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Dynamical resonances and the topology of the multiphoton adiabatic passage
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We analyze adiabatic transfer processes in two-level systems driven by bichromatic delayed laser pulses. We
show that the robust transfer of atomic population and the exchange of momentum with the laser fields can be
understood on the basis of topological properties of dressed energy surfaces that are determined by dynamical
resonances. The analysis shows a topological quantization of the multiple absorption and emission of photons.
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[. INTRODUCTION of an iteration of contact transformatiorig/hich are the
quantum equivalent of Kolmogorov-Arnold-Moser transfor-

Adiabatic passage techniques provide a robust method t@ations[15]) and specific unitary transformations that are
control atomic and molecular processes by interaction witledapted to the dynamics of the resonances. One of the main
laser pulses. Different versions have been proposed and réesults is that, for processes based on adiabatic following on
alized experimentallyf1—7]. The main effect that can be the energy surfaces, the perturbative corrections provided by
achieved is the complete transfer of atomic population to dhe contact transformations are irrelevant, in the sense that
selected excited state. Another effect is, e.g., the control oihe end effect of the transfer does not depend on them. Our
momentum transfer from the laser fields to an atomic beam@Pproach can be used to select and optimize the transfer of
leading to a deflection of the bed®—12]. The phenomenol- Population and of momentum by the suitable choice of the
ogy of single- and two-photon adiabatic passage is a fairljdelay between the pulses and the peak amplitudes of the two
well understood field. However, this is not so for multipho- lasers.
ton processes. In this paper we consider these processes with
pulse-shaped bichromatic fields in two-level systems. The
models are analyzed in terms of dressed states, which are the Il. EFFECTIVE DRESSED HAMILTONIAN
eig_enstates of the coupled atom-plusffie!d system. The thec_)- We consider the Hamiltonian
retical analysis of these processes indicates that the main
conceptual ingredients are the adiabatic following of dressed
states and connectivity properties of the paths linking initial 2
and target states. These processes are robust because they do  H(wt+ 6)=Hy—d-| >, ga;(t)cogwit+6,)|, (1)
not depend on the precise shapes of the laser pulses or on i=1
precise tuning of laser frequencies.

The goal of the present paper is twofold. First we show in , o
the context of a concrete example that under adiabatic cofYhereHo is the Hamiltonian of the free two-level system of
ditions the dynamics of the process can be described con?—nergz'efl<|,52' The stateg|1),[2)} span the Hilbert space
pletely by the topology of dressed-state energy surfaces. Thig =&~ on whichH, and the dipole moment operatdract.
topological aspect is the key to the robustness of the processn€ total electric field, containing two carrier frequencies
The second goal is to show that the topology of these sur®=(®1,@), iS characterized by unit vectog, smooth
faces is completely determined by the resonances of the syBYIsed-shaped — envelope  functions  of  timex(t)
tem. These resonances can be of two kirdszeroth-order =[a;(t),a,(t)], and the initial phase®=(6,,6,). The
resonances, which arise when a laser frequéacyn integer  interaction is thus characterized by the time-dependent Rabi
combination of frequencigss equal to a Bohr frequency of frequenciesQ;(t)=—(1|d-ej|2)«;(t)/%, j=1,2. We con-
the atom. This type of resonance has an effect for arbitrarilgider solutions|¢(t)) of the time-dependent Schiimger
weak-field amplitudes, provided that the time of interactionequation with the initial conditiofi¢(—))=|1). Both fre-
is long enoughfii) dynamical or nonlinear resonancéisat  quencies are different and off-resonant, as depicted in Fig. 1:
are induced by the fieldand appear only when the fields Aj=(E,—E;)/A—w;, i=1,2. We introduce the relevant
becomes stronger than some well-definacesholds(see, beat frequencyy=w;—w,=A,—A;. In the following, we
e.g.,[13]). The effect of nonlinear resonances, which cannowill consider for simplicity the caseA;=—A, so that
be treated by simple perturbation expansions, is analyzed=—2A;. We study a strong-field regime in the sense that
with the general method developed|[it¥4]. It consists of a the nonperturbative regimes|=max{|Q;(t)[}<(E,—Ep/A,
combination of perturbative techniques formulated in termg=1,2 is considered. Since for frozen field amplitudes the

Hamiltonian(1) is periodic with two frequencies, it is natural
to introduce the strong-field dressed Hamiltonidne so-
*Email address: guerin@jupiter.u-bourgogne.fr called Floquet or quasienergy Hamiltonidri6—18, which
"Permanent address: Institute of Physics, National Academy ofve formulate in a way that derives naturally from the theory
Sciences of Ukraine, prospekt Nauky, 46, Kiev-22, 03650, Ukraineof quantized dressed states in a cayit9—21:
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FIG. 1. Diagram of linkage patterns between two atomic states.
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FIG. 2. Quasienergy surfacéis units of §) as functions of};
The Floquet Hamiltonian allows us to take into account theand(), for 5= —2A,=2A,. Three different pathiddenoteda), (b),
photon exchanges between the atom and the laser fields. 1t#§d (¢)] depending on the temporal evolution of the pulses are
formally constructed on the initial phasef the fields that ~ depicted.
are treated as dynamical variables acting ofi
=L,(d6,/27)® L,(d0,/27) where eachC,(d6;/27) is the  and(iii) the application of adiabatic principles to determine
Hilbert space of zr-periodic functions of the anglé;. The the dynamics of processes in view of the topology of the
quasienergy operatd@) acts thus on the enlarged space surfaces.
=H® L. The eigenelements &€ can be calculated numeri-
cally in a truncated Fourier decomposition for each fre-
qguency. In the regime considered here the Floquet Hamil- lll. QUASIENERGY SURFACE TOPOLOGY

tonian (2) can be approximated, after a rotating wave For frozen values of the two field3; and(),, we calcu-
transformatior[  %,,]K[§ J-is,], by an effective dressed late dressed states and dressed energies by diagonalizing
Hamiltonian given byf11] Kerf- The eigenelements can be labeled with two indices:
one, denotea, refers to the levels of the atom, and another
one denoted, to the relative photon numbers. The index
, (3 stands for the number @, photons absorbed and the num-
ber of w, photons emitted. The eigenvalues and eigenvectors
have the following property of periodicityk,.x —x=X\n.00
with 6= 6, — 6,. This effective model is valid only ifthe two  +k#s and thus |n;k,— K)e=|n;0,0)ceXxp(ké). The
frequenciesw; and w, are not equal. The derivative term eigenelements appear as two families, each of which consists
represents the relative number of photon pairs, @pgho-  of an infinite set of eigenvalues with equal spacing The
ton minus onew, photon. Thus the absorption of one “ef- eigenstates oK |1;k, —K)err @and|2;k, —K)ef can thus be
fective photon” of frequencys in the effective model3)  labeled by|1;k,—k) and|2;—1+k,—k), ke Z in the origi-
corresponds in the complete mod@) to the absorption of nal basis of Eq(2).
one photon of frequency, and the emission of one photon  |n Fig. 2, we display quasienergy surfaces, calculated nu-
of frequencyw,. If the two laser fields are counterpropagat- merically, as functions of the scaled Rabi frequenéiad &
ing perpendicularly to the atomic beam, this double photorand(), /5. Together with the adiabatic analysis, the topology
exchange results in a net transfer of momentum to the atorsf these surfaces gives insight into the various atomic popu-
of 7i(w;+wy)/c, which manifests as a deflection of the |ation and photon transfers that can be produced by choosing
beam. The second term of the effective Hamiltoni@nis  appropriately the temporal evolution of the pulses. We start
the usual rotating wave approximatigRWA) Hamiltonian  with the dressed statd ;0,0, i.e., the lowest atomic state
(associated with the; field), with eigenvalues B2 =%A;  with zero »; and w, photons. Its energy is shown as the
+#(A1)%+ ()2 The third term can be viewed as a per- starting point of various paths. Since the envelopes of the
turbation of this usual RWA Hamiltonian. pulses vary slowly, the adiabatic theorem implies that the
Our method to analyze the dynamics globally consists obolution of the time-dependedtessedSchralinger equation
(i) the calculation of the dressed eigenenergy surfaces of thiellows the instantaneous dressed eigenvectors continuously
effective quasienergy operator as a function of the two Rabtonnected to the initial state. This describes accurately the
frequencies(2; and (), (ii) the analysis of their topology, dynamics if the time dependence of the envelopes is slow
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enough according to the Landau-Zener analysis. If (uro o ! @

coupled eigenvalues cross, the adiabatic analysis shows that =05 /0 Qa/0

the dynamics follows the crossing. We define tnensfer ~

state as the dressed eigenvector that is adiabatically fol-

lowed, i.e., on which the dressed population resides during £ I1:1, —1)
the dynamicsThe knowledge of the topology of the quasien- %ﬁ ’
ergy surfaces gives the adiabatic connectivity between the z

initial and target dressed state$here are two infinite fami- E

lies of quasienergy surfaces that are constructed by the trans- &

lations by# ok, ke Z of two surfaces. Any two neighboring 1,0,

surfaces have points of contact that are conical intersections.
In the present model all the points of intersection are located
either at the line),=0 or at the line(2,=0, corresponding

to the situations where only one of the laser fields is inter- . o ) ,
acting with the atom. This has the crucial consequence that FIG. 3. (a) Rabi frequenciesin units of 9) from squared trig

. . . . . nction envelopes(b) Quasienergy curve€n units of 8), corre-
the adiabatic following across these intersections can pé’pon ding to the path b of Fig. 2X..~15) from formula (4)

done in a robust way, by making sure that the second field i dotted line$ and the exact numerical resufull line). The arrow

not active when the amplitude of the first one goes across thes . - o - diabatic pathig line).

intersection. This is the mechanism that allows a robust con-

trolled adiabatic passage from one dressed state surface {g,c crossingand becomes effective when field 2 is Geft

the next. Besides these true crossings, the quasienergy Syyoided crossing The second dynamical resonance occurs
faces display avoided crossings. These true crossing andmmetrically from a dynamical Stark shift due to field 2
avoided crossings are associated vdyimamical resonances 15t makes the eigenvalues resonant with field 1.

as we will show below. _ If the peak amplitudes are taken even larger, such that two
.We copS|der the.actlon of two smooth pulses, aSSOC|ategynamica| resonances are crosgearresponding to the true
with Rabi frequencied,(t) and Q(t), which act on the  ¢rqssings whei), rises withQ,=0 and wher(), decreases
two-level atom with a time delay. A sequence of such i, Q,=0), the final state i$1;2,—2), i.e., there is no
pulses corresponds to a closed loop in the parameter plang,mic population transfer but an absorption of twe pho-
Q; and Q,. Figure 2 shows three examples of adiabaticiong and an emission of twe, photons. This kind of pro-
paths depending on the peak amplitudes of the Rabi frequeRess can be generalized to paths yielding the connectivity of
cies and leading to three different final atomic populationy,e transfer state t1;k,—k), i.e., the emission ok w,
and photon transfers. Each of the two black curlaiseled a hotons and the absorption If », photons k positive for
and b correspond to a sequence of two smooth pulses ogulrse 1 before pulse 2 and negative for pulse 2 before pulse
equal lengthl and equal peak Rabi frequenci@$ya, Sepa- 1) with no atomic population transfer. This result is shown
rated by a delay such that the pulse 1 is switched on beforg, riq 4 where we have diagrammed the final average effec-
the pulse 2. For curvéa), the shifts of the eigenvalues are e number of exchanged photokias a function of the peak
smaller than the energy of the first intersections. As a cong ;i frequencies, calculated numerically by solving the
sequence, the path stays on a single surface, and at the efjdisgeq time-dependent Satlirmer equation. The dips are
the system returns to the initial state, without any final transy,e t nonadiabatic Landau-Zener transitions when the pulse
fer of photons or of the atomic population. overlapping is in the neighborhood of the intersections. With
Curve (b) corresponds to shifts that are larger than the, configuration of counterpropagating laser fields, perpen-

first intersections. The crossing of the first intersectiofas  gicyjar to the atomic beam, this translates into the possibility
increases witlf),=0 brings the dressed system into the first o¢ geflection of the beam by the transfer of a momentum
upper quasienergy surface. Tuming on and increasing they, (4, + .)/c.

amplitudeQ, (while {); decreasesmoves the path across

this surface. When the second fidl, decreases, the curve ar
crosses an intersectigwith (2,=0) that brings the system
to the third level surface, on which the curve stays until the
end of the pulsé€),. The transfer state is finally connected to < 2r
state|1;1,—1): there is no transfer of atomic population, but 1t
one w, photon has been absorbed and asephoton has
been emitted at the end of the process. This path has been % 1 > 3 4 5
redrawn as a function of time in Fig(l® [using truncated Q /5

sir? envelopes of lengt=100/5 and delayed byr="T/3,
shown on Fig. 8]. Each of the two dynamical resonances  FiG. 4. Comparison of the numbrof effective photons emit-

is crossed twice; each appears as one true crossing and of@ at the end of the procefsq. (5)] (dashed lingwith the average
avoided crossing. They can be described as follows: the fieldumber of effective photons from the exact numerical re€ult

1 dynamically shifts the eigenvalues that become resonarine). The plateaus labele@) and(b) refer to the two paths of Fig.
with field 2. This resonance is mute when field 2 is @it 2 for pulse lengtil =100/5 and delayr=T/3.
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Inspection of the surface topology shows the possibility ofexplicit expression for the dressed energy surfaces:
a pulse sequence leading to atomic population transfer in this
system. As illustrated by the patb) in Fig. 2, this process Ao A
requires two pulses of different peak amplitude. The first ﬁ' = 7+k51
resonance is crossed by the raising pulsevith (,=0).
The second pulse is chosen with a smaller peak amplitude in B ) 21112 ) 0 1512
order to avoid the passage through the resonance that wouffth A=iL(A1)"+(2,)°]"*= 5"+ 4(eA"/h)" and 2
lead the system to the third level surface. In this way we= —Q2/V(A1)"+(Q4)*. Figure 3b) displays these eigen-
obtain a path that ends F&;0,— 1): the atomic population is values which are in CI(_)se agreement with the exact eigenval-
completely transferred to the excited level, accompanied/€S calcule_lted numerlca_lly._F|gure 3 shows that the formula
with absorption of ones, photon. This can also be general- (4) de_termlnes the qu_al_ltatlve.feature of_the spectrum and
ized for upper and lower paths: the connectivity leads toespema]ly the connectivity. This systematic method can al_so
|2;—1+k,—k), with k positive (pulse 1 before smaller be applled _to treat the next dynamical resonances occurring
pulse-2 amplitudeor negative or zero integépulse 2 before  for higher field amplitudes. _
smaller pulse-1 amplitude Since the connectivity of the transfer stgtd Iok,— k_) is

The topology of the quasienergy surfaces thus showQased on the crossings, we can determlr_1e analytically the
which appropriate delays and peak amplitudes induce desirdil@l number of effective photorisas a function of the peak
atomic population and photon transfers. In the adiabatic reRabi frequenciedl,,/é (taken equalin the purely adia-
gime, these loops can be classified into topologically in-Patic regime:
equivalent classes. If the evolution is adiabatic, all paths of a
given class lead to the same end effect. This property under- k=integer part of(Qmax/ )°+(A1/6)7]. )
lies the robustness of the process. ] ) ) )

The explicit consideration of the small perturbative cor-It predicts the adiabatic plateaux of Fig. 4. They can be
rections from the full mode(2) does not change the topol- interpreted as a topological quantization of the number of
ogy of the surfaces in the sense that the conical intersectiorfchanged photons.
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are not removed but only slightly shifted. In conclusion, we remark that the tools presented in this
paper can be applied to a large variety of systems and control
IV. ANALYTIC RESULTS processes.
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