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Lyapunov exponents for the differences between quantum and classical dynamics
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The moments and correlations of theassical or quantuimposition and momentum variables satisfy a
hierarchy of coupled equations, which have been studied and solved numerically forrtbe-Heiles model.
It is found, for chaotic states of the model, that the second moments of the classical and quantum variables
grow exponentially at a rate governed by the classical Lyapunov exponent. The differences between quantum
and classical variables also grow exponentially, but with a larger exponent. The behavior of this quantum-
classical difference exponent is studied in this paper.
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In the study of classicr_:ll qnd ql_Jantum chaos it is necessary V=((q:—(a:) D+ (A= {a))?), 2)
to understand the quantitative differences between quantum .
and classical dynamics. One way to study these differences R€iNg a convenient parameter. The average bragkefsare
by way of the moments of the position and momentum varilo be interpreted as quantum or classical averages, according
ables. The moments and correlation functions of tigean-  t© the context. . .
tum or classical variables satisfy a hierarchy of equations, " '9uré 1 shows the time dependence of the quantum vari-
which may be truncated and solved numerically, provideoancevq and the difference between the quantum and classi-
the widths of the probability distributions remain small cal vgrlanceslvq—VCL for a c_;las_S|_caIIy_ chaotic state. The
enough. By choosing the initial quantum and classical prob_classmal variancy WOUIQ be mdlstmgmsha_ble frondq on
abilities to be equal, one can stufly] how the differences the scale of_the graph. Itis we!l !<.”°W” that in a_chao.uc state
between the two theories grow in time, how they depend Oﬁhe.separe}thn between two initially plose trajectories wil
the parameters of the initial state, and how they scale fith qscﬂlate vxil;[hm_an expc_)nent|ally growing envelope, propor-

The model studied if1] was that of Haon and Heiles tional to ™, W'th A belng_ the largest Lyapunov exponent
[2], whose Hamiltonian has two degrees of freedom couple 3]. Thus the variance, being the mean-squared separation of

- : the ensemble, should grow a$'.
by a cubic potential, . e - .
y P More interesting was the discovel¥] that the small dif-
H=%(p§+ p§)+%<qi+q§)+qiqz—%q§. (1) ference between the quantum and classical variances also

grows exponentially, but with a larger exponent than that of
The probability distributions were chosen to be Gaussian pahe variances themselves. The difference between the cen-
rametrized by their centroids and variances, with the sum ofrgids of the quantum and classical probability distributions
the variances of the two coordinates, also grows exponentially with the same exponent|\ds
| ‘ —V,|. This exponent, which we shall call,;, was found to

-2 | | ! | | LI T, 7T . .
10 4 ' ' ' ' ' ' ' + be independent of the magnitude/afThe Lyapunov expo-
104 % T nents are well established as useful parameters for character-
1 O.e:{ 1 izing the nature of classical chaotic dynamics, so we may
. + v, + expect that the quantum-classical difference exponent should
1071 H come to play a similarly useful role in the theory of quantum
10.10_: i chaos. This paper presents the first detailed study of the
o E T quantum-classical difference exponent in a particular model.
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FIG. 1. Quantum variance and the difference between quantum b
and classical variances. Parameters for the initial chaotic state are 1
E=0.16, g;=0, ¢,=-0.20, p,;=0.48442, p,=0.20, #=2 FIG. 2. Histogram of the exponefit; for the growth of the
X 10712, quantum variance.
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FIG. 3. Histogram of the quantum-classical difference exponent 0 T
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The quantitied/, and|V,— V| are highly oscillatory, but _ _
their upper envelopes are approximately exponential, being ~ F/G- 5 Linear regression of the expondmntversusb; .
proportional toe®1' ande®2!, respectively. Therefore we find
the local maxima of the curveghe circles in Fig. 1, and  accessible region of phase space contains a large chaotic
estimate the exponenlg andb, from the slopes of the fitted zone. That zone was sampled by examining the Poincare
straight lines on the semilogarithmic plot. Sirtegis greater  section defined by the conditicoy =0 with p;>0, and se-
thanb,, it would appear that the two curves in Fig. 1 would |ecting initial conditions within the chaotic zone on a square
eventually cross. But the extrapolated straight lines cross fogrid in the (g,,p,) plane of cell size 0.080.05. Although
variances greater than the size of the system, whiclilis O the ranges ob, andb, overlap considerably, the quantum-
so the curves do not actually cross. The exponbp@ndb,  ¢|assical difference exponehs is always larger thab,, as
are analogous to tHecal or finite-timeLyapunov exponents, < shown by the distribution di,— b, in Fig. 4. Apparently,

which may be defined as there must be a significant correlation betwdgnand b,

N(Xo, T)=lim T-*In[d(e, T)/ €], 3) which is co_nfirmed by the linear 'regressi.o.n pIot,. Fig. 5_. This

€0 close relation betweeh; and b, is surprising, sinceéh; is
essentially a classical parameter, whereass purely quan-

whered(€,0)= e is the initial separation between two nearby tum mechanical in origin. There are significant residual de-
trajectories that start withie of the pointx, in phase space, viations from the regression line, but they form no apparent
andd(e,T) is their separation at the later tinfe The usual  pattern.
Lyapunov exponent is given by=limy_ . N(Xo,T) and is The shapes of the histograms do not change much as the
independent of the starting poim on the trajectory. For energy is varied, but all of the parameters depend weakly on

finite T there is a distribution of values 0i(xo,T) corre-  energy. Table | summarizes the results for two different en-
sponding to the different starting pointg within the region  grgies. The average df, over the entire chaotic zone is
that is densely explored by the trajectory. This d'St”b“t'O”compared with ®, where\ is the classicalinfinite time)

may contain useful information beyond that of the “S“aILyapunov exponent, computed by the algorithm of Wolf
Lyapunov exponerfi4]. t al. [5]. The agreement is good f&=0.16, but less good

h Figures 2t§nd ?ijhOtV\tlh respectwe_l)(/), Igefdlstrt:bur:ut)r?s %or the lower energy. This happens because at lower energies
& exponents, andb, at the energfe =0.16, for which the the chaotic zone is smaller and has some very thin parts,

hence the chosen grid in theg4,p,) phase plane may pro-

80 A A B A A RS B RN vide a less representative sample of the chaotic zone. The
50 _ average ofb, over the chaotic zone, denoteq,, is dis-
: tinctly larger than 2.
40 +
30 — TABLE I. Lyapunov-like exponents for the ‘Hen-Heiles
F model at two energies.
20 +
T E=0.13 E=0.16
. 2\ 0.113 0.222
8 _ _ (b1)ay 0.145 0.246
b,-b, Nge=(D2)av 0.221 0.371

Regression line b,=0.017+1.41%d,; b,=0.0371.356h,

FIG. 4. Histogram ob,—b;.
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The quantum-classical difference exponkegt provides a  determine whether the behavior bf. can distinguish dif-
good measure of the rate at which quantum and classicdérent kinds of chaotic systems.
dynamics depart from each other in chaotic systems. It is
being studied for other systems, and preliminary results sup- This work was supported by the Natural Sciences and
port the generalizations made above. It will be interesting tdengineering Research Council of Canada.
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