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Destruction of quantum coherence through emission of bremsstrahlung
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The emergence of decoherence in quantum electrodynamics is investigated. On combining superoperator
methods with functional techniques from field theory, the degrees of freedom of a thermal radiation field are
eliminated and the influence phase functional is derived which governs the reduced dynamics of the matter
variables. Employing a prototypical interference device, a decoherence functional is developed which provides
a gauge invariant relativistic measure for the degree of decoherence. It is demonstrated that the decoherence
functional describes the destruction of quantum coherence through the emission of bremsstrahlung which is
caused by the relative motion of the interfering components of a superposition. Explicit analytical expressions
for the vacuum and the thermal contribution to the decoherence functional and for the corresponding coherence
lengths are determined. These expressions reveal that bremsstrahlung leads to a fundamental decoherence
mechanism which dominates for short times and which is present even in the electromagnetic field vacuum at
zero temperature. The influence of bremsstrahlung on the center of mass coordinate of a system of many
identical charged particles is also studied and is shown to lead to a strong suppression of quantum coherence.
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I. INTRODUCTION

The interaction of a quantum mechanical system with
environment generally leads to a partial or total destruct
of the interference between different components of the w
function. In the theory of open quantum systems@1# this
destruction of quantum coherence is explained by an inv
tigation of the reduced density matrix. The latter represe
the quantum state of an open system as it is obtained afte
average over the degrees of freedom of its environment
the resulting loss of information on the entangled state of
combined total system. Many theoretical studies perform
on the basis of various system-plus-reservoir models~see,
e.g., Refs.@2–6#! have shown that under quite general phy
cal conditions the environment induces an extremely ra
transition of a coherent superposition to an incoherent sta
tical mixture. This transition is called decoherence and
associated decoherence time arises as the time scale
exponential decay of the off-diagonal elements in the
duced density matrix. An important result of the theoreti
investigations is that the decoherence time can differ s
stantially from the corresponding relaxation time of the s
tem @2#, which signifies the fundamental distinction betwe
the notions of decoherence and of dissipation. Several in
esting experimental studies of decoherence have been
formed, e.g., in experiments on Schro¨dinger cat states of a
cavity field mode@7# and on single trapped ions in a contro
lable environment@8#.

To give a prominent example let us consider a quant
particle whose motion can be described by the Brown
motion master equation@9#, a high-temperature Markovia
quantum master equation for the reduced density matrixr(t)
given by
1050-2947/2001/63~3!/032102~18!/$15.00 63 0321
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@HS ,r~ t !#2

ig

\
@RW ,$PW ,r~ t !%#

2
2MgkBT

\2
†RW ,@RW ,r~ t !#‡. ~1!

Here,RW denotes the particle position andPW its canonically
conjugated momentum while

HS5
1

2M
PW 21V~RW ! ~2!

is the system Hamiltonian with an external potentialV. The
quantityg represents the relaxation rate,M the total mass,T
the temperature of the environment, andkB the Boltzmann
constant. It is well known that this equation leads to a s
pression of quantum coherence given through the factor

D5expF2gS DR

l̄
D 2

t f G ~3!

which multiplies the off-diagonal terms of the reduced de
sity matrix r(t f ,RW ,RW 8) in the position representation. Th
elapsed time is denoted byt f , while DR5uRW 2RW 8u measures
the distance to the diagonal of the density matrix. Accord
to the master Eq.~1! the relevant length is given by th
thermal wavelength

l̄5l̄ th[\/A2MkBT ~4!

of the Brownian particle. Equation~3! implies an exponentia
loss of coherence on a time scale given by the decohere
©2001 The American Physical Society02-1
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tD5tRS l̄ th

DR
D 2

. ~5!

Here, we have introduced the relaxation timetR51/g asso-
ciated with the damping process describing by the rateg.
Simple estimates on the basis of Eq.~5! then lead to the
conclusion that for macroscopic objects and distancesDR
the decoherence timetD becomes smaller than the relaxatio
time tR by many orders of magnitude@5#. Alternatively, one
can characterize decoherence by introducing a tim
dependent coherence lengthL(t f) by writing the decoher-
ence factor as

D5expF2
~DR!2

2L~ t f !
2G . ~6!

For quantum Brownian motion this yields

L~ t f !BM5
l̄ th

A2gt f

5
1

A2gt f

\

A2MkBT
}t f

21/2
•T21/2, ~7!

which is seen to decrease with the inverse square root o
temperature and of the elapsed time.

If one considers a quantum state of a composite ob
which represents a spatial superposition of two different
cations of its center of mass coordinate, decoherence re
from spontaneous or thermally induced transitions involv
internal degrees of freedom, or from the scattering of
incoming flux of real particles off the object. In these caseg
represents the transition or the scattering rate, whereas
relevant lengthl̄ is given by the wavelength of the radiatio
or by the de Broglie wavelength of the scattered particles@3#.

In this paper we study the emergence of decoherenc
quantum electrodynamics~QED! from an open system’s
viewpoint. More precisely, we consider the electromagne
radiation field as environment and investigate its influen
on the coherence of the matter variables. It will be dem
strated that the radiation degrees of freedom give rise
further decoherence mechanism which cannot be modele
any way as a Markovian process and which leads to a ph
cal picture for the destruction of coherence which diffe
substantially from the one indicated above. To study t
mechanism, we consider a prototypical interference dev
and ask for the reduction of the interference contrast indu
by the presence of a thermal radiation field. It is shown t
the radiation field leads to a loss of coherence which can
described by a gauge invariant relativistic decoherence fu
tional, a certain functional of the matter current densiti
This functional is Lorentz covariant at finite temperatur
and invariant at zero temperature, that is for the electrom
netic field vacuum.

The obtained decoherence functional has been already
rived in an interesting article by Ford@10# for the case of
zero temperature, with the aim to determine the influence
conducting boundaries on electron coherence. In cont
here we are interested in the vacuum and thermally indu
decoherence itself, that is in the loss of coherence whic
present even without boundaries. Other related approach
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this problem, which consider a single-electron coupled to
radiation field within the dipole approximation, have be
proposed by Barone and Caldeira@11#, by Dürr and Spohn
@12#, and by the authors@13#. In Ref. @11# it is emphasized
that the electromagnetic field provides a super-Ohmic en
ronment. In fact, if one invokes the dipole approximation f
the matter-field coupling the spectral density of the radiat
modes is seen to increase with the third power of the
quency. Such types of reservoirs are known to lead to imp
tant modifications of the simple physical mechanisms in
cated above@14#. The result found in Ref.@11# differs from
the one derived here, which is due to the use of a differ
initial condition for the coupled system. For a single electr
moving in a harmonic potential the results obtained in Re
@12# and @13# coincide in the high-temperature limit. How
ever, the authors of Ref.@12# argue that there might be n
decoherence effect in the vacuum case, whereas it has
shown in Ref.@13# that the electromagnetic field vacuu
does lead to a loss of coherence.

It will be shown in this paper that the underlying physic
mechanism for the loss of coherence described by the d
herence functional is the emission of bremsstrahlung thro
the matter currents. In fact, to observe an interference pat
between two spatially separated components of the state
tor, these components must be moved to one location.
thus the unavoidable creation of bremsstrahlung that caus
loss of coherence, that is, it is the relative motion of t
interfering components of a quantum superposition which
responsible for this decoherence process. As a result, a
perposition of two wave packets with zero velocity does n
decohere and thus the conventional picture of decoherenc
a decay of the off-diagonal peaks in the corresponding d
sity matrix does not apply to this decoherence mechani
Moreover, the time dependence for decoherence thro
bremsstrahlung is profoundly different from that given
the conventional theories and clearly exhibits the highly n
Markovian character of the process.

A crucial step in the analysis of the decoherence fu
tional is to investigate its infrared and ultraviolet structure
will be shown that a careful physical interpretation leads
the result that the decoherence functional is ultraviolet a
infrared convergent for finite temperatures as well as in
vacuum case. In addition, the analysis reveals that deco
ence through bremsstrahlung is in a certain sense the m
fundamental process since it always dominates for sh
times and for large particle numbers and because it oc
even in the vacuum state of the electromagnetic field, tha
at zero temperature and without real photons in the ini
state. An important conclusion is that the electromagne
field vacuum leads to a drastic suppression of the capab
of states of many identical charged particles to interfere.

The paper is organized as follows. In Sec. II we comb
field theoretic methods with a superoperator approach to
rive an exact, relativistic representation for the reduced d
sity matrix pertaining to the matter degrees of freedom. T
representation involves an influence phase functional
completely describes the influence of the electromagnetic
diation field on the matter dynamics.
2-2
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DESTRUCTION OF QUANTUM COHERENCE THROUGH . . . PHYSICAL REVIEW A63 032102
Our central goal in Sec. III is the derivation of the rel
tivistic decoherence functional which provides a quantitat
measure for the degree of the coherence of a quantum su
position. In addition, we shall develop an appropriate te
nique which allows the explicit determination of the dec
herence functional for simple interference devices. There
special attention is paid to demonstrate that the decoher
measure is ultraviolet as well as infrared finite. The expr
sions obtained for the vacuum and thermal coherence len
of QED will be compared with the corresponding ones of
conventional theories.

Finally, we investigate in Sec. IV the destruction of t
coherence of many-particle states. It will be argued th
while the decoherence effect is small for single electron
nonrelativistic speed, it is drastically amplified for certa
superpositions of many-particle states. Our conclusions
drawn in Sec. V.

II. THE INFLUENCE PHASE FUNCTIONAL OF QED

Employing functional techniques, we shall derive in th
section a superoperator representation for the influence p
functional of QED which completely describes the reduc
matter dynamics under the influence of a thermal radia
field. The influence phase will be given in the form of
functional of the super-operators of the matter current d
sity, involving certain Green functions of the radiation fie

A. Elimination of the radiation degrees of freedom

Our aim is to eliminate the variables of the electroma
netic radiation field to obtain an exact representation for
reduced density matrixrm of the matter degrees of freedom
The starting point is the following formal equation whic
relates the density matrixrm(t f) of the matter at some fina
time t f to the density matrixr(t i) of the combined matter
field system at some initial timet i ,

rm~ t f !5Trf H T← expF E
t i

t f
d4xL~x!Gr~ t i !J . ~8!

The Liouville superoperatorL(x) is defined by the relation

L~x!r[2 i @H~x!,r#,

wherer is any density operator of the combined system a
H(x) denotes the Hamiltonian density. Space-time coo
nates are denoted byx5xm5(x0,xW )5(t,xW ) and the inner
product of two four vectors is written asxy5xmym5x0y0

2xW•yW . All fields are taken to be in the interaction pictur
The dynamics of the interaction picture matter degrees
freedom may also contain an external classical field, for
ample, an external potentialV(x). The chronological time-
ordering operator for the interaction picture fields is deno
by T← and Trf stands for the trace over the variables of t
radiation field. Throughout the paper we use Heavisi
Lorentz units, such that\5c51 and the fine structure con
stant is given bya[e2/4p\c'1/137. Occasionally, we will
reintroduce factors ofc and\.
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To be specific we choose the Coulomb gauge in the
lowing which means that the Hamiltonian density takes
form @15–17#

H~x!5HC~x!1Htr~x!. ~9!

Here,

Htr~x!5 j m~x!Am~x! ~10!

represents the density of the interaction of the matter cur
density j m(x) with the transversal radiation field,

Am~x!5„0,AW ~x!…, ¹W •AW ~x!50, ~11!

and

HC~x!5 1
2 j 0~x!A0~x!

5 1
2 E d3y

j 0~x0,xW ! j 0~x0,yW !

4puxW2yW u
~12!

is the Coulomb energy density such that

HC~x0!5 1
2 E d3xE d3y

j 0~x0,xW ! j 0~x0,yW !

4puxW2yW u
~13!

is the instantaneous Coulomb energy.
Our first step consists in the decomposition of the ch

nological time-ordering operatorT← into a time-ordering op-
eratorT←

j for the matter current and a time-ordering opera
T←

A for the electromagnetic field,

T←5T←
j T←

A . ~14!

This enables one to write Eq.~8! as

rm~ t f !5T←
j S trf H T←

A expF E
t i

t f
d4x

3@LC~x!1Ltr~x!#Gr~ t i !J D , ~15!

where we have introduced the Liouville super-operators
the densities of the Coulomb field and of the transver
field,

LC~x!r[2 i @HC~x!,r#, Ltr~x!r[2 i @ j m~x!Am~x!,r#.
~16!

The currentsj m commute under the time orderingT←
j . We

may therefore treat them formally as commutingc-number
fields under the time-ordering symbol. Since the superop
tor LC(x) only contains matter variables, the correspond
contribution can be pulled out of the trace. Hence we ha
2-3
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HEINZ-PETER BREUER AND FRANCESCO PETRUCCIONE PHYSICAL REVIEW A63 032102
rm~ t f !5T←
j S expF E

t i

t f
d4xLC~x!G

3trf H T←
A expF E

t i

t f
d4xLtr~x!Gr~ t i !J D . ~17!

We now proceed by eliminating the time-ordering of t
A fields. With the help of the Wick theorem@18# we get

T←
A expF E

t i

t f
d4xLtr~x!G

5expF 1
2 E

t i

t f
d4xE

t i

t f
d4x8@Ltr~x!,Ltr~x8!#u~ t2t8!G

3expF E
t i

t f
d4xLtr~x!G . ~18!

In order to determine the commutator of the Liouville sup
operators we invoke the Jacobi identity which yields for
arbitrary test densityr,

@Ltr~x!,Ltr~x8!#r5Ltr~x!Ltr~x8!r2Ltr~x8!Ltr~x!r

52†Htr~x!,@Htr~x8!,r#‡

1†Htr~x8!,@Htr~x!,r#‡

52†@Htr~x!,Htr~x8!#,r‡. ~19!

The commutator of the transversal energy densities may
simplified to read

@Htr~x!,Htr~x8!#5 j m~x! j n~x8!@Am~x!,An~x8!#, ~20!

since the contribution involving the commutator of the cu
rents vanishes by virtue of the time-ordering operatorT←

j .
Thus it follows from Eqs.~19! and~20! that the commutator
of the Liouville superoperators may be written as

@Ltr~x!,Ltr~x8!#r52@Am~x!,An~x8!#@ j m~x! j n~x8!,r#.
~21!

It is useful to introduce current superoperatorsJ1(x) and
J2(x) by means of

J1
m ~x!r[ j m~x!r, J2

m ~x!r[r j m~x!. ~22!

ThusJ1(x) is defined to be the current density acting fro
the left, whileJ2(x) acts from the right on an arbitrary den
sity. With the help of these definitions we may write th
commutator of the Liouville superoperators as

@Ltr~x!,Ltr~x8!#52@Am~x!,An~x8!#J1
m ~x!J1

n ~x8!

1@Am~x!,An~x8!#J2
m ~x!J2

n ~x8!.

Inserting this result into Eq.~18!, we can write Eq.~17! as
03210
-

be

-

rm~ t f !5T←
j S expF E

t i

t f
d4xLC~x!

2 1
2 E

t i

t f
d4xE

t i

t f
d4x8u~ t2t8![Am~x!,An~x8!]

3J1
m ~x!J1

n ~x8!1
1

2Et i

t f
d4xE

t i

t f
d4x8u~ t2t8!

3@Am~x!,An~x8!#J2
m ~x!J2

n ~x8!G
3trf H expF E

t i

t f
d4xLtr~x!Gr~ t i !J D . ~23!

This is an exact formal representation for the reduced den
matrix of the matter variables. Note that the time ordering
the radiation degrees of freedom has been removed and
they enter Eq.~23! only through the functional

W@J1 ,J2#[trf H expF E
t i

t f
d4xLtr~x!r~ t i !G J , ~24!

since the commutator of theA fields is ac-number function.

B. The influence superoperator

The functional~24! involves an average over the fiel
variables with respect to the initial stater(t i) of the com-
bined matter-field system. It therefore contains all corre
tions in the initial state of the total system. Here, we a
interested in the destruction of coherence. Our central go
thus to investigate how correlations are built up through
interaction between matter and radiation field. We theref
consider now an initial state of low entropy which is give
by a product state of the form

r~ t i !5rm~ t i ! ^ r f , ~25!

whererm(t i) is the density matrix of the matter at the initia
time and the density matrixr f of the radiation field describe
an equilibrium state at temperatureT. Since we are using the
Coulomb gauge here we may write the latter state as

r f5
1

Zf
exp~2bH f !, ~26!

whereH f denotes the Hamiltonian of the free radiation fie
and the quantityZf5trf@exp(2bHf)# is the partition function
with b51/kBT. In the following we shall denote the averag
of some quantityO with respect to the thermal equilibrium
state~26! by

^O& f[trf$Or f%. ~27!

The influence of the special choice~25! for the initial
condition can be eliminated by pushingt i→2` and by
switching on the interaction adiabatically. This is the usu
procedure used in quantum field theory in order to defi
asymptotic states and theS matrix. The matter and the field
2-4
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DESTRUCTION OF QUANTUM COHERENCE THROUGH . . . PHYSICAL REVIEW A63 032102
variables are then described asin fields, obeying free field
equations with renormalized mass.

For an arbitrary initial conditionr(t i) the functional
W@J1 ,J2# can be determined, for example, by means o
cumulant expansion. Since the initial state~25! is Gaussian
with respect to the field variables and since the Liouv
superoperatorLtr(x) is linear in the radiation field, the cu
mulant expansion terminates after the second order term
addition, a linear term does not appear in the expansion
cause of̂ Am(x)& f50. Thus we immediately obtain

W@J1 ,J2#

5expF1

2Et i

t f
d4xE

t i

t f
d4x8^Ltr~x!Ltr~x8!& f Grm~ t i !.

~28!

Inserting the definition for the Liouville superoperatorLtr(x)
into the exponent of this expression one finds after so
algebra

1
2 E

t i

t f
d4xE

t i

t f
d4x8^Ltr~x!Ltr~x8!& frm

[2 1
2 E

t i

t f
d4xE

t i

t f
d4x8 trf$†Htr~x!,@Htr~x8!,rm^ r f #‡%5

2 1
2 E

t i

t f
d4xE

t i

t f
d4x8@^An~x8!Am~x!& fJ1

m ~x!J1
n ~x8!

1^Am~x!An~x8!& fJ2
m ~x!J2

n ~x8!

2^An~x8!Am~x!& fJ1
m ~x!J2

n ~x8!

2^Am~x!An~x8!& fJ2
m ~x!J1

n ~x8!#rm .

On using this result together with Eq.~28!, Eq. ~23! can be
cast into the form

rm~ t f !5T←
j S expF E

t i

t f
d4xLC~x!1

1

2Et i

t f
d4xE

t i

t f
d4x8

3$2~u~ t2t8!@Am~x!,An~x8!#

1^An~x8!Am~x!& f !J1
m ~x!J1

n ~x8!1~u~ t2t8!

3@Am~x!,An~x8!#2^Am~x!An~x8!& f !J2
m ~x!

3J2
n ~x8!1^An~x8!Am~x!& fJ1

m ~x!J2
n ~x8!

1^Am~x!An~x8!& fJ2
m ~x!J1

n ~x8!%G D rm~ t i !. ~29!

At this point it is useful to introduce the commutator fun
tion

D~x2x8!mn[ i @Am~x!,An~x8!#, ~30!

and the anticommutator function

D1~x2x8!mn[^$Am~x!,An~x8!%& f . ~31!
03210
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Correspondingly, we define a commutator superopera
Jc(x) and an anticommutator superoperatorJa(x),

Jc
m~x!r[@ j m~x!,r#, Ja

m~x!r[$ j m~x!,r%, ~32!

which are related to the previously introduced superopera
J6

m (x) by

Jc
m~x!5J1

m ~x!2J2
m ~x!, Ja

m~x!5J1
m ~x!1J2

m ~x!.
~33!

In terms of these quantities we can now write Eq.~29! as

rm~ t f !5T←
j exp~ iF@Jc ,Ja# !rm~ t i !, ~34!

where the influence phase functionalF@Jc ,Ja# is given by

iF@Jc ,Ja#5E
t i

t f
d4xLC~x!1E

t i

t f
d4xE

t i

t

d4x8

3H i

2
D~x2x8!mnJc

m~x!Ja
n~x8!

2
1

2
D1~x2x8!mnJc

m~x!Jc
n~x8!J . ~35!

These equations provide an exact representation for the
sity matrix of the matter variables which takes on the desi
form: It represents the influence of the radiation field on
matter dynamics in terms of the two fundamental two-po
correlation functionsD(x2x8) and D1(x2x8). One ob-
serves that the motion of the matter is determined by a tim
ordered exponential function whose exponentiF@Jc ,Ja# is a
bilinear functional of the current superoperatorsJc(x) and
Ja(x). Note that the double space-time integral in Eq.~35! is
already a time-ordered integral since the integration ovet8
5x08 extends over the time interval fromt i to t5x0. The first
part of the influence phase involving the commutator fun
tion describes dissipative effects andD(x2x8) is usually
called dissipation kernel in the context of nonrelativis
quantum Brownian motion@19#. The anticommutator func-
tion D1(x2x8) is often referred to as noise kernel and it
the corresponding part of the influence phase which is
sponsible for the decoherence through bremsstrahlung
will be discussed in the next section.

The representation~34! immediately yields the following
second-order equation of motion for the density matrix of
matter degrees of freedom,

d

dt
rm~ t !5E d3xLC~x!rm~ t !

1E d3xE
t i

t

d4x8

3F i

2
D~x2x8!mnJc

m~x!Ja
n~x8!rm~ t8!

2
1

2
D1~x2x8!mnJc

m~x!Jc
n~x8!rm~ t8!G . ~36!
2-5



n
ca
te
ta
th

a

a

op
o

b
o

ian

le

tio
fo

si
of

a
er
te

uld

e

ero
op-
ch
pre-

a-
of

Eq.
ce
nt
n of
help
the

re-
een
m

are
tate
em

gle-
i-

t the
. In

e to

of
nce
an

sent
ay

he

er-
f the

HEINZ-PETER BREUER AND FRANCESCO PETRUCCIONE PHYSICAL REVIEW A63 032102
It must be noted that this equation still provides a no
Markovian master equation since it involves the nonlo
dissipation and noise kernels. Various well-known mas
equations encountered in quantum optics and solid s
physics can be derived from this equation. For example,
quantum optical master equation@1# is obtained from it by
performing the Markovian and the rotating wave approxim
tion.

Invoking the nonrelativistic~dipole! approximation of Eq.
~36! one is led to the following equation of motion for
single electron with massm:

d

dt
rm~ t !5

i

2m2Et i

t

dt8D~ t2t8!@pW ~ t !,$pW ~ t8!,rm~ t8!%#

2
1

2m2Et i

t

dt8D1~ t2t8!†pW ~ t !,@pW ~ t8!,rm~ t8!#‡,

~37!

wherepW (t) represents the interaction picture momentum
erator canonically conjugated to the electron’s position co
dinatexW (t). The dissipation and the noise kernel of Eq.~37!
can be expressed in terms of the spectral density

J~v!5
e2

3p2
vQ~V2v! ~38!

as integrals over the photon frequenciesv,

D~ t2t8!5E
0

`

dvJ~v!sinv~ t2t8!, ~39!

D1~ t2t8!5E
0

`

dvJ~v!coth~bv/2!cosv~ t2t8!, ~40!

where we have introduced an ultraviolet frequency cutoffV.
The role of this cutoff for decoherence phenomena will
discussed in detail in the following section. The equation
motion ~37! should be contrasted to the quantum Brown
motion master Eq.~1!. Note that Eq.~37! is formulated in the
interaction picture, while Eq.~1! is written in the Schro¨-
dinger picture. One easily verifies that Eq.~37! yields the
following equation for the expectation value of the partic
position:

m
d2

dt2
^xW~ t !&1

d

dtEt i

t

dt8D~ t2t8!
d

dt8
^xW~ t8!&52^¹W V~xW !&.

~41!

One observes that this is the Ehrenfest equation of mo
corresponding to the classical Abraham-Lorentz equation
an electron@20#. The second term which contains the dis
pation kernelD(t2t8) describes the radiative damping
the particle motion. It can be shown that this term leads to
electromagnetic mass renormalization and to a damping t
involving the third derivative of the position coordina
@11,13#.
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We finally remark that several alternative strategies co
be used to arrive at an expression of the form~35! as, for
example, path integral techniques@21# or Schwinger’s closed
time-path method@22#. A similar expression for the influenc
phase functional has been given, for example, in Ref.@23#
without the Coulomb term and for the special case of z
temperature. In our derivation we have combined super
erator techniques with methods from field theory, whi
seems to be the most direct way to obtain an operator re
sentation of the reduced density matrix.

III. DECOHERENCE THROUGH EMISSION
OF BREMSSTRAHLUNG

In this section we wish to develop a relativistic formul
tion for the loss of coherence induced by the emission
bremsstrahlung. The starting point of our discussion is
~35! for the influence phase functional. The aim is to dedu
from that equation a quantitative, relativistically covaria
measure for the degree of coherence of a superpositio
spatially separated states. This can be achieved with the
of a simple interference device which is used to quantify
degree of coherence of such a superposition through the
sulting interference contrast. A similar approach has b
employed in Ref.@2# to study decoherence in quantu
Brownian motion.

A. Introducing the decoherence functional

The influence phase given in Eq.~35! provides an exact
expression as long as the electromagnetic field variables
in a Gaussian state, as, for example, the equilibrium s
~26!, and as long as the initial state of the combined syst
is given by a low-entropy factorizing state~25!. In Ref. @13#
we have obtained exact analytical expressions for the sin
electron propagator function within the non-relativistic d
pole approximation. These expressions take into accoun
finite width as well as the spreading of the wave packets
the general case, the formal Eq.~35! is, however, much too
complicated to be evaluated exactly and one must restor
various approximation schemes.

For the purpose of defining a measure for the degree
decoherence we shall employ the prototypical interfere
device which is sketched in Fig. 1. A charged particle, say
electron, is emitted by the sourceQ and can move along two
different world linesy1 andy2 to reach a screen atS, where
an interference pattern is observed. These paths repre
two quantum alternatives whose probability amplitudes m
be described by two wave packetsuC1(t i)& and uC2(t i)&.
With the help of the superposition principle we find that t
wave function

uC~ t i !&5uC1~ t i !&1uC2~ t i !& ~42!

describes the physical situation depicted in the figure. Alt
natively, the electron state can be represented in terms o
density matrixrm(t i)5uC(t i)&^C(t i)u which may be written
as

rm~ t i !5r11~ t i !1r22~ t i !1r12~ t i !1r21~ t i !, ~43!
2-6
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DESTRUCTION OF QUANTUM COHERENCE THROUGH . . . PHYSICAL REVIEW A63 032102
where r i j (t i)5uC i(t i)&^C j (t i)u. One observes the eme
gence of the interference termr12(t i)1r21(t i). Remember
that we are working in the interaction picture and that
therefore haverm(t i)5rm(t) for all times in the case of a
vanishing coupling between matter and electromagn
field.

Our aim is to determine with the help of the influen
superoperator the structure of the electron density matrixrm
in the presence of the electromagnetic radiation field.
essential simplification is achieved if the matter current d
sity can be treated as a classical current. This approxima
can be justified under the following conditions. First, w
assume that the wavelengthl̄5c/v of the photons emitted
by the currents is large compared to the Compton wa
length l̄C of the electron,

l̄@l̄C5
\

mc
, ~44!

and thus also large in comparison to the classical elec
radius r e5al̄C. This requirement is equivalent to\v
!mc2. In this low energy regime one may neglect pair c
ation and annihilation amplitudes and treat the matter cur
density as a given classical field@16,17#. The same procedur
is used, for example, in the nonperturbative analysis of
diative corrections in the low frequency limit~see Sec. III B!.
In an experiment of the type sketched in Fig. 1 the pa
involve an acceleration of the electron through a certain fi
of force. This force gives rise to a certain characteristic
celeration timetp . We definetp as the inverse of the highes
frequency in the spectrum of the force acting on the electr
In the following we calltp the preparation time since it ca
be interpreted as the time required to set into motion
interfering wave packets. As a consequence of the existe

FIG. 1. Sketch of a prototypical interference device which
employed to introduce the decoherence functional. An elec
emerges from the sourceQ and can follow two possible pathsy1

andy2, which leads, in general, to an interference pattern obse
on a screen atS. The two quantum alternatives may be describ
through the wave packetsuC1& and uC2&.
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of such a characteristic time we have a natural upper cu
Vmax for the frequency spectrum of the emitted radiati
which is of the order

Vmax;
1

tp
5

c

s0
, ~45!

where the length scales0 represents the order of the minim
wavelength of the radiation. Our above requirement th
takes the form

s0@l̄C. ~46!

This also implies that the characteristic acceleration timetp
is large compared tor e /c. It is known from classical elec-
trodynamics that this condition ensures that the energy r
ated is small compared to the kinetic energy of the part
and that therefore radiative damping effects are small@20#.

The second condition is that the motion of the current c
be reasonably described within a semiclassical approxi
tion. This leads to the requirementDv/v!1, wherev is a
typical velocity andDv the velocity uncertainty. Assuming
that the wave packets represent states of minimal uncerta
with spatial widthDx one is led to the condition

Dv
v

;
\

mvDx
!1, ~47!

or, equivalently,

l̄dB

Dx
!1, ~48!

wherel̄dB5\/mv is the de Broglie wavelength. This is th
typical condition for a semiclassical treatment.

In view of these conditions we now assume thatrm(t i)
represents a state which is an approximate eigenstate o
current density. Thus, ifrm(t i) is a pure state,

rm~ t i !5uC~ t i !&^C~ t i !u, ~49!

we suppose that

j m~x!uC~ t i !&'sm~x!uC~ t i !&, ~50!

where sm(x) is a classical current density. Hence we al
have to the same degree of accuracy,

Jc
m~x!rm~ t i !5@ j m~x!,rm~ t i !#'0. ~51!

The initial staterm(t i) does not necessarily have to be a pu
state. It suffices to require Eq.~51!, where

^ j m~x!&5trm$ j m~x!rm~ t i !%5sm~x! ~52!

is the expectation value of the current density. In any case
immediately obtain with the help of Eq.~51! and expression
~35! for the influence phase

rm~ t f !'rm~ t i !. ~53!

n

d

2-7
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HEINZ-PETER BREUER AND FRANCESCO PETRUCCIONE PHYSICAL REVIEW A63 032102
This equation states that the system is essentially unaffe
by the radiation field, i.e., by virtue of our assumption th
the initial state is a current eigenstate, the dynamics of
density matrix is that of a free system. The same conclus
has been obtained in Ref.@13#, where the dynamics o
Gaussian wave packets was investigated using the exact
lytical expression for the propagator function in the dipo
approximation.

Let us now return to the interference device and assu
that the superposition~42! consists of two current eigen
states,

j m~x!uC1~ t i !&'s1
m~x!uC1~ t i !&,

~54!
j m~x!uC2~ t i !&'s2

m~x!uC2~ t i !&,

wheres1(x) ands2(x) are classical current densities. The
currents are assumed to be concentrated within two w
tubes around the pathsy1 andy2 of the interference device
respectively. By virtue of Eq.~54! we have

Jc
m~x!r1~ t i !'Jc

m~x!r2~ t i !'0,

Jc
m~x!r12~ t i !'@s1

m~x!2s2
m~x!#r12~ t i !,

Ja
m~x!r12~ t i !'@s1

m~x!1s2
m~x!#r12~ t i !,

and

LC~x!r1~ t i !'LC~x!r2~ t i !'0,

LC~x!r12~ t i !'2 i @HC1~x!2HC2~x!#r12~ t i !,

where

HC1,2~x!5 1
2 E d3y

s1,2
0 ~x0,xW !s1,2

0 ~x0,yW !

4puxW2yW u
~55!

are the Coulomb energy densities associated with the cu
densitiess1

m(x) and s2
m(x), respectively. We may suppos

that the corresponding Coulomb energies for both poss
paths are equal to each other. The expression~35! for the
influence phase functional now immediately leads to

rm~ t f !'r1~ t i !1r2~ t i !1exp~ iF!r12~ t i !

1exp~2 iF* !r21~ t i !, ~56!

where

iF5E
t i

t f
d4xE

t i

t

d4x8
i

2
D~x2x8!mn@s1

m~x!2s2
m~x!#

3@s1
n~x8!1s2

n~x8!#2 1
4 E

t i

t f
d4xE

t i

t f
d4x8

3D1~x2x8!mn@s1
m~x!2s2

m~x!#@s1
n~x8!2s2

n~x8!#.

We see here that the electromagnetic field affects the in
ference terms through a complex phaseF@s1 ,s2# which is a
functional of the two possible classical pathsy1 andy2, or,
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more precisely, of the associated current densitiess1
m(x) and

s2
m(x). The real part ofF leads to a distortion of the inter

ference pattern. What is interesting in the present contex
the imaginary part of the phase functional which yields
suppression of the interference contrast. Thus we obs
that it is the functional

G@s1 ,s2#52 1
4 E

t i

t f
d4xE

t i

t f
d4x8D1~x2x8!mn

3@s1
m~x!2s2

m~x!#@s1
n~x8!2s2

n~x8!# ~57!

which measures the degree of decoherence, and which
therefore be referred to as decoherence functional. Alte
tively, we can writeG in terms of the current difference,

cm~x!5
1

A2
@s1

m~x!2s2
m~x!#, ~58!

as follows:

G@c#52 1
2 E

t i

t f
d4xE

t i

t f
d4x8D1~x2x8!mncm~x!cn~x8!.

~59!

The above expressions lead to several physically interes
interpretations which will be discussed in the next subs
tion. Explicit formulas for the decoherence functional will b
obtained in Sec. III C.

B. Physical interpretation

Let us first discuss the transformation properties of
decoherence functional. Expression~59! describes the loss o
coherence for physical situations like the one sketched
Fig. 1. We taket0 to be the time corresponding toQ, that is
as the time at which the wave packet is separated into
components, whilet f denotes the final time when both pac
ets are recombined atS. It is obvious that the current differ
encecm(x) vanishes for times prior tot0 and for times later
than the final timet f . In fact, the support of the curren
differencecm(x) lies in the interior of a closed world tub
around the loopl which is formed by followingy1 in the
positive andy2 in the negative direction. Formally, we writ
this loop as

l 5y12y2 . ~60!

Current conservation therefore enables us to write the de
herence functional as follows:

G@c#52 1
2 E d4xE d4x8D1~x2x8!mncm~x!cn~x8!,

~61!

where the covariant form for the anti-commutator functi
can be used,

D1~x2x8!mn52gmnD1~x2x8!, ~62!

with the scalar function
2-8
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DESTRUCTION OF QUANTUM COHERENCE THROUGH . . . PHYSICAL REVIEW A63 032102
D1~x2x8!5E d3k

2~2p!3v
$exp@2 ik~x2x8!#

1exp@ ik~x2x8!#%coth~bv/2!. ~63!

Equation ~61! shows that the decoherence functional p
vides a decoherence measure which is both relativistic
covariant and gauge invariant. In addition, it is Lorentz
variant in the vacuum case. To see this we recall that at z
temperature the anticommutator function is given by the
variant function

D1~x2x8!vac5E d3k

2~2p!3v
$exp@2 ik~x2x8!#

1exp@ ik~x2x8!#%

52
1

2p
P

1

~x2x8!2
, ~64!

where P denotes the principal value.
The form ~61! suggests an interesting representation

the decoherence functional in terms of a double loop inte
@10#. To this end, we consider a current density of the fo

sm~x!5eE
2`

`

dtum~t!d„x2y~t!…, ~65!

wherey(t) is some timelike world line parameterized by th
proper timet, and

um~t!5
dym~t!

dt
, umum51,

is the four velocity. Apart from the assumption of an ide
ized line density this formula neglects the spin contribut
to the current. In fact, one has from the Gordon decomp
tion of the Dirac current density@24#,

sm5ec̄gmc5
e

2m
@c̄~pmc!2~pmc̄!c#2

ie

2m
pn~ c̄smnc!.

~66!

The first part on the right-hand side represents the convec
current density which leads to Eq.~65!, while the second par
is known as the spin current density. The spin current den
can be neglected as long as the length scales involved in
problem under consideration are large compared to
Compton wavelength@10#. Under this condition the decohe
ence functional~61! can be expressed as a double integ
over the closed pathl,

G@c#52
e2

4 R
l
dxm R

l
dx8nD1~x2x8!mn . ~67!

Again, this representation exhibits the manifest Lorentz
variance and the gauge invariance of the decoherence f
tional.
03210
-
ly
-
ro
-

r
al

-

i-

on

ty
he
e

l

-
c-

An equation of the form~67! has been derived by For
@10# using a different technique. We remark that there a
however, two substantial differences. First, we note that E
~61! and~67! involve the temperature-dependent Green fu
tion D1(x2x8)mn of the electromagnetic field@see Eqs.~31!
and~63!#, whereas Ford’s expression only involves the ze
temperature Green function defined as a vacuum expecta
value. Equation~67! is therefore more general than the e
pression given by Ford. In particular, it allows to study t
full temperature dependence of decoherence and enable
to compare the influence of the vacuum field with that of t
thermal field~see the next subsection!. Second, it must be
emphasized that it is the influence of conducting bounda
on the loss of coherence what is investigated in Ref.@10#. To
this end, the difference of the Green function satisfying
boundary conditions to the vacuum Green function is sub
tuted into Eq.~67!. This means that the difference betwe
decoherence with and without boundaries is studied in R
@10#, whereas here the vacuum decoherence itself will
examined.

For the physical interpretation of the decoherence fu
tional it is useful to introduce the Feynman propagator a
its complex conjugated (T→ denotes the antichronologica
time-ordering operator!,

iD F~x2x8!mn[^T←@Am~x!An~x8!#& f

5u~ t2t8!@Am~x!,An~x8!#

1^An~x8!Am~x!& f ,
~68!

iD F* ~x2x8!mn[2^T→@Am~x!An~x8!#& f

5u~ t2t8!@Am~x!,An~x8!#

2^Am~x!An~x8!& f ,

as well as the two-point correlation functions

D1~x2x8!mn[^Am~x!An~x8!& f ,
~69!

D2~x2x8!mn[^An~x8!Am~x!& f .

Expressing the anticommutator function in terms of t
Feynman propagator,

D1~x2x8!mn5 iD F~x2x8!mn2 iD F* ~x2x8!mn , ~70!

we obtain for the influence phase factor~57! the following
expression:

exp~ iF@s1 ,s2# !5A@s1#A@s2#*

3expF 1
2 E d4xE d4x8

3@D2~x2x8!mns1
m~x!s2

n~x8!

1D1~x2x8!mns2
m~x!s1

n~x8!#G , ~71!

where we have introduced the definition
2-9
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HEINZ-PETER BREUER AND FRANCESCO PETRUCCIONE PHYSICAL REVIEW A63 032102
A@ j #5expF2
i

2E d4xE d4x8DF~x2x8!mn j m~x! j n~x8!G .
~72!

At zero temperatureA@ j # is the vacuum-to-vacuum ampl
tude@25# in the presence of a classical current densityj m(x).
The first term on the right-hand side in Eq.~71! is thus the
product of the vacuum-to-vacuum amplitudes in the prese
of the current densitiess1

m ands2
m , respectively. This contri-

bution describes virtual processes in which photons are e
ted and reabsorbed by either the currents1

m or by s2
m . Corre-

spondingly, the exponential on the right-hand side of E
~71! is the contribution of the emission of at least one ph
ton. These processes also contribute to the decoherence
tional since a photon can be emitted by both currents
carries away information on the path taken by the electr
Moreover, at finite temperatures thermally induced emiss
and absorption processes occur. It will be seen in the n
subsection that the radiation field shows the typical spect
of bremsstrahlung.

With the help of Eq.~70! we can write the decoherenc
functional as

G@c#52
i

2E d4xE d4x8DF~x2x8!mncm~x!cn~x8!1c.c.,

~73!

where c.c. means complex conjugated. Thus we see th
zero temperature the decoherence factor can be express

exp~G@c# !5A@c#A@c#* . ~74!

Obviously, we haveG@c#<0, andG@c#50 for s1
m5s2

m , that
is for a vanishing current difference,cm50. Equation~74!
gives rise to another interesting interpretation: The deco
ence factor which multiplies the interference term is given
the no-photon emission probability in the presence of
current densitycm. This current is the same as the curre
which would be created by two particles with oppos
charges6e/A2, one moving alongy1 and the other along
y2. The smaller is the vacuum-to-vacuum amplitude for t
current density the larger is the reduction of the interfere
contrast. This must have been expected since it is the di
ence between the currentss1 and s2 which determines the
extent to which the two possible paths can be distinguish
and, thus, the degree of the loss of coherence.

These interpretations in terms of the emitted photons m
be taken, however, with some care. The reason is that
consider here processes on a finite time scale and not tr
tions between asymptotic states. It is well known that cert
matter currents emit an infinite number of long-wavelen
~soft! photons whose frequencies approach zero, while t
total energy adds up to a finite value. This is the so-ca
infrared catastrophe@15,16# which arises in the perturbativ
calculation of radiative corrections to any process involv
charged matter. The complete removal of infrared div
gences requires a nonperturbative treatment in which the
plitudes for the emission of real and virtual soft photons
summed to all orders, such that the processes involving
03210
ce

it-

.
-
nc-
d

n.
n
xt
m

at
d as

r-
y
e
t

s
e
r-

d,

st
e
si-

in
h
ir
d

-
m-
e
al

and virtual photons become indistinguishable in the low f
quency limit. Infrared divergences can be shown to can
provided a finite resolutionVmin for the photodetection is
introduced: Insisting on the perturbative picture, one co
say that there is always an infinite number of quanta, nam
those whose frequency is lower thanVmin , which escapes
undetected and cannot be observed in principle.

Our analysis treats the matter current classically but i
nonperturbative@16#. In view of the above considerations
is obvious that the decoherence functionalG@c# does not
lead to infrared divergences since it describes a process
ing place in the finite time interval between the splitting
the wave packet att0 and the recombination att f . This gives
rise to a natural frequency resolution of the order

Vmin;
1

t f2t0
. ~75!

The emergence of this effective infrared cutoff will be se
explicitly in the calculations of the next subsection, where
will be demonstrated that the arising integrals over the p
ton frequencies converge at the lower limitv→0. In addi-
tion we also have an ultraviolet cutoffVmax which has al-
ready been introduced in Eq.~45!. This cutoff can accounted
for by the introduction of a finite widths0 characterizing the
current world tube, as will be seen in the next subsection

C. Determination of the decoherence functional

We wish to derive here explicit formulas for the decohe
ence functional corresponding to the interference device
picted in Fig. 1. On using Eqs.~61!, ~62!, and~63! we find

G@c#52E d3k

2~2p!3v
coth~bv/2!@2cm~k!cm~k!* #,

~76!

where we use the notationk5(v,kW )5(ukW u,kW ) for the wave
vector and

cm~k![E d4x exp~2 ikx!cm~x! ~77!

is the Fourier transform of the current difference.
Let us first show explicitly how a finite width of the cur

rent world tubes gives rise to an ultraviolet cutoff scale.
this end, the currentss1

m(x) and s2
m(x) are taken to be con

centrated within world tubes of spatial extents0 around the
world linesy1(t) andy2(t). To be specific we write

s1,2
m ~x!5eE dtu1,2

m ~t!ds0
„x2y1,2~t!…, ~78!

where

ds0
~x2x8!5d~x02x08!

1

~2ps0
2!3/2

expF2
~xW2xW8!2

2s0
2 G

~79!
2-10
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DESTRUCTION OF QUANTUM COHERENCE THROUGH . . . PHYSICAL REVIEW A63 032102
is a smearedd function described by a Gaussian with wid
s0. Using Eq.~78! in Eq. ~77! we find for the Fourier trans
form of the current difference

cm~k!5
e

A2
F E dtu1

m~t!exp@2 iky1~t!#

2E dtu2
m~t!exp@2 iky2~t!#GexpF2

1

2
s0

2v2G .
~80!

We see that the finite widths0 of the current world tubes
yields an effective ultraviolet cutoffVmax;s0

21 as given in
Eq. ~45!. Our main interest is an estimation of the decoh
ence functional for some specific situations. We theref
ignore in the following the specific form of the cutoff func
tion in Eq.~80! and work with a sharp cutoff at the maxim
frequencyv5Vmax. It will be seen below that the final ex
pression forG@c# depends onVmax only through lnVmax.
This extremely weak logarithmic dependence shows that
precise value ofs0 or of the preparation timetp is rather
irrelevant. The important point to note here is that the em
gence of an effective ultraviolet cutoff has a clear physi
origin.

Thus we now write Eq.~76! as

G@c#52
e2

16p3E0

Vmax
dvv coth~bv/2!

3E dV~ k̂!@2cm~k!cm* ~k!#, ~81!

where

cm~k!5
e

A2
R

l
dxm exp~2 ikx!, ~82!

and dV( k̂) denotes the element of the solid angle into t
direction of the unit vectork̂[kW /ukW u. For simplicity let us
consider the case that the loopl consists of four straigh
world line segments@see Fig. 2~a!#. The four vertices of the
loop are denoted bya0 ,a1 ,a2 ,a3, whereas the correspond
ing four velocities areu1 ,u2 ,u3 ,u4. We further assume tha
the arrangement is symmetric, that is,

u15u4 , u25u3 , ~83!

and

a12a05a22a3 , a22a15a32a0 . ~84!

For a single line segment with initial pointa, endpointb, and
four velocity u @see Fig. 2~b!# we obtain

E
a

b

dx exp~2 ikx!5 i
u

ku
@e2 ikb2e2 ika#. ~85!

With the help of this formula the Fourier transform~82! of
the current difference is found to be
03210
-
e

e

r-
l
c~k!5

ie

A2
H 1

u1

ku1
@e2 ika12e2 ika0#1

u2

ku2
@e2 ika22e2 ika1#

2
u3

ku3
@e2 ika32e2 ika0#2

u4

ku4
@e2 ika22e2 ika3#J .

~86!

It should be noted thatkmcm(k)50 as required by curren
conservation. Note further thatcm(k) shows the correct be
havior under Lorentz transformations, in particular, one fin
that cm(k) transforms intocm(k)exp(2ikb) under a space-
time translations by the four vectorb. If we now use the
symmetry properties of the loop we arrive at

c~k!5
ie

A2
F u2

ku2
2

u4

ku4
GG~k!, ~87!

where we have introduced

G~k!5e2 ika2~12eik(a22a3)!~12eik(a22a1)!.

Using these results one is led to the following express
for the decoherence functional:

G@c#5
a

8p2E0

Vmax dv

v
coth~bv/2!

3E dV~ k̂!v2F u2

ku2
2

u4

ku4
G2

uG~k!u2. ~88!

We denote the time interval associated with a single l
element of the loop byt f , that is we sett052t f and t f
2t052t f @see Fig. 2~a!#. Then we have

k~a22a3!5vt f~12 k̂•vW 4!, k~a22a1!5vt f~12 k̂•vW 2!.

In order to estimate further the expression~88! we approxi-
mate

FIG. 2. ~a! The closed loopl used for an explicit determination
of the decoherence functionalG@c#. The loop consists of four
straight world line segments with four velocitiesu1 ,u2 ,u3 ,u4. The
vertices are located at the space-time pointsa0 ,a1 ,a2 ,a3. As indi-
cated, the loop corresponds to the total time 2t f . ~b! A single line
segment with initial pointa, endpointb, and four velocityu.
2-11
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k~a22a3!'k~a22a1!'vt f , ~89!

which leads to

uG~k!u258F ~12cosvt f !2
1

4
~12cos 2vt f !G .

This allows us to estimate the decoherence functional~88! as
follows:

G@c#'
a

p2E0

Vmax dv

v
coth~bv/2!

3F ~12cosvt f !2
1

4
~12cos 2vt f !G

3E dV~ k̂!v2F u2

ku2
2

u4

ku4
G2

. ~90!

Let us first concentrate on the integral over the photon
quenciesv, that is on the first integral on the right-hand si
of Eq. ~90!. The integrand is proportional tov21, which is a
typical signature for the spectrum of bremsstrahlung@20#. In
addition to vacuum bremsstrahlung there may be therm
induced emission and absorption processes@18#, which are
embodied in the factor coth(bv/2). At zero temperature
~vacuum field! this factor may be replaced by 1.

In order to calculate the frequency integral it turns out
be useful to decompose it into a vacuum contribution an
thermal contribution which vanishes forT50. We therefore
write

F[E
0

Vmax dv

v
coth~bv/2!~12cosvt f ![Fvac1F th ,

~91!

where

Fvac[E
0

Vmax dv

v
~12cosvt f ! ~92!

is the vacuum contribution, while

F th[E
0

Vmax dv

v
@coth~bv/2!21#~12cosvt f ! ~93!

is the thermal contribution. The frequency integralFvac can
be evaluated as follows. Substitutingx5vt f we get

Fvac5E
0

Vmaxt f dx

x
~12cosx!5 ln~gVmaxt f !1OS 1

Vmaxt f
D ,

~94!

where lng'0.577 is Euler’s constant@26#. For Vmaxtf@1 we
thus have asymptotically

Fvac' ln~gVmaxt f !. ~95!

This relation demonstrates that the vacuum integral over
photon frequencies converges at the lower limitv→0 and
03210
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that it gives rise to an effective infrared cutoff of the ord
Vmin;1/t f , as discussed in the previous subsection@see Eq.
~75!#. We also observe that the vacuum frequency integ
increases weakly with the logarithm ofVmaxtf . As indicated
in Eq. ~95! we keep for simplicity in the following only the
leading contribution in our expressions. It should be kept
mind, however, that one can include without difficulties t
terms of higher order which vanish in the limitVmaxtf→`.

To determine the thermal contributionF th we first write
Eq. ~93! as follows:

F th5
1

bE0

t f
dtE

0

bVmax
dx@coth~x/2!21#sin~ tx/b!, ~96!

where we have introduced the integration variablex5bv
5v/kBT. For temperaturesT obeying

kBT!\Vmax ~97!

the upper limit of the integral overx can be shifted to infin-
ity. To give an example for this condition we take the ultr
violet cutoff Vmax;1019 s21, corresponding to a length sca
of the order 100l̄C. The requirement~97! then means tha
T!108 K. Under this condition we find

F th'
1

bE0

t f
dtE

0

`

dx@coth~x/2!21#sin~ tx/b!

5
1

bE0

t f
dtFp cothS pt

b D2
b

t G
5 lnS sinh~ t f /tB!

t f /tB
D . ~98!

The quantity

tB[
b

p
[

\

pkBT
'2.4310212 s/T@K# ~99!

represents the correlation time of the thermal radiation fi
@1#.

On using the results~95! and~98! we can now determine
the frequency integral in Eq.~90!,

E
0

Vmax dv

v
coth~bv/2!F ~12cosvt f !2

1

4
~12cos 2vt f !G

'
3

4
ln~gVmaxt f !1 lnS sinh~ t f /tB!

t f /tB
D

2
1

4
lnS sinh~2t f /tB!

2t f /tB
D . ~100!

It remains to calculate the angular integral in Eq.~90!,
that is, we have to evaluate integrals of the form

I ~un ,um![E dV~ k̂!v2
unum

~kun!~kum!
, ~101!
2-12
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DESTRUCTION OF QUANTUM COHERENCE THROUGH . . . PHYSICAL REVIEW A63 032102
where n,m52,4. To determine these integral we first no
that the integrand does not depend onv as is easily recog-
nized with the help of the relations

unum5gngm~12vW n•vW m!,

kun5vgn~12 k̂•vW n!,

where

gn[A 1

12uvW nu2
.

Therefore we obtain

I ~un ,um!5E dV~ k̂!
12vW n•vW m

~12 k̂•vW n!~12 k̂•vW m!
. ~102!

Next we observe that the combinationdV( k̂)v2 is an invari-
ant quantity, such thatI (un ,um) is a Lorentz invariant inte-
gral. To determine this integral we may therefore transfo
to a coordinate system in which the second velocity is eq
to zero, that isvW m50. In this system the magnitudevn

5uvW nu of the first velocity is equal to the relative velocity

vnm[A12
1

~unum!2
, ~103!

which is, by definition, a relativistic invariant quantity. Thu
we now have by virtue of Eq.~102!

I ~un ,um!5E dV~ k̂!
1

12 k̂•vW n

52pE
21

11 dz

12vnmz

5
4p

vnm
tanh21vnm . ~104!

This formula is correct also for the caseun5um , giving
I (un ,un)54p, as may be seen directly from the expansi
of tanh21(x) for small argumentsx,

tanh21x5x1
1

3
x31

1

5
x51¯ . ~105!

Thus we find

E dV~ k̂!v2F u2

ku2
2

u4

ku4
G2

5I ~u2 ,u2!1I ~u4 ,u4!22I ~u2 ,u4!

528pS 1

v24
tanh21v2421D . ~106!

Substituting Eqs.~106! and~100! into Eq. ~90! we finally
obtain

G@c#5Gvac1G th , ~107!
03210
al

where

Gvac'2
6a

p
ln~gVmaxt f !S 1

v24
tanh21v2421D ~108!

is the vacuum decoherence functional and

G th'2
8a

p F lnS sinh~ t f /tB!

t f /tB
D2

1

4
lnS sinh~2t f /tB!

2t f /tB
D G

3S 1

v24
tanh21v2421D ~109!

is the thermal contribution to the decoherence functional.
expected, we see from these expressions thatG@c# strongly
depends on the relative velocityv24 which is due to the fact
that the decoherence is caused by the emission of bre
strahlung. The largerv24 the larger is the involved accelera
tion of the charged particle which creates the radiation fie

An important result is that bremsstrahlung leads to a p
tial destruction of coherence even at zero temperature.
magnitude of the vacuum contributionGvac is seen to in-
crease as the logarithm of the timet f if the relative velocity
is held fixed. This weak dependence is connected to the
fective infrared resolutionVmin;1/t f of the interference de-
vice: For increasingt f photons of lower and lower frequen
cies could in principle be detected and thus more and m
information is lost on tracing over the photon field. On t
other hand, the term within the square brackets in Eq.~109!
approachest f /2tB for t f@tB . Thus keeping fixed the rela
tive velocity the magnitude of the thermal contributionG th
increases linearly witht f for timest f@tB . This describes the
decohering influence of absorption and emission proce
induced by the thermal field. It follows that for short time
the vacuum contribution dominates, while decoherence
mainly due to thermally induced processes for large tim
The time t f* corresponding to the crossover between th
two regimes is determined by the relation

ln~gVmaxt f* !5
2

3

t f*

tB
. ~110!

TakingVmax;1019 s21 andT51 K we find from this con-
dition that the crossover time is of the order

t f* '30tB'10210 s. ~111!

This means that for the given example the vacuum deco
ence dominates for times small compared to 10210 s.

To facilitate the further discussion, let us investigate t
case of opposite velocities with equal magnitude, that isvW 1

5vW 452vW 252vW 3 @see Fig. 2~a!#. The relative velocity is
then found to be

v245
2v

11v2
, ~112!

where
2-13
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v5
uaW 12aW 3u

2t f
. ~113!

This situation corresponds to the case of two wave packe
a superposition which first move apart with opposite velo
tiesvW 1 andvW 352vW 1, respectively, and, having reached the
maximal distanceuaW 12aW 3u, approach each other again wi
velocitiesvW 2 andvW 452vW 2. For nonrelativistic velocities we
havev24'2v and we may use the expansion~105! to obtain

G th'2
16a

3p

t f

tB
v2, t f@tB . ~114!

One can then ask the following question: Given a fixed el
tron energy, that is a fixed velocityv, how far can we coher-
ently separate the components of the electronic state wit
exceeding a given thresholduG0u for the decoherence? Pro
vided the thermal contribution dominates, Eq.~114! leads to
the condition

16a

3p

t f

tB
v25uG0u, ~115!

from which we obtain the maximal possible separation

dmax52vt f5
3puG0u

8a

ctB

v/c
. ~116!

ChoosinguG0u50.01, which corresponds to a threshold
1% decoherence, we find that the maximal distance aT
5300 K is given by

dmax'
4

v/c
mm. ~117!

This shows that one can achieve rather large coherent s
rations for nonrelativistic electrons. For example, in the
periment performed by Hasselbachet al. @27# an electronic
beam was coherently separated by a lateral distance of a
d5100 mm. To compare this experiment with our resu
we take an electron energy of 1 keV and use a fixed valu
10 cm for the distance corresponding to the time inter
from t0 to t f . For uG0u50.01 condition~115! then yields
dmax'4.5 cm atT51 K anddmax'0.26 cm atT5300 K.
Note that the quantityv in Eq. ~115! represents the magn
tude of the lateral component of the electron velocity in
experiment, which is due to the fact that it is the relati
velocity that enters the formula for the decoherence fu
tional. The values obtained fordmax are large compared with
the lateral distanced reported in Ref.@27#, demonstrating
that our theory is in full agreement with experiment.

The result expressed through Eqs.~108! and ~109! can
also be discussed from another point of view. Namely,
stead of keeping fixed the velocityv @Eq. ~113!#, we consider
a fixed maximal spatial distanceuaW 12aW 3u between the paths
Thus for increasingt f the velocityv becomes smaller an
smaller and, consequently, the decoherence effect thro
bremsstrahlung becomes smaller and smaller. For la
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enough timesv is nonrelativistic such that the vacuum an
the thermal contribution to the decoherence functional
given by

Gvac'2
2a

p
ln~gVmaxt f !

uaW 12aW 3u2

t f
2

, ~118!

and

G th'2
8a

3p F lnS sinh~ t f /tB!

t f /tB
D

2
1

4
lnS sinh~2t f /tB!

2t f /tB
D G uaW 12aW 3u2

t f
2

. ~119!

According to Eq.~118! the magnitude ofGvac decreases es
sentially ast f

22 , while Eq.~119! shows that the magnitude o
the thermal contributionG th decreases ast f

21 for t f@tB ,

G th'2
4a

3p

uaW 12aW 3u2

t ftB
. ~120!

We again observe the crossover between two regime
times: For short times the vacuum decoherence domina
whereas the thermally induced decoherence dominates
large times. This can be seen in Fig. 3 where we have plo
the expressions~108! and~109! as a function oft f for a fixed
value of uaW 12aW 3u.

FIG. 3. The vacuum contributionGvac and the thermal contribu-
tion G th of the decoherence functionalG. For a fixed maximal dis-

tanceuaW 12aW 3u5ctB between the paths, the two contributions a
plotted against the timet f which is measured in units of the therm
correlation timetB . The temperature was chosen to beT51 K
and Vmax51019 s21. One observes the decrease of both contrib
tions for increasing time, demonstrating the vanishing of decoh
ence effects for long times. The thermal contributionG th vanishes
as t f

21 , while the vacuum contributionGvac decays essentially a
t f

22 , leading to a crossover between two regimes dominated by
vacuum and by the thermal contribution, respectively.
2-14
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DESTRUCTION OF QUANTUM COHERENCE THROUGH . . . PHYSICAL REVIEW A63 032102
The expressions~118! and ~120! suggest to define a
vacuum and a thermal coherence length by means of

Gvac[2
uaW 12aW 3u2

2L~ t f !vac
2

, G th[2
uaW 12aW 3u2

2L~ t f ! th
2

, ~121!

in analogy to Eq.~6!. This leads to~reintroducing factors of
c)

L~ t f !vac5A p

4a ln~gVmaxt f !
ctf'

10.4

Aln~gVmaxt f !
ctf ,

~122!

and

L~ t f ! th5A3p

8a
Ac2tBt f'12.7Ac2tBt f}t f

1/2T21/2.

~123!

Equation~122! implies that the vacuum coherence length
roughly of the order

L~ t f !vac;ctf . ~124!

This simple result means that for a given timet f the radiation
field does not destroy quantum coherence on length sc
which are small compared to the distance that light trav
during this time. This also explains why the radiation field
quite ineffective in destroying quantum coherence of sing
localized electrons.

It is interesting to compare the thermal coherence len
~123! with the corresponding result~7! obtained from the
quantum Brownian motion master equation. We observe
both expressions are proportional toT21/2. The time depen-
dence, however, is completely different: WhileL(t f)BM de-
creases ast f

21/2, the coherence lengthL(t f) th increases as
t f
1/2. This means that fort f→` one has total destruction o

coherence in the Brownian motion case, whereas coher
is completely maintained in the QED case.

We close this section by considering briefly another int
ference device which is depicted in Fig. 4: Here we supp

FIG. 4. A current loop involving two line segments which me
in the infinite past@compare with Fig. 2~a!#. This situation corre-
sponds to an interference device in which the relative velocityv13

between the interfering wave packets vanishes initially.
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that the wave packets brought to interference are at rest
tially. As indicated in the figure this case corresponds to
situation in which the line segments described by the f
velocitiesu1 andu3 meet each other in the infinite past. Thu
we setu15u3 in Eq. ~86! to obtain

c~k!5
ie

A2
H u1

ku1
@e2 ika12e2 ika3#

1
u2

ku2
@e2 ika22e2 ika1#2

u4

ku4
@e2 ika22e2 ika3#J .

~125!

Performing here the approximation~89! we are again led to
expression~88!, where now

uG~k!u252~12cosvt f !,

which immediately yields the expression

G@c#52
2a

p F ln Vmaxt f1 lnS sinh~ t f /tB!

t f /tB
D G

3S 1

v24
tanh21v2421D . ~126!

In the nonrelativistic limit we use the expansion~105! to
obtain

G@c#'2
8a

3p F ln~gVmaxt f !1 lnS sinh~ t f /tB!

t f /tB
D Gv2,

~127!

where we have again assumedvW 252vW 4. This result is iden-
tical to the one found in Ref.@13# using the dipole approxi-
mation for the matter-field coupling.

IV. DECOHERENCE OF MANY-PARTICLE STATES

For single electrons the vacuum decoherence thro
bremsstrahlung turns out to be small at nonrelativis
speeds. For example, takingVmax;c/l̄C and t f of the order
of 1s, and using a velocityv which is already as large as 1/1
of the speed of light, one finds thatuGvacu;1022, which cor-
responds to a 1% suppression of interference. By virtue
the weak logarithmic dependence on the cutoff scale
estimate is true also for other particles carrying an elem
tary charge.

Matters change, however, drastically if one considers
superposition of two states of a system which is compose
N identical particles with massm and chargee. Let us con-
struct an effective master equation for the densityrcm(RW ,RW 8)
of the center of mass coordinate

RW 5
1

N (
i 51

N

xW i ~128!
2-15
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for such a system. Here, thexW i are the particle coordinate
and we suppress, for simplicity, the spin degree of freed
We introduce the relative coordinatesrW i through

xW i5RW 1rW i~q!. ~129!

Since therW i sum up to zero, they are functions of 3N23
internal variables which we denote collectively byq. Let us
suppose that the state of theN-particle system is described i
the position representation by a density matrix of the for

rm5rcm~RW ,RW 8!r int~q,q8!, ~130!

wherercm andr int are separately normalized to 1,

E d3Rrcm~RW ,RW !5E dqr int~q,q!51. ~131!

The density matrixrcm describes the center of mass coor
nate, whiler int represents the state of the internal degrees
freedom. For example, one finds that the quantity

w~xW2RW !5
1

NE dq(
i 51

N

d„xW2RW 2rW i~q!…r int~q,q!

~132!

is the density of finding a particle atxW under the condition
that the center of mass coordinate is atRW . This function is
obviously normalized as

E d3xw~xW !51. ~133!

If the system described by the state~130! performs a
translational motion it is reasonable to assume that its t
current density can be approximated by an effective cur
density of the form

jWcm~xW !5
Ne

2M
$PW w~xW2RW !1w~xW2RW !PW %, ~134!

wherePW 52 i ]/]RW is the total momentum canonically con
jugated to the center of mass coordinateRW , Ne is the total
charge, andM5Nm the total mass. The expression~134!
implies that the current density of the internal degrees
freedom vanishes. In particular, it excludes the possibi
that the whole systems is in a rotational state which wo
require to introduce three further collective coordinates
for example, the three Euler angles.

Equation~134! shows that the case of anN-particle sys-
tem can be dealt with by using the replacementse→Ne and
m→M5Nm, and by interpreting the length scales0, which
appears in the UV cutoff scaleVmax;1/s0, as the linear
extension of the one-particle densityw(xW ). A representation
for the density matrixrcm(RW ,RW 8) is then obtained from Eq
~34! by substituting the effective current~134! into the influ-
ence functional~35!. The corresponding second order mas
equation is given by Eq.~36!. Invoking the nonrelativistic
03210
.

f

al
nt

f
y
d
s,

r

~dipole! approximation one is led to the following represe
tation for the center of mass density:

rcm~ t f !5T←S expF E
t i

t f
dtE

t i

t f
dt8

3H i

2
D~ t2t8!

PW c~ t !

M

PW a~ t8!

M
2

1

2
D1~ t2t8!

3
PW c~ t !

M

PW c~ t8!

M J G D rcm~ t i !, ~135!

wherePW c(t) and PW a(t) denote the interaction picture com
mutator and anticommutator superoperators for the total
mentum. The dissipation and the noise kernel are given
the expressions~39!, where the spectral density now take
the form

J~v!5
N2e2

3p2
vQ~Vmax2v!. ~136!

The time-ordered exponential in Eq.~135! can be determined
with the help of path-integral techniques. The details
given in Ref.@13# and we can immediately transfer the r
sults given there to the present case with the help of
replacements given above. It follows that the vacuum de
herence functional for anN-particle state scales with th
squareN2 of the particle number,

Gvac;2N2
8a

p
ln~gVmaxt f !v

2. ~137!

This scaling with the particle number obviously leads to
large amplification of the decoherence effect. To give a v
extreme example we takeN51022 which corresponds to
s0;1 cm for typical free electron densities in metals. L
us ask for the maximal speedv leading to 1% decoherence
With the help of Eq.~137! we findv;3310215 m s21. For
a distance of 3 m this implies, for example, thatt f would be
of the order of 1015 s, which is an extremely large tim
already comparable with the age of the universe!

V. CONCLUSIONS

The emission of bremsstrahlung leads to a loss of coh
ence whenever two spatially separated components of a
perposition are set into relative motion in order to obse
locally their capability to interfere. We have investigated
prototypical interference experiment which involves tw
possible paths of an interfering charged particle. The coh
ence loss in this type of experiment can be quantified w
the help of a certain decoherence functionalG@c#, which is a
gauge invariant relativistic functional of the difference b
tween the current densities corresponding to the two poss
paths. As expected from the physical picture of decohere
through bremsstrahlung, the decoherence functional ma
depends on the invariant relative velocity between the in
fering paths. It has been shown that decoherence induce
2-16
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DESTRUCTION OF QUANTUM COHERENCE THROUGH . . . PHYSICAL REVIEW A63 032102
the emission of radiation into the field vacuum dominates
short time scales, while thermally induced processes do
nate at large times. We have estimated the crossover
which separates the vacuum from the thermal regime as
as the vacuum and the thermal coherence length.

Decoherence through bremsstrahlung exhibits a hig
non-Markovian character since the decoherence functio
depends on the whole paths of the interference device.
can be illustrated by a comparison of the results obtained
the two interference devices studied in Sec. III@compare Eq.
~126! with Eqs.~108! and~109!#: After the time correspond
ing to the maximal distance between the wave packets
have in both cases two wave packets approaching each
with opposite velocities of the same magnitudev. The dif-
ference between the decoherence functionals obtained in
two cases shows that the suppression of quantum coher
through bremsstrahlung depends on the total history of
process and that the memory time is of the order of the t
time t f of the experiment.

An important conclusion is that the usual picture of dec
herence as a decay of the off diagonals in the reduced de
matrix does not apply to the destruction of coheren
through bremsstrahlung. Namely, consider a superpositio
two wave packets with zero mean velocity. The express
~118! for the decoherence function together with the estim
L(t f)vac;ctf for the vacuum coherence length show that d
coherence effects are negligible for timest f which are large
in comparison to the time it takes light to travel the distan
between the wave packets. The off-diagonal terms of
reduced density matrix for the electron do therefore not
cay for t f→` which shows the profound difference betwe
the decoherence mechanism through bremsstrahlung
other decoherence mechanisms. For the same reason a
localized wave packet moves essentially unaffected by
radiation field. If we separate, however, the wave packet
two components and recombine them a loss of coherenc
observed.

One might ask the question of whether virtual vacuu
processes or real photon emissions are responsible fo
decoherence effect studied in this paper. The answer is
tained in expression~71! for the influence phase facto
exp(iF). This equation tells us that the decoherence fac
exp(G)5uexp(iF)u depends on virtual processes through
Feynman propagatorDF(x2x8)mn ~contained in the
vacuum-to-vacuum amplitudes! as well as on real processe
described by the Green functionsD6(x2x8)mn . Thus it is
the combined effect of virtual and real processes which le
to decoherence. The physical reason is that the mere p
bility of real photon emissions also reduces the vacuum
vacuum amplitudes which can already lead to a reduction
the interference contrast. For example, one can think o
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interference device in which the pathy1 describes a uniform
motion of the electron, whereas the other pathy2 is strongly
bend, involving a large acceleration of the electron. Supp
we observe the photons emitted in the experiment. If
know that no photon has been emitted it is then very lik
that the electron has taken the pathy1, which results in a
suppression of the interference pattern formed by the e
trons of the corresponding subensemble. This situation
similar to that of a two-level atom which is initially in a
superposition of the excited state and the ground state. If
find that the atom did not emit a photon after a long tim
~long compared to the inverse of the emission rate! we have
effectively measured the state of the atom to be the gro
state. Thus the off-diagonal terms of the atomic density m
trix approximately vanish without the emission of real ph
tons.

We have also discussed the amplification of decohere
effects for systems of identical charged particles. The
tained scaling ofG@c# with the squareN2 of the particle
number can be traced back to two facts. First, the radia
back action is proportional to the square of the total cha
since the emitted radiation adds coherently in the limit
long wavelength. Second, the decoherence functional o
depends on the logarithm of the cutoffVmax, which means
that it depends only very weakly on the total mass or on
spatial extent of theN-particle state. In the cases discuss
here one must expect, of course, a large radiative dampin
addition to the decoherence effect. It is of great fundame
interest to investigate also the influence of these phenom
for composite neutral objects.

The phenomenon of decoherence is often linked to
emergence of dynamically induced superselection sector
the underlying state space@6#. In this context one tries to
show that the matrix elements of all observables betw
states belonging to different orthogonal subspaces, the su
selection sectors, vanish in the limitt f→`. In this paper we
have adopted a more practical viewpoint and defined
decoherence functional to describe the loss of coherenc
an interference experiment which involves a process o
finite time t f . It is this time which sets a natural infrare
cutoff corresponding to the frequency resolution of the d
vice and which ensures the infrared finiteness of the de
herence functional. Another point which might be importa
for further investigations is that the definition of the decoh
ence functional involves only the preparation and measu
ment of local quantities. Whether the resulting coheren
loss is called true decoherence or not, is a matter of de
tion. It is, however, a fact that the influence of the radiati
field leads to a reduction of the interference contrast wh
can be observed in an experiment that takes a finite time
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