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Theory of self-phase-locked optical parametric oscillators
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The plane-wave dynamics of 3v→2v,v subharmonic optical parametric oscillators containing a second-
harmonic generator of the idler-wavev is analyzed analytically by using the mean-field approximation and
numerically by taking into account the field propagation inside the media. The resonant
x (2)(23v;2v,v):x (2)(22v;v,v) cascaded second-order nonlinearities induce a mutual injection locking of
the signal and idler waves that leads to coherent self-phase locking of the pump and subharmonic waves,
freezing the phase diffusion noise. In case of signal-and-idler resonant devices, largely detuned subthreshold
states occur due to a subcritical bifurcation, broadening out the self-locking frequency range to a few cavity
linewidths.
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I. INTRODUCTION

The synthesis of phase-coherent~sub!harmonic optical ra-
diation (v,2v,...,Nv) is useful in high-precision optica
measurements, such as optical frequency metrology@1,2#. In
frequency metrology, a phase-coherent optical by-N divider
allows to reduce the absolute measurement of an optical
quency Nv ~e.g., couting cycles in the hundreds of TH
range! to the measurement of a smaller frequency inter
D5v by use of a femtosecond laser comb generator wh
radio-frequency intermode spacing is phase locked to a
mary microwave clock@3#. The generation of a comb o
phase-locked harmonic radiation can also be the starting
sis for the generation of attosecond pulse train by Fou
synthesis@4–6#. Indeed, the superposition~Fourier synthesis
@7,8#! of a comb ofN equal amplitude optical harmonic field
with a controllable relative phase relationship can lead t
temporal train of ultrashort pulses with a suboptical cy
duration (t;2p/Nv) and a repetition rate equal to the fu
damental harmonicv. Phase-locked optical harmonic ge
erators are often based on many lasers linked via nonlin
upconversion parametric processes@1,9–12#. Phase coher-
ence among the harmonic waves is usually achieved by
of complex electronic phase-locking loops. The high conv
sion efficiencies of optical parametric oscillators~OPO’s!
combined with the engineering flexibility offered by period
cally poled ~PP! nonlinear materials may allow a compa
implementation of such optical subharmonic generators
attosecond pulse generators.

The study of OPO’s as by-N dividers (N52,3,4) of a
pump frequencynp is motivated by their capacity to perform
the phase-coherent division of a pump photon into t
highly phase-correlated subharmonic photons. In precis
measurement setups, subharmonic generation leads to a
sequent phase noise reduction (4N2) compared to harmonic
generation (3N2). Graham and Haken have first demo
strated that the phase sumw11w2 of the idler and signal
waves from an OPO follows adiabatically the phase noisewp
1050-2947/2001/63~2!/023814~14!/$15.00 63 0238
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of the pump laser, while their phase differencew22w1 un-
dergoes a phase diffusion process stemming from the in
action of both modes with the vacuum fluctuations@13#. To
act as pertinent phase-coherent dividers, the idler and si
waves have thus to be phase locked, for instance by use o
electronic servo control that forcesw22w1 to copy the phase
of an external rf oscillator referenced to a primary cloc
Such an electronic servo technique has been implemente
develop phase-coherent divide-by-2~2:1! @14#, and divide-
by-3 ~3:1! OPO’s for high-resolution optical metrolog
@15,16# with corresponding residual phase difference va
ance well below 1 rad2.

Electronic phase-locking loops are however subject
limited response time bandwidth and require fast OPO ca
length actuators. As an alternative, all-optical, self-pha
locking ~SPI! methods are currently being investigate
@17,18# to bypass the bandwidth limitation of electronic se
vos and simplify the implementation of phase-locked div
ers. These methods are based on the self-injection-lockin
the subharmonic waves, similarly to the injection lockin
process of a slave laser oscillator by a master laser that
sesses a better spectral purity and frequency stability@7,19#.
In injection-locked systems, the phase of the slave oscilla
f(t)5vt1w(t), is a perfect copy of the phase of the injec
ing master oscillator. Phase locking can occur only when
two frequencies are close enough, e.g., within a certain lo
ing rangeDv lock5uvs2vmu whose extent is proportional to
the squared ratioAPm /Ps of the injecting master power to
the slave power. It is thus expected that the self-lock
range in an OPO divider should depend on whether the O
is configured as a doubly resonant~DRO!, a triply resonant
~TRO!, or a pump-enhanced singly resonant oscilla
~PRSRO!. Strong self-injection-locking regime occurs on
when the signal and idler waves are simultaneously reson

For divide-by-2 OPO’s based on a type-I nonlinear p
cess ~the signal and idler are identically polarized!, self-
injection locking occurs naturally when the OPO is tun
close enough to the frequency degeneracy@20#. Recently a
©2001 The American Physical Society14-1
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type-II self-phase-locked 2:1 DRO was demonstrated,
which a small mixing of the two orthogonally polarized si
nal and idler waves, performed by an intracavity wave pla
induces the injection locking@17#. In both cases the evidenc
of self-phase locking was provided by the high level of pha
coherence between the frequency degenerate signal and
waves. Following the experiment in Ref.@17#, the theory of
linearly coupled type-II 2:1 SPL-DRO’s has been repor
@21#. In the case of 3:1 OPO dividers, obviously such a lin
coupling cannot be implemented, and one must use a no
ear coupling viax (2)(23v;2v,v):x (2)(22v;v,v) cas-
cading processes@for instance, by introducing inside th
OPO cavity a second nonlinear material phase matched
the second-harmonic generation~SHG! of the idler wave#.
The first implementation of such a self-phase-locked O
was recently reported, and used a dual-grating periodic
poled lithium niobate chip carrying the OPO and SHG s
tions in a PRSRO@18#. An extremely small locking range o
;500 kHz, corresponding to a fraction of the idler cav
linewidth, was reported due to the weak~nonresonant!
doubled idler power. A different situation should occur wh
both the signal and idler waves are resonant, as in a DRO
a TRO. Because of the enhanced energy flow exchange
tween the 2v and v modes, the dynamics of such a se
phase-locked OPO~SPL-OPO! is expected to differ signifi-
cantly from that of a conventional OPO. Strictly speaking t
3:1 SPL-DRO or TRO can be regarded as a degenerate
second-harmonic generator (2v�v1v) internally pumped
by the signal wave of a nondegenerate OPO (3v�2v
1v). While theories of OPO devices containing addition
up or down conversion of the signal and idler waves ha
been investigated in the past with the aim of generating n
frequencies@22–25#, or revealing the quantum noise sign
ture of competingx (2) nonlinearities@26,27#, such a subhar-
monically resonant configuration of competing nonlinearit
in OPO’s has never been theoretically investigated in de
A 3:1 DRO-SHG rough rate equation analysis based on p
ton flux conservation, but neglecting the role of cavity d
tunings and field phase coherence, was previously given
Zhanget al. @28# with the conclusion that self-phase-lockin
should manifest through an imbalance of the signal and i
intensities at exact 3:1 division. Actually our in-depth ana
sis shows that such an imbalance holds only for zero de
ings: When the nonlinear phase shift due to cascadin
compensated by a nonzero optimal cavity detuning, one
obtain the same output intensities as in a conventional D

In this paper, we provide a detailed plane-wave desc
tion of the dynamics of divide-by-3 SPL-OPO’s that enco
passes all the three cavity configurations~only the main re-
sults are summarized in the conclusion for the PRSR
which will be detailed elsewhere!. The dynamics of the non
linearly coupled OPO is shown to differ substantially fro
the linear coupling case of a type-II 2:1 SPL-DRO@21#. In
particular, the nonlinear coupling gives rise to a subcriti
bifurcation for any nonzero cavity detuning while conve
tional OPO’s undergo subcritical bifurcations only for th
case of largely pump-detuned TRO’s@29,30#. As a conse-
quence of the nonlinear phase shifts due to the casca
processes, SPL-DRO’s or TRO’s will be shown to displ
02381
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large-intensity stable stationary states that would corresp
to nonlasing detuning domains in conventional OPO’s
tending thus the phase-locking detuning range up to a
cavity linewidths.

This paper is organized as follows. In Sec. II we descr
the basic plane-wave ring cavity model leading to the me
field solutions that will be compared with the full propag
tion solutions. In Sec. III, we first treat in detail the DR
configuration case. We then extend the theory to the cas
a TRO in Sec. IV. Main results on the PRSRO configuratio
will be also summarized in the conclusion. Section V d
cusses the practical implementation of such SPL-OPO’s
the basis of the theoretical findings and Sec. VI conclu
with some prospective studies aroused by this first theor
cal approach.

II. BASIC MODEL AND EXACT NUMERICAL
SOLUTIONS

The OPO-SHG device described in the paper is schem
cally sketched in Fig. 1. We consider a ring cavity containi
the cascaded OPO and SHG nonlinear media, each of le
L1 and L2 , respectively, and assume that the pump, sign
and idler waves satisfy already the 3:2:1 frequency rat
Though the drawing depicts the case of a dual-grating
material, phase matched for an~eee! interaction, the model is
valid also for any separate birefringent material sections,
single material phase matched for both interactions. In
case of birefringent phase matching however, the O
should be of type-II kind~e.g.,e→o1e or o→e1o! and the
SHG of type-I kind~respectively,e1e→o or o1o→e!, so
that the system is described by only 3 field variables.

A. Plane-wave propagation equations

We denote byz5Z/L1 and z85Z/L2 the normalized
propagation distances within each crystal, such that 0<z
<1 between points ‘‘0’’ and ‘‘1’’ and 0<z8<1 between
‘‘1’’ and ‘‘2.’’ Let Ej ~in m/V! be the slowly varying com-
plex field amplitudes, where the subscriptsj 5p,2,1 stand,
respectively, for pump, signal, and idler,

e j~Z,t !5 1
2 Ej~Z,t !exp@ i ~v j t2kjZ!#1c.c. ~1!

and letNj be the complex field variable, such thatuNj u2 is
the number of photons in modej at planez inside the ring
cavity, by

FIG. 1. Schematic ring cavity model of SPL-OPO’s. All intra
avity losses are lumped into the output mirror transmissivitiest j .
4-2
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Nj5Ae0cV

2\v j
Ej , ~2!

whereV is the average volume occupied by the modes ins
the resonator. Then, the reduced field amplitudesAj are in-
troduced by scalingNj with the small signal gain coefficien
g1L1 of the OPO crystal

Aj5g1L1Nj ~3!

with

g15
dOPO

c
A2\v1v2vp

e0Vn1n2np
. ~4!

In Eq. ~4!, dOPO5ep"@x (2)(23v;2v,v)/2#:e2"e1 ~in
m/V! is the effective nonlinear coefficient for the OPO inte
action andnj are the refractive indices at frequencyv j . The
reduced Maxwell equations for these field amplitud
Aj (z,t), when propagating through the (3v→2v,v) crystal
without any diffraction effect, are

dAp

dz
5 iA1A2 , ~5a!

dA2

dz
5 iApA1* , ~5b!

dA1

dz
5 iApA2* ~5c!

using the standard slowly varying amplitude approximat
and the usual change of variablesz→z, t→t2n̄z/c, where
n̄ is the mean linear refractive index. In Eqs.~5! perfect
phase matching has been assumed,DkOPO5kp2k22k150.
The propagation equations in the SHG crystal, allowing fo
nonvanishing wave vector mismatchDkSHG5k222k1 , are

dAp

dz8
50, ~6a!

dA2

dz8
5 iSA1

2 exp~1 i2jz8!, ~6b!

dA1

dz8
5 iSA2A1* exp~2 i2jz8!, ~6c!

with initial conditionsAj (z850)5Aj (z51).
The two cascaded crystals are usually phase matche

adjusting their temperature or angle. But, exact zero m
match for both interactions may be difficult to achieve,
that a phase-mismatch parameterj5DkSHGL2/2 is intro-
duced. The parameterS in Eqs.~6! is the ratio of the SHG to
OPO small signal gains

S5
g2L2

g1L1
, ~7!

where the small signal gain SHG coefficient~in m21! is
02381
e
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dSHG

c
A2\v1

2v2

e0Vn1
2n2

. ~8!

For a type-I~eee! PP crystal the effective nonlinear coe
ficients satisfydOPO'dSHG, so that withn1'n2'np and
vp53v, v252v, v15v, the relation~7! can be approxi-
mated byS'(L2 /L1)/). For L2 /L151/3 for instance, one
hasS'0.2.

The solutions at the SHG crystal exit can be limited
few terms of the Mac-Laurin field expansion series at the c
entrance, because of the smallness of the parametric
coefficients. We shall refer to ML1 approximation, keepi
only the lowest-order perturbative terms, i.e., quadratic te
in powers of the field amplitudes. At the exit of the SH
crystal, the ML1 approximation provides the solutions f
the signal and idler amplitudes as functions of their value
the entrance of the OPO crystal~point 0 in Fig. 1!

Ap~ t,L11L2!5Ap~ t,0!1 iA1~ t,0!A2~ t,0!, ~9a!

A2~ t,L11L2!5A2~ t,0!1 iAp~ t,0!A1* ~ t,0!1 ix* A1
2~ t,0!,

~9b!

A1~ t,L11L2!5A1~ t,0!1 iAp~ t,0!A2* ~ t,0!

1 ixA2~ t,0!A1* ~ t,0! ~9c!

with the nonlinear coupling constantx:

x5Sexp~2 i j!~sinj/j!. ~10!

B. Boundary conditions

The reduced Maxwell equations have to be completed
the boundary conditions for the three waves at the entra
of the OPO crystal to derive the cavity equations. The fi
Aj (t1t,0) at location 0 and at a timet1t, wheret5L/c is
the cavity roundtrip time~L is the total cavity optical path!,
is the fieldAj (t,L11L2) at point 2 of Fig. 1, which propa-
gates freely after bounces at the totally reflecting (R51) and
output coupling (r j ,t j ) mirrors and eventually gets summe
with an input field, as it is the case for the pump field. W
define by r j (t j ) the overall mirror amplitude reflectivities
~transmissivities!, such thatr j

21t j
251 and define the ampli-

tude loss coefficientsk j512r j .
Then, the boundary conditions take then the form

Ap~ t1t,0!5r p exp~ iDp!Ap~ t,L11L2!1Ain , ~11a!

A2~ t1t,0!5r 2 exp~ iD2!A2~ t,L11L2!, ~11b!

A1~ t1t,0!5r 1 exp~ iD1!A1~ t,L11L2!, ~11c!

whereAin denotes the input pump amplitude inside the ca
ity, Ain5tpAin

ext. Each D j is the usual cavity detuning be
tween the frequency of the waves and the corresponding
cavity frequency, scaled to the half width at half maximu
cavity resonance width~only nearly resonant waves will b
considered,D j!2p!.
4-3
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The set of Eqs.~9! and~11! forms a mapping of the field
amplitudes at location 0, from which mean-field equatio
may be derived.

Themean-field modelwas originally derived from a simi-
lar set of equations for a two-level cell ring cavity devi
when the atomic dephasing time is much greater than
round-trip timet, but much smaller than the photon lifetim
t/k @31#. For an OPO, the situation is somewhat differe
because the response of the crystal is assumed to be in
taneous@see Eqs.~5!#. Nevertheless, mean-field equatio
can be also derived from the ML1 equations~9! and the
boundary conditions~11! if the field amplitudes are slowly
varying during a round-trip time, i.e.,t(dAj /dt)!Aj (t)
@32,33#.

In the conventional TRO case (uxu50,D j!1,k j!1),
nontrivial homogeneous stationary solutions exist for
idler and the signal only if the following relation hold
@29,30#

D̄5D1 /k15D2 /k2 ~12a!

and the intracavity pump intensityI p5uApu2 is clamped to
the threshold input intensity,

I th5k1k21D1D2 ~12b!

whatever the input intensityuAinu2 might be above the thresh
old. In the case of the DRO, relation~12a! still holds. But
solutions for the signal and idler intensities can be de
mined only if expansion~9! is continued up to the cubic
terms, leading to

I 152k2@A11~11D̄2!~ I p /I th21!21#, ~12c!

I 1 /I 25D2 /D15k2 /k1 , ~12d!

cot~wp2w12w2!52D̄. ~12e!

The bifurcation is supercritical for any detuning. Besid
the phase differencew12w2 is an undetermined quantit
while the sum phasew11w2 depends on the pump-lase
phase@21#. Actually, this classical phase indetermination
compatible with the result of the quantum fluctuation theo
of parametric oscillators@13#.

III. SPL-DRO CASE

A. Stationary solutions

In the case of a DRO, only the signal and idler wav
resonate with the cavity while the pump wave is a travel
wave (tp51,r p50). Assumingk1,2!1, D1,2!1, Eqs.~9!–
~11! provide the stationary solutions,Aj (t1t,0)5Aj (t,0)
[Aj , which are also those of the mean-field model,

Ap5Ain , ~13a!

~k22 iD2!A25 iApA1* 1 ix* A1
2, ~13b!

~k12 iD1!A15 iApA2* 1 ixA2A1* . ~13c!
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Equations~13! can be conveniently solved by settingAj
5a j exp(iwj), giving rise to

~k22 iD2!a25 iapa1 exp~ im!1 i uxua1
2 exp~2 ih!,

~14a!

~k12 iD1!a15 iapa2 exp~ im!1 i uxua1a2 exp~1 ih!,
~14b!

m5wp2w22w1 , ~14c!

h5w222w12j. ~14d!

The nontrivial solutions (AjÞ0) can be easily handled b
settingX5(uxua1)2 andI p5ap

2. Then the scaled idler inten
sity is found to be a solution of

X222~ I p2k1k21D1D2!X1u~k12 iD1!~k21 iD2!2I pu2

50. ~15!

Let us note that the coupling terms in Eqs.~14! allow to
obtain the nontrivial solutions at the ML1 approximation o
der, unlike for the conventional DRO.

Three cases have to be distinguished in order to solve
~15!, D1,250, D1D2Þ0 ~but with D1D2.0!, and D1,250,
D2,1Þ0.

For D1D2Þ0, there are two solutions

X65~ uxua1!6
2 5I p2k1k21D1D262AD1D2@ I p2I 0#

~16!

for any input I p>I 0 , where I 0 is the input intensity at the
saddle-node bifurcation

I 05
1

4 S k1AD2

D1
1k2AD1

D2
D 2

~17!

while the threshold intensity, determined bydX2 /dIp50, is

I th5I 01D1D2 ~18!

which is minimum forD1 /k15D2 /k2 and equal tok1k2
1D1D2 , like for the conventional DRO.

The signal intensityI 2 is related toI 1 via the relation

~a1 /a2!25D2 /D1 ~19!

deduced from Eqs.~14a! and 14~b!.
The solutionsX1 and X2 are represented by the linesa

anda8, respectively, in Fig. 2 that displays a subcritical b
furcation: Indeed, only the stationary solutionX1 is stable
~solid line a! and extends from the saddle-node intensityI 0
to the Hopf bifurcation intensityI H , above which the solu-
tion is periodic~dashed portion!. The stationary solutionX2

is marginally unstable~dashed linea8!, whatever the input
intensity might be~see the Appendix!.

Let us notice that the conventional DRO detuning con
tion D̄5D1 /k15D2 /k2 does no longer necessarily hold an
hence the SPL-DRO can oscillate with a wider detun
range. This result is similar to the result of a 2:1 degener
4-4
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SPL-DRO, in the case of a linear coupling. However, t
latter case does not display any subcriticality: The linear c
pling gives rise instead to two self-phase-locked states
responding to two distinct thresholds, for a given pump
rate @21#.

The phasesm andh fulfill the relations

sinm52
1

2ap
Fk1AD2

D1
1k2AD1

D2
G52AI 0

I p
, ~20a!

sinh52
1

2uxua1
Fk1AD2

D1
2k2AD1

D2
G , ~20b!

with ap cosm1uxua1 cosh52AD1D2 . ~20c!

Equations~20! completely determine the absolute phas
of the subharmonic waves, which are hence self-lock
These relations on the idler and signal phases, while sim
to those in Ref.@21#, will be shown to present substanti
differences. As a consequence of the self-locking, hig
phase-coherent subharmonic outputs are expected from
SPL-DRO.

In the caseD1,250, the bifurcation is supercritical with

X5I p2I th , ~21a!

I th5k1k2 . ~21b!

The real and imaginary parts of Eqs.~14a!–~14b! give rise to

sinm52
1

2ap
Fk1

a1

a2
1k2

a2

a1
G , ~22a!

sinh52
1

2AI p2k1k2

Fk1

a1

a2

2k2

a2

a1
G , ~22b!

ap cosm1AI p2k1k2 cosh50. ~22c!

FIG. 2. Comparison of the mean-field and numerical station
solutions of SPL-DRO, withk1,25D1,250.005, as a function of the
scaled pump input amplitude (a th5AI th). ~a! Mean-field upper
branch~the dotted portion corresponds to unstable solutions!, ~a8!
mean-field lower branch.~b! Numerical solution foruxu50.05. ~c!
Numerical solutions foruxu50.2.
02381
s
-
r-

g

s
d.
ar

y
the

Equation~22c! implies that cosm and cosh are either of
opposite signs or simultaneously nil. The first case cor
sponds to

a1

a2
5

k1

k2
51 with sinh50

and sinm5
2k1,2

ap
. ~23!

The case cosm5cosh50 is compatible only withk1
Þk2 , leading to

a1

a2
5Ak2

k1
~AN7AN21!, ~24a!

sinh561 and sinm521, ~24b!

whereN5I p /k1k2 is the pumping rate. The2~1! sign in
Eq. ~24a! corresponds to casek1.k2 (k1,k2). Equation
~24a! displays a dependence ofa1 /a2 on the pump ampli-
tude, unlike Eq.~19!, and consequently the solutions are n
continuous whenD1,2→0, in the general casek1Þk2 .

For D1,250, D2,1Þ0, Eq.~15! has no real solution. Actu-
ally the exact solutions will be shown to display a tim
dependent regime.

Finally let us note that the signal and idler intensities a
inversely proportional touxu2 as displayed by Eq.~16!. This
dependence is a consequence of the ML1 approximat
Eqs.~9!. ~The limit uxu→0 is irrelevant since the mean-fiel
equations~13! are misleading for the conventional DRO.!

B. Numerical results

The time evolution of the field amplitudes is obtained
solving the propagation equations~5! and ~6! with the
boundary conditions~11! for a given input amplitude and
small initial signal and idler amplitudes. The solutions a
obtained by numerical integration of Eqs.~5! and~6! using a
fourth-order Runge Kutta algorithm, until convergence
achieved. In most of the calculations, the cavity loss coe
cients are taken constant and equal,k1,250.005, and the
SHG phase mismatchj5DkL2/250, unless otherwise
stated. The input amplitude, the detunings, and the coup
constant are varied.

1. Stationary solutions

As predicted by the linear stability analysis of the mea
field solutions, a single solution, corresponding toX1 , oc-
curs by numerical integration for an input amplitude abo
the threshold given by Eq.~18!, where the trivial solution is
unstable. In a general manner, the signal and idler intens
satisfy the relations predicted by the mean field, either
nonzero detunings in Eq.~19!, or vanishing detunings in Eqs
~23! and ~24!. Nevertheless, for zero detunings, numeric
intensities agree with the mean-field intensities, only
small coupling parameters (uxu<0.15). As already pointed
out, there is no continuity for the intensities whenD1,2→0 in
the casek1Þk2 .

y
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The exact stationary amplitudeuxua1 and its stability do-
main depend on the magnitude ofuxu as displayed in Fig. 2
by line b for uxu50.05 and linec for uxu50.2. In this latter
case, the exact solution is close to the mean-field one,
stationary solution extends almost fromI 0 in the subthresh-
old domain, reachable only by backward adiabatic dec
mentation of the pump intensity, to the Hopf bifurcatio
threshold intensityI H

num, slightly larger than the mean-fiel
value. Asuxu decreases, the domain of stability is shorten
below threshold (I 0

num.I 0), but it is enlarged above thresh
old, because the Hopf bifurcation threshold is shifted
wards larger input intensity,I H

num.I H ~for k1,25D1,2

50.005, the mean-field predictsI H52I th , while the numeri-
cal values areI H

num.2.6I th for uxu50.2 and I H
num.4I th for

uxu50.05!.
Subcriticality is also evidenced in Fig. 3, when starti

the numerical integration fromD̄50 and performing an
adiabatic increase ofD̄, for a fixed input pump intensityI p
54k1k2 . The different curves in solid line correspond
different values ofuxu. They are symmetric for negative de
tunings, so that the tuning curve of the SPL-DRO appear
a widened double-sided fringe, which reminds of resonan
phase-modulated Fabry Perot devices~the same kind of
fringe is obtained from a resonator containing an elec
optic phase modulator driven by a rf oscillator whose f
quency is equal to the resonator free spectral range@34#!. In
the case of the conventional DRO~uxu50, dashed curve!,
lasing begins atD̄50, where the intensity is maximum a
seen in Eq.~12c! and stops forD̄5); indeed, the bifurca-
tion is supercritical so that lasing may occur only if the inp
pump intensity is larger than the threshold valuek1k2
1D1D2 . The caseuxu50.01 ~curve a!, corresponding to na
scent bistability, displays lasing, approximately in the sa
range of detuning as in theuxu50 case, with the significan
difference that there is self-phase-locking~see below on Fig.
6!. As uxu increases further, the bifurcation becomes subc
cal, the saddle node moves away from the threshold,
proaching the mean-field location, independently ofD̄. The
intensity reaches the same maximumI max for any 0<uxu
<0.25, but at a detuningD̄max(uxu), for which the pump is
entirely depleted; then the intensity decreases to zero w

FIG. 3. Numerical SPL-DRO self-locking ranges as a funct
of the detuningD1 /k1(5D2 /k2), for I in54k1k2 , with uxu50.01
in ~a!, 0.05 in~b!, 0.1 in ~c!, 0.2 in ~d!, and 0.25 in~e!. The dashed
line is for uxu50. The parameters arek1,250.005.
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increasing further the detuning. The maximumI max is equal
to the maximum conventional DRO intensity, which occu
at D̄max50. In case of the parameters used in Fig. 3, E
~12c! gives rise toAI max50.1, in agreement with the numer
cal result. The detuningD̄max becomes approximately pro
portional to uxu for large enough coupling strength. Foruxu
>0.25, the idler intensity becomes time dependent bef
D̄max is reached.

In summary, the cascaded SHG nonlinearity induce
uxu-dependent phase that shifts the optimum detuning from
to D̄max.

The temporal response of the system subject to stepw
like detuning jumps has been also studied in order to ch
the stability of the subthreshold states against external
turbations that tend to modulate the detuning parameter~via
the cavity length for instance!. Figure 4, associated with
uxu50.2, shows that the system recovers its steady-state
erating point as long as the perturbation amplitude does
exceed60.12D̄max. Note the longer decay time, which i
characteristic of a critical slowing-down phenomenon, on
positive detuning step side that brings the DRO very close
the saddle-node bifurcation.

We can define a self-locking domain in the (D1 ,D2)
plane over which the DRO is self-phase-locked with a we
defined phase relationship. Contour plots of the numer
solutions for the idlerI 1 , the signalI 2 , the total subhar-
monic intensity I 11I 2 , and the phase differenceh are
shown in Fig. 5 foruxu50.2 and for a given pumping rat
N5I p /k1k254. The subharmonic intensities are scaled
the conventional zero-detuning DRO values as deduced f
Eqs.~12c!, I 1,2

DRO52k2,1. These contour plots are obtained b
adiabatical following of the stationary solutions in order
reveal the two-dimensional~2D! subthreshold domain. The
granular small regions adjacent to theD150 axis correspond
to a time-dependent regime. TheI 1 andI 2 intensity distribu-
tions in Figs. 5~a! and 5~b! display off-diagonal maxima tha
are larger than the conventional DRO signal and idler o
puts (I 1,2/I 1,2

DRO51.6). Note also that the exact intensitiesI 1

and I 2 are not invariant with respect to the productD1D2 ,

FIG. 4. Time response of the SPL-DRO stationary state ope

ing at $uxu50.2,D̄opt54%, under stepwise linear detuning jump

D̄opt(16b), with modulation indexb50.109~curve a!. Curve~b!
gives the idler amplitude response and curve~c! the phase differ-
ence response. The recapture range of the detuning perturbati
bmax50.12.
4-6
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FIG. 5. ~Color! Contour plots of the stationary SPL-DRO signal~a!, idler ~b!, and total~c! intensities and phase differenceh ~d! in the
2D detuning plane, obtained from the numerical computation withk1,250.005,uxu5S50.2, andI in54k1k2 . The intensities are scaled t
I 1,252k2,1. The pale blue domain are trivial solutions.
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differently from the predicted mean-field intensities~16!, but
they satisfy the relation~19!. Figure 5~c! shows that the
maximum total intensity, slightly larger (I 11I 252.2) than
the conventional DRO total intensity,I 11I 252, occurs in
the subthreshold domain close to the saddle-node bifurca
~see diagonal lined in Fig. 3!. These curves show that th
relative phase control of the subharmonics can be achie
via the control of the relative output intensities, provided th
an independent control of both cavity detunings is imp
mented~see Sec. V!.

2. Phase locking

The numerical phaseh related to the difference betwee
the signal and idler phases, agrees extremely well with
mean-field prediction in Eqs.~20b! and ~22b! or ~23! and
~24b! for any values of the detuning and cavity loss para
eter, but the numerical phasem related to the sum of the
signal and idler phases is found to depart significantly fr
the mean-field value~20a! when D1,2/k1,2*1. We have
checked numerically the self-phase-locking effect of
signal-idler output, by varying randomly the initial phase
the signal and idler noise. This general result is illustrated
Fig. 6 for D1 /k15D2 /k2 , where the phase differenceh fol-
lows randomly the initial values~blank circles!, when uxu
50, as expected for a conventional DRO. However, yet fo
vanishingly small valueS50.001, the phase differenceh
02381
on

ed
t
-

e

-

e
f
n

a

locks to 0 orp ~mod kp! for j50 and the sum phase lock
to a constant value determined only by the pumping rate

3. Time-dependent solutions

For D1,2Þ0 and D1 /k15D2 /k2 , the periodic solution
remains generally stable on a large range of the input in

FIG. 6. Numerically computed distribution of stationary signa
idler phase difference as defined in Eq.~14d! versus the initial
random phase forD1,25k1,250.005,a in /a th52 andS50.001, for
a SHG phase mismatchj5p ~i.e., x50! in blank circles;j50 in
solid-black circles andj53p/2 in black triangles. Note that eac
phase data point is associated to the same stationary signal
intensities and the same phase summ.
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sity. For instance, foruxu50.2 andD̄51 ~case of linec in
Fig. 2!, the periodic solution is stable until the pump para
eter reachesap /a th;12, well above any experimentall
achievable input. The period of the amplitude oscillation
the vicinity of I H

num is found to beT;300t. But the case
uD1 /k12D2 /k2uÞ0 leads to a more complex dynamic
which depends on the nonlinear couplinguxu and departs
form the mean-field predictions.

In the zero-detuning case, no time-dependent solutions
found for realistic pumping rate (N,25) for equal cavity
loss k15k2 . Differently, the casek1Þk2 displays time-
dependent regimes, foruxu*0.2. In the casek1 /k252.5,
uxu50.2 shown in Fig. 7, a periodic regime arises atI in
>2I th and a weak chaotic pulsating behavior is found atI in
>4I th , with a pulsating signal intensity. Vanishingly sma
detunings (D1,2) however give rise to steady-state solutio
satisfying relations~16!.

The numerical solutions associated withD1,250, D2,1
Þ0, are not stationary, as predicted by the mean-field mo
they are periodic with time for any input above threshold

4. Influence of SHG phase mismatch

We have studied the influence of a moderate SHG ph
mismatch (jÞ0) on the dynamical behavior of the system
This phase mismatch is usually controlled by the tempera
or the angular orientation of the SHG crystal. It provides
control of the strength of the nonlinear coupling parame
uxu, via the relation~10!, and offsets the value to which th
phase differenceh locks ~Fig. 6!. For instance, a small phas
j<1 does not significantly change the idler amplitudes
Fig. 3 but induces a slight imbalance of the signal-and-id
intensity ratio compared to the ratio~19! and slightly reduces
the self-locking range. The relationm50 ~mod p! is still
valid andh locks toj. In some undesirable operating cond
tions, for instance, when the system approaches a Hop
furcation for a given pumping rate and detuning set~see Fig.
2 for S50.2, j50!, a small amount of phase mismatch pr
duces a shift of the periodic oscillation threshold towa
higher pump rate. Differently, forD̄50 and the same othe
parameters as for curve~c! of Fig. 2, a small phase mismatc
(j50.1) leads to a slow periodic regime~T;431016t at

FIG. 7. Time-dependent numerical solutions fork150.005,k2

50.002, D1,250, x50.2, I in51.96k1k2 ~bottom frame!, and I in

54k1k2 ~top frame!.
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a in /a th51.2! which is suppressed when vanishingly sm
detunings~always present in practical devices! are intro-
duced.

From the simulations carried out, we conclude that a m
erate SHG phase mismatch does not change significantly
main bifurcation dynamics studied up to this point, exce
for the D1,250 case.

Finally let us point out that the SPL-DRO solutions e
panded up to the second-order in Eq.~9! ~ML2 approxima-
tion! agree very well with the exact solutions in almost t
whole range of the pump intensity and detunings below
Hopf bifurcation threshold, except for the singular ca
D1,250 corresponding to the transition from subcriticality
supercriticality, where it fails to converge. Only the prop
gation model can solve this case, which requires a dou
precision computation due to the slow convergence ass
ated to a critical slowing-down phenomenon.

IV. SPL-TRO CASE

In the case of SPL-TRO, the mean-field equations~13b!
and~13c! are still valid, except thatI p5ap

2 denotes now the
circulating intracavity pump intensity. The intracavity pum
amplitude obeys the boundary condition~11a!, leading to

@12r p exp~ iDp!#Ap2 ir p exp~ iDp!A1A25Ain , ~25!

where the pump detuning may be arbitrarily large (Dp
<2p). The relation between the input pump parameterI in

5uAinu25a in
2 , and the cavity pump intensity is obtained, f

an arbitrary phase of the input field

I in5~11r p
222r p cosDp!ap

21r p
2a1

2a2
2

12r pa1a2ap@sin~Dp2m!1r p sinm#, ~26!

wherea1 , a2 , and m can be deduced from Eqs.~16! and
~19! and ~20!. The threshold for oscillation is easily foun
from Eq. ~26!, on the basis of simple considerations. Belo
the threshold, wherea1,250, I p grows linearly as a function
of I in . When it reaches the value given by Eq.~21!, oscilla-
tion starts, which leads to the following threshold input i
tensity

I th
SPL-TRO5~11r p

222r p cosDp!~ I 01D1D2!. ~27!

In practical TRO’s, although the pump finesse is low
than the finesse at the subharmonic waves~typically an order
of magnitude!, the conditionkp!1 is still satisfied. If we
consider a small enough pump detuning and the specific
D̄5D1 /k15D2 /k2 , Eq. ~27! reduces to the conventiona
TRO threshold@30#

I th
TRO5uAinu th

2 5kp
2k1k2~11D̄2!~11D̄p

2!, ~28!

whereD̄p5Dp /kp . Figure 8 shows the normalized intraca
ity pump and idler bifurcation diagrams as a function
AĪ in5AI th /I th

TRO when condition ~12a! holds and forDp

50. Only the details of theuxua1 solutions in the vicinity of
the threshold are plotted in the top frame of Fig. 8 that d
4-8
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THEORY OF SELF-PHASE-LOCKED OPTICAL . . . PHYSICAL REVIEW A 63 023814
plays the subcriticality. The numerical and mean-field so
tions of the idler amplitude as given by Eq.~16! are con-
founded over a much larger input intensity range. The thi
solid and dashed lines forap correspond to the mean-fiel
solution~26!, while the thin-solid line is the exact numeric
pump solution. Notice that the numerical solution agre
very well with the mean-field solution. As the input param
eter is increased from threshold,I p decreases from the
clamped value of the conventional TRO to a minimumI 0

~Eq. 17! for an input pump intensityĪ in
min given by

Ī in
min5@11~k1 /kp!~D̄/uxu!2#2/~11D̄2! ~29!

for Dp50. The mean-field model hence predicts that, unl
for conventional TRO, the intracavity pump intensity is n
clamped. ForD̄→0, Ī in

min→1, e.g., there is a transition t
supercriticality as in the SPL-DRO case@34#.

In pump-detuned conventional TRO’s subcriticality o
curs only when the conditionD̄pD̄.1 holds @29,30#. The
experimental observation of this subcriticality requires a h
pumping level because of the pump detuning dependenc
Eq. ~28! @35#. It is interesting to study how the subcriticalit
originating from the nonlinear OPO/SHG cascading wo
affect the intrinsic detuned TRO bistability curve. In Fig.
we have plotted the numerically computed idler intens
versus the normalized input intensity foruxu50, 0.2, 0.6, and
D̄pD̄52. The subthreshold domain extends asuxu increases
from zero, it has also increased, when compared to theD̄p
50, uxu50.2 case, shown in Fig. 8. Furthermore, asuxu in-
creases, the numerical threshold is smaller than the m
field threshold given by Eq.~27!.

We have also verified that the numerical amplitudes a
phases agree with the mean-field predictions forĪ in,10 and
for detuning values such thatD j /k j&1. Far above threshold

FIG. 8. Mean-field and numerical SPL-TRO stationary solutio
for Dp50, r p50.9, and the same other parameters as for Fig. 2.
top frame shows details of the hysteresis loop of the idler amplit
in the vicinity of the input pump threshold. The thin lines corr
spond to the numerical solutions, interrupted by the vertical-t
dashed line. The thick lines correspond to the mean-field soluti
The thick-dashed line in the bottom frame is the mean-field unst
branch ofap /a th (a th5Ak1k21D1D2), and the thinner horizontal
dashed line shows the conventional TRO pump clamping.
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and for larger detunings, only the phase difference relati
remain exact, like in the SPL-DRO case.

Furthermore, the detuning rangeD̄ for self-locking is less
dependent on the coupling strength than in the SPL-D
case.

The high-pump-finesse SPL-TRO device does not exh
the time-dependent periodical solutions observed ab
threshold with the SPL-DRO as long asuxu<0.52 ~which
corresponds roughly to equal OPO and SHG crystal len
for a PPLN! and for realistic maximum pumping rateĪ in

5I in /I th
SPL-TRO<2500, corresponding to a Watt-level pum

power and typical TRO pump thresholds in the mW ran
For larger couplinguxu50.6, periodic oscillations occur
with a period varying in a very complex way when the inp
pump is increased. Nevertheless, no chaotic regime is
served in the range of considered input pump.

In many practical experiments, one cannot avoid a we
pump resonance in DRO’s due to the multiwavelength co
ings of the mirrors. It is thus interesting to investigate how
moderate pump resonance would affect the (D1 ,D2) self-
locking domain of Figs. 5. The input external pump intens
is kept equal toI in

ext54k1k2 to provide a comparison with
Figs. 5 (uxu50.2). Such a pumping level corresponds to
internal TRO pumping rateĪ in /I th

TRO58/kp5160. In Fig. 10,
the pump reflectivity isr p50.8 with Dp50. Apart from the
slight enlargement of the self-locking domains, as compa
to Fig. 5, which is mainly attributed to the high pumpin
rate, the intensities are smaller than for the DRO, also
intensity distributions are strongly modified, with of
diagonal maxima.

In summary, the only improvement due to a moder
pump resonance is the stabilization effect respective to
onset of temporal dynamics. The extended self-pha
locking range is paid back with lower output intensities.

V. PRACTICAL IMPLEMENTATION OF SPL-OPO’s

In order to avoid spurious cavity loss, the use of a du
grating quasiphase matched periodically poled crystal is p
ticularly well suited to the implementation of SPL-OPO’

s
e
e

n
s.
le

FIG. 9. Subcriticality in the strongly pump-detuned conve

tional TRO (S50) and SPL-TRO (S50.2,0.6) forr p50.9, D̄51,

D̄p52 and the same other parameters as in Fig. 2. The thresh
located at the vertical arrows, are lower than the one given by
~27!.
4-9



J.-J. ZONDY, A. DOUILLET, A. TALLET, E. RESSAYRE, AND M. Le BERRE PHYSICAL REVIEW A63 023814
FIG. 10. ~Color! Contour plots of the numerical stationary SPL-TRO signal~a!, idler ~b!, and total~c! intensities and phase differenceh,
~d! in the 2D detuning plane withr p50.8,Dp50, k1,250.005,x5S50.2, andI in

ext54k1k2 . The intensities are scaled toI 1,252k2,1. In the
pale-blue domain there is no lasing. Forr p50.9, the self-locking domain extends over the whole 2D frame.
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However, the grating periods should be accurately desig
so as to phase match simultaneously both interactions fo
same chip temperature, even though the theoretical ana
predicts a minor influence of SHG phase mismatch.

From an experimental point of view, it is desirable
implement 3:1 SPL-OPO’s using the least constraining O
configuration. Diagnosis methods to check the high ph
coherence between the subharmonics under SPL have
implemented. In the frequency domain, this can be achie
by monitoring the beatnote between the signal wave and
externally frequency-doubled idler wave~or between the
summed subharmonics and the pump!. Because under SPL
operation these two waves are frequency degenerate, the
put signal wave must be preliminary frequency shifted b
suitable rf frequencyv rf using, e.g., an acousto-optic mod
lator. When the OPO operates within the locking range,
beatnote frequency should be fixed tov rf and its power spec
tral density should approach a Dirac function. Anoth
equivalent method to check the phase coherence is to
form an interferometric fringe pattern measurement by ov
lapping the two beams on a slow detector@17#. In the fol-
lowing, other indirect methods, based on the theoret
analysis, will be outlined.

As a starting point of the analysis, we have assumed
fect 3:2:1 frequency ratios for the pump, signal, and id
waves. In practical devices, such a situation will be unlik
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met at once. The major difficulty will come from the fin
~continuous! tuning of the signal-and-idler frequencies clo
enough to the 2:1 degeneracy, in order to fall within t
capture range of the self-phase locking. For a fixed pu
frequency, such a fine tuning is usually performed via
temperature or angle tuning of the phase matching. Sin
resonant devices~PRSRO’s! offer an easy and relaxed mode
hop free frequency tuning because only one subhamo
wave is resonant, especially in a dual-arm cavity configu
tion to control independently the pump and signal resonan
@36#. However from our analysis of the SPL-PRSRO with
resonant signal wave, which also displays subcriticality,
tremely small self-locking ranges are predicted due to
weak coupling between the injecting frequency-doubled id
and the resonant signal. While in a conventional PRSRO
signal field is constrained to oscillate with a nil cavity detu
ing, the nonlinear coupling is found to allow oscillation ov
a small detuning range not exceeding the cavity linewid
The increase of the locking range versus the coupling par
eter ~e.g., the SHG crystal length! is only moderate, even
with uxu51 ~which would correspond to a SHG crystal;1.5
times longer than the OPO crystal supposing that both O
and SHG interactions have the same nonlinearity mag
tude!. Due to this limited capture range, experimentally co
firmed in Ref.@18#, 3:1 SPL-PRSRO’s would probably re
quire an additional electronic servo on the cavity length
4-10
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THEORY OF SELF-PHASE-LOCKED OPTICAL . . . PHYSICAL REVIEW A 63 023814
operate as a stable divider device. A convenient criterion
the assessment of SPL in PRSRO’s would be the slight
hancement of the signal intensity when the nonlinear c
pling is switched on, compared to the slight decrease p
dicted for the SPL-DRO~Fig. 8!. A possible way to realize
such a switching is to have an OPO-only grating sect
patterned beside the OPO/SHG dual-grating section on
periodically-poled wafer.

From our theoretical study, the widest SPL range~a few
cavity linewidths! is obtained with the doubly resonant co
figuration ~SPL-DRO! due to the strong self-injection re
gime, with eventually a weak pump resonance~SPL-TRO! to
stabilize the device. Even though the amount of nonlin
coupling required can be extremely small (uxu50.01)—and
such low level doubled idler can even be spontaneously g
erated via nonphase matched or higher-order quasip
matching in PP single-grating nonlinear OPO crystals—
coupling strength corresponding touxu50.120.2 will ensure
a robust self-phase locking of the subharmonic wave. P
liminary single mode-pair operation of DRO/TRO’s usua
requires an intensity sidelock servo to control the stability
the cavity length. This sidelock servo compares the out
signal~or idler! intensity to a stable electronic voltage refe
ence, which sets the operating~usually nonzero! signal-and-
idler cavity detuning values. When a linear cavity is us
the signal-and-idler~plus eventually the pump! detunings
cannot be independently controlled via the cavity length. I
then probable that the oscillating mode pair will have eq
normalized detunings@condition~12a!# that satisfy the mini-
mum threshold. Under sidelock servo the transition fro
conventional to SPL states is accompanied necessarily
detuning transition~see Fig. 3!. It is then important to set the
sidelock reference voltage as close as to the maximum fr
intensity in order that the new detuning value does not
ceed the allowed subthreshold range. In the case of a w
resolved DRO mode-pair cluster, the observation of th
subthreshold states, and the associated broadened mod
fringe, should be made possible via adiabatic cavity len
tuning. Such an observation would be an indirect diagno
of SPL. But it is necessary to have an independent contro
the signal and idler detunings to explore the full allow
range of (D1 ,D2) detunings depicted in Figs. 5 and 10.
dual-cavity DRO/TRO design would then be appropria
The control of these detunings allows the control of the re
tive phase between the pump, signal, and idler. The ou
subharmonic intensity ratioI 1 /I 2 @see Eq.~19!# can be used
as an error signal for the relative phase control.

VI. CONCLUSIONS AND OUTLOOK

We have theoretically demonstrated that reson
x (2):x (2) nonlinear cascaded OPO/SHG processes indu
self-injection-locking between the subharmonic waves of
OPO leading to the self-phase-locking of the three intera
ing waves, unlike in a conventional OPO for which the a
solute phases of the signal-and-idler are undetermined.
theoretical treatment encompasses the mean-field mod
well as a full propagation model. The doubly and triply res
nant oscillator configurations lead to the widest self-pha
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locking ranges. The main conclusions are:~a! the minimum
threshold of oscillation of these devices is identical to that
conventional devices and~b! the nonlinear cascading leads
a subcritical behavior, even in the case of a DRO or a P
SRO, and can lead to the occurrence of self-pulsing insta
tities. This subcriticality is different from the standard su
criticality reported in pump detuned conventional TRO
The nonlinear coupling removes the detuning constraints
conventional systems, allowing for a potentially accura
control of the relative phase between the subharmo
waves. The range of allowable detunings over which
field phases are locked depends on the magnitude of the
linear coupling and on the self-injection regime. While th
range is smaller than the cavity linewidth for PRSRO
~weak injection regime!, it spans over several cavity line
widths under a strong injection-locking regime obtained
signal-idler resonant devices~DRO/TRO’s!. The SPL-DRO/
TRO give rise to a richer dynamics than the singly reson
PRSRO for which no occurrence of a Hopf bifurcation
found in the whole range of the system parameters. It is t
interesting to extend the theoretical model by including d
fraction effects in order to investigate the possible occ
rence of new spatiotemporal dynamics@33,37#. These self-
phase-locked OPO’s will be useful tools for applicatio
requiring a high degree of optical phase coherence betw
optical harmonic waves, such as precision optical meas
ments in the mid-ir or Fourier synthesis of ultrashort optic
pulses.

The model developed can be easily extended to the s
of divide-by-4 SPL-OPO’s based on the cascading OP
OPO processes 4v�2v�v, which has the potential to
generate up to 8 phase-locked harmonic waves by additi
up-conversion processes. Such a strong nonlinearly cou
system can be viewed as a secondary degenerate
~DOPO! embedded in a primary DOPO. Our future wo
will be directed to the theoretical investigation of the stab
ity of 4:1 OPO dividers. A classical signature of the syste
derived from the mean-field analysis, is the clamping of
secondary pump 2v to the threshold power for the funda
mental oscillation.

The present study of 3:1 OPO dividers, which makes
simplest assumption of exact 3:2:1 frequency ratios, arou
another interrogation. An interesting situation not conside
regards the behavior of the nearly 3:1 OPO/SHG sys
when the frequency ratios slightly departs from the perf
3:2:1 division ratio by a radio-frequency quantityd!v, e.g.,
when 3v→2v2d, v1d. The frequency difference be
tween the signal wave and the doubled idler is thenu2v i
2vsu53d. When the doubled idler frequency does n
match one of the cavity eigenmode frequencies, the op
tion of the OPO would be merely that of a convention
DRO. But if the OPO is tuned such that 3d5FSRs'c/L,
FSRs being the signal free spectral range of the cavity, th
the doubled idler will be enhanced to a point where it m
lead to the creation of a new mode pair with frequenc
(2v12d, v22d! and so on. The parametric gain ban
width of OPO’s extending usually over several THz or se
eral tens of THz~in case of a wavelength noncritical pha
matching!, a multitude of self-phase-locked mode pa
4-11
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equally spaced by 3d may potentially oscillate, provided tha
the pumping level is sufficiently high. Such a complex sy
tem opens the prospect of building a mode-locked, dual-b
OPO frequency comb generator using cascaded second-
nonlinearities as the passive mode-locking mechanism
the time domain, the output of such a system would con
of a train of short optical pulses with a repetion rate set
the FSRs intermode spacing, provided that the relative pha
between adjacent mode pairs is preserved and group vel
dispersion is compensated. We note that a similar cw-D
running near frequency degeneracy with thousands of m
pairs actively locked by an intracavity electro-optic pha
modulator has been recently reported, with a striking pas
output stability feature compared to a conventional quas
generate single-mode pair DRO@38#.
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APPENDIX A: LINEAR STABILITY ANALYSIS
OF THE SPL-DRO

With Aj (t)[Aj (t,0), Eqs.~9!–~11! give rise to the map-
ping equations

A2~ t1t!5r 2eiD2@A2~ t !1 iAp~ t !A2* ~ t !1 ix* A1
2~ t !#,

~A1!

A1~ t1t!5r 1eiD2@A1~ t !1 iAp~ t !A1* ~ t !1 ixA2~ t !A1* ~ t !#,
~A2!

Ap~ t !5Ain , ~A3!

the stationary solutions of which are deduced for larger 1,2
and smallD1,2. @See Eqs.~19! and ~22! and ~23!.#

The linear stability analysis consists in assuming sm
deviationsdA1,2(t) from the stationary solutionsĀ1,2,

A1,2~ t !5Ā1,21dA1,2~ t !, ~A4a!

d1,2~ t !5(
l

dA1,2~l!elt, ~A4b!

wherel may be complex. The stationary solutionsĀ1,2 are
stable only if the real part of anyl is negative. At the insta-
bility threshold, therefore the system may undergo a H
bifurcation (l056 ib), so that the intensity oscillates wit
time at angular frequencyb.

Equations~A1!–~A4! lead to a linearized system of fou
equations, the determinant of which satisfies
02381
-
d

der
In
st
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ity
O
de
e
e

e-

ll

f

D5U L1a1 2 ix1Ā2 2 ix1Ā1* 2 ix1Ain,1

ix1* Ā2* L1a1* iA in,1* ix1* Ā1

22ix2* Ā1 2 iA in,2 L1a2 0

iA in,2* 2ix2Ā1 0 L1a2*

U50

~A5!

with the notations

L5elt21 ~A6!

and

a1,25k1,22 iD1,2, ~A7a!

x15eiD1xr 1 , x25e2 iD1xr 2 , ~A7b!

Ain,1,25r 1,2e
iD1,2Ain . ~A7c!

Then, the eigenvaluesL are solutions of the quartic charac
teristic equation

L41F3L31F2L21F1L1F050, ~A8!

where all the coefficientsF i are real

F3522~k11k2!, ~A9a!

F25ua1u21ua2u214k1k222r 1r 2uĀinu2 cos~D12D2!

2uxr 2Ā2u214r 1r 2uxĀ1u2 cos~D11D2!, ~A9b!

F152r 1r 2uĀinu2@~D11D2!sin~D11D2!

2~k11k2!cos~D12D2!#12~k2ua1u21k1ua2u2!

22k2uxr 2Ā2u214uxr 1r 2Ā1u2@~k11k2!cos~D11D2!

1~D11D2!sin~D11D2!#

2 ir 1r 2uxu2 cosD2~ĀinĀ2* Ā1* 2c.c.!

13r 1r 2uxu2 sinD2~ĀinĀ2* Ā1* 1c.c.!, ~A9c!

FIG. 11. Plots of the reduced Hopf bifurcation thresholdsmH

5(I th2I H)/I th versus the normalized idler detuningD1 /k1 , for
D25D1 @solid line ~a!# and D252D1 @solid line ~b!#. The cavity
loss parameters used arek1,25k50.005 andS50.2.
4-12
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F05ua1u2ua2u222r 1r 2uĀinu2@~k1k21D1D2!cos~D12D2!

1~D1k22D2k1!sin~D12D2!#14r 1r 2uxĀ1u2

3@~k1k22D1D2!cos~D11D2!

1~D1k21D2k1!sin~D11D2!#2uxr 1a2Ā2u2

1~4uxr 2Ā1u22r 2
2uĀinu2!~ uxr 1Ā1u22r 1

2uĀinu2!. ~A9d!

The roots forL and consequently the eigenvaluesl have
been calculated for various detuningsD1,2 as a function of
the input amplitudeAin for the trivial solutionsĀ1,250 and
the nontrivial solutions (Ā1,2)6 deduced from Eqs.~16! and
~20!.

The trivial solution is verified to be stable for any inp
pump intensity belowI th @Eq. ~18!#. On the other hand the
solutionX2 is found to be unstable with respect to any co
stant perturbation for any detuning and input pump intens
Indeed, in this case, Eq.~A8! has a rootL50 i.e., l50,
because the constant coefficientF0 is identically nil, when
replacingX2 by its expression~16!.

Differently, the upper branch displays two sets of co
plex conjugate eigenvalues, (s1,26 ib1,2) with negative real
parts for a range of the input pump intensity, lying fromI 0 to
I H , where the system undergoes a Hopf bifurcation (s1
50). For I p.I H , the signal and idler intensities oscilla
-

02381
-
:

-

with time at angular frequencyb1 . Therefore the upper
branch is stable forI 0,I p,I H .

The Hopf bifurcation threshold intensityI H may be either
smaller or larger than the threshold intensityI th , depending
on detuningsD1 andD2 . Let us introduce the parametermH
that measures the departure between the threshold for la
I th and the Hopf bifurcation threshold as

mH5~ I H2I th!/I th . ~A10!

The variation ofmH is presented in Fig. 11 as a functio
D15D either with D15D2 in curve ~a! or D151/2D2 in
curve ~b!.

For D15D2 , the Hofp bifurcation~s150, s2,0! occurs
above threshold only forD&k. Therefore lasing stationary
solutions can be reached from rest only for detunings sma
than the cavity loss coefficient. Otherwise, lasing at lar
detunings can be reached, when increasing adiabatically
detunings from values smaller thank. In the other case,D1
5 1

2 D2 , mH is positive for anyD1&5k. For higher detuning,
s2 reaches zero at an input intensity much smaller than
value at whichs150 crosses zero. This causes an abr
decreases ofI H , so thatmH suddenly becomes negative fo
D1>5k, as shown in the curve~b! of Fig. 11.

Finally, the angular frequencybH at the Hopf bifurcation
threshold, not reported here, is found to vary proportiona
to the detuning.
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