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Energy calculations of low-zmz diamagnetic hydrogen states with dimensional perturbation theory
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In a previous article@J. R. Walkup, M. Dunn, and D. K. Watson, Phys. Rev. A58, 4668~1998!# dimensional
perturbation theory~DPT! was applied to circular Rydberg states of diamagnetic hydrogen to investigate
avoided crossings in its energy spectrum as both the field strength and magnetic quantum numberm were
swept. Because the DPT perturbation parameterd51/(D12umu11), whereD is the dimensionality of the
system, is inversely related tom, one might assume that for a given field strength DPT would be effective only
whenm is large. However, the field-strength expression used in DPT is scaled as a function ofm, so it is not
obviousa priori whether the effectiveness of DPT diminishes whenm is significantly reduced for a given
physicalfield strength. It is shown that for many states of diamagnetic hydrogen DPT can still produce strongly
convergent and accurate energy values whenm is small, even whenm50 (d51/2). For those regions where
even Pade´ summation failed to converge adequately, a technique is presented based on economized rational
approximants.
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I. INTRODUCTION

The diamagnetic hydrogen problem has been widely s
ied since it has direct applications in such fields as astrop
ics, quantum chaos, and solid-state physics@1#. The energy
levels of diamagnetic hydrogen have been calculated
many authors@2–8#. Starace and Webster@3# calculated rig-
orous upper and lower bounds for low-lying states using
adiabatic approximation for fields below 105 T. This work
was extended to fields above 105 T by Liu and Starace@4#.
Rösner and colleagues@5# calculated the energy values o
diamagnetic hydrogen for many low-lying states belo
108 T. Later, Shertzer, Ram-Mohan, and Dossa calcula
highly accurate lower bounds on the binding energies of
ground state@6# and lowest-lying excited states@7#. More
recently, Ruder and colleagues calculated, among o
things, low-lying energy levels of states corresponding
magnetic quantum numbersm<4, which appear to be the
most accurate and extensive to date@8#.
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II. DIMENSIONAL PERTURBATION THEORY

Dimensional perturbation theory@9# ~DPT! has recently
been applied to the diamagnetic hydrogen problem@10#, and
has been shown to be especially effective for circular~and
near-circular! Rydberg states@11,12#, which are highly ex-
cited states having maximal values ofm for each principal
quantum numbern. In a previous article, we used DPT t
plot energy levels appearing in the energy spectrum as b
the field strengthb and magnetic quantum numberm were
swept independently@10#. A significant advantage of DPT is
that the field strength is incorporated into the zeroth-or
Hamiltonian so that the zeroth-order wave functions au
matically adapt as the magnetic-field strength changes. T
adaptation is sensitive to the interplay between the Coulo
bic and diamagnetic potentials. Therefore, DPT does not
quire a switch in basis as the field strength sweeps from
low-field to the high-field region.

With dimensional perturbation theory, the diamagne
hydrogen Hamiltonian is generalized to an arbitrary dime
sion D and the physical parameters scaled as functions
ular
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TABLE I. Strong convergence of partial sumsSN and Pade´ approximantsPm,k for the ground state and lowest-lyingm522 state
(3d22) energies~in a.u.! of diamagnetic hydrogen atb51023 ~470 T!. All four states were chosen because they are examples of circ
states. The Pade´ approximants belong to the diagonal sequence, som5k5N/2. The energy valuesERWHG of Ruderet al. @8# are tabulated
at the bottom.

m

0 (1s) 22 (3d) 24 (5g) 224 (n525)
N SN Pm,k SN Pm,k SN Pm,k SN Pm,k

0 1.001 999 1.001 998 0.117 030 2 0.117 003 2 0.049 384 3 0.049 266 3 0.013 076 08 0.013 0
1 1.001 998 0.117 003 2 0.049 265 2 0.012 732 43
2 1.001 998 1.001 998 0.117 003 3 0.117 003 3 0.049 266 3 0.049 266 3 0.012 743 33 0.012 7
3 1.001 998 0.117 003 3 0.049 266 3 0.012 742 98
4 1.001 998 1.001 998 0.117 003 3 0.117 003 3 0.049 266 3 0.049 266 3 0.012 742 99 0.012 7

ERWHG 1.001 998 0.117 003 3 0.049 266 3 ~none given!
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TABLE II. The first six excited states of them50 manifold. Again,b51023 ~470 T!. Since the partial
sums diverge for these states, only the Pade´ approximantsPm,k are listed.

@m/k# 2s0 3d0 3s0 4d0 4s0 5g0

@0/0# 1.001 999 0 1.001 999 0 1.001 999 0 1.001 999 00 1.001 999 00 1.001 99
@1/1# 0.201 991 8 0.001 994 9 0.000 989 120.088 916 64 20.088 921 33 20.140 862 85
@2/2# 0.251 980 7 0.113 095 8 0.113 069 0 0.064 470 38 0.064 440 02 0.041 97
@3/3# 0.251 972 9 0.113 040 6 0.112 270 9 0.064 832 87 0.064 682 43 0.042 05
@4/4# 0.251 972 0 0.113 071 0 0.112 964 8 0.064 367 96 0.064 170 57 0.041 88
@5/5# 0.251 972 0 0.113 069 7 0.112 954 5 0.064 351 24 0.063 968 09 0.041 75
@6/6# 0.251 972 0 0.113 069 8 0.112 954 8 0.064 351 78 0.063 981 37 0.041 77
@7/7# 0.251 972 0 0.113 069 8 0.112 954 7 0.064 351 89 0.063 981 27 0.041 77
@8/8# 0.251 972 0 0.113 069 8 0.112 954 7 0.064 351 67 0.063 981 70 0.041 77

ERWHG 0.251 972 0 0.113 069 8 0.112 954 7 0.064 351 66 0.063 981 70 0.041 77
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d[(D12umu11)21. ~See Ref.@9#.! Most importantly for
the purpose of this report, the physical field strengthb is
scaled as

B̃5b/d3, ~1!

whereb is expressed in units of 4.73105 T. It is also impor-
tant to note thatB̃ is m dependent. The eigensolutions of th
resulting Hamiltonian are then expanded in a perturba
series about the infinite-dimensional limit, withd as the per-
turbation parameter. The infinite-dimensional limit is ess
tially a static potential problem, since in this limit the deriv
tive terms of the kinetic energy drop out of the Hamiltoni
and the electron becomes localized at the bottom of an
fective potential that is symmetric about thez axis. There-
fore, DPT is highly effective for circular and near-circul
02540
n

-
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states because the symmetry of the wave functions and
large-dimensional effective potential about thez axis are
much the same.

III. ENERGY CALCULATIONS AT LOW zmz

Since allm dependence for a givenB̃ is incorporated into
a perturbation parameter that varies inversely withumu, it is
no surprise that DPT is especially effective for large valu
of umu @9,13#. However, this principle applies only whe
comparing states having the samescaledfield strengthB̃.
For a fixedphysicalfield strengthb the perturbation series
coefficients corresponding to lower values ofumu are, in gen-
eral, smaller than those corresponding to larger values ofumu.
Therefore, despite the fact that the perturbation paramet
increasing in value, it is not obvious whether the perturbat
of
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TABLE III. Energy levels forumu50 at various field strengths. The energies of Ruderet al. @8# are given in parentheses. To the left
each value the summation method is noted, with straight summation denotedSN , Pade´ summationPm,k , and optimized economized rationa
approximantsCm,k

a0 , wherea0 and the optimization method are described in the Appendix. The indices indicate the minimum order at
convergence was achieved. Pade´ summation was used once partial summation failed to converge to seven significant figures by 50t
~quadruple precision!. Similarly, the optimization method was used once Pade´ summation failed to converge to seven significant figures
the same order.~For practical reasons optimization was always performed using the largest-ordered economized rational app
available, in this caseC25,25, given the limited number of power series coefficients at hand.! For a discussion of the precision of the resu
found using optimized ERAs, see Sec. III.

b 1s0 /u000&a 2s0 /u002& 3d0 /u004&b

531024 S1 1.001 000~1.000 999! P4,4 0.250 993 0~0.250 993 0! P5,5 0.112 100 8~0.112 100 8!
531023 S2 1.009 950~1.009 950! P6,6 0.259 303 1~0.259 303 1! P9,9 0.120 095 8~0.120 095 8!
531022 S5 1.095 053~1.095 053! P12,12 0.296 149 4~0.296 178 3! C25,25

(0.0407) 0.150 098 3~0.149 876 0!
531021 P4,4 1.662 338~1.662 338! Not foundc ~0.320 937 9! Not foundc ~0.132 02!
5 P10,10 3.495 594~3.495 594! C25,25

(0.059) 0.417 897 9~0.417 77! Not foundc ~0.154 286!
50 P16,16 7.579 610~7.578 1! C25,25

(0.051) 0.512 045 7~0.512 339! C25,25
(0.0387) 0.174 946 1~0.173 767 9!

500 P21,21 15.324 82~15.324 1! C25,25
(0.041) 0.577 280 0~0.591 709 9! C25,25

(0.0498) 0.197 533 5~0.188 704 7!

aThe asymptotic large-field state has the formunmn&, wheren and m are the principal and magnetic quantum numbers andn counts the
number of nodes along the field axis. See Ref.@8#, Sec. 3.1.2.
bFor this state, Ruderet al. used a linear combination of the 3d0 and 3s0 states as their initial state. On the other hand, all initial state
this research were pure states.
cAt this field strength neither Pade´ approximants nor optimized ERAs successfully converge. This does not appear to be due to a lim
of optimized ERAs, but rather to a limitation of the nondegenerate perturbation series evaluated at a finite number of decimal pl
think that the method of almost-degenerate perturbation theory will greatly improve the results. This is an avenue of future inves
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series would sum more effectively at lowerumu @14#.
Although circular Rydberg states are useful because t

provide insight into the theoretical framework of Rydbe
atoms at laboratory-accessible values ofb, they are difficult
to prepare experimentally because they require multiph
nic excitations in the dipole approximation@12#. Therefore it
is necessary to determine whether the effectiveness of D
extends to the more accessible low-umu states. In Table I we
show that not only does DPT remain effective asm is re-
duced for fixedb, but that its effectiveness slightly improve.
For example, at this field strength the partial sums and P´
approximants for the 1s0 and 3d22 states actually converg
to 12 significant figures by second order. For the same fi

FIG. 1. One of the more dramatic improvements in converge
between ~a! Padé approximants Pm,k and ~b! optimized
ERAs Cm,k

a0 (a50.0387) for theu004& diamagnetic hydrogen state a
b550. Note the change in vertical scaling between the two figu
The erratic behavior in theP23,23 Padéapproximant is caused by
pole and zero that appear on the complexd plane near the summa
tion point d51/2. Optimization appears to spread the poles a
zeros out so that they are, on average, a maximum distance
from the summation point. For the optimized ERAs the fit betwe
the exponential line and the ERA sequence is given
R250.999 999 999 5, whereR is the coefficient of determination
andR51 corresponds to a perfect fit.~See Ref.@18#.! The energy
value of Ruderet al. @8# is ERWHG50.173 767 9.
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strength the convergence atumu524 was roughly seven dig
its by fourth order.

Excited states~in terms of their principal quantum numbe
n! are ‘‘more elliptical’’ whenm is small, so we would ex-
pect DPT to be effective for a smaller number of states
low values ofumu. However, in Table II we show that, eve
for umu50, at sufficiently low field strengths DPT remain
effective for highly noncircular states. Note from Fig. A1.2
in Ref. @8# that the field strength represented in the table
just below the region of significantn mixing of states.

In Table III we show that the DPT perturbation series f
diamagnetic hydrogen can be summed quite effectively
m50 for most values ofb, especially for smaller field
strengths@15#. ~Note that all energy calculations in this re
search are evaluated atD53.! In the large-field region, the
perturbation series often fails to converge even using P´
approximants@16#. However, the sequence of Pade´ approxi-
mants can be economized@17,18# into a new sequence o
approximants~economized rational approximants, hereaf
denoted ERAs! which can beoptimizedby adjusting a vari-
able parameter to minimize the error for particular values
the physical parametersb and umu. As seen in Table III, the
values of these optimized ERAs provide reasonably accu
energy values, even when the original Pade´ approximants
fail to converge.~See the Appendix and Ref.@19#.!

Finally, we note that the precision of the Pade´ approxi-
mants in Table III is defined by the number of digits th
agree with the next-lowest-ordered approximant, whereas
precision of the optimized ERAs depends largely on the fit
the ERA sequence to an exponential line~as explained in the
Appendix!. It is difficult, therefore, to compare the precisio
of these two methods, so the results found using optimi
ERAs were expressed using seven significant figures in
cases.
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APPENDIX

In this research there are instances where Pade´ approxi-
mants fail to sufficiently converge. In this case we c
economize@17,18# the sequence of Pade´ approximants to
create a new sequence of approximants called econom
rational approximants~ERAs!. The ERAs, in turn, can often
be optimized to reduce the error at a particular value of
independent variable, in this caseb @19#. This is done by
taking advantage of the variable parametera provided by the
economization process and adjusting it until the ERA
quence converges locally along an exponential line. The
timal value of a is determined by examining the leas
squares fit of the last four elements of the sequence
approximants to the exponential lineF(N)5A(11Be2sN),
whereN5m1k is the order of the@m/k# approximant and
A, B, ands are variable fitting parameters@20,19#. The value
of a that maximizes the fit betweenF(N) and the local ERA
sequence is considered the optimal value fora, which we
denote a0 . When a5a0 the highest-ordered ERA~now

e

s.

d
ay

n
y

5-3



of

th
ro-
e

BRIEF REPORTS PHYSICAL REVIEW A 63 025405
called theoptimized ERA! provides a better representation
the perturbation series than the original Pade´ approximant.
As an example, in Fig. 1 we illustrate the convergence of
perturbation series when summed using Pade´ approximants
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and optimized ERAs. In separate research@19# we tested this
technique on well-known functions, and in all cases p
duced better results~in terms of accuracy and convergenc!
than with the original Pade´ approximants.
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