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Energy calculations of low{m| diamagnetic hydrogen states with dimensional perturbation theory
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In a previous articl¢J. R. Walkup, M. Dunn, and D. K. Watson, Phys. Re\6& 4668(1998 | dimensional
perturbation theoryDPT) was applied to circular Rydberg states of diamagnetic hydrogen to investigate
avoided crossings in its energy spectrum as both the field strength and magnetic quantum murgser
swept. Because the DPT perturbation paraméted/(D+2|m|+1), whereD is the dimensionality of the
system, is inversely related to, one might assume that for a given field strength DPT would be effective only
whenmis large. However, the field-strength expression used in DPT is scaled as a functmis®it is not
obviousa priori whether the effectiveness of DPT diminishes wherns significantly reduced for a given
physicalfield strength. It is shown that for many states of diamagnetic hydrogen DPT can still produce strongly
convergent and accurate energy values winea small, even whem=0 (5= 1/2). For those regions where
even Padeummation failed to converge adequately, a technique is presented based on economized rational
approximants.
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I. INTRODUCTION II. DIMENSIONAL PERTURBATION THEORY

. . . Dimensional perturbation theo DPT) has recentl

. The d|§1magne_t|c hydrogen_ prob_lem has. been widely studggep applied to Ft)he diamagnetic h%régerl—)probﬂéﬁj, andy

ied since it has direct applications in such fields as astrophy$jas peen shown to be especially effective for circiitard

ics, quantum chaos, and solid-state phy$ids The energy  near-circulay Rydberg state§11,12, which are highly ex-
levels of diamagnetic hydrogen have been calculated bygited states having maximal values mffor each principal
many author$2-8]. Starace and Webstg8] calculated rig- quantum numben. In a previous article, we used DPT to
orous upper and lower bounds for low-lying states using arplot energy levels appearing in the energy spectrum as both
adiabatic approximation for fields below %0. This work  the field strength3 and magnetic quantum numberwere
was extended to fields above®ID by Liu and Staracg4]. ~ SWept independentyl0]. A significant advantage of DPT is
Résner and colleaguei] calculated the energy values of that the field strength is incorporated into the zeroth-order

. . . Hamiltonian so that the zeroth-order wave functions auto-
clj;r?agl_n ettlc g)r/]dr?gen Ff{or n':/lang Iow-l}(/jmg states Ibellotw atically adapt as the magnetic-field strength changes. This
- Later, snhertzer, Ram-Mohan, and Dossa calculate daptation is sensitive to the interplay between the Coulom-

highly accurate lower bounds on the binding energies of thg;ic and diamagnetic potentials. Therefore, DPT does not re-
ground state6] and lowest-lying excited statd§]. More  quire a switch in basis as the field strength sweeps from the
recently, Ruder and colleagues calculated, among othesw-field to the high-field region.

things, low-lying energy levels of states corresponding to With dimensional perturbation theory, the diamagnetic
magnetic quantum numbera<4, which appear to be the hydrogen Hamiltonian is generalized to an arbitrary dimen-
most accurate and extensive to dgdé sion D and the physical parameters scaled as functions of

TABLE I. Strong convergence of partial sunSy and PadeapproximantsP,,, for the ground state and lowest-lying=—2 state
(3d_,) energied(in a.u) of diamagnetic hydrogen @@= 102 (470 T). All four states were chosen because they are examples of circular
states. The Padapproximants belong to the diagonal sequencensdk=N/2. The energy valueBgyyys Of Ruderet al. [8] are tabulated
at the bottom.

m
0 (1s) -2 (3d) —4 (59) —24 (n=25)
N S\l Pm,k SN IDm,k SN F)m,k SN I:)m,k
0 1.001999 1.001 998 0.1170302 0.1170032 0.0493843 0.049 266 3 0.013076 08 0.013076 08
1 1.001998 0.117003 2 0.049 2652 0.01273243
2 1.001998 1.001 998 0.1170033 0.1170033 0.049 266 3 0.049 266 3 0.012743 33 0.012 74300
3 1.001998 0.1170033 0.049 266 3 0.01274298
4 1.001998 1.001 998 0.1170033 0.1170033 0.049 266 3 0.049 266 3 0.012 74299 0.012 74299
Erwne 1.001998 0.117003 3 0.049 266 3 (none given
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TABLE Il. The first six excited states of th@=0 manifold. Again,8=10"2 (470 T). Since the partial
sums diverge for these states, only the PapleroximantsP,, , are listed.

[m/K] 259 3dy 3sg 4d, 4s, 50
[0/0] 1.0019990 1.0019990 1.0019990 1.001 999 00 1.001 999 00 1.001 999 00
[1/1] 0.2019918 0.0019949 0.0009891-0.08891664 —0.08892133 —0.14086285
[2/2]) 0.2519807 0.1130958 0.1130690 0.064 47038 0.064 44002 0.041976 63
[3/3] 0.2519729 0.1130406 0.1122709 0.064 83287 0.064 68243 0.042 055 45
[4/4] 0.2519720 0.1130710 0.1129648 0.064 367 96 0.064 17057 0.041889 74
[5/5] 0.2519720 0.1130697 0.1129545 0.064 351 24 0.063 968 09 0.04175191
[6/6] 0.2519720 0.1130698 0.1129548 0.064 35178 0.063981 37 0.04177365
[7/7] 0.2519720 0.1130698 0.1129547 0.064 351 89 0.063981 27 0.041777 46
[8/8] 0.2519720 0.1130698 0.1129547 0.064 35167 0.06398170 0.04177553
Erwhe 0.2519720 0.1130698 0.1129547 0.064 351 66 0.06398170 0.041776 04

5=(D+2|m|+1) L. (See Ref[9].) Most importantly for
the purpose of this report, the physical field strengtls

scaled as

much the same.

states because the symmetry of the wave functions and the
large-dimensional effective potential about theaxis are

B=p/¢° 1) Ill. ENERGY CALCULATIONS AT LOW  |m|

wherep is expressed in units of 4710° T. It is also impor- Since allm dependence for a give® is incorporated into

tant to note thaB is m dependent. The eigensolutions of the @ perturbation parameter that varies inversely With it is
resulting Hamiltonian are then expanded in a perturbatior© surprise that DPT is especially effective for large values
series about the infinite-dimensional limit, withas the per- of |m[ [9,13]. However, this principle applies only when
turbation parameter. The infinite-dimensional limit is essencomparing states having the sarsealedfield strengthB.

tially a static potential problem, since in this limit the deriva- For a fixedphysicalfield strengthg the perturbation series
tive terms of the kinetic energy drop out of the Hamiltonian coefficients corresponding to lower values|of are, in gen-

and the electron becomes localized at the bottom of an efral, smaller than those corresponding to larger valués|of
fective potential that is symmetric about tkeaxis. There- Therefore, despite the fact that the perturbation parameter is
fore, DPT is highly effective for circular and near-circular increasing in value, it is not obvious whether the perturbation

TABLE llI. Energy levels forlm|=0 at various field strengths. The energies of Rugteal. [8] are given in parentheses. To the left of
each value the summation method is noted, with straight summation deptd®adesummatiorP, ,, and optimized economized rational
approximants(:;?k, wherea and the optimization method are described in the Appendix. The indices indicate the minimum order at which
convergence was achieved. Padenmation was used once partial summation failed to converge to seven significant figures by 50th order
(quadruple precision Similarly, the optimization method was used once Patamation failed to converge to seven significant figures by
the same order(For practical reasons optimization was always performed using the largest-ordered economized rational approximant
available, in this cas€,s 5, given the limited number of power series coefficients at hafRdk a discussion of the precision of the results

found using optimized ERAs, see Sec. lIl.

B 1s,/]0002 2s,/|002) 3d,/|004)°

5x10°4 S 1.001 000(1.000 999 Pas 0.250 993 0(0.250 993 0 Pss 0.11210080.112100 8
5x10°3 S, 1.009 950(1.009 950 Pes 0.259 303 1(0.259 303 1 Poo 0.120 095 80.120 095 8
5x10 2 Ss 1.095 053(1.095 053 Pi210 0.29614940.2961783 | CR%¥7  0.15009830.149876 0
5x10°* Pas 1.662 338(1.662 338 Not found (0.320 937 9 Not found (0.132 02

5 Pioio  3.495594(3.495594 | c{99 0.417 897 90.417 77 Not found (0.154 286
50 P16.16 7.579610(7.578 1 cR%y 0.512 045 7(0.512 339 CRO®1  0.174946 1(0.173767 9
500 P2121 15.324 82(15.324 1 cR9®  057728000.5917099 | CR%P  0.19753350.1887047

&The asymptotic large-field state has the fgmmy), wheren andm are the principal and magnetic quantum numbers @aedunts the

number of nodes along the field axis. See R&f, Sec. 3.1.2.

PFor this state, Rudegt al. used a linear combination of thelgand 35, states as their initial state. On the other hand, all initial states in

this research were pure states.

CAt this field strength neither Padgproximants nor optimized ERAs successfully converge. This does not appear to be due to a limitation
of optimized ERAs, but rather to a limitation of the nondegenerate perturbation series evaluated at a finite number of decimal places. We
think that the method of almost-degenerate perturbation theory will greatly improve the results. This is an avenue of future investigation.
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01764 . : strength the convergence |at| =24 was roughly seven dig-
its by fourth order.

Excited statesin terms of their principal quantum number
n) are “more elliptical” whenm is small, so we would ex-
pect DPT to be effective for a smaller number of states at
low values of|m|. However, in Table Il we show that, even
for |[m|=0, at sufficiently low field strengths DPT remains
effective for highly noncircular states. Note from Fig. Al.2a
in Ref. [8] that the field strength represented in the table is
just below the region of significamt mixing of states.

In Table Il we show that the DPT perturbation series for
diamagnetic hydrogen can be summed quite effectively for
1750 . . m=0 for most values of, especially for smaller field
T m 46 48 50 strengthg 15]. (Note that all energy calculations in this re-

N search are evaluated Bt=3.) In the large-field region, the
perturbation series often fails to converge even using Pade
0.17501 - - approximantg16]. However, the sequence of Paaleproxi-
mants can be economizgd7,1§ into a new sequence of
®) 1 approximants(economized rational approximants, hereafter
denoted ERAswhich can beoptimizedby adjusting a vari-
able parameter to minimize the error for particular values of
the physical parameteyd and|m|. As seen in Table lll, the
values of these optimized ERAs provide reasonably accurate
energy values, even when the original Paggproximants
fail to converge(See the Appendix and R€f19].)
_ Finally, we note that the precision of the Paal@proxi-
mants in Table Il is defined by the number of digits that
017495 1 B _ 01737679 agree with the next-lowest-ordered approximant, whereas the
WG precision of the optimized ERAs depends largely on the fit of
G ” " - the ERA sequence to an exponential lias explained in the
B Appendix. It is difficult, therefore, to compare the precision
of these two methods, so the results found using optimized

FIG. 1. One of the more dramatic improvements in convergenceERAs were expressed using seven significant figures in all
between (@ Pade approximants P, and (b) optimized cases.

ERAs C,‘j]‘fk(azo.0387) for thg004) diamagnetic hydrogen state at

B=50. Note the change in vertical scaling between the two figures.

The erratic behavior in thB,; ,3 Padeapproximant is caused by a ACKNOWLEDGMENT
pole and zero that appear on the complgxane near the summa- J.R.W. thanks John Cowan.

tion point §=1/2. Optimization appears to spread the poles and

zeros out so that they are, on average, a maximum distance away

from the summation point. For the optimized ERAs the fit between APPENDIX

the exponential line and the ERA sequence is given by ) ) , .
R2=0.999 999 999 5, wher® is the coefficient of determination ~ In this research there are instances where Reuoxi-
andR=1 Corresponds to a perfect f{See Ref[lS]) The energy mants fa” to SuffICIenﬂy Convel’ge |n thIS case we can

value of Ruderet al.[8] is Egyne=0.173 767 9. economize[17,18 the sequence of Padapproximants to
create a new sequence of approximants called economized

. . rational approximantéERAS). The ERAs, in turn, can often
series would sum more effectively at lowjen| [14]. be optimized to reduce the error at a particular value of the
Although circular Rydberg states are useful because thei’ﬁdependent variable, in this cage[19]. This is done by

provide insight into the theoretical framework of Rydberg taking advantage of the variable parametgrrovided by the
atoms at laboratory-accessible valuesGpthey are difficult  o-onomization process and adjusting it until the ERA se-
to prepare experimentally because they require multiphotoguence converges locally along an exponential line. The op-
nic excitations in the d|p0|e apprOXImatl(ﬁIDZ] Therefore it timal value of a is determined by examining the least-
is necessary to determine whether the effectiveness of DPdquares fit of the last four elements of the sequence of
extends to the more accessible lgw-states. In Table | we approximants to the exponential lif&gN)=A(1+Be sN),
show that not only does DPT remain effectiverads re-  whereN=m-+k is the order of thd m/k] approximant and
duced for fixedB, but that its effectiveness slightly improves A, B, ands are variable fitting parametef20,19. The value

For example, at this field strength the partial sums and Padef « that maximizes the fit betweeR(N) and the local ERA
approximants for the ¢ and 3 _, states actually converge sequence is considered the optimal value dorwhich we

to 12 significant figures by second order. For the same fieldlenote «y. When a=a the highest-ordered ERAnow
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called theoptimized ERAprovides a better representation of and optimized ERAs. In separate resedrt8l we tested this
the perturbation series than the original Paggroximant.  technique on well-known functions, and in all cases pro-
As an example, in Fig. 1 we illustrate the convergence of thaluced better resultén terms of accuracy and convergehce

perturbation series when summed using Paggroximants

than with the original Padapproximants.
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