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Three-dimensional model for vectorial fields in vertical-cavity surface-emitting lasers
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The electromagnetic problem of modeling vertical-cavity surface-emitting lasers with their full three-
dimensional characteristics is analyzed, including oxide confinement, mesa mirrors, metal contacts, and non-
circular geometries. The model is based on the mode expansion of the electromagnetic field in the continuous
basis of cylindrical TE and TM modes of the cavity medium and on coupled mode theory. The full vectorial
treatment of the problem allows a correct analysis of the polarization characteristics of these lasers, which is a
topic of great interest both for the device physics and for many applications. A comparison between the fully
vectorial treatment and the LP scalar approximation is carried out and polarization resolved results for rect-
angular and elliptical structures are presented.
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I. INTRODUCTION

Vertical-cavity surface-emitting laser~VCSEL! devices
are very attractive light sources due to many of their char
teristics such as good optical beams, array capabilities,
modulation rates, and low costs; the introduction of an ox
window has also led to lower threshold currents and hig
efficiencies@1,2#. In order to achieve even lower threshol
and a monomode operation the trend is to progressively
duce the transverse dimensions of the active region dow
the order of the laser wavelength. In these conditions, du
the complexity and reduced dimensions of the devices, sc
approaches@3–5# are not always suitable to treat re
VCSEL structures and should be validated by vectorial m
els that account for their complete three-dimensional~3D!
properties.

In any case a vectorial approach is necessary to ana
the polarization properties of VCSEL’s which are very im
portant both for a better understanding of the basic phy
and from the point of view of the applications, where often
well-defined polarization is required~sensors, communica
tion systems!. In this sense, due to their circular symmet
geometry, VCSEL’s present a unique opportunity to stu
the physical mechanisms of polarization selection, for
stance with reference to the San Miguel model@6#, and to
design lasers with the possibility of polarization control@7#.
A lot of work has been done in the last years on this to
@6–14# but, generally, modal dichroism and birefringence a
taken as parameters in the different models and the quan
tive effect of the various involved phenomena is still n
completely analyzed. A theoretical description that not o
preserves the full vectorial character of the electromagn
field but that is also suitable to include the effects of t
material anisotropy and of the geometrical asymmetrie
therefore needed. Moreover, for small devices, the polar
tion of the lasing field is no longer perfectly linear and
spatially inhomogeneous polarization has been recently
served as an inherent characteristic of VCSEL’s due to t
transverse confinement@15#. This effect is common also to
gas lasers@16# and its understanding requires a full vector
1050-2947/2001/63~2!/023816~13!/$15.00 63 0238
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electromagnetic treatment of the problem.
Different numerical techniques have up to now been

veloped to compute the laser modes in VCSEL’s. The v
torial problem has been faced with different methods th
generally speaking, can be divided in two main classes:
rect numerical solution of Maxwell equations and mode e
pansion techniques. The former class, which includes
finite elements@17# and weighted index@18# methods or
finite-difference time-domain methods@19#, suffers from at
least two problems: the high computer power required a
related to this, the computation of cold cavity modes; mo
over, if at any extent the complexity is lowered, the mod
can handle only circularly symmetric geometries. In@18# a
higher numerical efficiency is acquired by applying a se
ration of longitudinal and transverse variables in the refr
tive indexes but this approximation is not valid for compl
structures since it leads to constant transverse field profi
On the other hand, the transform matrix approach propo
in @20# and the modal matrix theory developed in@21# are
based on mode expansion of the fields, in terms of the pro
modes of a waveguide in the different layers of the stack
@20# only the circular case is considered, while@21# is ap-
plied also to square shapes, but only for the computation
the reflection spectra in a passive case. A self-consistent
culation of the lasing eigenmodes in dielectrically apertu
lasers with an active cavity has been performed in@22# where
the oxide aperture and the gain profile, are introduced in
idealized way as real and imaginary parts of the comp
susceptibility that defines a thin current sheet in the cav
center. If this assumption can well fit the perturbation
duced by the quantum well~QW!, it is instead very limiting
to describe the influence of the oxide diaphragm since in
mation is lost on its thickness and position. Recently, a
tailed study on the optimized modal performance of oxid
apertured VCSEL’s, related to thickness and position of
oxide window, was performed by@23,24#, where the vecto-
rial solution of Maxwell equations is expanded on the d
crete set of modes of the structure embedded in a met
cylinder. In this work we present a comprehensive mode
compute the VCSEL modes in complex structures, which
©2001 The American Physical Society16-1
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the advantages of both simple analytical derivation and
fordability on a PC-level computer power. It is based on
mode expansion of the vectorial electromagnetic field
terms of the continuous basis of the unperturbed ca
modes and all the deviations with respect to the refere
unperturbed structure are accounted for by coupled-m
theory. This allows us to put into relation the field in tw
arbitrary sections of the device and the closure of the pr
lem is obtained by introducing the appropriate boundary c
ditions of self-consistency between backward and forw
waves at two particular sections. In this way, the electrom
netic problem is reduced to an eigenvalue problem wh
eigenvalues are related to the threshold gain and lasing
quency of the modes, while the corresponding eigenvec
allow the reconstruction of the field profiles. Moreover, t
optical response of the QW active material is computed
self-consistency with the solutions of the electromagne
problem is provided.

The paper is organized as follows. In Sec. II the theo
ical model is developed. The adopted mode expans
coupled-mode formulation, and the boundary conditions
presented. Self-consistency with the material optical
sponse and far-field expressions are reported and a com
son between the fully vectorial treatment and the linea
polarized~LP! scalar approximation is carried out. In Sec.
some examples of numerical results are given. In particu
a parametric study of the laser threshold properties as fu
tions of the device construction characteristics is repor
and the influence of the cavity asymmetry on the birefring
behavior is discussed. Section IV contains the conclusio
Finally detailed expressions of the mode coupling matri
are reported in the Appendix.

II. MODEL

A. Coupled-mode equations for VCSEL’s

The stationary electromagnetic field is expanded on
complete and continuous basis of the TE and TM mode
an infinite medium with the characteristics of the pass
cavity material:

E~r,f,z!5 (
a,l ,p,m

E dk Akmpl
a ~z!Ekmpl

a ~r,f!, ~1!

wherek is the radial component of the wave vector and
bels the continuous radial variation of the modes; indexm
labels the discrete azimuthal mode variation, whilel indi-
cates even and odd modes that differ in the cos(mf) or
sin(mf) angular dependence;p labels TE and TM field dis-
tributions, anda5 f ,b forward and backward propagatin
waves. The explicit expressions of the cylindrical comp
nents of the vectorial modesEkmpl

a can be found in@25# and
are reported in the Appendix.

The integral overk can be numerically discretized and th
parameterm5(kn ,m,p,l ,a) is introduced to label the mod
amplitudes and mode distributions. In this way, expans
~1! can be rewritten in the compact form:
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E~r,f,z!5(
m

Am~z!Em~r,f!Dk. ~2!

The vectorA5$AmDk% of the mode amplitudes is the un
known of the electromagnetic problem and is to be de
mined as the solution of the coupled-mode equations w
proper boundary conditions.

As can be seen from the scheme reported in Fig. 1,
VCSEL device is particularly suitable to be analyzed
means of a coupled-mode approach. It in fact correspond
a planar multilayer structure that defines the cavity a
Bragg mirrors, with possible modifications of the transve
geometry. These include the gain profile in the active regi
the oxide aperture, the etched top mesa mirror, and the m
contact rings; all of them contribute to define the lateral o
tical confinement. The shape and finite dimensions of
transverse geometry in each layer of the stack are introdu
as transverse perturbations of well-defined profile in the
erally homogeneous reference medium.

According to coupled-mode theory@26#, in each layeri of
thicknessLi of the cascade structure, the vector of the mo
coefficients is the solution of the equation

dA

dz
5~B1KiDk!A, ~3!

where Dk is related to the discretization of the transver
wave vector.B describes the free propagation in the refe
ence material and is a diagonal matrix of elements (B)mm8
52 isabmdmm8 where sa561 for forward and backward
waves andb5Akr

22k2 is the longitudinal wave-vector com
ponent withkr5nrv/c, nr the refractive index of the refer
ence material,v the angular frequency, andc the velocity of
light. The coupling between the modes is introduced by
nondiagonal matrixK of elements@27#

~K !mm852
iv

Cm
E

S
dSH Emt•F ~De•Em8! t

2
~De tz• ẑ!~De•Em8!z

ec1Dezz
G1

Emzec

ec1Dezz
~De•Em8!zJ ,

~4!

FIG. 1. Scheme of a VCSEL device.
6-2
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THREE-DIMENSIONAL MODEL FOR VECTORIAL . . . PHYSICAL REVIEW A 63 023816
where the indicest andz indicate transverse and longitudin
components of the vectors andCm is the power normaliza-
tion constant and is given in the Appendix. The tensorDe
describes the perturbation to the homogeneous and isotr
reference dielectric permittivity,e r . The tensorial form ac-
counts for the possibility of a nonisotropic perturbation
lated to some material anisotropy, induced, for example,
the electro-optic effect or by strain and thermal gradients
the structure. The information on the device injection a
guiding geometries and dimensions is included in the mo
by defining, for each transversely nonhomogeneous laye
the structure, the profile of the perturbationDe i j (r,f,z).

With the assumption of an isotropic medium the expr
sion of the perturbationDe reduces to the simple formDe
5De II. In this case, the mode-coupling matrix can be s
as the sum of a transverse and a longitudinal contribut
K5Kt1Kz , of elements

~Kt!mm852
iv

Cm
E

S
DeEtm•Etm8dS,

~5!

~Kz!mm852
iv

Cm
E

S

e rDe

e r1De i
EzmEzm8dS,

where the termKz applies only for TM modes and explic
expressions of theKt matrix elements are derived in the Ap
pendix. In the case of quasiplanar oxide confined structu
as the one presented in@28#, the only two nonvanishing cou
pling matrix contributions are related, respectively, to t
oxide diaphragm, and to the active regionKa .

When the perturbationDe is assumed to be a step functio
in the transverse plane, and therefore constant on a w
defined surfaceS for each layer, calculations are greatly sim
plified, since the angular integrals in Eq.~5! can be analyti-
cally performed. If this assumption is quite reasonable
describe the dielectric constant perturbation induced by
oxide window it is clearly very limiting for the description o
the gain profile. More realistic injection profiles, which a
count for the carrier diffusion, can, however, be easily
cluded in the model by approximating them with a stairca
function.

B. Boundary conditions

The boundary conditions of the problem are fixed by
consistency of the forward and backward mode amplitude
two reference interfaces. In particular, it is convenient to
these two sections to be the extreme lower (z50) and upper
(z5L) layer, beyond which the structure does not pres
any transverse perturbation and the geometry is planar
this way, the layers above~below! L(0) can be viewed as
laterally homogeneous multilayer stacks and chain transm
sion matrix formalism can be applied to determine their
flectivity coefficient as a function of the wave vectork. The
boundary conditions explicitly read

A f~0!5G lA
b~0!,

~6!
Ab~L !5GuA f~L !,
02381
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where the diagonal matricesG l and Gu are the reflectivity
coefficient components at, respectively, the lower and up
interfaces.

To find a closed form for the problem it is necessary
express the boundary conditions in terms of a single
known; to this aim we introduce the formal relation betwe
the mode amplitudes at the two reference interfaces a
cascade of single-layer solutions of Eq.~3!,

A~L !5TA~0!, ~7!

where the transmission matrixT is defined as

T5)
i

e~B1KiDk!Li5)
i

Ti ~8!

and the product is carried out on all the layers between
two considered sections.

It is convenient at this point to explicitly consider th
dependence on the parametera5 f ,b. In this way, matrices
B andK can be expressed in the form

B5S Bf 0

0 BbD and K5S K f f K f b

Kb f KbbD , ~9!

where the value ofsa in Eqs. ~A1! and ~A5! leads to the
simple relations

Kt
f f5Kt

f b52Kt
b f52Kt

bb ,
~10!

Kz
f f52Kz

f b5Kz
b f52Kz

bb .

The same partition holds for the matrixT

T5S Tf f Tf b

Tb f TbbD ~11!

and when the formal solution~7! of the coupled-mode equa
tion is combined with the boundary conditions~6!, the com-
plete electromagnetic problem is formulated by the equa

~Tb fG l1Tbb!Ab~0!5Gu~Tf fG l1Tf b!Ab~0!. ~12!

Moreover, the very small thickness of the multiple-quantu
well ~MQW! active region (d!l) allows a linear expansion
of the active-layer contribution toT,

Ta.e~B1KalDK !d1KagdDk, ~13!

where the coupling coefficient in the active layerKa has
been split as the sum of a constant termKal , corresponding
to the losses at zero carriers, and a termKag that accounts for
the carrier-induced dielectric constant perturbation in the
tive region. The peak value (Dea) of the perturbation is the
unknown of the electromagnetic problem and has to be
termined for each cavity mode as a solution of the mo
threshold conditions while its transverse variation is rela
to the carrier density profile and therefore vanishes where
carriers go to zero.

By extracting the unknown quantityDea we define
6-3
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KagDK52 ikr

Dea

e r
Kag8 . ~14!

Correspondingly, also matrixT can be split as the sum of
passive well-known contribution labeled with 0, and an a
tive contribution labeled withl, which contains the problem
unknown:

T5T01l21Tl . ~15!

T0 is simply defined as the matrixT in the absence of carri
ers, whileTl is of the form

Tl5)
b

TjKag8 )
t

Tj , ~16!

where the subscriptsb and t indicate that the products ar
extended to the layers below and above the active reg
The unknownDea is related tol by

l52 ikrd
Dea

e r
. ~17!

With this definition the boundary condition~12! finally re-
sults in an eigenvalue problem forAb(0) of the form

lAb~0!5M0
21MlAb~0!, ~18!

where

M j5Tj
bb2GuTj

f fG l1Tj
b fG l2GuTj

f b ~ j 50,l!. ~19!

The real and imaginary parts of the complex eigenval
provide, respectively, the refractive index variation and m
terial gain for each eigenmode of the problem. Very often
the literature, the change of refractive index induced by
carriers in the active region is neglected, and the effectiv
lasing modes are selected as the eigenmodes with Iml)
50: the discrete frequencies at which these solutions
found fix the lasing mode frequencies and the correspond
imaginary parts of the eigenvalues give the mode thresh
gains. In the following section the validity of this approx
mation will be discussed and results will be compared w
those provided by a self-consistent method in which the
tive material optical response is taken into account. T
eigenvectorsAb(0) are complex due to the presence of t
gain region and, by means of expansion~1!, they allow the
reconstruction of the field distributions atz50 for the dif-
ferent modes and, through Eq.~3!, in any other section.

C. Self-consistent solution

The QW optical response as a function of the frequencv
and carrier densityN is determined by applying the micro
scopic model developed in@29# to the particular QW struc-
ture of the device. The obtained expression for the comp
dielectric constant is of the form

Dea5
1

pd E dke ke

Mke

2

\

@ f cke
~N!2 f vke

~N!#

~vke
2v!2 igp

, ~20!
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whereke indicates the carrier transverse momentum com
nent. The transition dipole matrix elements (Mk), the transi-
tion energies (\vk), and the Fermi-Dirac quasiequilibrium
distributions in conduction and valence bands (f ck , f vk),
have been computed from the QW band structure and dep
on the QW composition and size. Moreover, the spectral
pendence of the polarization relaxation rategp is taken into
account@30#, and Coulomb effects are introduced only
regards band-gap renormalization.

The requirement that the solutions of the electromagn
problem match the QW optical response introduces a s
consistent mechanism of the selection of the lasing mod
The frequency at which this requirement is fullfilled, for
certain value of carrier density, fixes the modes proper
quency (v0) and threshold carrier density (Nth) for each
cavity mode

l21~v0!52 ikrd
Dea~v0 ,Nth!

e r
. ~21!

The self-consistent solutions are now compared to those
tained by the simple requirement Im(l)50 and the range of
validity of this commonly adopted approximation is an
lyzed. We expect the discrepancy between the two meth
to depend on the detuning condition between the cavity re
nance and the active material optical response, determ
by the device construction properties and by the opera
temperature. In Fig. 2 we therefore report the thresh
power gains vs lasing wavelengths of the first five rad
modes with no azimuthal variation~in LP notation 0-1, 0-2,
0-3, 0-4, 0-5! for seven material configurations (a–g).
These are characterized by different values of the gaplg
5lg01Dl, whereDl varies aroundDl50 which corre-
sponds to the reference optical response, computed f
5-nm In0.12Ga0.88As strained QW with band-gap waveleng
lg050.97mm and relaxation rategp51.3531013s21.
These results refer to the 3D VCSEL structure described
Sec. III A with a pillar radius of 4mm and an oxide aperture
radius of 2mm. The active section is characterized by a s
carrier profile with the size of the oxide window; this resu
in gain ~losses! inside ~outside! the active region. The self
consistent solutions are directly compared with the res
obtained with the approximate method. With respect to
mode threshold power gains, the two methods provide o
slight differences and a common qualitative behavior is
served. The mode threshold gains increase withDl due to
the increasing losses in the QW. The self-consistent solut
however, provides the additional information of the mod
that can actually reach the lasing condition: To this end
Fig. 2 ~middle! the maximum gain provided by the QW i
also reported so that only the modes with threshold g
below this value can lase. Moreover, the two methods re
in significant differences as regards the mode waveleng
since the self-consistent solution shows a dispersive beha
for varying Dl not included in the approximate approac
This is related to the change of the refractive indexDn in-
duced by the carrier density and the observeds-shaped be-
haviors in thel-G plane@see Fig. 2~up!# indicate the passing
of the mode wavelength through an extremum ofDn. Fi-
6-4
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THREE-DIMENSIONAL MODEL FOR VECTORIAL . . . PHYSICAL REVIEW A 63 023816
nally, as a result of the self-consistent solution we show
Fig. 2 ~down! the corresponding threshold carrier densiti
The minimum for each mode is found at the detuning
which the mode wavelength matches the material gain p

D. Approximated scalar model

Scalar models are very commonly adopted for their low
complexity; they well describe the laser modes and thresh
properties in the limit of large aperture devices, with rad
a@l, and of small transverse index variations. In these l
its, in fact, the wave vectork is very small and so TE and TM
modes can be treated as TEM. In this section we will sh
how the vectorial model presented in this paper reduces
simplified one, when the TEM approximation is introduce
This will lead to a mode expansion directly performed on
approximate basis of linearly polarized~LP, @25#! modes.

As a first step it is useful to express the mode expans
~1! in the following equivalent form:

E5 (
klma

1
2 @Am2

TE Em2

TE 1sAm2

TMEm2

TM1Am1

TE Em1

TE 1sAm1

TMEm1

TM#,

~22!

where the expansion over the indexp has been explicated
m65$k,l ,m61,a% and s561. In the TEM approximation
the longitudinal field componentEz is set to zero and theKz
contribution to the coupling coefficient matrix, typical of TM
modes, vanishes. Moreover,~see Appendix!, the modal im-
pedances are set equal,ZTE5ZTM, and give rise to common

FIG. 2. Wavelengths, material threshold gains~upper part!, and
corresponding carrier densities~lower part! of modes in the 3D
VCSEL: continuous lines are the self-consistent solutions, dots
the approximate results. Different optical responses withDl ~see
text! from 230 nm ~a! to 130 nm ~g! with 10-nm steps are con
sidered. The small upper graphs are expansions of the graph i
middle, which shows also the maximum gain provided by the Q
in the two limiting detuningsa ~continuous line! and g ~dashed
line!.
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normalization constants,Cm
TE5Cm

TM , and to common re-
flectivity coefficientsGm

TE5Gm
TM . In this way, the coupled-

mode equation~3! and the associated boundary conditio
~6! do not distinguish between TE and TM polarizations, a
the solutions of the eigenvalue problem~18! (ATE,ATM) are
found to satisfy the following conditions:

Am2

TE 5sAm2

TM5Am2

TEM ,

~23!
Am1

TE 52sAm1

TM5Am1

TEM .

If the explicit expressions~A1! of the modes are introduced
and relations~23! are taken into account, expansion~22! be-
comes of the form

E5 (
k,lm,a

Jmk@~Am2

TEM1sAm1

TEM! f lmx̂1~Am2

TEM2sAm1

TEM!glmŷ#.

~24!

From the structure of the coupling matrix given in the A
pendix @see Eq.~A15! therein#, it also follows that

Am2

TEM5Am1

TEM . ~25!

The value of the parameters therefore selects one particula
polarization direction in Eq.~24! and the approximate vecto
rial model becomes equivalent to a scalar model in which
mode expansion is directly performed on the basis of
linearly polarizedP modes

E~r,f,z!5(
lm

E dk Bklm~z!Pklm~r,f!, ~26!

where

Pklm5Jm~kr !3 H f lm~f!x̂
glm~f!ŷ. ~27!

In order to discuss the range of validity of the LP appro
mation, the mode threshold properties obtained by the sc
approach are compared to those of the fully vectorial mod
In particular, in Fig. 3 we report the threshold gains a
lasing wavelengths of the first five radial modes at the a
muthal orderm50 for LP and vectorial solutions. As ex
pected, the differences on the threshold properties incre
with increasing radial order: for modes 0-1 and 0-2 they
practically negligible, since the dominant spectral comp
nents of these modes are peaked aroundk50 where the
TEM approximation holds. Starting from the third radial o
der instead, the approximated scalar approach gives ris
relevant errors in evaluating the mode threshold gain
wavelength and the fully vectorial model is required.

E. Far fields

The free propagation of the electromagnetic field outs
the cavity is given by

re

the
6-5
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E~r,f,z!5 (
l ,p,m

E dkAkmpl
f ~L !Ekmpl~r,f!e2 ib0z,

~28!

where b0 is the propagation constant in air. Each po
(r,f,z) in r space is equivalently defined in the spheric
system of coordinates by

u r5tan21S r

zD , R5Ar21z2, f. ~29!

and correspondingly each point (k,b) in k space is defined
by

uk5tan21S k

b0
D , k05Ak21b0

2. ~30!

Since the far fields are analyzed at a distancez@l from the
emission plane, all the contributions to the electric field d
riving from ukÞu r cancel out at each point (r,f,z). It is
therefore sufficient in Eq.~28! to perform the integration
only around the valuek̄5k sin(ur), and assumeAklpm con-
stant to its value ink̄. In this way, expression~28! for the
field becomes

E~r,f,z!5E dk e2 ib0z2 ikr (
l ,p,m

A
k̄mpl

f
~L !Ek̄mpl~r,f!eik̄r.

~31!

In the above assumptionuk.u r , where ib0z1 ikr
5 ik0R cos(uk2ur).ik0R@121

2(uk2ur)
2#, the integration in

the radial component can be analytically performed,

F~r,z!5E dk e2 ib0z2 ikr.Ai2pk0

R
cosu re

2 ik0R.

~32!

Asymptotically, for (r,z→`), for instanceEx is given by

FIG. 3. Material power gains and wavelength for radial mod
with no azimuthal variation; comparison between vectorial~circles!
and scalar~squares! models. The 3D structure described in Se
III A is analyzed with a 8-mm mesa upper mirror and 4-mm oxide
aperture diameter at a field antinode.
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t
l

-

Ex~r,f,z!5F~r,z!(
l ,m

eik̄r$ f m11,l~f!Jm11~ k̄r!

3~A
k̄lm

p5TE
2A

k̄lm

p5TM
!2 f m21,l~f!Jm21~ k̄r!

3~A
k̄lm

p5TE
1A

k̄lm

p5TM
!%. ~33!

For r50, however, the above approximation cannot be u
since the contribution fromk̄50 is zero. The far-field ex-
pression in this case must be numerically evaluated.

III. NUMERICAL RESULTS

A. VCSEL structure

The scheme of the device preliminarily analyzed is t
very general one proposed in@28#. Different modeling ap-
proaches~see, for instance,@24#! have already been applie
to describe its threshold features and, for this reason,
particularly suitable to test the validity of our model. In pa
ticular, a paper comparing the results from different mod
is in preparation in the framework of the European proj
COST 268.

It is essentially a planar structure in which two infinite
extended Bragg mirrors (AlxGa12xAs/GaAs pairs ofl/4 lay-
ers! define a GaAsl cavity, atl5980 nm. The active region
at the cavity center contains a 5-nm QW and the transve
carrier confinement is achieved by means of a thinl/20 oxi-
dized AlAs window of circular geometry, incorporated in
the first AlxGa12xAs layer of the top mirror. The values o
the oxide aperture radiusa and position of the oxide window
x within the layer, from a node to an antinode position, a
left to be variable parameters in the numerical simulatio
The data on the position, thickness, transverse dimensi
material composition, and optical properties of the differe
structure layers are defined in Table I. Due to the circu
geometry of this structure, the computation of the coupl
coefficients matrices~5! can be carried out analytically in
terms of Bessel functions and the modes with different a
muthal variationm do not couple, so that one can solve t
eigenvalue problem for different fixedm values. The numeri-
cal simulations will then be extended to describe more co
plex and realistic 3D VCSEL structures as the one depic
in Fig. 1. In particular, we consider a device derived from t
one described in Table I but with a mesa upper mirror a
cavity. The structure is then cladded by a 300-nm insula
layer and covered with a 100-nm metallization. The effect
different structure elements, such as the metallization,
dimensions of the top mesa mirror and the asymmetric sh
of the oxide aperture~for example, elliptical or rectangular!
will be separately analyzed. The only drawback in deal
with noncircular geometries is that the azimuthal modes
now coupled together and the coupling coefficients matri
~5! have to be computed numerically. The numerical co
plexity of the problem is determined by the number of a
muthal harmonics that are to be included, and theref
strongly depends on the degree of asymmetry of the struc
under analysis.

s

.
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B. Quasiplanar structures

In this section we investigate the effects of the oxide d
phragm on the mode optical confinement by performing
parametric study of the laser threshold properties u
changing the longitudinal position and the radius of the
erture. Referring to the quasiplanar structure defined in Ta
I, in Fig. 4 we report the threshold gain~left! and lasing
wavelength~right! of the fundamental mode for five value
of the aperture radius and five values of the oxide posit
within the AlxGa12xAs layer. As expected, the mode thres
old gain and the detuning of the lasing wavelength with
spect to the designed cavity value,l5980 nm, are decreas
ing functions of the aperture radius, for each fixed position
the oxide diaphragm. The threshold gain asymptotica
tends, for large radii, to its planar limit; in the particular ca
where the oxide layer is at the antinode of the electrom
netic field~position 5! this condition is recovered already fo
very small radii (a51.5mm) due to the strong index guidin
effect. Similarly, for each fixed size of the oxide aperture,
mode confinement increases as the oxide is moved a
from the field node position, and the threshold gain is
monotonically decreasing function with a minimum in th
field antinode configuration. As regards the wavelength
tuning instead, the progressive change of the oxide posi
from a node to an antinode of the field gives rise to t
competing effects that can well explain the nonmonoto
behavior observed in Fig. 4~right!: the increasing transverse
mode confinement and the increasing longitudinal over
between the optical field and the oxide layer. The first res
in a decreasing wavelength detuning due to the redu
transverse overlap of the field with the oxide layer and i
relevant effect only in the case of reduced aperture r
where the mode is weakly confined. The second instea

TABLE I. Quasiplanar VCSEL structure as proposed in@28#.

Thickness
~nm! Material Index

Air Air 1

24 pair 69.49 GaAs 3.53
DBR 79.63 Alx-Ga12x-As 3.08

Oxide
window

69.49 GaAs 3.53

63.712zox Al x-Ga12x-As 3.08
15.93 AlAs 2.95 r ,a

AlOx 1.60 r .a
zox Al x-Ga12x-As 3.08

Lambda
cavity

136.49 GaAs 3.53

5.00 QW 3.531 ingain r ,a
3.532 i0.01 r .a

136.49 GaAs 3.53

29.5 pair 79.63 Alx-Ga12x-As 3.08
DBR 69.49 GaAs 3.53

Substrate GaAs 3.53
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present in all devices and gives rise to a monotonically
creasing wavelength detuning.

The results obtained by applying the full vectorial mod
~which provides two degenerate solutions indicated by
continuous line! are directly compared with those obtained
the scalar linearly polarized approximation~dotted line!. The
observed differences between the two approaches are al
negligible, and only slightly increase in the cases of t
smallest aperture dimensions. This result confirms that
the fundamental mode, as already shown in Fig. 3, the sc
approach can be applied on a wide range of structure par
eters.

In the same way, in Fig. 5 the threshold properties of
first-order transverse mode are studied. The behavior of
gains and wavelengths for the smallest device are alm
constant and with very high values, since the confinemen
very poor wherever the oxide is positioned. It must here
underlined that in these results the QW optical respons
not accounted for. So gains on the order of 105– 106 cm21

are not realistic since the maximum gain provided by a Q
is on the order of 104 cm21. Instead, for the other apertur
values, the behavior is similar to the fundamental mode c
but higher values of the threshold gain and wavelength
tuning are found. Only for radii greater than 1.5mm and
oxide position 3, 4, and 5 the gain difference becom
smaller and mode competition can arise. The vectorial tre
ment results in two nondegenerate solutions that canno
resolved by the scalar approach: the two orthogonally po
ized fields correspond to a purely TE and purely TM mo
and the degeneracy is therefore lifted by the different mo
impedances, mirror reflectivities, and coupling coefficien
The results presented in Figs. 4 and 5 are in very good ag
ment with those reported in@24# for the 4-mm-diam aperture
structure.

The effect of the metal contact ring on the laser perf
mances is now discussed by comparing the threshold p
erties and the emitted field distributions. In particular, in F
6 we report the field profiles of modes 0-1 and 0-2 inside

FIG. 4. Fundamental mode material power gains~left! and
wavelengths~right! vs oxide position~1: node; 5: antinode! for
different oxide aperture radii (a50.5, 1, 1.5, 2, and 3mm!. The
VCSEL structure is described in Table I. Continuous~dotted! lines
refer to the vectorial~scalar! model.
6-7



e
t

th
e
s
th
in
a

n
o
th

e
e-
et

of
er-
tion
ical
by
es
out-
ins
ted
s.

ic
W.

pen-
co-
of
the
gly

is

es

n-

-

es
ly.

G. BAVA, P. DEBERNARDI, AND L. FRATTA PHYSICAL REVIEW A63 023816
cavity and externally emitted, in the presence and absenc
the metal contact. These results are obtained by adopting
approximated scalar approach since, as shown in Fig. 3,
is a good approximation for these first two modes. The eff
of the metal ring, practically negligible on the internal field
provides instead a cut and a distortion on the profile of
emitted field. Moreover, the corresponding threshold ga
and lasing wavelengths of the two modes in the two cases
reported for comparison. The presence of the additio
metal layer introduces an absorption effect in the top mirr
clearly stronger for the less confined mode; the effect on
lasing wavelength is very small.

C. 3D structures

We now consider the more realistic 3D device describ
in Sec. III A with an etched top mesa mirror of circular g
ometry and metal ring contact. The oxide aperture and m

FIG. 5. Same as in Fig. 4, but for first-order mode; in th
particular case there are two vectorial solutions: TE~continuous
lines! and TM ~continuous lines with dots!.

FIG. 6. Normalized field intensity of the first two radial mod
with zero azimuthal order at the cavity center~continuous lines! and
at the output~dotted lines!. We consider the 4-mm oxide diameter
aperture quasiplanar structure of Table I~left! and a similar device
~right!, but with a 100-nm metalization on top with an output wi
dow the same as that in the oxide.
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ring inner radius are kept fixed to 2mm, while the radius of
the pillar is varied in the numerical simulations. The effect
the pillar dimensions on the laser performance is well und
stood if the threshold properties are analyzed in connec
to the corresponding field profiles. In this case the numer
effort due to the complexity of the structure is reduced
introducing the LP approximation; anyway the differenci
between the LP and vectorial model have already been
lined when discussing Fig. 3. In Fig. 7 the threshold ga
and wavelengths of the first four cavity modes are repor
for three values of the pillar radius. Correspondingly, in Fig
8~A!–8~C! we report the cuts of the circularly symmetr
field profiles of these modes in correspondence of the Q
The fundamental modeP021 is completely confined within
the oxide aperture and its threshold gain has a weak de
dence on the pillar dimensions: the solutions are nearly
incident with the quasiplanar cavity solution. The modes
higher radial orders instead start to spread out beyond
injected region, as can be seen in Fig. 8, and the stron

FIG. 7. Power gains and wavelengths ofP02n modes in the 3D
VCSEL ~see Sec. III A! for different pillar radii: 3 ~stars!, 4
~crosses!, and 5mm ~circles!. The quasiplanar case with metaliza
tion ~black squares! is also reported for comparison.

FIG. 8. Intensity field profiles at the cavity center of the mod
of Fig. 7; A, B, C correspond to the three pillar radii, respective
The graph D is the output corresponding to B.
6-8
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THREE-DIMENSIONAL MODEL FOR VECTORIAL . . . PHYSICAL REVIEW A 63 023816
reduced transverse confinement explains the significan
crease in the threshold gain observed in Fig. 7. The poss
nonmonotonic gain increase with radial order~third mode! is
related to a sort of ‘‘pillar mode,’’ as can be clearly seen
Figs. 8~B! and 8~C! ~dashed lines!, where a strong field is
located in the pillar ring outside the active region. The sa
phenomenon was already found in the results presente
Fig. 3. When the confinement effect provided by the pil
becomes dominant the threshold properties are strongly
pendent on its dimensions: the mode threshold gain incre
and the wavelength detuning decreases for increasing p
radius. In Fig. 8~D! we also report the near-field profiles o
the four modes, externally emitted from the VCSEL. T
results refer to the structure with pillar radius 4mm. The cut
and the field distortion provided by the metal ring can
observed and, in the case of weakly confined higher-or
modes, the field distribution emerges beyond the metal r
Examples of far-field profiles are reported in Fig. 9 for t
same near-field distributions of Fig. 8~D!.

D. Noncircular structures

In the last set of results, the mode threshold properties
field distributions are investigated for VCSEL devices w
noncircular oxide apertures and the influence of shape as
metry on polarization and mode selection is discus
@13,31#. In particular, computations have been performed
using the fully vectorial model on rectangular and elliptic
structures with variable size and axis ratio. Results will
reported for the fundamental and first-order mode becaus
their particular interest with respect to switching and bis
bility mechanisms in VCSEL’s@9–12#.

In Fig. 10 the near-field components of the fundamen
mode are reported for an elliptical and rectangular struct
thex coordinate is aligned with the longer axis and the wh
lines represent the oxide aperture. In both cases, all vect
solutions are characterized by the three components of
electric field which give rise to an inhomogeneous polari
tion state@15#; however, for the considered size, one comp

FIG. 9. Far-field distributions at 10 cm from the output secti
corresponding to the near fields of Fig. 8~D!; the image side is 20
cm.
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nent is strongly dominant over the others of at least fo
orders of magnitude and the two fields can practically
considered as linearly polarized along orthogonal directio
Differences in the field profiles of the two solutions, o
served especially on the weaker components, indicate
the degeneracy between the two orthogonally polarized
lutions, characteristic of circular geometries, is here lift
due to the asymmetry of the structure.

The threshold properties of these two orthogonally pol
ized modes are analyzed in detail in the following figure
with particular attention to the influence of oxide positio
aperture size, and asymmetry~ellipse axis ratio! on the di-
chroism and birefringence. In Fig. 11 the threshold gain a
lasing wavelength of the fundamental modes are studied
varying axis ratio in the elliptical and rectangular structur
described above. Decreasing threshold gains and wavele
detunings from the nominal cavity wavelength~980 nm! are
obtained at increasing axis ratio due to the correspond
increased aperture area. For the same reason at equa
ratio the values of the rectangular structure are smaller w
respect to the elliptical structure. Moreover, as expected
the limit of circular devices~unity axis ratio!, the orthogo-
nally polarized solutions become degenerate in gain and
quency. In order, however, to better investigate the gain
wavelength differences between orthogonally polariz
modes arising from the structure asymmetry, which are
evident in the adopted scale, the values of dichroism
birefringence are directly reported in the following plots.
particular, we will now refer to the results obtained for th
elliptical structure.

In Fig. 12 ~upper plots! the oxide position is set at th
antinode position 5 and the percentage gain difference
birefringence between the two orthogonal polarizations

FIG. 10. Fundamental mode intensity distributions related to
quasiplanar structure with the oxide in position 5~antinode!; the
active region and oxide aperture are taken either rectangula
elliptical with a smaller axis set to 4mm and 1.5 axis ratio.
6-9
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G. BAVA, P. DEBERNARDI, AND L. FRATTA PHYSICAL REVIEW A63 023816
the fundamental mode are analyzed as a function of the
lipse minor axis for three different values of the axis rat
Both dichroism and birefringence are decreasing function
the aperture size and become very small for values of
minor axis above 6mm. On the contrary, for reduced ape
ture dimensions the values of birefringence and dichro
rapidly increase and become of comparable order to th
typically induced by other effects, such as material aniso
pies related to strain@32# and electro-optic effect@33#. The
contribution of shape asymmetry to polarization competit
can therefore play a crucial role in the case of small aper
devices. In addition, the effect is enhanced for increas
axis ratio and a strong polarization control is expected to
achieved with high degrees of asymmetry in small apert

FIG. 11. Fundamental mode power gains~left! and wavelengths
~right! vs axis ratio for the structures of Fig. 10. The continuous a
dashed lines indicate, respectively, thex andy polarizations.

FIG. 12. Parametric study of birefringence and gain differen
induced on the fundamental mode by an elliptical shape of
active region and oxide aperture. Effect of the axis ratio for
oxide window in position 5~upper part! and of the oxide position
for an axis ratio of 1.5~upper part! vs minor axis.
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devices. The degree of asymmetry that can be introduce
realistic structures is, however, limited by the requiremen
circularly symmetric beam profiles, desirable in many app
cations, andb/a52 can be taken as a reasonable upper li
for the axis ratio.

In Fig. 12 ~lower plots! the axis ratio is kept fixed at 1.5
and we vary the oxide position. The dependence on mi
axis is similar to the case of the upper plots. As regards
behavior vs the oxide position, the gain difference is larg
the stronger the confinement whereas the birefringence
sents more complicated features, which can also be see
Fig. 13 where we vary the axis ratio, for two positions of t
oxide. The highest birefringences are achieved for the m
distorted spatial field distributions; these depend both on
aperture shape and the field transverse confinement.
small axis ratios the oxide position 3 provides a poor co
finement, and so a lower birefringence. For higher axis
tios, the strong confinement of the oxide in position 5 p
vents the field from following the aperture shape, while th
is still possible for the lower confinement structure: this
sults in an inversion of the birefringence characteristics.

In Fig. 14 the near-field distributions of the first highe
order mode are reported for the elliptical structure. Four n
degenerate solutions are found, the dominant componen
which describe two orthogonally oriented two-lobed dist
butions, each linearly polarized along two orthogonal dire
tions. The threshold properties as well as the gain and wa
length differences between these different solutions
analyzed in Fig. 15 for varying axis ratio. In the upper plot
Fig. 15 wavelength and threshold gains of the four non
generate modes are reported: continuous and dotted line
scribe, respectively,x andy polarization while the different
spatial distributions are indicated with the schematic dra
ings in the plot. Modes with the orthogonal polarization a
different field distributions are degenerate in the limit of c
cular structures, and then show increasing dicroism and
refringence for increasing axis ratio. The very high valu
observed indicate that the effect of shape asymmetry on
selection of the field spatial distribution is very strong. O
the other hand, birefringence and dichroism between
thogonally polarized modes with the same spatial distri
tions are reported in the lower plots of Fig. 15 where t

d

e
e
e

FIG. 13. Similar to Fig. 12, but vs the axis ratio for a 4-mm
minor axis.
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THREE-DIMENSIONAL MODEL FOR VECTORIAL . . . PHYSICAL REVIEW A 63 023816
continuous and dashed lines indicate, respectively, the h
zontally and vertically oriented two-lobed field distribution
For these particular modes, solutions are purely TE and
in the limit of unitary axis ratio and a percentage gain d
ference~0.04%! and a slight birefringence~0.4 GHz! are
found. These increase with the axis ratio, with opposite s
for the two orthogonal spatial distributions. The mode th
fills the ellipse in the direction of major axis is more sensib
to variations of the ellipticity and a higher variation of bir
fringence and dichroism with the aperture asymmetry is
served.

IV. CONCLUSIONS

In this work we have proposed a comprehensive met
to model VCSEL devices accounting for their complete
geometries and preserving the full vectorial character of
electromagnetic field. The model is based on the expan
of the field in the continuous basis of the cylindrical TE a
TM modes of the cavity region, and on the application
coupled mode theory. The electromagnetic problem, de
mined by the self-consistency relation between forward
backward waves at the mirror discontinuities, is in this w
reduced to an eigenvalue problem which can be ea
handled. The complex eigenvalues determine the requ
mode gain, lasing frequency, and carrier threshold dens
while the eigenvectors give the field distribution inside t
resonator and, consequently, the radiated field.

The validity of a scalar approach was discussed by co
paring it with the fully vectorial model and we found a goo
agreement only for low-order modes. The influence of
device construction characteristics on the laser thresh

FIG. 14. First higher-order field distributions related to the qu
siplanar structure with the oxide in position 5~antinode!; the active
region and oxide aperture are elliptical with a 4mm smaller axis
and 1.4 axis ratio.
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properties has been studied and interesting results have
obtained for the fundamental and first-order mode by cha
ing the position and size of the oxide window, metallizatio
and mesa dimensions. Particular attention was given to n
circular devices and their effect on birefringence and dich
ism was studied.
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APPENDIX: COUPLING COEFFICIENTS

In this appendix the matrix elements of the coupling c
efficient matrix,Kt

f f , are computed. To this aim it is usefu
to report the expression of the expansion modes@25#,

Er5F ~11sp!
m

kr
Jm~kr!1~12sp!Jm8 ~kr!G f ml~f!,

Ef5F ~12sp!
m

kr
Jm~kr!1~11sp!Jm8 ~kr!Ggml~f!, ~A1!

Ez5sa~12sp!i
k

b
Jm~kr! f ml~f!,

wheresp561 for TE and TM modes, respectively, andsa
561 for forward and backward waves. The mode rad
dependence is described in terms of Bessel functions of
first kind, Jm , and of their derivatives with respect to th
argument,Jm8 . The azimuthal variation is instead describ
by the functionsgml and f ml of the form

-

FIG. 15. First higher-order mode characteristics of the ellipti
VCSEL vs axis ratio for a 4-mm minor axis and oxide position 5
Upper part, wavelengths and threshold gains; lower part, co
sponding bireferingence and percentage gain difference.
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f ml~f!5H cos~mf! l 5even

sin~mf! l 5odd,
~A2!

gml~f!5H 2sin~mf! l 5even

cos~mf! l 5odd.

The z component of the electric field is nonzero in th
case of TM modes; it depends onk and is therefore very
small.

The mode basis is orthonormal in the following sense

E dSF 1

Zp Ekmpl
a Ek8m8p8 l 8

a8 1
1

Zp8
Ekmpl

a Ek8m8p8 l 8
a8 G

5Ckmpl
a d~k2k8!dmm8dpp8d l l 8 , ~A3!

where the modal impedance is defined as

Zp5Am0

e
3H K

b
, p5TE mode

b

k
, p5TM mode

~A4!

ande5e0nr
2. The power normalization constantCkmpl

a is

Ckmpl
a 5sa~Zp!21

8pnm

k
, ~A5!

where

nm5H 2, m50

1, mÞ0.
~A6!

The coupling coefficients are computed by explicitly i
troducing the expressions of the mode distributions~A1! in
the definition ~5!. Recalling the characteristic relations
Bessel functions,

Jm~z!5
z

2m
@Jm21~z!1Jm11~z!#,

~A7!
Jm8 ~z!5 1

2 @Jm21~z!2Jm11~z!#,

and inserting Eq.~A7! in Eq. ~5!, one obtains

~Kt
f f !mm852

iv

Cm
De

1

4 H E
0

2p

df f mlf m8 l 8

3E
0

r~f!

r dr~spJm1
1Jm2

!~sp8Jm
18

1Jm
28

!

1E
0

2p

df gmlgm8 l 8E
0

r~f!

r dr~Jm2
2spJm1

!

3~Jm
28

2sp8Jm
18

!J , ~A8!
02381
where the compact notationsJm65Jm61(kr) and Jm
68

5Jm861(k8r) have been introduced. In expression~A8!
r~f! represents the surface where a step discontinuity of
dielectric constant introduces the perturbation in the la
under analysis. In the case of elliptical geometries

r~f!5aA 11tan2~f!

11tan2~f!S a

bD 2 ~A9!

wherea andb are, respectively, the major and minor axes
the ellipse and the anglef taken with reference to the mino
axis. In order to get more insight in expression~A8! and
reduce the complexity of the numerical computations, it
convenient to invert the order in which the integrals over
radial and angular variable are performed. In the particu
case of the ellipse, for example, wherer is a periodic func-
tion of f with periodp, we obtain

E
0

2p

dfE
0

r~f!

r dr5E
0

b

r dr (
n50

1 E
np1f̄~r!

~n11!p2f̄~r!
df.

~A10!

The extreme of integration,f̄(r), is obtained by inversion of
the relationr~f! ~A9! on the angular interval@0,p/2#,

f̄~r!5H 0, r,a

tan21SA12~r/a!2

~r/b!221D , a,r,b.
~A11!

The integral over the angular variablef which appears in
Eq. ~A8! can be analytically performed and is of the form

(
n50

1 E
np1f̄~r!

~n11!p2f̄~r!
f ml~f! f m8 l 8~f!df

5@cm2m8~r!1slcm1m8~r!#d l l 8 , ~A12!

where

cm6m8~r!5E
f̄~r!

p2f̄~r!
cos@~m6m8!f#df ~A13!

and

sl5H 1, l 5even

21, l 5odd.
~A14!

The other contribution in Eq.~A8!, obtained by performing
the angular integration on the functiongmlgm8 l 8 , is very
similar: on the basis of definition~A2!, it differs from Eq.
~A12! only for a change of sign insl . It is clear that Eq.
~A13! is different from zero only whenm6m8 is an even
number, that is, the system couples only the modes w
same azimuthal parity. Moreover, the termd l l 8 indicates that
the modes with opposite polarization are completely u
coupled by the system: the odd angular dependence of
kind cos(mf)sin(m8f), which would derive from lÞ l 8,
gives rise in Eq.~A12! to a vanishing contribution. Thes
6-12
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features, which stem from the even periodicity of the geo
etry under analysis, reduce the numerical complexity of
problem allowing us to solve separate eigenvalue proble
each of lower order. The rectangular and elliptical structu
obviously fulfill these conditions, which are, however, f
more general and include other different aperture shapes

In conclusion, inserting expressions~A12! in Eq. ~A8!,
theKt

f f matrix elements reduce to integrals in the radial va
able and are of the form

~Kt
f f !mm852

iv

Cm
De

1

2
d l l 8E

0

b

r dr$cm2m8~r!

3@Jm
28
Jm2

1spsp8Jm
18
Jm1

#1slcm1m8~r!

3@spJm
28
Jm1

1sp8Jm
18
Jm2

#%. ~A15!
@

@

@

@

@

@

02381
-
e
s,
s

-

The integral in the radial component must at this point
numerically evaluated. Only in the limit case of circular a
ertures, in whichc is a constant function ofr, the integral
can be performed analytically.

In the case of the LP approximation~see Sec. II E! the
mode normalization constant is found to be the same as
~A5!, while theKt

f f matrix elements are now of the simple
form

~Kt
f f !mm852

iv

Cm
Ded l l 8E

0

rM
r dr@cm1m8~r!

1slcm2m8~r!#Jm~kr!Jm8~k8r!. ~A16!
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