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Phase-noise measurement in a cavity with a movable mirror undergoing quantum
Brownian motion

Vittorio Giovannetti and David Vitali
Dipartimento di Matematica e Fisica and Unita` INFM, Universitàdi Camerino, via Madonna delle Carceri 62032, Camerino, Italy

~Received 19 June 2000; published 16 January 2001!

We study the dynamics of an optical mode in a cavity with a movable mirror subject to quantum Brownian
motion. We study the phase-noise power spectrum of the output light, and we describe the mirror Brownian
motion, which is responsible for the thermal-noise contribution, using the quantum Langevin approach. We
show that the standard quantum Langevin equations, supplemented with the appropriate non-Markovian cor-
relation functions, provide an adequate description of Brownian motion.
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I. INTRODUCTION

The mechanical interaction between a moving mirror a
a radiation field has been an important topic for the study
very high-precision optical interferometers in which rad
tion pressure effects cannot be ignored. This interaction i
the basis of the interferometric detection of gravitation
waves, where the tiny displacement of a mirror can be
tected as a phase shift of the interference fringes@1#. Another
interesting application is the atomic force microscope@2#,
where an image of a surface at atomic resolution is obtai
from the measurement of the force between the surface a
probe tip mounted on a microcantilever.

A cavity with a movable mirror is of interest also fo
cavity QED studies, which usually involves the quantum c
herent interaction between high-Q cavity modes at low pho-
ton number and single atoms. In this case, the atomic deg
of freedom are replaced by the motional degree of freed
of the movable mirror. Interesting quantum effects, such
the generation of sub-Poissonian light@3#, of Schrödinger cat
states of both the cavity mode@4#, and even of the mirror@5#,
have been already illustrated.

In these applications one needs very high resolution
position measurements and good control of the various n
sources, because one has to detect the effect of a very w
force. As shown by the pioneering work of Braginsky@6#,
even though all classical noise sources had been minimi
the detection of gravitational waves would be ultimately d
termined by quantum fluctuations and the Heisenberg un
tainty principle. Quantum noise in interferometers has t
fundamental sources, the photon shot noise of the la
beam, prevailing at low laser intensity, and the fluctuatio
of the mirror position due to radiation pressure, which
proportional to the incident laser power. This radiation pr
sure noise is the so-called ‘‘back-action noise’’ arising fro
the fact that intensity fluctuations affect the momentum fl
tuations of the mirror, which are then fed back into the p
sition by the dynamics of the mirror. The two quantu
noises are minimized at an optimal, intermediate, la
power, yielding the so-calledstandard quantum limit~SQL!,
which coincides with mean-square fluctuations of t
harmonic-oscillator ground stateDqSQL5A\/2mvS (vS is
the mirror oscillation frequency!. Real devices constructe
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up to now are still far from the standard quantum limit b
cause quantum noise is much smaller than that of class
origin, which is essentially given by thermal noise. In fa
present interferometric gravitational wave detectors are l
ited by the Brownian motion of the suspended mirrors@7#,
which can be decomposed into suspension and internal~i.e.,
of internal acoustic modes! thermal noise. Therefore it is
very important to establish the experimental limitations d
termined by thermal noise and recent experiments@8,9# have
obtained interesting results. In this respect it is also imp
tant to establish which is the most appropriate formal
scription of quantum Brownian motion. In fact, even thou
the classical understanding of the phenomenon is well es
lished, relying on Langevin or Fokker-Planck equations@10#,
its quantum generalization is still the subject of intense
bate~see Ref.@11# and references therein!. In particular, the
recent paper by Jacobset al. @12# has shown that the standar
description of quantum Brownian motion, which is th
straightforward generalization of the classical case@13#,
gives an inadequate description, since it generates a non
sical term in the optical phase-noise spectrum in the cas
a cavity with a movable mirror. The authors of Ref.@12#
adopt therefore a corrected quantum Langevin equat
based on the Dio`si Master equation@14#, and suggest that
even if it is quite challenging, the corresponding modific
tions of the phase-noise spectrum could be revealed u
miniature high-frequency mechanical oscillators and ult
low temperatures. In the present paper we shall recons
the same system, i.e., a driven cavity with a movable mirr
and shall show that the inadequacy shown in Ref.@12# has to
be traced back to the inadequacy of the quantum noise c
mutation relations and correlation functions, which are d
tated by the standard Brownian motion Master equation.
shall see that, differently from the Master equation approa
a consistently applied quantum Langevin equation@15# pro-
vides a flexible approach, valid atany temperatureand there-
fore also in the fully quantum regime of very low temper
tures. This however does not mean that the quan
Langevin equation approach is generally superior than
Master equation approach, but simply that in the case un
study, which is a linearized, non-Markovian problem, t
quantum Langevin description is more convenient and po
erful.

The outline of the paper is as follows. In Sec. II the a
©2001 The American Physical Society12-1
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VITTORIO GIOVANNETTI AND DAVID VITALI PHYSICAL REVIEW A 63 023812
propriate quantum Langevin equations for a Brownian p
ticle are derived starting from the usual model based on
coupling with a reservoir of harmonic oscillator, and its co
sistency is shown. In Sec. III the quantum Langevin a
proach is applied to the case of a cavity mode with a m
able mirror and the homodyne spectrum of the reflec
light, showing the thermal and quantum fluctuations of
mirror, is studied. Sec. IV is for concluding remarks.

II. THE DYNAMICS OF THE SYSTEM

The system studied in the present paper consists of a
herently driven optical cavity with a moving mirror. Thi
optomechanical system can represent one arm of an inte
ometer able to detect weak forces such as those assoc
with gravitational waves@1# or an atomic force microscop
@2#. The detection of very weak forces requires having qu
tum limited devices, whose sensitivity is ultimately dete
mined by the quantum fluctuations. For this reason we s
describe the mirror as aquantum-mechanical harmonic os
cillator with massm and frequencyvS . The optomechanica
coupling between the mirror and the cavity field is realiz
by the radiation pressure. The electromagnetic field exer
force on the movable mirror that is proportional to the inte
sity of the field, which, at the same time, is phase shifted
2kq, wherek is the wave vector andq is the mirror displace-
ment from the equilibrium position. In the adiabatic limit
which the mirror frequency is much smaller than the cav
free spectral rangec/2L (L is the cavity length! @16#, one can
focus on one cavity mode only because photon scatte
into other modes can be neglected, and one has the follow
Hamiltonian

H5\vcb
†b1

p2

2m
1

1

2
mvS

2q2

2\
vc

L
qb†b1 i\E~b†e2 iv0t2beiv0t!, ~2.1!

whereb is the cavity mode annihilation operator with optic
frequencyvc and E describes the coherent input field wi
frequencyv0;vc driving the cavity. The quantityE is re-
lated to the input laser powerP by E5APgc /\v0, wheregc
is the cavity decay constant due to the input coupling mirr
Since we shall focus on the quantum and thermal noise of
system, we shall neglect all the experimental sources
noise, i.e., we shall assume that the driving laser is stabil
in intensity and frequency. This means neglecting all
fluctuations of the complex parameterE. Including these
supplementary noise sources is however quite straigh
ward and a detailed calculation of their effect is shown
Ref. @12#. Moreover recent experiments have shown t
classical laser noise can be made negligible in the rele
frequency range@8,9#. The adiabatic regimevS!c/2L we
have assumed in Eq.~2.1! impliesvS!vc , and therefore the
generation of photons due to the Casimir effect, and a
retardation and Doppler effects, are completely negligible

The dynamics of the system is not only determined by
Hamiltonian interaction~2.1!, but also by the dissipative in
02381
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teraction with external degrees of freedom. The cavity mo
is damped due to the photon leakage through the mirr
which couple the cavity mode with the continuum of th
outside electromagnetic modes. For simplicity we assu
that the movable mirror has perfect reflectivity and th
transmission takes place through the other ‘‘fixed’’ mirr
only ~see Fig. 1 for a schematic description of the syste!.
The mechanical oscillator, which may represent not only
center-of-mass degree of freedom of the mirror, but als
torsional degree of freedom as in Ref.@9#, or an internal
acoustic mode as in Ref.@8#, undergoes Brownian motion
caused by the uncontrolled coupling with other internal a
external modes at the equilibrium temperatureT.

The dissipative dynamics of the optical cavity mode
well described by the so-called vacuum optical Master eq
tion @17#

ṙ5
gc

2
~2brb†2b†br2rb†b!, ~2.2!

for the time evolution of the density matrix of the who
systemr. In fact, the mean thermal number of photons at
optical frequencyvc is extremely small and thermal excita
tion is therefore completely negligible. The time evolutio
generated by Eq.~2.2! presents no ambiguity. In fact it is o
Lindblad form @18# and therefore it preserves the positivi
of the density matrix. Moreover it is completely equivale
to the time evolution for the operators in the Heisenbe
representation driven by the following quantum Langev
equation

ḃ~ t !52
gc

2
b~ t !1Agcbin~ t !, ~2.3!

wherebin(t) is the input noise operator associated with t
vacuum fluctuations of the continuum of modes outside
cavity, having the following commutation relation

@bin~ t !,bin
† ~ t8!#5d~ t2t8! ~2.4!

and correlation functions

FIG. 1. Schematical description of the system. The cavity mo
is driven by the laser which, thanks to the beam splitter, provi
also the local oscillator for the homodyne measurement of the l
reflected by the cavity.
2-2



a
ab
io
et

is
fo
ad
iti

d

th
e
e
an
h

en

n
th

n

ts

d

um

s
-

he

in

vin
at

or
f the

sso-
an

of
ef.

as-

m-
of

in
on-
and
ei-

sical

ing
e
de-
en-

om
um
tum

PHASE-NOISE MEASUREMENT IN A CAVITY WITH A . . . PHYSICAL REVIEW A63 023812
^bin~ t !bin~ t8!&5^bin
† ~ t !bin~ t8!&50, ~2.5!

^bin~ t !bin
† ~ t8!&5d~ t2t8!. ~2.6!

The description of the quantum Brownian motion of
massive particle in a potential is instead not so well est
lished. The standard Brownian motion Master equat
~SBMME! has been first derived by Caldeira and Legg
@13# in the high-temperature limit and reads

ṙ~ t !52
i

\
@HS ,r#2

ih

2m\
@q~ t !,$p~ t !,r~ t !%#

2
hkT

\2
†q~ t !,@q~ t !,r~ t !#‡, ~2.7!

whereHS is the uncoupled particle Hamiltonian,p is its mo-
mentum, andhq̇ is the friction force. This Master equation
the direct generalization of the Fokker-Planck equation
the classical Brownian motion but, since it is not of Lindbl
form, it has the drawback that it does not ensure the pos
ity of the density operator@19#. This fact has stimulated
many authors who have amended the SBMME with ad
tional terms so to cast it into the Lindblad form
@11,14,20,21#. These corrected Master equations preserve
positivity of the density matrix but also they are valid in th
high-temperature limit only, as the SBMME, because th
necessarily provide a Markovian description of Browni
motion, which instead becomes highly non-Markovian in t
low-temperature limit@22#. In fact, in this limit, the reservoir
correlation time is no more negligible because it is ess
tially determined by the ‘‘thermal time’’tT5\/kT.

An alternative description of quantum Brownian motio
is provided by the quantum Langevin equations for
Heisenberg operatorsq(t) andp(t), which, in analogy with
the classical case, should read

q̇~ t !5
i

\
@HS ,q~ t !#, ~2.8!

ṗ~ t !5
i

\
@HS ,p~ t !#2

h

m
p~ t !1j~ t !, ~2.9!

where j(t) is a Hermitian noise operator with correlatio
function

^j~ t !j~ t8!&52hkTd~ t2t8!. ~2.10!

One would expect that these equations give correct resul
least in the high-temperature limit, where the classical lim
should be recovered. Instead Ref.@12# has shown that they
give inconsistent results even in this limit because they
not preserve the commutation relation@q(t),p(t)#5 i\ and
they yield a spurious term in the phase fluctuation spectr
In fact, in spectral measurements, the Fourier transform
correlation functions of the formG(t)5^R(t)R(t1t)& are
measured, whereR(t) is an appropriate output field. Thi
correlation function depends only ont because of stationar
ity, and moreover it is an even function oft becauseR(t)
02381
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commutes with itself at different times. This implies that t
observed spectrum has to be aneven function of the fre-
quency v, while the adoption of the quantum Langev
equations~2.8!–~2.9! yields a term that is anodd function of
v @12#.

In Ref. @12# these inadequacies of the quantum Lange
equations~2.8!–~2.9! have been traced back to the fact th
they are equivalent to the SBMME~2.7!, which is not of
Lindblad form and therefore does not preserve positivity. F
this reason they consider the amended Master equation o
Lindblad form proposed by Dio´si in Ref.@14#, and derive the
set of quantum Langevin equation equivalent to it,

q̇~ t !5
i

\
@HS ,q~ t !#1e~ t !, ~2.11!

ṗ~ t !5
i

\
@HS ,p~ t !#2

h

m
p~ t !1j~ t !, ~2.12!

having the additional noise terme(t). The corresponding
correlation functions are

^j~ t !j~ t8!&52hkTd~ t2t8!, ~2.13!

^e~ t !e~ t8!&5
\2h

6m2kT
d~ t2t8!, ~2.14!

^j~ t !e~ t8!&52 i\
h

2m
d~ t2t8!, ~2.15!

^e~ t !j~ t8!&5 i\
h

2m
d~ t2t8!. ~2.16!

It is then possible to see that the phase-noise spectrum a
ciated with this dynamical description of quantum Browni
motion has no spurious term and that it is an even function
the frequency, as it must be. However, the approach of R
@12# can be questioned for two reasons. First of all the M
ter equation of Ref.@14# has been derived by Dio´si with
heuristic arguments and in a later paper@20# Diósi himself
corrected it by considering a more rigorous medium te
peratures extension of the SBMME. The Master equation
Ref. @20# would lead to a different set of quantum Langev
equations; more generally speaking, the Lindblad form c
dition does not uniquely determine the Master equation,
therefore the form of the quantum Langevin equations n
ther. Furthermore, the added noise terme(t) in Eq. ~2.11! is
not present in the classical case and it has an unclear phy
origin.

For this reason we reconsider the problem here, assum
a different starting point. Most of the derivations of th
Brownian motion Master equations are based on the in
pendent oscillator model for the reservoir, whose quite g
eral validity has been extensively discussed in Ref.@23#.
Therefore, rather than first deriving the Master equation fr
this reservoir model and then considering the quant
Langevin equations associated to it, we derive the quan
2-3
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VITTORIO GIOVANNETTI AND DAVID VITALI PHYSICAL REVIEW A 63 023812
Langevin equations directly from the reservoir oscilla
model, as it is shown in Refs.@15,24#.

Let us neglect for the moment the presence of the ca
mode and consider a particle undergoing Brownian moti
with HamiltonianHS . The reservoir is described by a co
lection of independent harmonic oscillators with frequen
v j , couplingskj , and whose canonical coordinatesqj and
pj have been appropriately rescaled. The total system Ha
tonian is@13,15,24#

HS1
1

2 (
j

@~pj2kjq!21v j
2qj

2#. ~2.17!

The quantum Langevin equations can be obtained from
Heisenberg equations forq(t), p(t), and the reservoir anni
hilation operatorsaj (t)5@v jqj (t)1 ip j (t)#/A2\v j ,

q̇~ t !5
i

\
@HS ,q~ t !#, ~2.18!

ṗ~ t !5
i

\
@HS ,p~ t !#1(

j
kj@pj~ t !2kjq~ t !#, ~2.19!

aj̇~ t !52 iv jaj~ t !2kjAv j

2\
q~ t !. ~2.20!

If we integrate the equation foraj (t) starting from the initial
time t0, we get

aj~ t !5exp@2 iv j~ t2t0!#aj~ t0!2kj

3Av j

2\Et0

t

dt8exp@2 iv j~ t2t8!#q~ t8!,

~2.21!

which, using integration by parts and the fact thatq̇5( i /\)
3@HS ,q#5p/m, can be rewritten as

aj~ t !5 ik jA 1

2\v j
q~ t !1exp@2 iv j~ t2t0!#aj~ t0!

2 ik jA 1

2\v j
exp@2 iv j~ t2t0!#q~ t0!

2 i
kj

m
A 1

2\v j
E

t0

t

dt8exp@2 iv j~ t2t8!#p~ t8!.

~2.22!

Then we replace Eq.~2.22! in the equation forṗ(t), Eq.
~2.19!, which becomes

ṗ~ t !5
i

\
@HS ,p~ t !#1Q̃~ t !2(

j
kj

2cos@v j~ t2t0!#q~ t0!

2E
t0

t

dt8(
j

kj
2cos@v j~ t2t8!#

p~ t8!

m
, ~2.23!

where we have defined the reservoir operator
02381
r

ty
,

y

il-

e

Q̃~ t !5 i(
j

kjA\v j

2
$exp@ iv j~ t2t0!#aj

†~ t0!

2exp@2 iv j~ t2t0!#aj~ t0!%. ~2.24!

As is well known, the irreversible properties of the reserv
are obtained only when an infinite number of oscillato
distributed over a continuum of frequencies, is consider
The continuous limit has to be performed according to
following prescription:

(
j

kj
2 •••→E

0

V

dv k2~v!
dn

dv
•••5

2h

p E
0

V

dv •••,

~2.25!

wheredn/dv is the oscillator density,h is just the friction
coefficient, andV is the frequency cutoff of the reservo
oscillator spectrum. When the continuous limit is consider
the Heisenberg equations for the Brownian particle beco

q̇~ t !5
p~ t !

m
, ~2.26!

ṗ~ t !5
i

\
@HS ,p~ t !#1Q̃~ t !22hd̃~ t2t0!q~ t0!

22hE
t0

t

dt8d̃~ t2t8!
p~ t8!

m
, ~2.27!

where we have defined the following function

d̃~ t !5
1

pE0

V

dv cos~vt !. ~2.28!

Equations~2.26! and ~2.27! become identical to the usua
Langevin equations~2.8!–~2.9! when the usual assumptio
of a reservoir dynamics much faster than that of the Brow
ian particle is made. This means making a coarse-grai
description in time equivalent to assuming the infinite cut
limit V→`, under which the functiond̃(t) becomes a Dirac
delta function. The reservoir operatorQ̃(t) in Eq. ~2.27!
plays, therefore, the role of the random Langevin force, co
muting with a generic system operator evaluated at the in
time t0, for every value oft. This fact suggests interpretin
Q̃(t) as the input noise of the system and the above quan
Langevin equations in terms of the input-output formalis
developed by Gardiner and Collett@25#. However, the inter-
pretation ofQ̃(t) as an input noise must be made with ca
becauseits commutation relations are different from those
the typical input noise operators@see Eq.~2.4!#. In fact, us-
ing definition ~2.24! and the continuous limit prescriptio
~2.25!, one derives the following commutation relation:

@Q̃~ t !,Q̃~ t8!#52i\h
d

dt
d̃~ t2t8!, ~2.29!

which is not a delta function in (t2t8), even in the coarse
grained time limitV→`. In this respect, it is interesting to
2-4
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consider also the correlation function of the noise opera
Q̃(t), which is generally defined as a trace over the reser
degrees of freedom,

^Q̃~ t !Q̃~ t8!&B5trB$Q̃~ t !Q̃~ t8!R0%, ~2.30!

whereR0 is the density operator of the reservoir at therm
equilibrium at temperatureT,

R05)
j

expF2
\v jaj

†aj

kT G~12e2\v j /kT!. ~2.31!

Using again Eqs.~2.24! and ~2.25!, one gets

^Q̃~ t !Q̃~ t8!&B5
\h

p
$Fr~ t2t8!1 iFi~ t2t8!%, ~2.32!

with

Fr~t!5E
0

V

dv v cos~vt!cothS \v

2kTD , ~2.33!

Fi~t!52E
0

V

dv v sin~vt!5p
d

dt
d̃~t!. ~2.34!

The antisymmetric part, corresponding toFi , is a direct con-
sequence of the commutation relations~2.29! and, as we
have seen, is never a Dirac delta, while the symmetric p
corresponding toFr , explicitely depends on temperature a
becomes proportional to a Dirac delta function only if t
high-temperature limitkT@\V first, and the infinite fre-
quency cutoff limitV→` later, are taken. Equations~2.29!
and ~2.32!–~2.34! show the non-Markovian nature of qua
tum Brownian motion, which becomes particularly evide
in the low-temperature limit@22#. Therefore, assuming th
independent oscillator model for the reservoir, which is
usual starting point for the derivation of the Brownian m
tion Master equation, we have derived theexact quantum
Langevin equations~2.26! and ~2.27!, which reduce to the
usual quantum Langevin equations~2.8!–~2.9! in the limit
V→`. However, these equations must not be used as u
input-output equations, as it is implicitely dictated by t
SBMME of Eq. ~2.7! ~see Ref.@12#!, but the appropriate
commutation relations~2.29! and correlation functions
~2.32!–~2.34! must be used. Therefore, the inadequac
found in Ref.@12# are not due to the form of the Langev
equations but only to the inappropriate form of the no
correlation function dictated by the SBMME. It is also im
portant to stress that our Langevin equation description
quantum Brownian motion is more general than that ass
ated with a Master equation approach, because it is valiat
all temperaturesand it does not need any high-temperatu
limit.

Another criticism to the standard quantum Langev
equations presented in Ref.@12# is that they do not preserv
the commutation relations of system operators. This can
be traced back to the inappropriate form of the commuta
relations of the noise operatorQ̃(t). Actually, Eqs.~2.26!
and~2.27! are exact and, because of the unitarity of the ti
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evolution, they maintain the initial commutation rules for th
system operators. This property is preserved also by the s
dard quantum Langevin equations~2.8!–~2.9!, which are the
V→` limit of Eqs. ~2.26!–~2.27!, provided that the correc
noise commutation relation is used. Let us see this fac
detail. If we do not restrict to the usual conditiont.t0, under
theV→` limit, Eqs. ~2.26! and~2.27! have to be written as
~see Appendix!

q̇~ t !5p~ t !/m, ~2.35!

ṗ~ t !5
i

\
@HS ,p#1Q̃~ t !22hd~ t2t0!q~ t0!

2
h

m
S~ t2t0!p~ t !, ~2.36!

where S(t) is the sign function@defined such thatS(0)
50].

If we consider, for example, the commutator betwe
q(t) and p(t), differentiate it with respect tot, and use Eq.
~2.36!, we obtain

d

dt
@q~ t !,p~ t !#52

h

m
S~ t2t0!@q~ t !,p~ t !#1@q~ t !,Q̃~ t !#.

~2.37!

In order to solve this equation, we need the commutator
tween q(t) and Q̃(t). More generally, we consider bot
quantities X(t)5@q(t),Q̃(t8)# and Y(t)5@p(t),Q̃(t8)# as
functions oft, with t8 an independent parameter. If for sim
plicity we restrict to the case of interest here of a harmo
cally bound Brownian particleHS5mvS

2q2/2, it is possible

to obtain the equation forẊ(t) and Ẏ(t) using Eqs.~2.36!

Ẋ~ t !5Y~ t !/m, ~2.38!

Ẏ~ t !52mvS
2X~ t !12i\hd8~ t2t8!2

h

m
S~ t2t0!Y~ t !,

~2.39!

where we have used Eq.~2.29! in the V→` limit and the
initial condition X(t0)50. Using Eq.~2.36!, the solution of
Eqs.~2.38!–~2.39! can be expressed in the following form

X~ t !52h
]

]t8
$@q~ t !,q~ t8!# J~ t,t8,t0!%, ~2.40!

Y~ t !52h
]

]t8
$@p~ t !,q~ t8!# J~ t,t8,t0!%, ~2.41!

with

J~ t,t8,t0!5u~ t2t0!u~ t2t8!u~ t82t0!

2u~ t02t !u~ t82t !u~ t02t8!, ~2.42!

whereu(t) is the Heaviside step function@defined such that
u(0)51/2]. Using Eq.~2.36! within Eq. ~2.40! and setting
t5t8, it is possible to observe that
2-5
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X~ t8!5@q~ t8!,Q̃~ t8!#5
h

m
S~ t82t0!@q~ t8!,p~ t8!#.

~2.43!

Finally, using this results in Eq.~2.37! with t85t, one gets
the desired result, i.e., that the time derivative of the co
mutator betweenq(t) and p(t) is equal to zero. Similar ar
guments can be used to prove the preservation of all
other commutation relations between Brownian particle
erators.

III. HOMODYNE SPECTRUM

Let us now consider again the dynamics of the opti
mode of the cavity with a movable mirror. Using the resu
of the preceding section, the dynamics fort.t0 of the sys-
tem can be described by the following set of coupled qu
tum Langevin equations in the interaction picture with
spect to\v0b†b @see Eqs.~2.1!, ~2.3!, and~2.36!#,

q̇~ t !5p~ t !/m, ~3.1!

ṗ~ t !52m vS
2q~ t !1Q̃~ t !2

h

m
p~ t !1

\vc

L
b†~ t !b~ t !,

~3.2!

ḃ~ t !52S ivc2 iv01
gc

2 Db~ t !1 i
vc

L
q~ t !b~ t !1E

1Agcbin~ t !, ~3.3!

where the commutation relations and correlation functions
the input noisebin(t) are given, respectively, by Eqs.~2.4!,
~2.5!, and~2.6!, while those ofQ̃(t) are given by Eq.~2.29!
and Eqs.~2.32!–~2.34! considering the limitV→`.

In standard interferometric applications, the driving fie
is very intense. Under this condition the system is charac
ized by a semiclassical steady state with the internal ca
mode in a coherent stateuBst&, and a new equilibrium posi
tion for the mirror, displaced byqst5\vcuBstu2/mvS

2 L with
respect to that with no driving field. The steady-state am
tude is given by the solution of the nonlinear equation

Bst5
E

gc/21 ivc2 iv02 i ~\vc
2/mvS

2L2!uBstu2
, ~3.4!

which is obtained by taking the expectation values of E
~3.1!–~3.3!, factorizing them, and setting all the time deriv
tives to zero. Equation~3.4! shows a bistable behavior whic
has been experimentally observed in Ref.@26#.

Under these semiclassical conditions, the dynamics
well described by linearizing the quantum Langevin eq
tions ~3.1!–~3.3! around the steady state. If we now renam
with q(t) and b(t) the operators describing the quantu
fluctuations around the classical steady state, one gets

q̇~ t !5p~ t !/m, ~3.5!
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ṗ~ t !52mvS
2q~ t !2

h

m
p~ t !1

\vcBst

L
@b~ t !1b†~ t !#1Q̃~ t !,

~3.6!

ḃ~ t !52S gc

2
1 iD Db~ t !1 i

vcBst

L
q~ t !1Agcbin~ t !,

~3.7!

where we have chosen the phase of the cavity mode fi
such thatBst is real and

D5vc2v02
\vc

2

mvS
2 L2

uBstu2 ~3.8!

is the cavity mode detuning. We shall consider from now
D50, which corresponds to the most common experimen
situation, and which can always be achieved by appropria
adjusting the driving field frequencyv0. In this case the
dynamics becomes simpler, and it is easy to see that only
phase quadratureY(t)5 i @b†(t)2b(t)# is affected by the
mirror position fluctuationsq(t), while the amplitude field
quadratureX(t)5b(t)1b†(t) is not. In particular, in the
limit of a sufficiently large cavity mode bandwidt
gc@h/m,vS ~which is usually satisfied!, the dynamics of the
phase quadrature adiabatically follows that of the mirror p
sition, that is

Y~ t !5
4vcBst

gcL
q~ t !1~noise terms!. ~3.9!

Therefore, a phase-noise measurement, such as the h
dyne measurement of the field quadratureY(t), gives direct
information on the mirror Brownian motion. In particula
the interesting measurable quantity is the output pow
density spectrum of the phase quadrature

SY~v!5 H E dteivt^Yout~ t !Yout~ t1t!&J
t

~3.10!

5
1

2p H E dv8exp@2 i ~v1v8!t#

3^Yout~v8!Yout~v!&J
t

, ~3.11!

where $•••% t denotes the time average overt, Yout(t)
5 i @bout

† (t)2bout(t)# is the output phase quadratur
Yout(v)5*dteivtYout(t) is its Fourier transform, and

bout~ t !1bin~ t !5Agcb~ t ! ~3.12!

is the usual input-output relation@27#. If we now take the
Fourier transform of Eqs.~3.5!–~3.7!, one gets the following
expression for the Fourier transform of the correlation fun
tion of the cavity mode annihilation operator
2-6
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b~v!5
1

D~v!

3F i
vcBst

mL S \vcBstAgc

L

bin~v!1bin
† ~v!

iv2gc/2
2Q̃~v! D

2~vS
22v22 ihv/m!Agcbin~v!G , ~3.13!

with

D~v!5S iv2
gc

2 D ~vS
22v22 ihv/m!. ~3.14!

For the evaluation of the phase-noise spectrumSY(v),
one has to use Eq.~3.13! and then consider the spectrum
the various noise terms, which are easily derived from
Fourier transform of the correlation functions~2.5!, ~2.6!,
~2.32!, ~2.33!, and~2.34!:

^Q̃~v!Q̃~v8!&52ph\vF11cothS \v

2kTD Gd~v1v8!,

~3.15!

^bin
† ~v!bin~v8!&50, ~3.16!

^bin~v!bin
† ~v8!&52pd~v1v8!, ~3.17!

where we have assumed again the infinite cutoff lim
V→` in the evaluation of the spectrum of the thermal-no
operatorQ̃(t). One finally obtains

SY~v!5114S \vc
2gcuBstu2

mL2 D 2
1

@~gc/2!21v2#uD~v!u2

14S vc
2hgcuBstu2

m2L2 D 1

uD~v!u2
\v cothS \v

2kTD .

~3.18!

This is the phase-noise spectrum associated with the ho
dyne measurement of the phase quadratureY(t), and the
only assumptions made in its derivation are the lineariza
around the semiclassical steady state and the time co
grained descriptionV→`. Its temperature dependence is i
stead exact and therefore Eq.~3.18! is valid even at very low
temperatures, differently from the spectra obtained with
approaches based on the Master equation, as in Ref.@12#,
which cannot be applied in the low-temperature limit.

Notice thatSY(v) is an even function ofv, as it must be
due to stationarity and the commutation rules of output fie
@12#. In fact, the nonsensical term of the spectrum found
Ref. @12# in the case of the standard quantum Langevin
scription is due to the inappropriate form of the correlati
function of the Langevin noise dictated by the SBMME, a
it is absent when the correct spectrum of the quant
Brownian noise term of Eq.~3.15! is used. This spectrum i
plotted in Fig. 2~see the figure caption for parameter value!,
where also the three contributions to the noise spectrum
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explicitely shown. The full line refers to the total homodyn
spectrum, while the dashed-dotted line describes the
noise, which is frequency independent@actually SY(v) has
been defined so to be normalized just to the shot-noise lev#.
The dashed line describes the second term in Eq.~3.18!,
which is the one associated with the radiation pressure
nally the dotted line describes the last term which is just
thermal-noise contribution.

The homodyne spectrum derived in Ref.@12# with the
adoption of the Dio´si Master equation of Ref.@14# coincides
with Eq. ~3.18! except for a different thermal-noise term
which is obtained from that of Eq.~3.18! with the replace-
ment

\v cothS \v

2kTD→2kT1
\2~v21h2/m2!

6kT
. ~3.19!

However, despite this formal difference, the two predictio
become practically indistinguishable if typical experimen
parameters are considered. In fact, the prediction of Ref.@12#
coincides with the high-temperature expansion~at first order
in \v/kT) of Eq. ~3.18! except for the additional facto
\h2/6m2kT. However, in typical experiments, mechanic
oscillators with a very good quality factor are always use
so that the term\2h2/6m2kT will be in practice always neg-
ligible with respect to\2v2/6kT in Eq. ~3.19!. This means
that an appreciable discrepancy between the two express
of the thermal-noise term manifests itself only whenkT
,\v, which means prohibitively small temperatures, or
ternatively, very large frequencies~larger than 1 THz at liq-
uid He temperatures!. Moroever, at these high frequencie
the thermal-noise contribution is completely blurred by t
shot-noise term and therefore we can conclude that w
present technology the phase-noise spectrum of Eq.~3.18!
and that evaluated in Ref.@12# cannot be experimentally dis
tinguished. Nonetheless, the result of Eq.~3.18! is important
because it shows that the standard quantum Langevin e
tions @supplemented with the appropriate commutation re
tions ~2.29! and correlation functions~2.32!–~2.34! of the

FIG. 2. Phase-noise spectrum of Eq.~3.18! ~full line!. The
dotted-dashed line refers to the shot-noise spectrum@first term of
Eq. ~3.18!#; the dashed line refers to the radiation pressure te
@second term of Eq.~3.18!# and the dotted line to the thermal-nois
term @third term of Eq. ~3.18!#. Parameter values arevS
51.33105 Hz, h/m5331022 Hz, vc51.831015 Hz, gc

54.73105 Hz, m51025 Kg, L51022 m, T54.2 K, and P
51025 W.
2-7
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random Langevin force# do give an adequate description
quantum Brownian motion, which is even more general th
that associated with the Master equation, which is not va
at very low temperatures.

IV. CONCLUSIONS

We have considered in this paper the dynamics of a ca
mode with a movable mirror, which is often used for t
interferometric detection of very weak forces. We have
cused in particular on the description of the quantum Brow
ian motion of the mirror, which is responsible for th
thermal-noise term in the measured phase-noise spectru
the light reflected from the cavity. We have shown that
standard quantum Langevin equations~2.8!–~2.9! provide an
adequate and consistent description of quantum Brown
motion. We have derived the quantum Langevin equati
directly from the independent oscillator model~providing the
commonly used description for the oscillator reservoir, s
Refs. @13,15,23,24#!, and we have seen that they provide
quite general description of quantum Brownian motion, va
at any temperatures. This is instead not true for Mas
equation-based approaches, which cannot be applied in
low-temperature limit@22#. The inadequacies found in th
quantum Langevin approach are to be traced back to the
that the quantum Langevin force appearing in it is differe
from the standard input noise terms of the input-output f
malism @25#, since it is characterized by a different comm
tation relation@see Eq.~2.29!# which does not coincide with
a Dirac delta in any limit.
.
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APPENDIX

In order to justify the presence of the sign functionS(t)
on Eq.~2.36!, let us consider the step function

u~t!5H 1 if t.0

1/2 if t50

0 if t,0 ,

~A1!

and the formal identity

I~ t,t0!5E
t0

t

dt8d~ t2t8!p~ t8!

5E
2`

`

dt8d~ t2t8!p~ t8!@u~ t82t0!2u~ t82t !#,

~A2!

which holds for everyt and t0. Now using the formal prop-
erties ofd(t) on Eq.~A2!, one can verify that fort.t0 and
for t,t0 , I(t,t0)5p(t)/2 and I(t,t0)52p(t)/2, respec-
tively, while, of course,I(t0 ,t0)50. This can be written
using the sign functionS(t)5u(t)2u(2t) in the following
way:

I~ t,t0!5S~ t2t0!p~ t !/2. ~A3!
ys.
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