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Lyapunov exponents for the differences between quantum and classical dynamics
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The moments and correlations of the~classical or quantum! position and momentum variables satisfy a
hierarchy of coupled equations, which have been studied and solved numerically for the He´non-Heiles model.
It is found, for chaotic states of the model, that the second moments of the classical and quantum variables
grow exponentially at a rate governed by the classical Lyapunov exponent. The differences between quantum
and classical variables also grow exponentially, but with a larger exponent. The behavior of this quantum-
classical difference exponent is studied in this paper.
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In the study of classical and quantum chaos it is neces
to understand the quantitative differences between quan
and classical dynamics. One way to study these differenc
by way of the moments of the position and momentum va
ables. The moments and correlation functions of these~quan-
tum or classical! variables satisfy a hierarchy of equation
which may be truncated and solved numerically, provid
the widths of the probability distributions remain sma
enough. By choosing the initial quantum and classical pr
abilities to be equal, one can study@1# how the differences
between the two theories grow in time, how they depend
the parameters of the initial state, and how they scale wit\.

The model studied in@1# was that of He´non and Heiles
@2#, whose Hamiltonian has two degrees of freedom coup
by a cubic potential,

H5 1
2 ~p1

21p2
2!1 1

2 ~q1
21q2

2!1q1
2q22 1

3 q2
3. ~1!

The probability distributions were chosen to be Gaussian
rametrized by their centroids and variances, with the sum
the variances of the two coordinates,

FIG. 1. Quantum variance and the difference between quan
and classical variances. Parameters for the initial chaotic state
E50.16, q150, q2520.20, p150.48 442, p250.20, \52
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V5Š~q12^q1&!2
‹1Š~q22^q2&!2

‹, ~2!

being a convenient parameter. The average brackets^¯& are
to be interpreted as quantum or classical averages, accor
to the context.

Figure 1 shows the time dependence of the quantum v
anceVq and the difference between the quantum and cla
cal variances,uVq2Vcu, for a classically chaotic state. Th
classical varianceVc would be indistinguishable fromVq on
the scale of the graph. It is well known that in a chaotic st
the separation between two initially close trajectories w
oscillate within an exponentially growing envelope, propo
tional to elt, with l being the largest Lyapunov expone
@3#. Thus the variance, being the mean-squared separatio
the ensemble, should grow ase2lt.

More interesting was the discovery@1# that the small dif-
ference between the quantum and classical variances
grows exponentially, but with a larger exponent than that
the variances themselves. The difference between the
troids of the quantum and classical probability distributio
also grows exponentially with the same exponent asuVq
2Vcu. This exponent, which we shall calllqc, was found to
be independent of the magnitude of\. The Lyapunov expo-
nents are well established as useful parameters for chara
izing the nature of classical chaotic dynamics, so we m
expect that the quantum-classical difference exponent sh
come to play a similarly useful role in the theory of quantu
chaos. This paper presents the first detailed study of
quantum-classical difference exponent in a particular mo
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FIG. 2. Histogram of the exponentb1 for the growth of the
quantum variance.
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The quantitiesVq anduVq2Vcu are highly oscillatory, but
their upper envelopes are approximately exponential, be
proportional toeb1t andeb2t, respectively. Therefore we fin
the local maxima of the curves~the circles in Fig. 1!, and
estimate the exponentsb1 andb2 from the slopes of the fitted
straight lines on the semilogarithmic plot. Sinceb2 is greater
thanb1, it would appear that the two curves in Fig. 1 wou
eventually cross. But the extrapolated straight lines cross
variances greater than the size of the system, which is 0~1!,
so the curves do not actually cross. The exponentsb1 andb2
are analogous to thelocal or finite-timeLyapunov exponents
which may be defined as

l~x0 ,T!5 lim
e→0

T21 ln@d~e,T!/e#, ~3!

whered(e,0)5e is the initial separation between two near
trajectories that start withine of the pointx0 in phase space
andd(e,T) is their separation at the later timeT. The usual
Lyapunov exponent is given byl5 limT→` l(x0 ,T) and is
independent of the starting pointx0 on the trajectory. For
finite T there is a distribution of values ofl(x0 ,T) corre-
sponding to the different starting pointsx0 within the region
that is densely explored by the trajectory. This distributi
may contain useful information beyond that of the us
Lyapunov exponent@4#.

Figures 2 and 3 show, respectively, the distributions
the exponentsb1 andb2 at the energyE50.16, for which the

FIG. 4. Histogram ofb22b1 .

FIG. 3. Histogram of the quantum-classical difference expon
b2 , whose average islqc.
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accessible region of phase space contains a large ch
zone. That zone was sampled by examining the Poinc´
section defined by the conditionq150 with p1.0, and se-
lecting initial conditions within the chaotic zone on a squa
grid in the (q2 ,p2) plane of cell size 0.0530.05. Although
the ranges ofb1 andb2 overlap considerably, the quantum
classical difference exponentb2 is always larger thanb1 , as
is shown by the distribution ofb22b1 in Fig. 4. Apparently,
there must be a significant correlation betweenb1 and b2 ,
which is confirmed by the linear regression plot, Fig. 5. Th
close relation betweenb1 and b2 is surprising, sinceb1 is
essentially a classical parameter, whereasb2 is purely quan-
tum mechanical in origin. There are significant residual d
viations from the regression line, but they form no appar
pattern.

The shapes of the histograms do not change much as
energy is varied, but all of the parameters depend weakly
energy. Table I summarizes the results for two different
ergies. The average ofb1 over the entire chaotic zone i
compared with 2l, wherel is the classical~infinite time!
Lyapunov exponent, computed by the algorithm of Wo
et al. @5#. The agreement is good forE50.16, but less good
for the lower energy. This happens because at lower ener
the chaotic zone is smaller and has some very thin pa
hence the chosen grid in the (q2 ,p2) phase plane may pro
vide a less representative sample of the chaotic zone.
average ofb2 over the chaotic zone, denotedlqc, is dis-
tinctly larger than 2l.

t

FIG. 5. Linear regression of the exponentb2 versusb1 .

TABLE I. Lyapunov-like exponents for the He´non-Heiles
model at two energies.

E50.13 E50.16

2l 0.113 0.222
(b1)av 0.145 0.246

lqc5(b2)av 0.221 0.371
Regression line b250.01711.412b1 b250.03711.356b1
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The quantum-classical difference exponentlqc provides a
good measure of the rate at which quantum and class
dynamics depart from each other in chaotic systems. I
being studied for other systems, and preliminary results s
port the generalizations made above. It will be interesting
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determine whether the behavior oflqc can distinguish dif-
ferent kinds of chaotic systems.
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