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Quantum interferences and the question of thermodynamic equilibrium
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We derive from first principles the dynamical equations for the interaction between a heat bath and a
multilevel atom with some near degenerate states. Such dynamical equations exhibit atomic coherence terms
which arise from the interference of transition amplitudes. We address the question whether such equations
lead to a steady state that is consistent with the thermodynamic equilibrium. We show that coherence affects
the dynamics of the system, but the equilibrium conditions are still characterized by Boltzmann factors. We
also show how an asymmetric treatment of spontaneous and stimulated processes could lead to a steady state
which is at variance with the principles of thermodynamic equilibrium. We show that such a steady state can
be realized by pumping with broadband laser fields. Finally, we show that coherences in the dynamical
equations can be probed via the spectrum of fluorescence.
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[. INTRODUCTION such situations can be realized by pumping with a broadband
laser.
It is well known that quantum coherences can be pro-
duced by pumping a system with coherent fields—an out- Il. EQUATIONS OF MOTION

standing example being the phenomenon of coherent popu-
lation trapping[1]. It is also well understood how quantum
coherence can be created in interactions involving a commot‘iI ! ) LA g .
bath with a set of closely lying staté@—17]. These types of Lermal field(Fig. 1). The Hamiltonian for this system will
coherences have led to very remarkable phenomena like 1a8%
ing without population inversiofd], etc. One would like to H=Hg+Har, 1)
understand the role of coherences if the bath is at a finite

temperature. At the outset one would not expect any cohekyhere

ences if the system is in thermodynamic equilibrium as the

density matrix has the form exp(H), which is clearly di-

agonal in a basis in whicH is diagonal. However, a micro- HO:ﬁw13A11+ﬁw23A22+% hosaisBis,

scopic derivation of the master equation for a system inter-

acting with a heat bath does show the appearance of

coherence terms in dynamical equations. Clearly, one needs Har=— > {(GksAs+ frsoa) (Akstaty) + H.C).

to demonstrate the consistency of the dynamical equation ks

with thermodynamic equilibrium. This then raises a very in-Here Am=|1%(m| and e, is the energy separation be-
m m

teresting question: what could then bg the observational CORyveen the level$!) and|m). The annihilation(creation op-
sequence of such coherence terms in the master equatiopéaor corresponding to the radiation field in the mésds
The present paper deals with such aspects. We derive from

first principles the dynamical equation, which exhibits coher- ‘ >
ences, and which we show to be consistent with thermody-
namic equilibrium. We give several examples of physical 5
guantities that can be used to study the effect of coherences ‘2>
in the dynamical equations.
The organization of the paper is as follows. In Sec. Il we 2
derive the basic equations of motion for our model and show Yy
the possibility of atomic coherence due to interaction with a 2y
bath. In Sec. Il we show howhermodynamic equilibrium is 2
achievedin a steady state even in the presence of such co-
herence terms in the master equation. In Sec. IV we show
how the coherence terms in the master equation can be ‘3>
probed through the emission spectrum. We also demonstrate
how anasymmetrictreatment of spontaneous vs stimulated FIG. 1. Schematic of a V system in a thermal bath. Bt
emission can lead to a steady state which is at variance witllenote the spontaneous emission rates and the excited levels are
thermodynamic equilibrium. In Sec. V we demonstrate howassumed to be coupled via the vacuum field.

We consider a collection of three-level atoms, the excited
vels|1), |2), and ground level3) (V systen in a bath of
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Ays (aﬁs). The coupling constants are gys
=iJmckAL3)dys s and fr=i(2mckAL3)dys €4s
where ajg is the dipole matrix element for the transition
li)|3) (j=1,2) ande,s is the unit polarization vectot.3
is the quantization volume which finally will be extended to

infinity. The above Hamiltonian in the interaction picture
will be

Hi=— 2 [{gksAree' 19+ frAnge 23 o e ok + Hic,
ks
2
where we drop the antiresonant terrfretating wave ap-
proximation. We study the dynamics of this system in the

master equation framewofR]. The master equation derived
in the Born and Markov approximation reads as

ap .
! [@1A11F @23A23,p] —T'1[A11p = Aszp14]
— o[ Azop— Asapoo] — 'y COSO[ A1p — Aszpoi]

I';cos6

a

[A210 = Azzp12] — Y1N1[Aszp — A11p33]

7aN
o

1

— ¥oNo[ Agzp — Agopas] +

+72N2a)
3

Here 2y;=4]|dj5|?w’%/3%c® is the natural linewidth of the

level |j) which occurs due to the zero point fluctuation of the

electromagnetic fieIde=(exp[,6’hwj3]—1)‘1 is the mean
number of thermal photons on the transitjpjx—|3) at tem-
peratureT (f=1kT), andl’;=y;(N;+1) (j=1,2). dis the
angle between the matrix elementsi;s,d,;  and

a=|d3/|doq. Note that the above master equation was de-
rived without any assumption about the orientation of dipole

matrix elements. The casterms in the above equation are
the crosginterference terms in addition to the direct decay
terms. They are particularly important whesy,~1";,I"5,
and arise due to the two transitiofs)«|3) and|2)«|3)
coupling with the same vacuum. &f;,>1",I", then we can

neglect such interference terms under the secular approxim
tion. The present discussion is based on situations wheﬁfI

such nonsecular terms are important. In recent times, su

terms have been much in focus because they create atoni&

coherence without any coherent fidl8—13], although in

other situation$14,15 external fields have been used to cre-
ate a similar effect. The equations of motion for the variousas

density matrix elements in the Schlinger picture are

p11= — 2T 1p11+ 2y1N1p33— o cOSH(paot p2), 3

I';cos6

p2o=—2T 3p20+ 2¥oNpas— T(P12+ p21), (4b)
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I'ycosd
o P11

p1o=—[T1+ T +iwiolpi—

- an C030p22+

N
'yzaN2+ %) C030p33,
(40)

p13= ~[T'1+ ¥2Na+ yiNy +iwi3]p13—Toa cOSOpo3,

(4d)

I'ycosé
o P13-

(4¢)

p23= —[2+ 1N+ yoNo+iwas]pas—

Traditionally one has the rate equations for populations and
coherences as simple decay. However, now the dynamics of
the coherence, is coupled with the diagonal elements and
vice versa. The crucial question Boes this system evolve
into a thermodynamic equilibrium even in the presence of
such coherences in the density matrix equations?

Ill. STEADY STATE BEHAVIOR

We evaluate the steady state for the set of equatidhs
After tedious calculation we arrive at the following simpli-
fied result:

_ Ioy1Ny
i1 (I'1F2+ToyiN +T1v,N,)

poy= I'17,N,
22 (T4l p+ TNy +T1y5Np)

®

The remaining elements are zero. A clear demonstration of
thermodynamic equilibrium can be seen by taking the ratio
of populations,

p11_ Xl — Bhwis]

paz  exp—pBh wy3]’

which is in accordance with the Boltzmann distribution. Note
that one arrives at the same set of res@fiseven in the
absence of interference terms. This essentially means that,
although the system may evolve in a different way, in steady
state the thermodynamic equilibrium is obtained even in the
esence of coherence terms in the master equativie.

ow in the Appendix that this result is true in general for a
ultilevel atom in a thermal bath in the presence of interfer-

(6

ence termg.To show that the steady state conditions are the
same both in the presence and in the absence of interference,
we measure the entropy of the system. The entropy is defined

3
s<t>=—21 AinA;, (7)

where theA;’s are the eigenvalues of the density maipix
At t=0 we haveps3(0)=1, which is a pure state and the
entropy will be zero. To numerically evaluate the entropy we
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0.003 . . . An exception to the above occurs for the degenerate case
w1,="0, which is ambiguous whefi=0°. A unique straight-
forward steady state solution of Eq¥l) does not exist. In
fact, p;; and p,, remain arbitrary. This situation arises be-
cause there exists a constant of motion in this ¢a$eCon-
sider the states

_ldz412)-1d,412)

0.002

S(t)

dyd|1)+|dod |2
+>:|13||> |dagl[2)

- 5 | ] ,

0.001 . (8)
where d?=|d 32+ |d,g?% It is easy to see thap__=K
whereK is a constant. In general the steady state solution is
given by

0.0000 ' 5 10 ' 15 20 _ :N(1+K)+K :N(l—SK)—K

1t PLTP2= 503Ny 0 P27 T (11 2N)
FIG. 2. The dynamical evolution of entropy. The parameters are O0sK=1, (9)

Y1=72=w12, N;j=N,=1075 anda=1. The solid line is in the

presence of interferenced€0°) and the dashed curve is in the Where N;=N,=N. Clearly, a unique steady state solution
absence §=90°). In both cases the long time behaviors are theexists for a given value dk. The above result may seem to
same. violate equilibrium conditions, but it is not surprising as the
state| —) is decoupledfrom the bath. Thus if we initially
start fromK =1 then the system always remaing in). The

make the canonical transformation =pizexd —i _ /
Pla=pjsexHl ~i(wis state|—) is an example of a trapped stdtE] and is very

+wy9)t/2] (j=1,2) in Egs.(4). Note in Fig. 2 that in both h of : in th ¢
the presence and absence of interference, the system evolyB&ch OF current interest in the context of quantum comput-

to the same value of entropy. We have also verified that th&9 Using Qecoherence free subspaté]. However, thgre
time derivative of entropy continuously decreases. Note th re other situations where the steady state could be different

the time taken to reach the equilibrium value is greater in the O™ the one determined by thermodynamic equilibrium. An

presence of interference. This happens because the interfeq)—(ample is given below.
ence terms pump the system back to excited levels, and thuE . .
the populations decay with an effective lifetime that is more symmetric treatment of spontaneous vs stimulated processes
than the lifetime in the absence of interference. We note here The decayd’;,I', contain the contribution of both spon-
that the analysis of Savchenlt al. [10] based on Green’s taneous {4,v,) and stimulated ¢;N;,y,N,) emission pro-
functions seems to imply the existence of coherence underesses. Thus interference also exists in both these processes.
equilibrium conditions. We have shown above that, althoughf we include a parametea for interference in stimulated
nondiagonal elements are present in the equations for popemission and for interference in spontaneous emission, the

lations, they do not contribute in steady state. master equation in this case will be
dp .
! [w13A11F @23R2, p] = T'1[A11p — Azapa1] — o[ Azop — Azapaa] — y2(@Ny +b) a COSO[ Arop — Azzp 2]
vy(aN;+b)cosd
- o [A210— Agap12] = ¥1N1[ Azzp — A11p33] — ¥2N2[ Agzp — Azopas]
¥1N1
+a + ¥oNoa | COSHA,1p33t H.C. (10

It implies thata=0,b=1 would mean interference only in the spontaneous procesaaricb=0 would mean interference

only in the stimulated process. Such a segregation is not just theoretical; we will show later that there are other kinds of bath
where such conditions can be realized. However, for a thermal field, a correct physical situation would implg-either

=1 ora=b=0. It turns out that the neglect of any one interference tearar(b) results in a steady state, which is at variance

with thermal equilibrium. We found the following steady state wlaen0,b=1:

[(T14T2)2+ 07T y1Ny+ ¥,c0S0(T' 1+ 1) (v5¢°Ny— ¥iN;)
pP11= D, , (113
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[(T1+T2)%+ 02T 1y,No+ 7,008 0(T 1+ T ) (¥2N; /a?— ¥3N,)
pP22= D, , (11b

—(T1+T =i 01)(T'1¥5N,a+ T, 3N, /a)cosd
p12= D, , (110

|

where

2
N
1N1
> —7§N2

Y
[(F1+T2) 2+ 0 (T y+ToyiNy + T yoNy) =1 7208 0(T' 1 + ') 2= (I + T'p) cos 0 yoa° — 71)(

Whena=1b=0 we find

[(T14T2)24 02T 571N — ¥1N1 ¥Noc0€ (T 1+ T o) (T o+ y1N1 + y5a?N, /v, Ny)

P11~ D, , (128
[(T1+T,)%+ wiz]rn’zNz_ ¥1N1YoNo(T1+T5)cog0(T 1+ N, + ’)’iNllazyzNz)
pP22= D , (12b
2
(T1+T,—iw1)(T2¥3N, la+T 1 y3N,a) cosh
pP12= D , (129
2
I
where section we show the effect of coherence on the emitted ra-

diation. We derive the emission spectrum and show the ex-
istence of a dark line as a result of atomic coherence via
decay terms.

All the nine elements op can be written in a compact
matrix equation as

D,= { [(T1+T )%+ w2 (T 5+ T 1y,No+Toy:Ny)

—(I'1+T) 7’1N17’2N2( 211+ 215+ yiN1 + yoN,

il MW (13
')’iNl ?’gazNz at '
AR cogh|.
y2Noa Y11 where
In both the cases thsteady state coheren@mong excited -
levels isnonzero In Fig. 3 we show the dynamics {f,| for W'=[p11, P12, P13, P21, P22y P23 P31 P32 Paals
various values of and b. We take the initial state a8). (14)

'Ehlust,h Losrtzzd?/:s?étglé(c:%:rgh ?es i:e;?sélnmlztlr?é zé;%a; t;n andM is a 9x 9 matrix corresponding to the coefficientsmf

asymmetric treatment, equilibrium conditions are violated. 1" Ed-(4). The positive frequency part of the radiated electric
We now explain why thermodynamic equilibrium does field at a distance in the far field region is given by
not permit such an asymmetric treatment. We note that the

emission(absorption processes are determined by the anti- - wis o ‘

normally orderednormally orderejicorrelation functions of E*(r,t)=— —_[rxrx diglAg(t)e K

the electromagnetic field. In thermodynamic equilibrium cr

both these correlations are connected via tluetuation- 2

dissipationtheorem and therefore both stimulated and spon- __23[;X;X523]A32(t)e7|kr_ (15)
taneous processes are to be treated on the same footing. In c?r

order to treat them asymmetrically one needs extra freedom
and we show in Sec. V that pumping by broadband laser¥he emission spectrum is given by
provides such a freedom.

IV. EMISSION SPECTRUM: A PROBE OF COHERENCE S(w)= |imJ’ Re{exp —iw7)(E™(t+7)-E"(t))}dT,
TERMS IN THE MASTER EQUATION t—ee 0 1

In the preceding section we showed that the long time
effect of coherence on atomic variables is absent. In thisnd the two-time field correlation is
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FIG. 3. Plotted are the absolute values of coheremgeas a
function of time. The parameters are as in Fig. 2.

(E~(Mt+7)-E*(r,0)

413 |2
w73 dyg 5|n2¢1
== (At DA)

w33| 523|25in2¢>2

C4r2

(Axa(t+ 7)Agy(1))

w§3w§3| a23| |613|

c4r2

X{(Agg(t+ 7)Agy(t)) +(Agg(t+ 1) Agi1))}.
(17

Here ¢, , ¢, are the angles betweenanddys,d.s, respec-
tively. From Eq(13) we can write

(cos#—Cc0s¢p1C0Sp5)

Y(t+7)=L(7)¥(t) (18

where the matriX_(7) =expM7) and the elements o¥ (t)

are given in Eqg.(14). Using Eq.(18) and the regression
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(Agg(t+ 7)Agy(t)) =Lgg(T)poA®),

(Agg(t+ 1) Agy(t)) =Lgd 7)p1a(®).

The elements of matrik required for the above expression
are given byL,A7)=p31(7), LgAT)=p3(7), solved with
the initial conditionps;(0)=1, andLgg(7) = p3x(7), LgA7)
=p31(7), with the initial conditionps;,(0)=1. Taking the
one-sided Fourier transform we get

[[2+ yiNy+ N =i (60— w12/2) ]

LAw)= , (19
@) 5. (199
—TI';a cosh

L7g(w)= T D. (19b
3
I'{+ yiN; +yoN,—i(6+ 2
Lss(w):[ 1t viNg 72D2 (6+ wgd )]1 (199
3
—I'ycosbla
|—87(w):D—, (190
3

where
D3=[I'1+ N1+ ¥oNo—i(5+ w12) ]
X[+ y4Ni+ ¥,No—i(8— w1,/2)]—T' 1T ,c06,

and 5: (w13+ (1)23)/2_ w.
The final expression for the spectrum is

w‘213| a23| 2

w‘113|513|2 .
S(w)=R Wsmzﬁbﬂw(w)mﬁw

X Sin oL gg( @) poot 1
cr

X (C0SH—C0Sh1C0SP,){L7g( @) poot LA ) pas}|.

(20

theorem we find the two-time correlation functions in the Here thep’s denote the steady state value. The first two

limit t—o0 as
(Arg(t+ 1) Agy(t)) =LA 7) p1a(),

(Ag(t+ 1) Agy(t)) =L7g(7) po =),

[Y1(209— w12) p117T Y2( 200+ @12) p2o]

terms above denote the emission from the two excited levels
and the last term is due to interference. If we take the ratio
w13/ wy3~1 and assume that the difference—1I", is negli-
gible, the spectrum can be written in a simpler form as a sum
of Lorentzian and dispersive contributions as

Yo [Y1(200+ w12) p117T Y2(200— @12) P22l

S(w)/C=

4(1)0

Yo

(8+ wo)?+ 7}

N (T1y2p11+ Tay1p27)COS 0

4(1)0

o+ wqo

X

(6—wo)?+ 75 2w

(60— wo)?+ 75 (6+wo)?+ 2|
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where we takep, = ¢,=7/2. Hereyo=(I';+T',)/2+ yiN;+ y,N,, wo=/(wi,— 4T 1I',c0$6)/2, andC=3%w,y2cr?. The
above result2l) is valid for w,,>2+I"1I",cos6. Note that the interference terms appear as dispersive contributions, which is
a general feature observed among such interference effegtsA deviation from this behavior can be seen in certain cases
as observed here whew,,<2/I';I',c0os6. The spectrum in this case will be

[Y y1p11+ ¥ Y2p22+ (D1yap1a+ Layipay)coS6] Yot v

S(w)/C=

2y’ %+ (yot+y')?
N (¥ y1p11+ ¥ ¥Y2p22— (T1¥2p11+ L 2y1p22) COS 0] Yo— V'
2y’ %+ (yo—y')?
— w ) o
+(7’2P22 Y?Pn) 12 . _ |, 22)
4y "+ (yo—v")" (6" +(yotvy")

where we have writtem,=iy’. Here even the interference makes an anglé, with d,5, and the central frequency tuned
terms appear as Lorentzian. In both cases the contribution @hidway between the two excited levels. The master equation

interference is a sharp dip in the spectrum at the average@r such a bath in the Schiinger picture can be derived as
frequency of the two excited levels. Thus in the presence of

interference the two levels can be resolved even when the dp

two excited levels have separation much less than their line- 5y = ~ [ @15A11%+ ©23A2,p] = (y1+ P1)[A11p ~ Agapail
width. We show the spectrum both in the presence and in the

absence of interference in Fig. 4. The dark liae6=0) in — (Y2t P2)[Agap — Azzpoo] — VP1P2A A1p + Azip
the spectrum is the observational effect of interference which

arises for the system in thermodynamic equilibrium. Fer ~Agzp12~ Agapn] ~ Pal Agzp — Aurpas]

':)72: v, N;=N,=N at §=0 the spectrum is proportional —pz[Aggp—Azngg]JrZ@AglpgngH. c. (25

- where 2;=2R|d;3- €,|%/%2 (j=1,2) is the radiative broad-
_ 4y°N (23) ening due to the pumping field. For simplicity we have taken
(1+3N)(7(2)+ wg)’ the dipole matrix elements as real. Note from E2p) that
interference terms here correspondim,p,. This coherence
when =0°. Thus the observation of a dark line 80  arises due to a polarized broadband field coupling to both the
depends oM. The smaller the value dl, the better will be transitions. The coherence will be important for separation

S(w)/C

the observed interference effect. w1, less than the spectral width of the pumping figidB].
Here the interference in spontaneous emission is absent.
V. REPLACEMENT OF THERMAL BATH BY A Case Il: a= 0, b = 1. This would correspond to a situ-
BROADBAND PUMPING LASER ation where interference in stimulated emission is absent, but

) i interference in spontaneous emission is present. Consider a
We have shown earlier that an asymmetric treatment Ofjiation where the dipole matrix elements are at an adgle

spontaneous emission and stimulated emission could lead {phere 9= 0.7/2. Both the transitions are now pumped by

a variety of different steady states. However, this is not validyyq gifferent broadband fields of the same central frequency
for interaction with a thermal bath. We now show that there but different polarizationss; and &, such thatd,g &
1 2 23" €1

are other types of bath where such situations could be reaf’? N ) ,
ized in practice. Consider, for example, pumping by a broad=0 anddis- €,=0 [19]. This would imply that we have two

band pumping laser, where the field is given by different pumping streng'&hs ?Iong the two arms of the V
) _ system given by B;=2R|d;s- €|?/%? (j=1,2). Further, if
E(t)=¢e(t)ee '“1'+c.c., (24 the pumping field%; ande, are uncorrelated then the master

) . ) equation will be
and the field amplitude is5 correlated,{(e(t)e* (t— 7))

=2R4(7). Below we show two cases that corresponcato dp

=1,b=0 anda=0,b=1 as in Sec. Ill. o i[w1A111 023R2,p] = (Y1 P1[A11p— Aszp14]
Case I: a= 1, b = 0. As discussed in Sec. Il this would

correspond to no interference in spontaneous emission, while  — (1,4 py)[ Aszp — Agzp2o] — VY1 ¥2C0SO[ Arop+ Asp

interference in stimulated process persists. For this we con-

sider the dipole matrix elements as orthogon@s( dz). ~Asw1z™ Aswp2il ~ Pal Asap ~ Aripsg]

We take a single broadband field, polarized alé@gwhich —Po[Azzp—Aspsz] +H. C., (26)
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20x107° , , APPENDIX: MULTILEVEL ATOM IN A THERMAL BATH
In this Appendix we prove a general result for the equi-
librium state of a multilevel atom interacting with a thermal
1.5x107° bath. The Hamiltonian for a multilevel atom in a thermal

bath can be written as

<
’§ 1.0X10_5 H= 2 E,u ,,,,u,+2 hwksalsaks—i_ E V,U.VA/.LV’
(/1 ks nFV
(A1)
5.0x10°° where
2mck :
V(=i Ay kst
0.0 /.LV( ) % ( Sh ) ,uV (Eks ks
_ - T aloggt
€ksBks€ 1 ) (AZ)

FIG. 4. The emission spectrum is plotted in dimensionless units.

The parameters arg;=7y,, wi,=7v;, N;=N,=10"5. The solid
curve is ford=0° and the dashed curve fé=90°.

which clearly has only interference in spontaneous emission—-

To simplify the interference term we have takens/w,s

The generalized reduced master equation for this Hamil-
tonian in the Born-Markoff approximation is given hg0]

d

p
ot Z—{E EMAMM’p + 2 (AKVP)\,u A péw()r,uvx)\

MVKN

~1.

In both the above cases either spontaneous or stimulated
emission has interference. Thus, as seen in Sec. lll, steadyhere
state coherence will be present. If we consider a single, un-
polarized, broadband pumping field and nonorthogonal di-
pole matrix elements, then that will correspond to the situa-
tiona=b=1. The observational effect will be a dark line in
the emission spectrum as seen in the case of thermal equilib-
rium. In the case of an asymmetric treatment, the observa-
tional effects will vary due to the steady state coherence. The
dark line arises only for the case of symmetric treatment o(\/ DV, (0))=Tre{pr(0)V, ()V,,(0)} is the reservoir
spontaneous vs stimulated emissioasults not shown correlat|on functionfiw,, (E —E,), andg,,,, is the Kro-
necker delta function. Here the energy spacings are assumed
to be nondegenerate. In dealing with degenerate levels one
needs to be careful about states decoupled from the reservoir
as discussed at the end of Sec. Ill. The reservoir initially has
a thermal distribution of photons given by

;
exp{ - Bﬁ; Wy sy ks
S

TrR{ exp( - Bh% WyeAh BAs

+(A,u)\pw<_pAKV5)\,u,)F;)\,uV' (A3)

FZVK)\:f0w<vuv(t)VK%(o)>qu_iwl()\t)dty
(A4)
K)\,U.V f <VK)\(0 ,w(t)>eXF( IwK)\t) t

VI. CONCLUSIONS

In conclusion, we have shown the consistency of dynami-
cal equations with thermodynamic equilibrium. The quantum
interferences lead to additional terms in the master equation.
However, the structure of these additional terms is such that
in the steady state we recover the Boltzmann distribution for
populations and no coherences. We further discuss how the '
interference terms in the master equation can be probed. In
particular, the interference terms result in a dark line in the

emission spectrum. Further, we have shown that an asymt should be noted here that the above master equatigi
metric treatment of spontaneous vs stlmulateq emission cag a generalized form which includes the nonsecular terms as
lead to results at variance with thermodynamic equilibrium.well as the terms usually dropped under the rotating wave

We also show how a broadband pumping gives additionahpproximation. From EqgA4) and(A5) we find that
freedom and how a variety of other steady states can be

pr(0)= (A5)

produced. 2(d,, d )
YRR N K\
N(w,), >0
3hc? (©) !
F+
ACKNOWLEDGMENTS = 2(d,, dg) o,
| | [1+N(0 )], ©a<0,
The authors thank S. E. Harris and P. R. Berman for their 3hct
comments and suggestions. (AB)
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2(d,,-d Vs, From Egs.(A6) and (A7) it can be shown that
nv Yk K
1+N(w,y)], @a>0
7 33 [1+N(w)] \
“ T 2(d,, ) w? e = X Bl 0,0, (A9)
MN(H’M% w,,,<0.
3nhc?
(A7) L
FKV/.LK_F/.LKKVqu_BthK)' (A].O)

Let us assume that a solution of the form=exp
(—BZ,E,A,,) exists for Eq.(A3). Substituting this solution
in Eq. (A3) we find that Using Eqgs.(A9) and(A10) we find that Eq(A8) is satisfied.
This shows that the steady state solution is in fact Boltzmann
S A exp—BEJT! +T. —T! exp—pha,) distibution for populations, and as long as there are no
o M KPR R e atomic states decoupled from the reservoir the steady state

_ solution is unique.
_FMKKVeX[X_BﬁwMK)]:O' (AS)
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