where Ing~0.577 is Euler’s constafi£6]. For Q,,i>1 we
thus have asymptotically

Frac=IN(9Q mads)- (95

This relation demonstrates that the vacuum integral over the

photon frequencies converges at the lower limit-0 and

ity. To give an example for this condition we take the ultra-
violet cutoff Q) ,~10'° s™1, corresponding to a length scale

f the order 10R.. The requirement97) then means that
<10° K. Under this condition we find

1 (=
Fu~ Efofdtjo dx{ coth(x/2) - 1]sin(tx/ 8)

ol 3]
plo 1T\ B)
sinh(t/
tf/TB
The quantity
_B_ 1 12
TBZEZWBT 2.4x10 S/T[K] (99

represents the correlation time of the thermal radiation field
[1].

On using the resultéd5) and(98) we can now determine
the frequency integral in Eq90),

Omax d(!) 1
f o coth Bw/2)| (1—coswt;)— Z(l—cos 2wt;)
0

3 sinh(t¢/7g)
~ Z'”(gﬂmaxtf)ﬂn<w)

1 (sinf(th/rB)) (100

Zn 2tf/TB

It remains to calculate the angular integral in EgO),
that is, we have to evaluate integrals of the form

UnUm

(kum (kupy' (109

I(un,um)EJ dQ(k)w?
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wheren,m=2,4. To determine these integral we first note where

that the integrand does not depend @ras is easily recog-
nized with the help of the relations

UpUm=Yn¥Ym(1—vn-vm),

ku,=wyn(1—k-vy),

1
W=\ =
1_|Un|2

Therefore we obtain

where

(U, u )=fdQ(R) L0 Um
e (1-k-v)(1—k-vp)

(102

Next we observe that the combinatidf) (k) »? is an invari-
ant quantity, such thdt(u, ,u,,) is a Lorentz invariant inte-

6a 1
I‘vac% - 7|n(gﬂmaxtf)<v_24 tanh” 1U 24~ 1) (108)

is the vacuum decoherence functional and

r 8a (sinr’(tf/TB) 1 [sinh(2t;/7g)
th™ ? n tf/TB Zn th/TB
1
X —tanh‘1v24—1) (109
U2a

is the thermal contribution to the decoherence functional. As
expected, we see from these expressions Ithaf strongly
depends on the relative velocity, which is due to the fact
that the decoherence is caused by the emission of brems-
strahlung. The largew,, the larger is the involved accelera-
tion of the charged particle which creates the radiation field.
An important result is that bremsstrahlung leads to a par-
tial destruction of coherence even at zero temperature. The

gral. To determine this integral we may therefore transformyagnitude of the vacuum contributidn,,. is seen to in-
to a coordinate system in which the second velocity is equatrease as the logarithm of the timeif the relative velocity

to zero, that i55m=0. In this system the magnitude,
=|v,| of the first velocity is equal to the relative velocity

1 1
Unm= -,
"N (U2

(103

which is, by definition, a relativistic invariant quantity. Thus

we now have by virtue of Eq102

I( ) fdQ(R) ! 2 JH dz
U ,U = Q< - - - _
men 1-k-v, i ~11-vnwZ

4
=— tanh v . (104

Unm

This formula is correct also for the casg=u,,, giving

[(u,,u,) =4, as may be seen directly from the expansion

of tanh %(x) for small arguments,

1 1
tanh Ix=x+ = x5+ §x5+--- _

3 (105

Thus we find

Uy, Uy |?

ku, kuy

f dQ(k)w?
=1(uz,up)+1(ug,uy) —21(Uy,uy)

1
= —sﬂ(— tanh‘1v24—1). (106)
U2q
Substituting Eqs(106) and(100) into Eq.(90) we finally
obtain

I'fc]=Tact T, (107

is held fixed. This weak dependence is connected to the ef-
fective infrared resolutio);,~1/t; of the interference de-
vice: For increasind; photons of lower and lower frequen-
cies could in principle be detected and thus more and more
information is lost on tracing over the photon field. On the
other hand, the term within the square brackets in(EQ9
approaches;/27g for t;>75. Thus keeping fixed the rela-
tive velocity the magnitude of the thermal contributibi,
increases linearly witky for timest;> 5. This describes the
decohering influence of absorption and emission processes
induced by the thermal field. It follows that for short times
the vacuum contribution dominates, while decoherence is
mainly due to thermally induced processes for large times.
The timetf corresponding to the crossover between these
two regimes is determined by the relation

A
In(ngaxtf )= § T_B (110
Taking Qma—10° s7tandT=1 K we find from this con-
dition that the crossover time is of the order

tF ~307g~101%s. (111
This means that for the given example the vacuum decoher-
ence dominates for times small compared to Gs.

To facilitate the further discussion, let us investigate the
case of opposite velocities with equal magnitude, that,is
254=—52=—53 [see Fig. 2a)]. The relative velocity is
then found to be

2v

V4=~ o

112
1+v (112

where
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_ |51_53|

5t (113

This situation corresponds to the case of two wave packets ir _
a superposition which first move apart with opposite veloci-

tiesv, andvy= —v,, respectively, and, having reached their
maximal distancéa, —as|, approach each other again with

velocitiesv, andv,= —uv,. For nonrelativistic velocities we
havev,,~2v and we may use the expansi@r05) to obtain

Fth~———v y tf>TB. (114)

37 78

One can then ask the following question: Given a fixed elec-

tron energy, that is a fixed velocity, how far can we coher-

ently separate the components of the electronic state withou

exceeding a given thresholdl | for the decoherence? Pro-
vided the thermal contribution dominates, Etj14) leads to
the condition

(115
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FIG. 3. The vacuum contributiohi, .. and the thermal contribu-
tion I'y, of the decoherence functionBl For a fixed maximal dis-
tance|51—53|:075 between the paths, the two contributions are
plotted against the timg which is measured in units of the thermal
correlation timerg. The temperature was chosen to bel K

and Q,,=10'° s™1. One observes the decrease of both contribu-
tions for increasing time, demonstrating the vanishing of decoher-
ence effects for long times. The thermal contributidy vanishes
ast{l, while the vacuum contributioll',,. decays essentially as
tf_z, leading to a crossover between two regimes dominated by the
vacuum and by the thermal contribution, respectively.

Choosing|I'y|=0.01, which corresponds to a threshold of ) _ S
1% decoherence, we find that the maximal distancd at €nough times is nonrelativistic such that the vacuum and
=300 K is given by the thermal contribution to the decoherence functional are

from which we obtain the maximal possible separation

3m|Ty| c7g

Omax= 20t= 8a  vlc”

(116

given by
d 4 m (117 N — a2
max~ 7 ML 2a a;—a
vie [yac~— 7In(gﬂmaxtf)%v (118

This shows that one can achieve rather large coherent sepa- f
rations for nonrelativistic electrons. For example, in the ex-gng
periment performed by Hasselbaehal. [27] an electronic
beam was coherently separated by a lateral distance of about Su sinh(t¢/7g)
d=100 um. To compare this experiment with our results Ly~ — 3 |H(T)
we take an electron energy of 1 keV and use a fixed value of e
10 cm for the distance corresponding to the time interval 1 [sinh(2t;/7g)\]|a;—as/?
from t, to t;. For |'o|=0.01 condition(115 then yields Zln( o] 5 (119
dma=4.5 cm atT=1 K andd,,;,~0.26 cm afT=300 K. 78 ti

Note that the quantity in Eq. (115 represents the magni- _ .
tude of the lateral component of the electron velocity in the/*cc0rding to Eq.(118) the magnitude of',c decreases es-
tially ag; <, while Eqg.(119 shows that the magnitude of

experiment, which is due to the fact that it is the relativeS®" nile: i

velocity that enters the formula for the decoherence functhe thermal contributiod’, decreases as - for t¢> g,
tional. The values obtained fak,,,, are large compared with
the lateral distancel reported in Ref[27], demonstrating
that our theory is in full agreement with experiment.

The result expressed through Eq&08 and (109 can
also be discussed from another point of view. Namely, in\We again observe the crossover between two regimes of
stead of keeping fixed the velocity[Eq. (113)], we consider times: For short times the vacuum decoherence dominates,
a fixed maximal spatial distan¢e; — a;| between the paths. Whereas the thermally induced decoherence dominates for
Thus for increasing; the velocityv becomes smaller and large times. This can be seen in Fig. 3 where we have plotted
smaller and, consequently, the decoherence effect throughe expressiontl08) and(109) as a function of; for a fixed
bremsstrahlung becomes smaller and smaller. For largealue of|a;—as|.

4a |§1—§3|2

37

Ly~ (120

te7g
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that the wave packets brought to interference are at rest ini-
tially. As indicated in the figure this case corresponds to a
situation in which the line segments described by the four
velocitiesu; andu; meet each other in the infinite past. Thus
we setu;=us in Eq. (86) to obtain

C(k)zﬁ i[e*ikal_e*ikas]
J2 [ kug
u, r . Uy . .
+ = ikay _ ka7 % ikay _ ikag )
kuz[e e ] ku4[e e ]

(129
FIG. 4. A current loop involving two line segments which meet
in the infinite pasfcompare with Fig. @)]. This situation corre- Performing here the approximati@¢89) we are again led to
sponds to an interference device in which the relative velagjty — expression(88), where now
between the interfering wave packets vanishes initially.
_ _ |G(K)|?=2(1— coswt;),
The expressiong118 and (120 suggest to define a

vacuum and a thermal coherence length by means of which immediately yields the expression

|51_53|2 |§1_§3|2 2 i /
T o Ty=— 2 (12)) _ 2« sinh(t¢/7g)
P 2L(t)2, 2Lt} Flel== | InQmads+in| — 70—
in analogy to Eq(6). This leads tdreintroducing factors of 1
» a(®) . g x| — tanh tv,,—1]. (126)
c) U2q
L(t;)yac= / m cti~ 10.4 ct; In the nonrelativistic limit we use the expansi¢h05) to
N Aain(@Qmate) T IN(@Qmatt) obtain
(122
8a sinh(ti/7g) || ,
and F[C]~_ g |n(ngath)+|n(W s

3 (127

L(ton= \ g, Ve Tati=12. W rgt ity T2 o

(123 v_vhere we have again assumeg: —Ua. This r_esult is iden_—
tical to the one found in Refl13] using the dipole approxi-

Equation(122 implies that the vacuum coherence length ismation for the matter-field coupling.
roughly of the order

IV. DECOHERENCE OF MANY-PARTICLE STATES

L(tf)yac—Cts. (124 )
For single electrons the vacuum decoherence through
This simple result means that for a given tilpe¢he radiation  bremsstrahlung turns out to be small at nonrelativistic
field does not destroy quantum coherence on length Sca"’s‘beeds. For example, takir!@)mapc/fc andt; of the order
which are small compared to the distance that light travelgy 1s, and using a velocity which is already as large as 1/10
during this time. This also explains why the radiation field is o the speed of light, one finds thit,.J ~ 10~ 2, which cor-
quite ineffective in destroying quantum coherence of Singleresponds to a 1% suppression of interference. By virtue of

localized electrons. the weak logarithmic dependence on the cutoff scale this

It is interesting to compare the thermal coherence lengtiysiimate is true also for other particles carrying an elemen-
(123 with the corresponding resul7) obtained from the tary charge.

quantum Brownian motion master equation. We observe that \jatters change, however, drastically if one considers the

both expressions are proportional o "2 The time depen- superposition of two states of a system which is composed of
dence, howlal\gar, is completely different: Whil€t()gw de-  n identical particles with massi and chargee. Let us con-
creases a$; ", the coherence length(ty)y, inCreases as .\t 4 effective master equation for the dengigy(R,R’)
ty'“. This means that fot;—co one has total destruction of ¢ 1o center of mass coordinate
coherence in the Brownian motion case, whereas coherence
is completely maintained in the QED case.

We close this section by considering briefly another inter- B=
ference device which is depicted in Fig. 4: Here we suppose

N
> X (128

=1

Zl -
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for such a system. Here, the are the particle coordinates (dipole) approximation one is led to the following represen-
and we suppress, for simplicity, the spin degree of freedontation for the center of mass density:

We introduce the relative coordinatésthrough

ty ty

- s o t)=7_| ex f dtJ dt’

Xi=R+ri(q). (129 peni ) ( [{ ti ti
Since ther; sum up to zero, they are functions oN3-3 y i—D ! Pe(t) Pa(t") —ED _
internal variables which we denote collectively gyLet us 2 ( ) M M 2 a )
suppose that the state of tNeparticle system is described in R R
the position representation by a density matrix of the form P.(t) P.(t")

XT M Pem(ti), (139
Pm=Pcm(R.R")pin(0,a"), (130

where ISC(t) and I5a(t) denote the interaction picture com-
mutator and anticommutator superoperators for the total mo-
.. mentum. The dissipation and the noise kernel are given by
J d3RPcm(R,R)=f dapin(Q,q)=1. (13)  the expression$39), where the spectral density now takes
the form

The density matrixp,, describes the center of mass coordi-

nate, whilep;,; represents the state of the internal degrees of
freedom. For example, one finds that the quantity

wherep., and p;,; are separately normalized to 1,

262

J(w)= 0O (Qpax— ). (136

372

The time-ordered exponential in Ed.35 can be determined

with the help of path-integral techniques. The details are
(132 given in Ref.[13] and we can immediately transfer the re-

sults given there to the present case with the help of the
is the density of finding a particle at under the condition replacements given above. It follows that the vacuum deco-

that the center of mass coordinate isfatThis function is herence functional for amN-particle state scales with the
obviously normalized as squareN? of the particle number,

1 N
wi-R) = [ 093, oG- R=F(@)pn(a.a)

8
f d3XW()Z)=1. (133 I‘vacw_N270[In(ngaxtf)Uz- (137)

If the system described by the stat®30) performs a This scaling with the particle number obviously leads to a
translational motion it is reasonable to assume that its totdarge amplification of the decoherence effect. To give a very
current density can be approximated by an effective currergxtreme example we takBl=10°* which corresponds to
density of the form oo~1 cm for typical free electron densities in metals. Let
us ask for the maximal speedleading to 1% decoherence.
With the help of Eq(137) we finduv~3x10 1 ms . For
a distance of 3 m this implies, for example, thatvould be
of the order of 18 s, which is an extremely large time

- - Ne . . I
ol X) = 5y {PWO—R)+W(i-R)P), (134

whereP=—i4/4R is the total momentum canonically con- already comparable with the age of the universe!
jugated to the center of mass coordin®eNe is the total
charge, andvl=Nm the total mass. The expressigh34) V. CONCLUSIONS

implies that the current density of the internal degrees of
freedom vanishes. In particular, it excludes the possibility
that the whole systems is in a rotational state which woul
require to introduce three further collective coordinates as
for example, the three Euler angles.

Equation(134) shows that the case of aparticle sys-
tem can be dealt with by using the replacementsNe and

The emission of bremsstrahlung leads to a loss of coher-
nce whenever two spatially separated components of a su-
erposition are set into relative motion in order to observe
focally their capability to interfere. We have investigated a
prototypical interference experiment which involves two
possible paths of an interfering charged particle. The coher-
. . . ence loss in this type of experiment can be quantified with
m—M= l\_lm, and by interpreting the length scae, W.h'Ch the help of a certain decoherence functiohipt], which is a
appear.s in the UV cutoff scalé!méxillao, as the Imgar gauge invariant relativistic functional of the difference be-
extension of the one-particle densit(x). A representation  tween the current densities corresponding to the two possible
for the density matrixp.(R,R") is then obtained from Eq. paths. As expected from the physical picture of decoherence
(34) by substituting the effective currefit34) into the influ-  through bremsstrahlung, the decoherence functional mainly
ence functiona(35). The corresponding second order masterdepends on the invariant relative velocity between the inter-
equation is given by Eq(36). Invoking the nonrelativistic fering paths. It has been shown that decoherence induced by
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the emission of radiation into the field vacuum dominates ainterference device in which the pagh describes a uniform
short time scales, while thermally induced processes domimotion of the electron, whereas the other pgitis strongly
nate at large times. We have estimated the crossover timgend, involving a large acceleration of the electron. Suppose
which separates the vacuum from the thermal regime as welle observe the photons emitted in the experiment. If we
as the vacuum and the thermal coherence length. know that no photon has been emitted it is then very likely

Decoherence through bremsstrahlung exhibits a highlyhat the electron has taken the path which results in a
non-Markovian character since the.decoherence fL!”Ct'On%Juppression of the interference pattern formed by the elec-
depends on the whole paths of the interference device. Thigong of the corresponding subensemble. This situation is
can be |!Iustrated by a comparison of'the results obtained fO§imilar to that of a two-level atom which is initially in a
the two_mterference devices studied in Sec[tttbmpare Eq. superposition of the excited state and the ground state. If we
(126 with Eqs.(108) and(109]: After the time correspond- find that the atom did not emit a photon after a long time
ing to the maximal distance between the wave packets w ng compared to the inverse of the emission yate have

Cv?t\r/]eolgpbg)stir:ecszfoscitﬂvgvg?\;ﬁ engﬁésriggﬁfﬁel'?% ; eclj(i:fr-] Othe?fectively measured the state of the atom to be the ground
: I.?éate. Thus the off-diagonal terms of the atomic density ma-

two cases shows that the suppression of quantum coherenf& approximately vanish without the emission of real pho-

through bremsstrahlung depends on the total history of théPns. ) o
process and that the memory time is of the order of the total e have also discussed the amplification of decoherence
time t; of the experiment. effects for systems of identical charged particles. The ob-
An important conclusion is that the usual picture of deco-tained scaling ofl'[c¢] with the squareN? of the particle
herence as a decay of the off diagonals in the reduced densi[yjmbel’ can be traced back to two facts. First, the radiative
matrix does not apply to the destruction of coherenceback action is proportional to the square of the total charge
through bremsstrahlung. Namely, consider a superposition afince the emitted radiation adds coherently in the limit of
two wave packets with zero mean velocity. The expressiofong wavelength. Second, the decoherence functional only
(118 for the decoherence function together with the estimatelepends on the logarithm of the cutdi¥,,,,, which means
L (tf)vac— Cts for the vacuum coherence length show that de-that it depends only very weakly on the total mass or on the
coherence effects are negligible for timgswvhich are large  spatial extent of théN-particle state. In the cases discussed
in comparison to the time it takes light to travel the distancehere one must expect, of course, a large radiative damping in
between the wave packets. The off-diagonal terms of theddition to the decoherence effect. It is of great fundamental
reduced density matrix for the electron do therefore not deinterest to investigate also the influence of these phenomena
cay fort;— o which shows the profound difference betweenfor composite neutral objects.
the decoherence mechanism through bremsstrahlung and The phenomenon of decoherence is often linked to the
other decoherence mechanisms. For the same reason a singlaergence of dynamically induced superselection sectors of
localized wave packet moves essentially unaffected by théhe underlying state spadé]. In this context one tries to
radiation field. If we separate, however, the wave packet intghow that the matrix elements of all observables between
two components and recombine them a loss of coherence sates belonging to different orthogonal subspaces, the super-
observed. selection sectors, vanish in the linjt—oc. In this paper we
One might ask the question of whether virtual vacuumhave adopted a more practical viewpoint and defined the
processes or real photon emissions are responsible for tliiecoherence functional to describe the loss of coherence in
decoherence effect studied in this paper. The answer is coln interference experiment which involves a process on a
tained in expressior(71) for the influence phase factor finite time t;. It is this time which sets a natural infrared
exp(P). This equation tells us that the decoherence factocutoff corresponding to the frequency resolution of the de-
exp@’)=|exp(®)| depends on virtual processes through thevice and which ensures the infrared finiteness of the deco-
Feynman propagatorDg(x—x"),, (contained in the herence functional. Another point which might be important
vacuum-to-vacuum amplitudeas well as on real processes for further investigations is that the definition of the decoher-
described by the Green functiols. (x—x"),,. Thus itis  ence functional involves only the preparation and measure-
the combined effect of virtual and real processes which leadsent of local quantities. Whether the resulting coherence
to decoherence. The physical reason is that the mere pos$dss is called true decoherence or not, is a matter of defini-
bility of real photon emissions also reduces the vacuum-totion. It is, however, a fact that the influence of the radiation
vacuum amplitudes which can already lead to a reduction ofield leads to a reduction of the interference contrast which
the interference contrast. For example, one can think of anan be observed in an experiment that takes a finite time.
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