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Theory of self-phase-locked optical parametric oscillators
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The plane-wave dynamics ofe3— 2w, subharmonic optical parametric oscillators containing a second-
harmonic generator of the idler-waveis analyzed analytically by using the mean-field approximation and
numerically by taking into account the field propagation inside the media. The resonant
YP(—3w;20,0): D (—20; v, ») cascaded second-order nonlinearities induce a mutual injection locking of
the signal and idler waves that leads to coherent self-phase locking of the pump and subharmonic waves,
freezing the phase diffusion noise. In case of signal-and-idler resonant devices, largely detuned subthreshold
states occur due to a subcritical bifurcation, broadening out the self-locking frequency range to a few cavity
linewidths.
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I. INTRODUCTION of the pump laser, while their phase differengg— ¢, un-
dergoes a phase diffusion process stemming from the inter-

The synthesis of phase-coheréstihharmonic optical ra- action of both modes with the vacuum fluctuatiga8]. To
diation (w,2w,...,Nw) is useful in high-precision optical act as pertinent phase-coherent dividers, the idler and signal
measurements, such as optical frequency metrdld@}. In waves have thus to be phase locked, for instance by use of an
frequency metrology, a phase-coherent opticaNbgtivider  electronic servo control that forcgs — ¢, to copy the phase
allows to reduce the absolute measurement of an optical fresf an external rf oscillator referenced to a primary clock.
quency Nw (e.g., couting cycles in the hundreds of THz Such an electronic servo technique has been implemented to
range to the measurement of a smaller frequency intervadevelop phase-coherent divide-byt21) [14], and divide-
A=w by use of a femtosecond laser comb generator whosky-3 (3:1) OPOQO’s for high-resolution optical metrology
radio-frequency intermode spacing is phase locked to a pri15,16 with corresponding residual phase difference vari-
mary microwave cloc3]. The generation of a comb of ance well below 1 rad
phase-locked harmonic radiation can also be the starting ba- Electronic phase-locking loops are however subject to
sis for the generation of attosecond pulse train by Fourielimited response time bandwidth and require fast OPO cavity
synthesig4—6]. Indeed, the superpositigfrourier synthesis length actuators. As an alternative, all-optical, self-phase-
[7,8]) of a comb ofN equal amplitude optical harmonic fields locking (SP) methods are currently being investigated
with a controllable relative phase relationship can lead to §17,18 to bypass the bandwidth limitation of electronic ser-
temporal train of ultrashort pulses with a suboptical cyclevos and simplify the implementation of phase-locked divid-
duration (—~27/Nw) and a repetition rate equal to the fun- ers. These methods are based on the self-injection-locking of
damental harmonie. Phase-locked optical harmonic gen- the subharmonic waves, similarly to the injection locking
erators are often based on many lasers linked via nonlinegrocess of a slave laser oscillator by a master laser that pos-
upconversion parametric proces§ds9-12. Phase coher- sesses a better spectral purity and frequency stabrify9).
ence among the harmonic waves is usually achieved by uda injection-locked systems, the phase of the slave oscillator,
of complex electronic phase-locking loops. The high conver-(t) = wt+ ¢(t), is a perfect copy of the phase of the inject-
sion efficiencies of optical parametric oscillatof®PQO’s ing master oscillator. Phase locking can occur only when the
combined with the engineering flexibility offered by periodi- two frequencies are close enough, e.g., within a certain lock-
cally poled (PP nonlinear materials may allow a compact ing rangeA w,=|ws— o] Whose extent is proportional to
implementation of such optical subharmonic generators othe squared ratia/P,,/ P, of the injecting master power to
attosecond pulse generators. the slave power. It is thus expected that the self-locking

The study of OPO’s as bl dividers N=2,3,4) of a range in an OPO divider should depend on whether the OPO
pump frequency, is motivated by their capacity to perform is configured as a doubly resond®RO), a triply resonant
the phase-coherent division of a pump photon into two(TRO), or a pump-enhanced singly resonant oscillator
highly phase-correlated subharmonic photons. In precisiolPRSRQ. Strong self-injection-locking regime occurs only
measurement setups, subharmonic generation leads to a swhen the signal and idler waves are simultaneously resonant.
sequent phase noise reductionN?) compared to harmonic For divide-by-2 OPQ’s based on a type-l nonlinear pro-
generation & N2). Graham and Haken have first demon- cess (the signal and idler are identically polarizedself-
strated that the phase sum + ¢, of the idler and signal injection locking occurs naturally when the OPO is tuned
waves from an OPO follows adiabatically the phase ngise close enough to the frequency degenerg2. Recently a
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type-ll self-phase-locked 2:1 DRO was demonstrated, in o, _
which a small mixing of the two orthogonally polarized sig- ot 4. ? Y
nal and idler waves, performed by an intracavity wave plate,

induces the injection lockinpl7]. In both cases the evidence o =30
of self-phase locking was provided by the high level of phase
coherence between the frequency degenerate signal and idler
waves. Following the experiment in Ré.7], the theory of
linearly coupled type-ll 2:1 SPL-DRO’s has been reported
[21]. In the case of 3:1 OPO dividers, obviously such a linear
coupling cannot be implemented, and one must use a nonlin- FIG. 1. Schematic ring cavity model of SPL-OPO's. All intrac-
ear coupling viay®(—3w;20,0): y®(—2w;w,0) cas- avity losses are lumped into the output mirror transmissivities
cading processeffor instance, by introducing inside the
OPO cavity a second nonlinear material phase matched fdarge-intensity stable stationary states that would correspond
the second-harmonic generatig®HG) of the idler wavé.  to nonlasing detuning domains in conventional OPO’s ex-
The first implementation of such a self-phase-locked OPdending thus the phase-locking detuning range up to a few
was recently reported, and used a dual-grating periodicallgavity linewidths.
poled lithium niobate chip carrying the OPO and SHG sec- This paper is organized as follows. In Sec. Il we describe
tions in a PRSRQ18]. An extremely small locking range of the basic plane-wave ring cavity model leading to the mean-
~500 kHz, corresponding to a fraction of the idler cavity field solutions that will be compared with the full propaga-
linewidth, was reported due to the wedkonresonant tion solutions. In Sec. lll, we first treat in detail the DRO
doubled idler power. A different situation should occur whenconfiguration case. We then extend the theory to the case of
both the signal and idler waves are resonant, as in a DRO @ TRO in Sec. IV. Main results on the PRSRO configurations
a TRO. Because of the enhanced energy flow exchange bwill be also summarized in the conclusion. Section V dis-
tween the 2 and w modes, the dynamics of such a self- cusses the practical implementation of such SPL-OPQO’s on
phase-locked OPQSPL-OPQ is expected to differ signifi- the basis of the theoretical findings and Sec. VI concludes
cantly from that of a conventional OPO. Strictly speaking thewith some prospective studies aroused by this first theoreti-
3:1 SPL-DRO or TRO can be regarded as a degenerate sub#l approach.
second-harmonic generator¢2s w + w) internally pumped
by the signal wave of a nondegenerate OPQu{32e II. BASIC MODEL AND EXACT NUMERICAL
+ w). While theories of OPO devices containing additional SOLUTIONS
up or down conversion of the signal and idler waves have
been investigated in the past with the aim of generating new The OPO-SHG device described in the paper is schemati-
frequencie§22-25, or revealing the quantum noise signa- cally sketched in Fig. 1. We consider a ring cavity containing
ture of competingy(® nonlinearitied26,27), such a subhar- the cascaded OPO and SHG nonlinear media, each of length
monically resonant configuration of competing nonlinearitiesL; andL,, respectively, and assume that the pump, signal,
in OPQO’s has never been theoretically investigated in detailand idler waves satisfy already the 3:2:1 frequency ratios.
A 3:1 DRO-SHG rough rate equation analysis based on phofhough the drawing depicts the case of a dual-grating PP
ton flux conservation, but neglecting the role of cavity de-material, phase matched for éged interaction, the model is
tunings and field phase coherence, was previously given byalid also for any separate birefringent material sections, or a
Zhanget al.[28] with the conclusion that self-phase-locking single material phase matched for both interactions. In the
should manifest through an imbalance of the signal and idlecase of birefringent phase matching however, the OPO
intensities at exact 3:1 division. Actually our in-depth analy-should be of type-II kinde.g.,e—o0-+e oro—e+0) and the
sis shows that such an imbalance holds only for zero deturSHG of type-I kind(respectivelye+e—o or o+0—e), so
ings: When the nonlinear phase shift due to cascading ithat the system is described by only 3 field variables.
compensated by a nonzero optimal cavity detuning, one can
obtain the same output intensities as in a conventional DRO.
In this paper, we provide a detailed plane-wave descrip-
tion of the dynamics of divide-by-3 SPL-OPO’s that encom- We denote byz=Z/L, and z'=Z/L, the normalized
passes all the three cavity configuratiqdosly the main re- propagation distances within each crystal, such thatz0
sults are summarized in the conclusion for the PRSRO=1 between points “0” and “1” and G=z'<1 between
which will be detailed elsewhereThe dynamics of the non- “1” and “2.” Let E; (in m/V) be the slowly varying com-
linearly coupled OPO is shown to differ substantially from plex field amplitudes, where the subscripts p,2,1 stand,
the linear coupling case of a type-ll 2:1 SPL-DR®2L]. In  respectively, for pump, signal, and idler,
particular, the nonlinear coupling gives rise to a subcritical N _
bifurcation for any nonzero cavity detuning while conven- i(Z,)=z Ej(Z,nexfi(wjt—kZ2)]+c.c. @
tional OPQO’s undergo subcritical bifurcations only for the
case of largely pump-detuned TR('29,30. As a conse- and letN; be the complex field variable, such tHatj|2 is
guence of the nonlinear phase shifts due to the cascadirthe number of photons in modeat planez inside the ring
processes, SPL-DRO’s or TRO’s will be shown to displaycavity, by
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A. Plane-wave propagation equations
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whereV is the average volume occupied by the modes inside For 5 type-I(eeg PP crystal the effective nonlinear coef-

the resonator. Then, the reduced field amplitudgsre in-
troduced by scalin\; with the small signal gain coefficient
g;L, of the OPO crystal

Aj=gi1LN; 3
with
dopo [2hiwiwow
91=—¢ v :, 4
€p nlnznp

In Eq. (4), dopo=&y[x'P(—3w;2w,w)/2]:e0e; (in

ficients satisfydpopg~dsyg, SO that withn;~n,~n, and
wp=30, w,=2w, 0= w, the relation(7) can be approxi-
mated byS~(L,/L,)/v3. ForL,/L,=1/3 for instance, one
hasS~0.2.

The solutions at the SHG crystal exit can be limited to
few terms of the Mac-Laurin field expansion series at the cell
entrance, because of the smallness of the parametric gain
coefficients. We shall refer to ML1 approximation, keeping
only the lowest-order perturbative terms, i.e., quadratic terms
in powers of the field amplitudes. At the exit of the SHG
crystal, the ML1 approximation provides the solutions for

m/V) is the effective nonlinear coefficient for the OPO inter- the signal and idler amplitudes as functions of their value at

action andh; are the refractive indices at frequeney. The

the entrance of the OPO crystaloint 0 in Fig. 1

reduced Maxwell equations for these field amplitudes

Aj_(z,t), when_propf_;lgating through the 3~ 2w, w) crystal
without any diffraction effect, are

dA,

EZIAlAz, (5a)
A,

EZIApAl, (5b)
dA

d—zlziApA; (50

A(tLy+Lo)=A (1,0 +iAy(t,0A5(1,0, (98
Aq(t,L1+Ly)=Ay(t,00+iAL(t,00AT (1,00 +ix* A%(t,0),
(9b)
Ay(t,Ly+Lo)=As(t,0)+iAL(t,00A% (1,0
+ixAy(t,00A% (t,0) (90
with the nonlinear coupling constagt
x=Sexp(—ié)(siné/é). (10)

using the standard slowly varying amplitude approximation

and the usual change of variables:z, t—t—nz/c, where
n is the mean linear refractive index. In Eq%) perfect
phase matching has been assumkiypo=k,—k,—k;=0.

B. Boundary conditions

The reduced Maxwell equations have to be completed by
the boundary conditions for the three waves at the entrance

The propagation equations in the SHG crystal, allowing for eof the OPO crystal to derive the cavity equations. The field

nonvanishing wave vector mismatdtksyc=k,—2k;, are

A;(t+ 7,0) at location 0 and at a tinte+ 7, wherer=A/c is
the cavity roundtrip timdA is the total cavity optical pajh

%: (6a) is the fieldA;(t,L,+L,) at point 2 of Fig. 1, which propa-
dz' ' gates freely after bounces at the totally reflectiRg=(1) and
A output coupling € ,t;) mirrors and eventually gets summed
2 . e with an input field, as it is the case for the pump field. We
H:'SAE exp +12£7°), (6b) define byr;(t;) the overall mirror amplitude reflectivities
(transmissivitiel such that”+t°=1 and define the ampli-
dA; . . ] , tude loss coefficientg;=1—r;.
a7 SAAL exp(—1287'), (60 Then, the boundary conditions take then the form
with initial conditionsAj(z’' =0)=A;(z=1). Ap(t+7,0)=rpexpliAp)Ag(t,Li+Ly)+Ap, (113
The two cascaded crystals are usually phase matched by _
adjusting their temperature or angle. But, exact zero mis- Ag(t+70)=rexpidz)Ax(tLi+Ly),  (11b
match for both interactions may be difficult to achieve, so
that a phase-mismatch parametgr Akgygl,/2 is intro- Ay(t+ 7,0 =ryexplid)Aqy(t Ly +Ly), (119

duced. The paramet&in Eqgs.(6) is the ratio of the SHG to
OPO small signal gains whereA,;, denotes the input pump amplitude inside the cav-
ity, Aip=t,Al". EachA; is the usual cavity detuning be-
tween the frequency of the waves and the corresponding cold
cavity frequency, scaled to the half width at half maximum
cavity resonance widtkonly nearly resonant waves will be

consideredA;<2m).

o 92L>

“ oLy @)

where the small signal gain SHG coefficidit m™?) is
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The set of Eqs(9) and(11) forms a mapping of the field Equations(13) can be conveniently solved by settidg
amplitudes at location 0, from which mean-field equations= «; exp(¢;), giving rise to
may be derived.

The mean-field modelas originally derived from a simi- (kp—iA)ap=iapay explip) +i|x|af exp —in),
lar set of equations for a two-level cell ring cavity device (143
when the atomic dephasing time is much greater than the ] ) ] ] .
round-trip timer, but much smaller than the photon lifetime (K1~ 1A a1 =iapa, expli w) +i| x| ayaz exp(+in),

7k [31]. For an OPO, the situation is somewhat different (14b
because the response of the crystal is assumed to be instan- _

taneous[see Eqgs.(5)]. Nevertheless, mean-field equations H=Pp— P2— %1 (149
can be also derived from the ML1 equatio(® and the _

boundary conditiong11) if the field amplitudes are slowly 1= @27 2017 & (14
varying during a round-trip time, i.e.7(dA;/dt)<A(t)

The nontrivial solutions4;#0) can be easily handled by

[32,33. settingX= 2 andl ,= 2. Then the scaled idler inten-
In the conventional TRO case|x(=0A;<1;<1), sity isgfoun((|th|:k1))e a solﬂtioor:p.of

nontrivial homogeneous stationary solutions exist for the
i[ozllgersgnd the signal only if the following relation holds X2=2(1p— k1Kot A A) X+ | (k1 —1A7) (KpFiAp) =12
' _ =0. (15)
A:A1/K1:A2/K2 (12@ . .
Let us note that the coupling terms in E@$4) allow to
and the intracavity pump intensity,=|A|? is clamped to ~ obtain the nontrivial solutions at the ML1 approximation or-

the threshold input intensity, der, unlike for the conventional DRO.
Three cases have to be distinguished in order to solve Eq.
lth=Kk1Kko+ A A, (12 (15, A;,=0, AjA,#0 (but with A;A,>0), andA; ,=0,
A, 1#0.
whatever the input intensity\;,|> might be above the thresh-  For A,A,+0, there are two solutions

old. In the case of the DRO, relatidi2a still holds. But

solutions for the signal and idler intensities can be deter- Xi:(|X|a1)i:|p—Kle‘l‘AlAziZ\/AlAz[lp—lo]
mined only if expansion(9) is continued up to the cubic (16
terms, leading to

for any inputl ,=1,, wherel, is the input intensity at the

Iy =215 \/1+(1+K2)(|p/|th_1)_1], (120 saddle-node bifurcation

1 /A [\
|1/|2:A2/A1:K2/K1, (12d) [ 2 1
IO 4 K1 _A1+ Ko _AZ (17)
cotlpp— @1~ @)= —A. (12¢

The bifurcation is supercritical for any detuning. Besides,
the phase difference;— ¢, is an undetermined quantity
while the sum phase;+ ¢, depends on the pump-laser
phase[21]. Actually, this classical phase indetermination is
compatible with the result of the quantum fluctuation theory
of parametric oscillatorgl3].

while the threshold intensity, determined 8X_ /dI,=0, is
Ith:|0+AlA2 (18)

which is minimum forA,/«x;=A,/x, and equal tox,«,
+A;A,, like for the conventional DRO.
The signal intensity, is related tol ; via the relation

(ar/az)?=08,10, (19
Ill. SPL-DRO CASE
deduced from Eq914a and 14b).
The solutionsX, and X_ are represented by the linas
In the case of a DRO, only the signal and idler wavesanda’, respectively, in Fig. 2 that displays a subcritical bi-
resonate with the cavity while the pump wave is a travelingfurcation: Indeed, only the stationary solutidh, is stable

A. Stationary solutions

wave (tp,=1r,=0). Assumingx;,<1, A;,<1, Egs.(9)— (solid line @) and extends from the saddle-node intensity
(11) provide the stationary solutiong;(t+ 7,0)=A;(t,0)  to the Hopf bifurcation intensity,, above which the solu-
=A;, which are also those of the mean-field model, tion is periodic(dashed portion The stationary solutiod _
is marginally unstablédashed linea’), whatever the input
Ap=Ain, (139 intensity might be(see the Appendix
) . w2 Let us notice that the conventional DRO detuning condi-
(k2 =1A2)Ap=1ApAL +iX" AL, (3D tion A=A, /k;=A,/x, does no longer necessarily hold and
. ) ) hence the SPL-DRO can oscillate with a wider detuning
(k1= 1A A =TApAZ +ixAAT . (139 range. This result is similar to the result of a 2:1 degenerate
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3 —Tr—T—TT Equation(22¢) implies that cog. and cosy are either of
SPL-DR opposite signs or simultaneously nil. The first case corre-
(© sponds to
o K
—-"2-1 with sinyp=0
ay K3
— K
and sinu= al'z. (23

p

The case cog=cosz=0 is compatible only withx,
# K5, leading to

FIG. 2. Comparison of the mean-field and numerical stationary e \/E( \/NI VN—1), (249
solutions of SPL-DRO, withe; ,=A; ,=0.005, as a function of the @2 K1

scaled pump input amplitudeaf,= \1y,). (8) Mean-field upper
branch(the dotted portion corresponds to unstable solujiofzs)
mean-field lower branch) Numerical solution for y|=0.05. (c)
Numerical solutions foty|=0.2.

sinp==*1 and sinu=-—1, (24b

whereN=1,/x,k, is the pumping rate. The-(+) sign in
Eq. (249 corresponds to case; >k, (k1<k,). Equation

) 1
Slnﬂz—g
p

1
2|X|011

SPL-DRO, in the case of a linear coupling. However, this(248 displays a dependence @4 /«, on the pump ampli-
pling gives rise instead to two self-phase-locked states coiOntinuous whem; ,—0, in the general case, # «5.
responding to two distinct thresholds, for a given pumping _F0rA12=0, 42,70, Eq.(15) has no real solution. Actu-
The phaseg: and 7 fulfill the relations dependent regime. _ o o
Finally let us note that the signal and idler intensities are
[A A
K1 A_2+ Ko A—l dependence is a consequence of the ML1 approximation,
1 2 Egs.(9). (The limit | x| —0 is irrelevant since the mean-field
siny=—
B. Numerical results
with @, cosp+|x|a; cosp=—VAA, (200) The time evolution of the field amplitudes is obtained by
p .
Equations(20) completely determine the absolute phased?oundary conditiong11) for a given input amplitude and
of the subharmonic waves, which are hence self-lockegsMall initial signal and idler amplitudes. The solutions are
to those in Ref[21], will be shown to present substantial fourth-order Runge Kutta algorithm, until convergence is
differences. As a consequence of the self-locking, higmyachieved. In most of the calculations, the cavity loss coeffi-

latter case does not display any subcriticality: The linear coutude, unlike Eq(19), and consequently the solutions are not
rate[21]. ally the exact solutions will be shown to display a time-
I inversely proportional tdy|? as displayed by Eqa6). This
=—\ > (209
I p
A A equationg13) are misleading for the conventional DRO.
2 1
Kl\/A—l—KZVA—J, (20b)
solving the propagation equation®) and (6) with the
These relations on the idler and signal phases, while similapPtained by numerical integration of EdS) and(6) using a
phase-coherent subharmonic outputs are expected from ti¢€nts are taken constant and equa,,=0.005, and the

SPL-DRO. SHG phase mismatché=AKkL,/2=0, unless otherwise
In the case\, ,= 0, the bifurcation is supercritical with ~ Stated. The input amplitude, the detunings, and the coupling
' constant are varied.
X=lp=lw, (218 , |
1. Stationary solutions
lth=K1K2. (21b As predicted by the linear stability analysis of the mean-

) ) o field solutions, a single solution, correspondingXg, oc-
The real and imaginary parts of Eq$4a—(14b) give rise o curs by numerical integration for an input amplitude above

the threshold given by Eq18), where the trivial solution is

sinp=— i KlﬂJr Kzﬂ (229 uns_table. Ina g_eneral manner, the signal and_idler ir_1tensities
2ap| Ty ap |’ satisfy the relations predicted by the mean field, either for
nonzero detunings in E@19), or vanishing detunings in Egs.
1 o a, (23) and (24). Nevertheless, for zero detunings, numerical
Sinp=— ———| k;—— Kko—|, (22b  intensities agree with the mean-field intensities, only for
2\lp=Kkyko L @2 ay small coupling parameterg x| <0.15). As already pointed
out, there is no continuity for the intensities wh&n,— 0 in
apcosu+ Il ,— k1K, COS7=0. (220  the casexi# k».
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0.15 . r r . r

Sub-threshofd solutions

0.1

1,2

0.05

0 5000 140 1540°  2u0°
time (numb. of round trips)

. . . FIG. 4. Time response of the SPL-DRO stationary state operat-
FIG. 3. Numerical SPL-DRO self-locking ranges as a function. — . . L
of the detuning , /x;(=A,/x,), or 1= 4Kk, with |x|=0.01 ing at {Ix|=0.2A,p=4}, under stepwise linear detuning jumps
in (a), 0.05 in(b), 0.1 in(c), 0.2 in(d), and 0.25 in(e). The dashed ~Aop1*B), With modulation index3=0.109(curve 3. Curve (b)
line is for || =0. The parameters aue, ,=0.005. gives the idler amplitude response and cufeethe phase differ-
’ ence response. The recapture range of the detuning perturbation is
The exact stationary amplitudg|a, and its stability do-  Ba=0.12.
main depend on the magnitude |af as displayed in Fig. 2

by line b for [x|=0.05 and linec for [x|=0.2. In this latter increasing further the detuning. The maximugg, is equal

stationary solution extends almost frdgin the subthresh- at A,,=0. In case of the parameters used in Fig. 3, Eq.

old domain, reachable only by backward adiabatic decre- ; . — i . -
mentation of the pump intensity, to the Hopf bifurcation (129 gives rise toyl mg,=0.1, in agreement with the numeri

um " sjightly larger than the mean-field cal result. The detuninngax becomes approximately pro-

threshold intensit
4 portional to|x| for large enough coupling strength. Foy|

value. As|y| decreases, the domain of stability is shortene 4 . , X
below threshold I“™>I,), but it is enlarged above thresh- =0.25, the idler intensity becomes time dependent before

old, because the Hopf bifurcation threshold is shifted to-2maxiS reached. S
wards larger input intensity,|l'™>1,, (for xy,=A;, In summary, the cascaded SHG nonlinearity induces a
—0.005, the mean-field predicts =21, while the numeri-  1xI-dependent phase that shifts the optimum detuning from 0

cal values ard[\'™=2.6ly, for |[x|=0.2 andI}}'™>4ly, for 10 Amax.
|x|=0.05. The temporal response of the system subject to stepwise-
Subcriticality is also evidenced in Fig. 3, when starting"r:(e detkt)l_?ing J;cunr:ps hzshbeehn félso studied in order to clheck
; : - ol ; the stability of the subthreshold states against external per-
thg nur-ne-rlcal Integration fr‘?’m _0 and perfprmmg an turbations that tend to modulate the detuning paranietar
adiabatic increase of, for a fixed input pump intensity, e cavity length for instange Figure 4, associated with
=4k.k5. The different curves in solid line correspond to

[ ; X =0.2, shows that the system recovers its steady-state op-
different values of x|. They are symmetric for negative de- X y Yy p

; . erating point as long as the perturbation amplitude does not
tunings, so that the tuning curve of the SPL-DRO appears as —

a widened double-sided fringe, which reminds of resonantl)feil(cee‘jti Q'&ZA?‘&X' ’.\:.Otel trlle I_ong;:r dec:;y time, which itsh
phase-modulated Fabry Perot deviogse same kind of characteristic of a critical slowing-down phenomenon, on the

fringe is obtained from a resonator containing an electroposmve detuning step side that brings the DRO very close to

; . - the saddle-node bifurcation.
optic phase modulator driven by a rf oscillator whose fre- . . -
guency is equal to the resonator free spectral r4B8g#€. In We can define a self-locking domain in tha(A,)

; _ plane over which the DRO is self-phase-locked with a well-
the. case qf the_ci)nventlonal DR@' 0 Qashed_cur\be defined phase relationship. Contour plots of the numerical
lasing begins aiA =0, where the intensity is maximum as o) tions for the idler;, the signall,, the total subhar-

seen in Eq(12¢ and stops ford =v3; indeed, the bifurca-  monic intensity I;+1,, and the phase difference are
tion is supercritical so that lasing may occur only if the inputshown in Fig. 5 for|x|=0.2 and for a given pumping rate
pump intensity is larger than the threshold valugx; — N=1,/k,x,=4. The subharmonic intensities are scaled to
+A3A;. The casgx|=0.01(curve g, corresponding to na-  the conventional zero-detuning DRO values as deduced from
scent bistability, displays lasing, approximately in the same=qgs (120, 123°=2«, ;. These contour plots are obtained by
range of detuning as in the|=0 case, with the significant agjapatical following of the stationary solutions in order to
difference that there is self-phase-lockifsge below on Fig. reyeal the two-dimensiondRD) subthreshold domain. The
6). As |x| increases further, the bifurcation becomes subcritigranular small regions adjacent to the=0 axis correspond
cal, the saddle node moves away from the threshold, agy a time-dependent regime. Theandl , intensity distribu-
proaching the mean-field location, independentlyA\ofThe  tions in Figs. %a) and 5b) display off-diagonal maxima that

intensity reaches the same maximum,, for any 0<|y| are larger than the conventional DRO signal and idler out-

<0.25, but at a detuning ma(x]), for which the pump is  puts (12/175°=1.6). Note also that the exact intensitigs

entirely depleted; then the intensity decreases to zero wheand |, are not invariant with respect to the productA,,
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FIG. 5. (Color) Contour plots of the stationary SPL-DRO sigiial, idler (b), and total(c) intensities and phase differenee(d) in the
2D detuning plane, obtained from the numerical computation with=0.005,| x| =S=0.2, andl;,=4«;x,. The intensities are scaled to
l1,=2k,1. The pale blue domain are trivial solutions.

locks to 0 orm (mod k) for £=0 and the sum phase locks

differently from the predicted mean-field intensitid$), but
to a constant value determined only by the pumping rate.

they satisfy the relatior(19). Figure Fc) shows that the
maximum total intensity, slightly larger {+1,=2.2) than
the conventional DRO total intensity; +1,=2, occurs in
the subthreshold domain close to the saddle-node bifurcation For A, ,#0 andA;/x;=A,/k,, the periodic solution
(see diagonal linel in Fig. 3). These curves show that the yemains generally stable on a large range of the input inten-
relative phase control of the subharmonics can be achieved

3. Time-dependent solutions

via the control of the relative output intensities, provided that 2 T T r T T
an independent control of both cavity detunings is imple- R YN W VYN WY
mented(see Sec. Y. B 1t R O(z;o . 0311:/;) g
—_ pE=0,m,
2. Phase locking ° o o
. . weoog L emtoms
The numerical phase related to the difference between ' .%O'P Mg .o”. ® ; camtd
the signal and idler phases, agrees extremely well with the & °e .
mean-field prediction in Eqg20b and (22b) or (23) and o 1 © co N v .
(24b) for any values of the detuning and cavity loss param- < S a masm s aaa 2 a Aom a
eter, but the numerical phage related to the sum of the P : . : 1 )
0 1 2 3 4 5 6

signal and idler phases is found to depart significantly from
the mean-field valug20g when A;,/x;,=1. We have
c_hecke_d numerically the _self-phase-locklng _gffect of the FIG. 6. Numerically computed distribution of stationary signal-
signal-idler output, by varying randomly the initial phase of jjjer phase difference as defined in Ed4d versus the initial

the signal and idler noise. This general result is illustrated ingngom phase fol; ,= k1 ,=0.005, a;,/ ay,=2 andS=0.001, for

Fig. 6 fOfAllKlez_/'fz_, where the pha;e differenagfol- a SHG phase mismatch= 7 (i.e., y=0) in blank circles;é=0 in

lows randomly the initial valuegblank circleg, when|x|  solid-black circles and=3/2 in black triangles. Note that each
=0, as expected for a conventional DRO. However, yet for gphase data point is associated to the same stationary signal-idler
vanishingly small valueS=0.001, the phase difference intensities and the same phase sum

random initial signal/idler phase (rad)
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12 — . ; ' T ainl apy=1.2) which is suppressed when vanishingly small
agl N=4 &, | detunings(always present in practical devigeare intro-
& o | ] duced.
= ARy Wi WYY From the simulations carried out, we conclude that a mod-
o T T ] erate SHG phase mismatch does not change significantly the
L T y i ! Y main bifurcation dynamics studied up to this point, except
o N=1.96 o for the A; ,=0 case.
Nz 2L / 2 3‘1 ] Finally let us point out that the SPL-DRO solutions ex-
= = panded up to the second-order in E@). (ML2 approxima-
0 1 L L L L L tion) agree very well with the exact solutions in almost the

0 1 2 3 4 5 6 7

time (10°7) whole range of the pump intensity and detunings below the

Hopf bifurcation threshold, except for the singular case

FIG. 7. Time-dependent numerical solutions far=0.005, x, A, ,=0 corresponding to the transition from subcriticality to

=0.002,A;,=0, x=0.2, l;,=1.96¢;,x, (bottom fram¢, andl;,  supercriticality, where it fails to converge. Only the propa-
=4k, kK, (top frame. gation model can solve this case, which requires a double-
precision computation due to the slow convergence associ-

) . — _ ) ated to a critical slowing-down phenomenon.
sity. For instance, fofy|=0.2 andA=1 (case of linec in

Fig. 2), the periodic solution is stable until the pump param- IV. SPL-TRO CASE

eter reachesa,/ay~12, well above any experimentally _ _
achievable input. The period of the amplitude oscillation in  In the case of SPL-TRO, the mean-field equati¢tdh)
the vicinity of I"“™ is found to beT~300r. But the case and (139 are still valid, except thalt,= a; denotes now the
|A1/k1—A,/k,|#0 leads to a more complex dynamics, Circulating intracavity pump intensity. The intracavity pump
which depends on the nonlinear couplifhg and departs amplitude obeys the boundary conditiiia), leading to

form the mean-field predictions. . . . _
In the zero-detuning case, no time-dependent solutions are L1~ Tp €XPIAp) JA,—ir, explidp) AsAr= Ay, (25)

found for realis_tic pumping rateN<25) for_equal cavity where the pump detuning may be arbitrarily larga,(
loss «;=k,. Differently, the casex,7 «, displays time-  _5 ) The relation between the input pump paraméter
dependent regimes, fdy|=0.2. In the casec;/x,=2.5, =|Ain|2=aﬁ1, and the cavity pump intensity is obtained, for

|x|=0.2 shown in Fig. 7, a periodic regime arises|gat it h f the inout fiel
=2l and a weak chaotic pulsating behavior is found;at an arbitrary phase of the input field

=4ly,, with a pulsating signal intensity. Vanishingly small l=(1+r2—2r,cosA ) a’+ria?a?
. . . . in p p p/“p pi1t2
detunings Q; ;) however give rise to steady-state solutions
satisfying relationg16). +2rparazap[Si(A,—p)+rpsinu], (26

The numerical solutions associated wity ,=0, A,
+0, are not stationary, as predicted by the mean-field modeWhere a1, a,, andu can be deduced from Eqél6) and

they are periodic with time for any input above threshold. (19) and (20). The threshold for oscillation is easily found
from Eq. (26), on the basis of simple considerations. Below

the threshold, where; ,=0, |, grows linearly as a function

of I;,. When it reaches the value given by E81), oscilla-
We have studied the influence of a moderate SHG phasgon starts, which leads to the following threshold input in-

mismatch €+ 0) on the dynamical behavior of the system. tensity

This phase mismatch is usually controlled by the temperature SPLTRO 5

or the angular orientation of the SHG crystal. It provides a I =(1+rg=2rpcoh)(lo+A14,).  (27)

control of the strength of the nonlinear coupling parameter ) , , .

x|, via the relation(10), and offsets the value to which the N Practical TRO's, although the pump finesse is lower

phase differencey locks (Fig. 6). For instance, a small phase than the finesse at the subharmonic walgsically an order

¢<1 does not significantly change the idler amplitudes ofof magnitudg, the condition«,<1 is still satisfied. If we

Fig. 3 but induces a slight imbalance of the signal-and-idleconsider a small enough pump detuning and the specific case

intensity ratio compared to the ratith9) and slightly reduces A=A;/x;=A,/«k,, EQ. (27) reduces to the conventional

the self-locking range. The relation=0 (mod =) is still  TRO threshold 30]

valid and # locks to&. In some undesirable operating condi- _

tions, for instance, when the system approaches a Hopf bi- LirO= | Al f= K§K1K2(1+A2)(1+K,2)), (28

furcation for a given pumping rate and detuning (see Fig. _

2 for S=0.2, ¢=0), a small amount of phase mismatch pro- whereA,=A/«, . Figure 8 shows the normalized intracav-

duces a shift of the periodic oscillation threshold towardsity pump and idler bifurcation diagrams as a function of

higher pump rate. Differently, foA=0 and the same other \/ﬁ: \/IthllthEO when condition(123 holds and forA,
parameters as for curve) of Fig. 2, a small phase mismatch =0. Only the details of thgy|a; solutions in the vicinity of
(£€=0.1) leads to a slow periodic regim@~4x10"67 at  the threshold are plotted in the top frame of Fig. 8 that dis-

4. Influence of SHG phase mismatch
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oo FIG. 9. Subcriticality in the strongly pump-detuned conven-
FIG. 8. Mean-field and numerical SPL-TRO stationary solutionstional TRO (S=0) and SPL-TRO $=0.2,0.6) forr,=0.9, A=1,
for A;=0,r,=0.9, and the same other parameters as for Fig. 2. Tha /=2 and the same other parameters as in Fig. 2. The thresholds

top frame shows details of the hysteresis loop of the idler amplitudgocated at the vertical arrows, are lower than the one given by Eq.
in the vicinity of the input pump threshold. The thin lines corre- (27).

spond to the numerical solutions, interrupted by the vertical-thin
dashed line. The thick lines correspond to the mean-field solutionsand for larger detunings, only the phase difference relations
The thick-dashed line in the bottom frame is the mean-field unStabl?emain exact. like in the,SPL-DRO case

branch ofa, / ay, (an=+k1k,+A14A5), and the thinner horizontal- i — .
dashed line shows the conventional TRO pump clamping. Furthermore, the detuning rangefor self-locking is less
dependent on the coupling strength than in the SPL-DRO

o , : case.
plays the subcriticality. The numerical and mean-field solu- The high-pump-finesse SPL-TRO device does not exhibit

tions of the idler amplitude as given by EL6) are con- : - :
founded over a much larger input intensity range. The thick-the time-dependent periodical solutions observed above

solid and dashed lines fae, correspond to the mean-field ggﬁzzogjn(\;\gtt]ohhehlsfcl)"eDF‘;gI ?Pgngn?gi%S; (‘é\;g'lcll nath
solution(26), while the thin-solid line is the exact numerical P gnly a ystal leng

pump solution. Notice that the numerical solution agreedor @ ';F'?L'_-T’goa”d for realistic mgximum pumping rate,
very well with the mean-field solution. As the input param- = lin/lt <2500, corresponding to a Watt-level pump
eter is increased from threshold, decreases from the Power and typical TRO pump thresholds in the mW range.

clamped value of the conventional TRO to a minimugn ~ For larger coupling|x|=0.6, periodic oscillations occur,
(Eq. 17 for an input pump intensity_mi” given by with a _perlod varying in a very complex way yvhen _the mput
pump is increased. Nevertheless, no chaotic regime is ob-
_ . o served in the range of considered input pump.
In"=[1+ (k1 /kp)(Al|x])2]% (14 A%) (29 In many practical experiments, one cannot avoid a weak
pump resonance in DRO’s due to the multiwavelength coat-

for A,=0. The mean-field model hence predicts that, unlikeN9s of the mirrors. It is thus interesting to investigate how a

for conventional TRO, the intracavity pump intensity is notmod_erate pump resonance wc_)uld affect tig A,) .Self' .
— —in } i locking domain of Figs. 5. The input external pump intensity
clamped. ForA—0, I;;"—1, e.g., there is a transition to

o : is kept equal td =4k, x, to provide a comparison with
supercriticality as in the SPL-DRO caf#4]. . Figs. 5 (x|=0.2). Such a pumping level corresponds to an
In pump-detuned conventional TRO’s subcriticality oc- . . — 1RO .
v when th ditiod-.A>1 holds [29.30. Th internal TRO pumping raté, /Iy~ = 8/k,=160. In Fig. 10,
curs only when the condition olds [29,30. The the pump reflectivity is ,=0.8 with A;=0. Apart from the

exper@mental observation of this subcriticali.ty requires a highSlight enlargement of the self-locking domains, as compared
pumping level because of the pump detuning dependence Fig. 5, which is mainly attributed to the high pumping

Eqg. (28) [35]. It is interesting to study how the subcriticality . s
originating from the nonlinear OPO/SHG cascading Would-rate’ the intensities are smaller than for the DRO, also the

affect the intrinsic detuned TRO bistability curve. In Fig. 9 g]itaegnosr']% rﬁ:;irrl]t:;tlons are strongly modified, with off-
we have plotted the numerically computed idler intensity '

. ) . . - In summary, the only improvement due to a moderate
versus the normalized input intensity forf =0, 0.2, 0.6, and pump resonance is the stabilization effect respective to the

ApA=2. The subthreshold domain extends|gsincreases onset of temporal dynamics. The extended self-phase-
from zero, it has also increased, when compared toAthe locking range is paid back with lower output intensities.
=0, |x|=0.2 case, shown in Fig. 8. Furthermore,|gsin-

creases, the numerical threshold is smaller than the mean- ,
field threshold given by Eq27). V. PRACTICAL IMPLEMENTATION OF SPL-OPQ’s

We haVe a|SO Veriﬁed that the numerical amplitudes and In order to avoid spurious Cavity |OSS, the use of a dua'_
phases agree with the mean-field predictionslfp10 and  grating quasiphase matched periodically poled crystal is par-
for detuning values such that; /x;=<1. Far above threshold ticularly well suited to the implementation of SPL-OPO’s.
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FIG. 10. (Color) Contour plots of the numerical stationary SPL-TRO sidaalidler (b), and total(c) intensities and phase differengg
(d) in the 2D detuning plane with,=0.8,A,=0, k; ,=0.005,y=5=0.2, and| 2= 4x,k,. The intensities are scaled tp,= 2« ;. In the
pale-blue domain there is no lasing. Fgr=0.9, the self-locking domain extends over the whole 2D frame.

However, the grating periods should be accurately designechet at once. The major difficulty will come from the fine
so as to phase match simultaneously both interactions for thgontinuous tuning of the signal-and-idler frequencies close
same chip temperature, even though the theoretical analysismough to the 2:1 degeneracy, in order to fall within the
predicts a minor influence of SHG phase mismatch. capture range of the self-phase locking. For a fixed pump
From an experimental point of view, it is desirable to frequency, such a fine tuning is usually performed via the
implement 3:1 SPL-OPO’s using the least constraining OPQ@emperature or angle tuning of the phase matching. Singly
configuration. Diagnosis methods to check the high phaseesonant deviceRSRO’$ offer an easy and relaxed mode-
coherence between the subharmonics under SPL have to hep free frequency tuning because only one subhamonic
implemented. In the frequency domain, this can be achievedave is resonant, especially in a dual-arm cavity configura-
by monitoring the beatnote between the signal wave and thiéon to control independently the pump and signal resonances
externally frequency-doubled idler wav@r between the [36]. However from our analysis of the SPL-PRSRO with a
summed subharmonics and the pymBecause under SPL resonant signal wave, which also displays subcriticality, ex-
operation these two waves are frequency degenerate, the ottemely small self-locking ranges are predicted due to the
put signal wave must be preliminary frequency shifted by aveak coupling between the injecting frequency-doubled idler
suitable rf frequencyo,s using, e.g., an acousto-optic modu- and the resonant signal. While in a conventional PRSRO the
lator. When the OPO operates within the locking range, thesignal field is constrained to oscillate with a nil cavity detun-
beatnote frequency should be fixeddg and its power spec- ing, the nonlinear coupling is found to allow oscillation over
tral density should approach a Dirac function. Anothera small detuning range not exceeding the cavity linewidth.
equivalent method to check the phase coherence is to pefhe increase of the locking range versus the coupling param-
form an interferometric fringe pattern measurement by overeter (e.g., the SHG crystal lengths only moderate, even
lapping the two beams on a slow detecf@7]. In the fol-  with |x|=1 (which would correspond to a SHG crystalL.5
lowing, other indirect methods, based on the theoreticatimes longer than the OPO crystal supposing that both OPO
analysis, will be outlined. and SHG interactions have the same nonlinearity magni-
As a starting point of the analysis, we have assumed pettude. Due to this limited capture range, experimentally con-
fect 3:2:1 frequency ratios for the pump, signal, and idlerfirmed in Ref.[18], 3:1 SPL-PRSRQ’s would probably re-
waves. In practical devices, such a situation will be unlikelyquire an additional electronic servo on the cavity length to
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operate as a stable divider device. A convenient criterion fotocking ranges. The main conclusions af@: the minimum
the assessment of SPL in PRSRO’s would be the slight erthreshold of oscillation of these devices is identical to that of
hancement of the signal intensity when the nonlinear coueonventional devices ar(®) the nonlinear cascading leads to
pling is switched on, compared to the slight decrease prea subcritical behavior, even in the case of a DRO or a PR-
dicted for the SPL-DRQFig. 8). A possible way to realize SRO, and can lead to the occurrence of self-pulsing instabili-
such a switching is to have an OPO-only grating sectionijties. This subcriticality is different from the standard sub-
patterned beside the OPO/SHG dual-grating section on thgiticality reported in pump detuned conventional TRO's.
periodically-poled wafer. The nonlinear coupling removes the detuning constraints of
From our theoretical study, the widest SPL raigew  conventional systems, allowing for a potentially accurate
CaVity ||n6W|dth3 is obtained with the doubly resonant con- control of the relative phase between the subharmonic
figuration (SPL-DRQ due to the strong self-injection re- \aves. The range of allowable detunings over which the
gime, with eventually a weak pump resona8®L-TROt0  field phases are locked depends on the magnitude of the non-
Stabi”ze the deVice. Even though the amount Of nonlineaﬁnear Coup“ng and on the Se'f-injection regime_ While this
coupling required can be extremely smalf(=0.01)—and range is smaller than the cavity linewidth for PRSRO’s
such low level doubled idler can even be SpOﬂtaneOUSly ger(weak injection regimb it spans over several Cavity line-
erated via nonphase matched or higher-order quasiphag@idths under a strong injection-locking regime obtained in
matching in PP single-grating nonlinear OPO crystals—asignal-idler resonant devicéPRO/TRO’S. The SPL-DRO/
coupling strength corresponding|tp|=0.1—0.2 will ensure  TRO give rise to a richer dynamics than the singly resonant
a robust self-phase locking of the subharmonic wave. PreeRSRO for which no occurrence of a Hopf bifurcation is
liminary single mode-pair operation of DRO/TRO's usually found in the whole range of the system parameters. It is thus
requires an intensity sidelock servo to control the stability ofinteresting to extend the theoretical model by including dif-
the cavity length. This sidelock servo compares the outpufraction effects in order to investigate the possible occur-
signal(or idler) intensity to a stable electronic voltage refer- rence of new spatiotemporal dynami@s3,37. These self-
ence, which sets the operatifigsually nonzerpsignal-and-  phase-locked OPO'’s will be useful tools for applications
idler cavity detuning values. When a linear cavity is usedrequiring a high degree of optical phase coherence between
the signal-and-idler(plus eventually the pumpdetunings optical harmonic waves, such as precision optical measure-
cannot be independently controlled via the cavity length. It isments in the mid-ir or Fourier synthesis of ultrashort optical
then probable that the oscillating mode pair will have equapylses.
normalized detuninggcondition(12a] that satisfy the mini- The model developed can be easily extended to the study
mum threshold. Under sidelock servo the transition fromof divide-by-4 SPL-OPO’s based on the cascading OPO/
conventional to SPL states is accompanied necessarily by @po processes dt= 2w =w, Which has the potential to
detuning transitiorisee Fig. 3. It is then important to set the generate up to 8 phase-locked harmonic waves by additional
sidelock reference voltage as close as to the maximum fringgp-conversion processes. Such a strong nonlinearly coupled
intensity in order that the new detuning value does not eXsystem can be viewed as a secondary degenerate OPO
ceed the allowed subthreshold range. In the case of a wellpOPQ) embedded in a primary DOPO. Our future work
resolved DRO mode-pair cluster, the observation of thesgill be directed to the theoretical investigation of the stabil-
subthreshold states, and the associated broadened mode-pgjrof 4:1 OPO dividers. A classical signature of the system,
fringe, should be made possible via adiabatic cavity lengtijerived from the mean-field analysis, is the clamping of the
tuning. Such an observation would be an indirect diagnOSigecondary pump(Q to the threshold power for the funda-
of SPL. But it is necessary to have an independent control ofnental oscillation.
the signal and idler detunings to explore the full allowed The present study of 3:1 OPO dividers, which makes the
range of A;,A;) detunings depicted in Figs. 5 and 10. A simplest assumption of exact 3:2:1 frequency ratios, arouses
dual-cavity DRO/TRO design would then be appropriate.another interrogation. An interesting situation not considered
The control of these detunings allows the control of the relaregards the behavior of the nearly 3:1 OPO/SHG system
tive phase between the pump, signal, and idler. The outpuhen the frequency ratios slightly departs from the perfect
subharmonic intensity ratib /1, [see Eq(19)] can be used  3:2:1 division ratio by a radio-frequency quanti w, e.g.,
as an error signal for the relative phase control. when 3w—2w—36, w+ 4. The frequency difference be-
tween the signal wave and the doubled idler is th2e;
—wg=38. When the doubled idler frequency does not
match one of the cavity eigenmode frequencies, the opera-
We have theoretically demonstrated that resonantion of the OPO would be merely that of a conventional
x@:x® nonlinear cascaded OPO/SHG processes induce RRO. But if the OPO is tuned such thaB3FSR~c/A,
self-injection-locking between the subharmonic waves of arFSR; being the signal free spectral range of the cavity, then
OPO leading to the self-phase-locking of the three interactthe doubled idler will be enhanced to a point where it may
ing waves, unlike in a conventional OPO for which the ab-lead to the creation of a new mode pair with frequencies
solute phases of the signal-and-idler are undetermined. ThRw+28, w—28) and so on. The parametric gain band-
theoretical treatment encompasses the mean-field model asdth of OPO’s extending usually over several THz or sev-
well as a full propagation model. The doubly and triply reso-eral tens of THz(in case of a wavelength noncritical phase
nant oscillator configurations lead to the widest self-phasematching, a multitude of self-phase-locked mode pairs

VI. CONCLUSIONS AND OUTLOOK
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equally spaced by 8may potentially oscillate, provided that
the pumping level is sufficiently high. Such a complex sys-
tem opens the prospect of building a mode-locked, dual-band

OPO frequency comb generator using cascaded second-order

nonlinearities as the passive mode-locking mechanism. In
the time domain, the output of such a system would consist
of a train of short optical pulses with a repetion rate set by
the FSR intermode spacing, provided that the relative phase

between adjacent mode pairs is preserved and group velocity

dispersion is compensated. We note that a similar cw-DRO

running near frequency degeneracy with thousands of mode

pairs actively locked by an intracavity electro-optic phase
modulator has been recently reported, with a striking passive
output stability feature compared to a conventional quaside-
generate single-mode pair DRG8].
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FIG. 11. Plots of the reduced Hopf bifurcation thresholds
(In=1x)/ 1y, versus the normalized idler detuninky, /«,, for

A,=A; [solid line (a)] and A,=2A; [solid line (b)]. The cavity
loss parameters used atg,= x=0.005 andS=0.2.
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APPENDIX A: LINEAR STABILITY ANALYSIS AN, 2ixoA; 0 A+aj
OF THE SPL-DRO (A5)
With A;(t)=A;(t,0), Egs.(9)—(11) give rise to the map- with the notations
ping equations
A=er"—1 (AB)
Aq(t+7)=1,€' 22 Ax(t) +iA(DAS (1) +ix*Af(D)], and
(A1) .
a15= K12~ 141, (A7q)
Aq(t+7)=r1€ 02 A (1) +IAL(DAT (1) +ixAx(DAT (D], xi=€xry,  xp=e 'tixr,, (A7b)
(A2) _
Ain12=T 164127, (A70)
Ap()=Aj,, (A3)  Then, the eigenvalues are solutions of the quartic charac-

teristic equation

the stationary solutions of which are deduced for large
and smallA, ,. [See Eqgs(19) and(22) and(23).]

A4+(I)3A3+(I)2A2+q)1[\+¢0:0, (A8)

The linear stability analysis consists in assuming smallwhere all the coefficientd; are real

deviationsdA; (t) from the stationary solutions, ,,

AL At)=Aq o+ SAL 1), (Ada)

S1At)=2 A AN)eM, (A4b)
A

whereX may be complex. The stationary solutiofAs, are
stable only if the real part of any is negative. At the insta-
bility threshold, therefore the system may undergo a Hopf
bifurcation (\¢=*i8), so that the intensity oscillates with
time at angular frequencg.

Equations(A1)—(A4) lead to a linearized system of four
equations, the determinant of which satisfies

023814-

@3:_2(K1+ K2), (Aga)

Dy=|ay|?+| |2+ 4ryio— 28 11| A 2 cOS A — A )

—|XT oA+ 4r 1o XA |2 cog A +4,),  (A9Db)

Dy =21 115 Al [ (A1 +A,)SIN(A; +A))
— (K11 Kk2)COLA 1= Ap) ]+ 2( Kol ay|*+ k] ag|?)
= 2ic5| X1 oA|*+ 4| XT 11 oA [ (k1 + K2)COS Ay +4,)
(A1 Az)siN(A1+Ay)]
—ir 11| x|2 cosA (A AL A —c.c)

+3r 11| x| sinA (A A AT +c.c), (A9c)
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with time at angular frequencys,. Therefore the upper
branch is stable foro<<I,<I}.

The Hopf bifurcation threshold intensity, may be either
smaller or larger than the threshold intendify, depending
on detunings\; andA,. Let us introduce the parametey,
that measures the departure between the threshold for lasing
I, and the Hopf bifurcation threshold as

CI>O=|a/1|2|a2|2—2r1r2|Km|2[(K1K2+ AjAz)coqA;—Ay)
+ (A ko= Apky)SIN(A L= Ag) ]+ 41115 XA |
X[(k1k2—A1A7)co0qA;+Ay)

+ (Agrot Aor)SIn(Ag+A5)] = X1 1A

+ (4] X1 AL = 15 AR D) ([ xT 1AL 2= rT[A[?). (A9d) =g = )/ - (A10)

The roots forA and consequently the eigenvaluebave
been calculated for various detunings , as a function of

the input amplituded;, for the trivial solutionsKLz:O and

the nontrivial solutions4; ,) . deduced from Eqg16) and ForA,;=A,, the Hofp bifurcation(c,=0, 0,<0) occurs
(20). above threshold only foA <. Therefore lasing stationary

The trivial solution is verified to be stable for any input solutions can be reached from rest only for detunings smaller
pump intensity below  [Eq. (18)]. On the other hand the than the cavity loss coefficient. Otherwise, lasing at larger
solutionX_ is found to be unstable with respect to any con-detunings can be reached, when increasing adiabatically the
stant perturbation for any detuning and input pump intensitydetunings from values smaller than In the other case);

The variation ofuy is presented in Fig. 11 as a function
A;=A either with A;=A, in curve (a) or A;=1/2A, in
curve (b).

Indeed, in this case, E4A8) has a rootA=0 i.e., A\=0,
because the constant coefficieby is identically nil, when
replacingX_ by its expressior{16).

=3A,, uy is positive for anyA;<5«. For higher detuning,
o, reaches zero at an input intensity much smaller than the
value at whicha;=0 crosses zero. This causes an abrupt

Differently, the upper branch displays two sets of com-decreases dfy, so thatuy suddenly becomes negative for

plex conjugate eigenvaluesg{,*i8; ;) with negative real
parts for a range of the input pump intensity, lying frogto

Iy, where the system undergoes a Hopf bifurcatien (

A,=5k, as shown in the curvé) of Fig. 11.
Finally, the angular frequencgy at the Hopf bifurcation
threshold, not reported here, is found to vary proportionally

=0). ForI,>1y, the signal and idler intensities oscillate to the detuning.
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