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Dynamical resonances and the topology of the multiphoton adiabatic passage
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We analyze adiabatic transfer processes in two-level systems driven by bichromatic delayed laser pulses. We
show that the robust transfer of atomic population and the exchange of momentum with the laser fields can be
understood on the basis of topological properties of dressed energy surfaces that are determined by dynamical
resonances. The analysis shows a topological quantization of the multiple absorption and emission of photons.
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I. INTRODUCTION

Adiabatic passage techniques provide a robust metho
control atomic and molecular processes by interaction w
laser pulses. Different versions have been proposed an
alized experimentally@1–7#. The main effect that can b
achieved is the complete transfer of atomic population t
selected excited state. Another effect is, e.g., the contro
momentum transfer from the laser fields to an atomic be
leading to a deflection of the beam@8–12#. The phenomenol-
ogy of single- and two-photon adiabatic passage is a fa
well understood field. However, this is not so for multiph
ton processes. In this paper we consider these processes
pulse-shaped bichromatic fields in two-level systems. T
models are analyzed in terms of dressed states, which ar
eigenstates of the coupled atom-plus-field system. The th
retical analysis of these processes indicates that the m
conceptual ingredients are the adiabatic following of dres
states and connectivity properties of the paths linking ini
and target states. These processes are robust because th
not depend on the precise shapes of the laser pulses o
precise tuning of laser frequencies.

The goal of the present paper is twofold. First we show
the context of a concrete example that under adiabatic c
ditions the dynamics of the process can be described c
pletely by the topology of dressed-state energy surfaces.
topological aspect is the key to the robustness of the proc
The second goal is to show that the topology of these
faces is completely determined by the resonances of the
tem. These resonances can be of two kinds:~i! zeroth-order
resonances, which arise when a laser frequency~or an integer
combination of frequencies! is equal to a Bohr frequency o
the atom. This type of resonance has an effect for arbitra
weak-field amplitudes, provided that the time of interacti
is long enough;~ii ! dynamical or nonlinear resonancesthat
are induced by the field, and appear only when the field
becomes stronger than some well-definedthresholds~see,
e.g.,@13#!. The effect of nonlinear resonances, which can
be treated by simple perturbation expansions, is analy
with the general method developed in@14#. It consists of a
combination of perturbative techniques formulated in ter
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of an iteration of contact transformations~which are the
quantum equivalent of Kolmogorov-Arnold-Moser transfo
mations @15#! and specific unitary transformations that a
adapted to the dynamics of the resonances. One of the m
results is that, for processes based on adiabatic following
the energy surfaces, the perturbative corrections provided
the contact transformations are irrelevant, in the sense
the end effect of the transfer does not depend on them.
approach can be used to select and optimize the transfe
population and of momentum by the suitable choice of
delay between the pulses and the peak amplitudes of the
lasers.

II. EFFECTIVE DRESSED HAMILTONIAN

We consider the Hamiltonian

H~vt1u!5H02d•F(
i 51

2

eia i~ t !cos~v i t1u i !G , ~1!

whereH0 is the Hamiltonian of the free two-level system
energiesE1,E2. The states$u1&,u2&% span the Hilbert space
H5C2 on whichH0 and the dipole moment operatord act.
The total electric field, containing two carrier frequenci
v5(v1 ,v2), is characterized by unit vectorsej , smooth
pulsed-shaped envelope functions of timea(t)
5@a1(t),a2(t)#, and the initial phasesu5(u1 ,u2). The
interaction is thus characterized by the time-dependent R
frequenciesV j (t)52^1ud•ej u2&a j (t)/\, j 51,2. We con-
sider solutionsuf(t)& of the time-dependent Schro¨dinger
equation with the initial conditionuf(2`)&5u1&. Both fre-
quencies are different and off-resonant, as depicted in Fig
D i[(E22E1)/\2v i , i 51,2. We introduce the relevan
beat frequencyd[v12v25D22D1. In the following, we
will consider for simplicity the caseD152D2 so that
d522D1. We study a strong-field regime in the sense th
the nonperturbative regimeudu&maxt$uVj(t)u%!(E22E1)/\,
j 51,2 is considered. Since for frozen field amplitudes
Hamiltonian~1! is periodic with two frequencies, it is natura
to introduce the strong-field dressed Hamiltonian~the so-
called Floquet or quasienergy Hamiltonian! @16–18#, which
we formulate in a way that derives naturally from the theo
of quantized dressed states in a cavity@19–21#:

of
.
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K52 i\v1

]

]u1
2 i\v2

]

]u2
1H~u!. ~2!

The Floquet Hamiltonian allows us to take into account
photon exchanges between the atom and the laser fields
formally constructed on the initial phasesu of the fields that
are treated as dynamical variables acting onL
5L2(du1/2p) ^ L2(du2/2p) where eachL2(du i /2p) is the
Hilbert space of 2p-periodic functions of the angleu i . The
quasienergy operator~2! acts thus on the enlarged spaceK
5H^ L. The eigenelements ofK can be calculated numer
cally in a truncated Fourier decomposition for each f
quency. In the regime considered here the Floquet Ha
tonian ~2! can be approximated, after a rotating wa
transformation@0

1
eiu1

0
#K@0

1
e2 iu1

0
#, by an effective dressed

Hamiltonian given by@11#

Keff52 i\d
]

]u
1

\

2 F 0 V1

V1 2D1
G1

\V2

2 F 0 e2 iu

eiu 0 G , ~3!

with u[u12u2. This effective model is valid only if the two
frequenciesv1 and v2 are not equal. The derivative term
represents the relative number of photon pairs, onev1 pho-
ton minus onev2 photon. Thus the absorption of one ‘‘e
fective photon’’ of frequencyd in the effective model~3!
corresponds in the complete model~2! to the absorption of
one photon of frequencyv1 and the emission of one photo
of frequencyv2. If the two laser fields are counterpropaga
ing perpendicularly to the atomic beam, this double pho
exchange results in a net transfer of momentum to the a
of \(v11v2)/c, which manifests as a deflection of th
beam. The second term of the effective Hamiltonian~3! is
the usual rotating wave approximation~RWA! Hamiltonian
~associated with thev1 field!, with eigenvalues 2l6

0 5\D1

6\A(D1)21(V1)2. The third term can be viewed as a pe
turbation of this usual RWA Hamiltonian.

Our method to analyze the dynamics globally consists
~i! the calculation of the dressed eigenenergy surfaces o
effective quasienergy operator as a function of the two R
frequenciesV1 and V2, ~ii ! the analysis of their topology

FIG. 1. Diagram of linkage patterns between two atomic state
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and ~iii ! the application of adiabatic principles to determi
the dynamics of processes in view of the topology of t
surfaces.

III. QUASIENERGY SURFACE TOPOLOGY

For frozen values of the two fieldsV1 andV2, we calcu-
late dressed states and dressed energies by diagona
Keff . The eigenelements can be labeled with two indic
one, denotedn, refers to the levels of the atom, and anoth
one denotedk, to the relative photon numbers. The indexk
stands for the number ofv1 photons absorbed and the num
ber ofv2 photons emitted. The eigenvalues and eigenvec
have the following property of periodicity:ln;k,2k5ln;0,0
1k\d and thus un;k,2k&eff5un;0,0&effexp(iku). The
eigenelements appear as two families, each of which con
of an infinite set of eigenvalues with equal spacing\d. The
eigenstates ofKeff u1;k,2k&eff and u2;k,2k&eff can thus be
labeled byu1;k,2k& andu2;211k,2k&, kPZ in the origi-
nal basis of Eq.~2!.

In Fig. 2, we display quasienergy surfaces, calculated
merically, as functions of the scaled Rabi frequenciesV1 /d
andV2 /d. Together with the adiabatic analysis, the topolo
of these surfaces gives insight into the various atomic po
lation and photon transfers that can be produced by choo
appropriately the temporal evolution of the pulses. We s
with the dressed stateu1;0,0&, i.e., the lowest atomic stat
with zero v1 and v2 photons. Its energy is shown as th
starting point of various paths. Since the envelopes of
pulses vary slowly, the adiabatic theorem implies that
solution of the time-dependentdressedSchrödinger equation
follows the instantaneous dressed eigenvectors continuo
connected to the initial state. This describes accurately
dynamics if the time dependence of the envelopes is s

.

FIG. 2. Quasienergy surfaces~in units of d) as functions ofV1

andV2 for d522D152D2. Three different paths@denoted~a!, ~b!,
and ~c!# depending on the temporal evolution of the pulses
depicted.
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enough according to the Landau-Zener analysis. If two~un-
coupled! eigenvalues cross, the adiabatic analysis shows
the dynamics follows the crossing. We define thetransfer
state as the dressed eigenvector that is adiabatically
lowed, i.e., on which the dressed population resides du
the dynamics.The knowledge of the topology of the quasie
ergy surfaces gives the adiabatic connectivity between
initial and target dressed states. There are two infinite fami-
lies of quasienergy surfaces that are constructed by the tr
lations by\dk, kPZ of two surfaces. Any two neighboring
surfaces have points of contact that are conical intersecti
In the present model all the points of intersection are loca
either at the lineV150 or at the lineV250, corresponding
to the situations where only one of the laser fields is int
acting with the atom. This has the crucial consequence
the adiabatic following across these intersections can
done in a robust way, by making sure that the second fiel
not active when the amplitude of the first one goes across
intersection. This is the mechanism that allows a robust c
trolled adiabatic passage from one dressed state surfac
the next. Besides these true crossings, the quasienergy
faces display avoided crossings. These true crossing
avoided crossings are associated withdynamical resonances,
as we will show below.

We consider the action of two smooth pulses, associa
with Rabi frequenciesV1(t) and V2(t), which act on the
two-level atom with a time delayt. A sequence of such
pulses corresponds to a closed loop in the parameter p
V1 and V2. Figure 2 shows three examples of adiaba
paths depending on the peak amplitudes of the Rabi freq
cies and leading to three different final atomic populat
and photon transfers. Each of the two black curves~labeled a
and b! correspond to a sequence of two smooth pulses
equal lengthT and equal peak Rabi frequenciesVmax, sepa-
rated by a delay such that the pulse 1 is switched on be
the pulse 2. For curve~a!, the shifts of the eigenvalues ar
smaller than the energy of the first intersections. As a c
sequence, the path stays on a single surface, and at the
the system returns to the initial state, without any final tra
fer of photons or of the atomic population.

Curve ~b! corresponds to shifts that are larger than
first intersections. The crossing of the first intersection asV1
increases withV250 brings the dressed system into the fi
upper quasienergy surface. Turning on and increasing
amplitudeV2 ~while V1 decreases! moves the path acros
this surface. When the second fieldV2 decreases, the curv
crosses an intersection~with V150) that brings the system
to the third level surface, on which the curve stays until
end of the pulseV2. The transfer state is finally connected
stateu1;1,21&: there is no transfer of atomic population, b
one v2 photon has been absorbed and onev1 photon has
been emitted at the end of the process. This path has
redrawn as a function of time in Fig. 3~b! @using truncated
sin2 envelopes of lengthT5100/d and delayed byt5T/3,
shown on Fig. 3~a!#. Each of the two dynamical resonanc
is crossed twice; each appears as one true crossing and
avoided crossing. They can be described as follows: the fi
1 dynamically shifts the eigenvalues that become reson
with field 2. This resonance is mute when field 2 is off~left
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true crossing! and becomes effective when field 2 is on~left
avoided crossing!. The second dynamical resonance occ
symmetrically from a dynamical Stark shift due to field
that makes the eigenvalues resonant with field 1.

If the peak amplitudes are taken even larger, such that
dynamical resonances are crossed~corresponding to the true
crossings whenV1 rises withV250 and whenV2 decreases
with V150), the final state isu1;2,22&, i.e., there is no
atomic population transfer but an absorption of twov2 pho-
tons and an emission of twov1 photons. This kind of pro-
cess can be generalized to paths yielding the connectivit
the transfer state tou1;k,2k&, i.e., the emission ofk v1
photons and the absorption ofk v2 photons (k positive for
pulse 1 before pulse 2 and negative for pulse 2 before p
1!, with no atomic population transfer. This result is show
in Fig. 4 where we have diagrammed the final average ef
tive number of exchanged photonsk as a function of the peak
Rabi frequencies, calculated numerically by solving t
dressed time-dependent Schro¨dinger equation. The dips ar
due to nonadiabatic Landau-Zener transitions when the p
overlapping is in the neighborhood of the intersections. W
a configuration of counterpropagating laser fields, perp
dicular to the atomic beam, this translates into the possib
of deflection of the beam by the transfer of a moment
k\(v11v2)/c.

FIG. 3. ~a! Rabi frequencies~in units of d) from squared trig
function envelopes.~b! Quasienergy curves~in units of d), corre-
sponding to the path b of Fig. 2 (Vmax51.5d) from formula ~4!
~dotted lines! and the exact numerical result~full line!. The arrow
indicates the adiabatic path~big line!.

FIG. 4. Comparison of the numberk of effective photons emit-
ted at the end of the process@Eq. ~5!# ~dashed line! with the average
number of effective photons from the exact numerical result~full
line!. The plateaus labeled~a! and~b! refer to the two paths of Fig.
2 for pulse lengthT5100/d and delayt5T/3.
3-3



o
th

rs

e
o
w

ie
l-
t

r

w
ir
r
in
of
de

r
l-
io

s.
th

-
val-
ula
nd
lso
ring

the

be
of

his
trol

.

RAPID COMMUNICATIONS
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Inspection of the surface topology shows the possibility
a pulse sequence leading to atomic population transfer in
system. As illustrated by the path~c! in Fig. 2, this process
requires two pulses of different peak amplitude. The fi
resonance is crossed by the raising pulse 1~with V250).
The second pulse is chosen with a smaller peak amplitud
order to avoid the passage through the resonance that w
lead the system to the third level surface. In this way
obtain a path that ends atu2;0,21&: the atomic population is
completely transferred to the excited level, accompan
with absorption of onev2 photon. This can also be genera
ized for upper and lower paths: the connectivity leads
u2;211k,2k&, with k positive ~pulse 1 before smalle
pulse-2 amplitude! or negative or zero integer~pulse 2 before
smaller pulse-1 amplitude!.

The topology of the quasienergy surfaces thus sho
which appropriate delays and peak amplitudes induce des
atomic population and photon transfers. In the adiabatic
gime, these loops can be classified into topologically
equivalent classes. If the evolution is adiabatic, all paths
given class lead to the same end effect. This property un
lies the robustness of the process.

The explicit consideration of the small perturbative co
rections from the full model~2! does not change the topo
ogy of the surfaces in the sense that the conical intersect
are not removed but only slightly shifted.

IV. ANALYTIC RESULTS

With the technique combining therotating wave transfor-
mations ~RWT! and contact transformationsdeveloped in
@14#, one can treat accurately the dynamical resonance
we take into account the first two dynamical resonances,
are associated with the path~b!, one obtains the following
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explicit expression for the dressed energy surfaces:

l6,k

\
5

D1

2
1kd7F1

4
~AA2d!21

~«2V1l2
0 !2

\2A
G 1/2

~4!

with A5$@(D1)21(V1)2#1/22d%214(«l2
0 /\)2 and 2«

52V2 /A(D1)21(V1)2. Figure 3~b! displays these eigen
values which are in close agreement with the exact eigen
ues calculated numerically. Figure 3 shows that the form
~4! determines the qualitative feature of the spectrum a
especially the connectivity. This systematic method can a
be applied to treat the next dynamical resonances occur
for higher field amplitudes.

Since the connectivity of the transfer state tou1;k,2k& is
based on the crossings, we can determine analytically
final number of effective photonsk as a function of the peak
Rabi frequenciesVmax/d ~taken equal! in the purely adia-
batic regime:

k5@ integer part ofA~Vmax/d!21~D1 /d!2#. ~5!

It predicts the adiabatic plateaux of Fig. 4. They can
interpreted as a topological quantization of the number
exchanged photons.

In conclusion, we remark that the tools presented in t
paper can be applied to a large variety of systems and con
processes.
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