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Phase-noise measurement in a cavity with a movable mirror undergoing quantum
Brownian motion
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We study the dynamics of an optical mode in a cavity with a movable mirror subject to quantum Brownian
motion. We study the phase-noise power spectrum of the output light, and we describe the mirror Brownian
motion, which is responsible for the thermal-noise contribution, using the quantum Langevin approach. We
show that the standard quantum Langevin equations, supplemented with the appropriate non-Markovian cor-
relation functions, provide an adequate description of Brownian motion.
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[. INTRODUCTION up to now are still far from the standard quantum limit be-
cause quantum noise is much smaller than that of classical
The mechanical interaction between a moving mirror andrigin, which is essentially given by thermal noise. In fact,
a radiation field has been an important topic for the study opresent interferometric gravitational wave detectors are lim-
very high-precision optical interferometers in which radia-ited by the Brownian motion of the suspended mirrpr§
tion pressure effects cannot be ignored. This interaction is avhich can be decomposed into suspension and inteteal
the basis of the interferometric detection of gravitational®f internal acoustic modgshermal noise. Therefore it is
waves, where the tiny displacement of a mirror can be deYery important to establish the experimental limitations de-

tected as a phase shift of the interference frirfjgdésAnother  termined by thermal noise and recent experimedis] have
interesting application is the atomic force microscdg obtained interesting _reSL_JIts. In this respect it is also impor-
where an image of a surface at atomic resolution is obtaineff"t © establish which is the most appropriate formal de-

from the measurement of the force between the surface and:; ription .Of guantum Bro_wnlan motion. In fact, even though
) . . the classical understanding of the phenomenon is well estab-
probe tip mounted on a microcantilever.

. . . . . lish lyi L i Fokker-Planck i
A cavity with a movable mirror is of interest also for ished, relying on Langevin or Fokker-Planck equatifid)

. ED studi hich v invol h its quantum generalization is still the subject of intense de-
cavity QED studies, which usually involves the quantum CO+y,6 (see Ref[11] and references therginin particular, the

herent interaction between high-cavity modes at low pho-  recent paper by Jacoks al.[12] has shown that the standard
ton number and single atoms. In this case, the atomic degre‘a%scription of quantum Brownian motion, which is the
of freedom are replaced by the motional degree of freedor@traightforward generalization of the classical cd4é],
of the movable mirror. Interesting quantum effects, such agjives an inadequate description, since it generates a nonsen-
the generation of sub-Poissonian li§Bt, of Schralinger cat  sical term in the optical phase-noise spectrum in the case of
states of both the cavity modlé], and even of the mirrdi5],  a cavity with a movable mirror. The authors of R§L2]
have been already illustrated. adopt therefore a corrected quantum Langevin equation,
In these applications one needs very high resolution fobased on the D& Master equatioi14], and suggest that,
position measurements and good control of the various noiseven if it is quite challenging, the corresponding modifica-
sources, because one has to detect the effect of a very wedkns of the phase-noise spectrum could be revealed using
force. As shown by the pioneering work of Braginslg],  miniature high-frequency mechanical oscillators and ultra-
even though all classical noise sources had been minimizethw temperatures. In the present paper we shall reconsider
the detection of gravitational waves would be ultimately de-the same system, i.e., a driven cavity with a movable mirror,
termined by quantum fluctuations and the Heisenberg unceand shall show that the inadequacy shown in [REZ] has to
tainty principle. Quantum noise in interferometers has twobe traced back to the inadequacy of the quantum noise com-
fundamental sources, the photon shot noise of the lasenutation relations and correlation functions, which are dic-
beam, prevailing at low laser intensity, and the fluctuationgated by the standard Brownian motion Master equation. We
of the mirror position due to radiation pressure, which isshall see that, differently from the Master equation approach,
proportional to the incident laser power. This radiation presa consistently applied quantum Langevin equafibb] pro-
sure noise is the so-called “back-action noise” arising fromvides a flexible approach, valid ahy temperatur@and there-
the fact that intensity fluctuations affect the momentum flucfore also in the fully quantum regime of very low tempera-
tuations of the mirror, which are then fed back into the po-tures. This however does not mean that the quantum
sition by the dynamics of the mirror. The two quantum Langevin equation approach is generally superior than the
noises are minimized at an optimal, intermediate, laseMaster equation approach, but simply that in the case under
power, yielding the so-callestandard quantum limi¢SQL),  study, which is a linearized, non-Markovian problem, the
which coincides with mean-square fluctuations of thequantum Langevin description is more convenient and pow-
harmonic-oscillator ground statqsq, = Vi/2mos (0sis  erful.
the mirror oscillation frequengy Real devices constructed  The outline of the paper is as follows. In Sec. Il the ap-
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propriate quantum Langevin equations for a Brownian par- LOCAL OSCILLATOR
ticle are derived starting from the usual model based on the ==
coupling with a reservoir of harmonic oscillator, and its con-
sistency is shown. In Sec. lll the quantum Langevin ap- 1A BS /

proach is applied to the case of a cavity mode with a mov-| LASER 7m)

able mirror and the homodyne spectrum of the reflecte

light, showing the thermal and quantum fluctuations of the
mirror, is studied. Sec. IV is for concluding remarks.

ZlBS

II. THE DYNAMICS OF THE SYSTEM

The system studied in the present paper consists of a ca

optomechanical system oan represent one arm of an intefey- F1G: 1 Schematicaldescrption ofthe system. The cavty mode
. s driven by the laser which, thanks to the beam splitter, provides

ometer a_ble_to detect weak forces Su_Ch as tho:_;e aSSOCIatglg% the local oscillator for the homodyne measurement of the light
with gravitational wave$1] or an atomic force microscope reflected by the cavity.
[2]. The detection of very weak forces requires having quan-
tum limited devices, whose sensitivity is ultimately deter-
mined by the quantum fluctuations. For this reason we sha
describe the mirror as quantummechanical harmonic 0s-
cillator with massm and frequencyvs. The optomechanical
coupling between the mirror and the cavity field is realized
by the radiation pressure. The electromagnetic field exerts
force on the movable mirror that is proportional to the inten-
sity of the field, which, at the same time, is phase shifted b
2kq, wherek is the wave vector angis the mirror displace-
ment from the equilibrium position. In the adiabatic limit in

¥VhiCh the rr:irror f‘;equengy E much slmaller than the cavity, o stic mode as in Ref8], undergoes Brownian motion
ree spectral rang .2L (L is the cavity length[16], one can ._caused by the uncontrolled coupling with other internal and
focus on one cavity mode only because photon scattering,:ornal modes at the equilibrium temperatiire

into other modes can be neglected, and one has the following 1,4 dissipative dynamics of the optical cavity mode is

Hamiltonian well described by the so-called vacuum optical Master equa-
5 tion [17]

ps 1
= T _— 4= 242
H=Awob'b+ 5 +2mw5q

eraction with external degrees of freedom. The cavity mode
damped due to the photon leakage through the mirrors,
which couple the cavity mode with the continuum of the
outside electromagnetic modes. For simplicity we assume
that the movable mirror has perfect reflectivity and that
ffansmission takes place through the other “fixed” mirror
only (see Fig. 1 for a schematic description of the system
he mechanical oscillator, which may represent not only the
center-of-mass degree of freedom of the mirror, but also a
torsional degree of freedom as in R¢@], or an internal

p= %(prbT—bpr—prb), 2.2

—ﬁ%qb*b+ihE(bTe"“’0t—be“"ot), 2.1)

for the time evolution of the density matrix of the whole

systemp. In fact, the mean thermal number of photons at the
optical frequencyw, is extremely small and thermal excita-

tion is therefore completely negligible. The time evolution

- > generated by Eq2.2) presents no ambiguity. In fact it is of
lated to the input laser pow@rby E=yPyc/hiwo, Whereys | jnqniad form[18] and therefore it preserves the positivity

is the cavity decay constant due to the input coupling MITOT vt the density matrix. Moreover it is completely equivalent

Since we shall focus on the quantum and thermal noise of tr;? the time evolution for the operators in the Heisenberg

system, we shall neglect all the exp.e.rlmental sources presentation driven by the following quantum Langevin
noise, i.e., we shall assume that the driving laser is stabilize quation

in intensity and frequency. This means neglecting all the
fluctuations of the complex paramet& Including these
supplementary n_oise sources is howeyer quitc_e straightfpr— b(t):_%b(t)ju Ebin(t), (2.3
ward and a detailed calculation of their effect is shown in
Ref. [12]. Moreover recent experiments have shown that
classical laser noise can be made negligible in the relevantherebin(t) is the input noise operator associated with the
frequency rangd8,9]. The adiabatic regimesg<c/2L we  vacuum fluctuations of the continuum of modes outside the
have assumed in E€2.1) impliesws<w., and therefore the ~cavity, having the following commutation relation
generation of photons due to the Casimir effect, and also
retardation and Doppler effects, are completely negligible. [bin(t),bf(t")]=8(t—t") 2.4

The dynamics of the system is not only determined by the
Hamiltonian interactior(2.1), but also by the dissipative in- and correlation functions

whereb is the cavity mode annihilation operator with optical
frequencyw. and E describes the coherent input field with
frequencywy~ w. driving the cavity. The quantit§ is re-
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<bm(t)bin(t')>=(biTn(t)bin(t')>=0, (2.5 commutes with itself at different times. This implies that the
observed spectrum has to be awenfunction of the fre-
(bin ()bl (t"))=8(t—t"). (2.6) guency w, while the adoption of the quantum Langevin

equationg2.8—(2.9) yields a term that is andd function of
The description of the quantum Brownian motion of aw [12].
massive particle in a potential is instead not so well estab- In Ref.[12] these inadequacies of the quantum Langevin
lished. The standard Brownian motion Master equatiorequations(2.8)—(2.9) have been traced back to the fact that
(SBMME) has been first derived by Caldeira and Leggettthey are equivalent to the SBMMR.7), which is not of
[13] in the high-temperature limit and reads Lindblad form and therefore does not preserve positivity. For
this reason they consider the amended Master equation of the

o 17 Lindblad form proposed by D& in Ref.[14], and derive the
p()==z[Hs.p]= 52 1a(D.{P(1).p(D}] set of quantum Langevin equation equivalent to it,
nkT . i
- 7[Q(t).[Q(t),P(t)]], 2.7 q(t)=7[Hs.a(t)]+e(®), (211

whereH s is the uncoupled particle Hamiltoniap,s its mo- ) i 7

mentum, andyq is the friction force. This Master equation is PO =7[Hs,p(D]— PO+ (), (212
the direct generalization of the Fokker-Planck equation for

the classical Brownian motion but, since it is not of Lindblad having the additional noise terra(t). The corresponding
form, it has the drawback that it does not ensure the positivegrrelation functions are

ity of the density operatof19]. This fact has stimulated

many authors who have amended the SBMME with addi- (E()E))=279kT(t—t"), (2.13
tional terms so to cast it into the Lindblad form

[11,14,20,2] These corrected Master equations preserve the 52

positivity of the density matrix but also they are valid in the (e(t)e(t’))= 7 S(t—t'), (2.14
high-temperature limit only, as the SBMME, because they 6m2kT

necessarily provide a Markovian description of Brownian
motion, which instead becomes highly non-Markovian in the 7
low-temperature limif22]. In fact, in this limit, the reservoir (é(t)e(t’))= —ifg So(t=t'), (2.19
correlation time is no more negligible because it is essen-
tially determined by the “thermal time'r;=#A/kT.

An alternative description of quantum Brownian motion (e(t)f(t’))=iﬁlé(t—t’). (2.16
is provided by the quantum Langevin equations for the 2m

Heisenberg operatog(t) andp(t), which, in analogy with ) ) )
the classical case, should read It is then possible to see that the phase-noise spectrum asso-

ciated with this dynamical description of quantum Brownian
. i motion has no spurious term and that it is an even function of
q(t) =7 [Hs.a®], (28 the frequency, as it must be. However, the approach of Ref.
[12] can be questioned for two reasons. First of all the Mas-
_ i ” ter equation of Ref[14] has been derived by bso with
p(t)= g[HS,p(t)]— Ep(t)+§(t), (2.9 heuristic arguments and in a later pap2@] Diosi himself
corrected it by considering a more rigorous medium tem-
peratures extension of the SBMME. The Master equation of
Ref.[20] would lead to a different set of quantum Langevin
equations; more generally speaking, the Lindblad form con-
() EL))y=27kTS(t—1t"). (2.10 dition does not uniquely determine the Master equation, and
therefore the form of the quantum Langevin equations nei-
One would expect that these equations give correct results gier. Furthermore, the added noise tes(h) in Eq. (2.11) is
least in the high-temperature limit, where the classical limitnot present in the classical case and it has an unclear physical
should be recovered. Instead REF2] has shown that they origin.
give inconsistent results even in this limit because they do For this reason we reconsider the problem here, assuming
not preserve the commutation relatipg(t),p(t)]=i# and  a different starting point. Most of the derivations of the
they yield a spurious term in the phase fluctuation spectrumBrownian motion Master equations are based on the inde-
In fact, in spectral measurements, the Fourier transform ofendent oscillator model for the reservoir, whose quite gen-
correlation functions of the fornG(7)=(R(t)R(t+ 7)) are  eral validity has been extensively discussed in R&8].
measured, wher&(t) is an appropriate output field. This Therefore, rather than first deriving the Master equation from
correlation function depends only anbecause of stationar- this reservoir model and then considering the quantum
ity, and moreover it is an even function efbecauser(t) Langevin equations associated to it, we derive the quantum

where £(t) is a Hermitian noise operator with correlation
function
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Langevin equations directly from the reservoir oscillator _ o
model, as it is shown in Ref§15,24. Q=i k \/TJ {exdio;(t—tg)]al(to)
Let us neglect for the moment the presence of the cavity J
mode and consider a particle undergoing Brownian motion, —exd —iwj(t—tg)]a;(to)}. (2.24

with HamiltonianHs. The reservoir is described by a col-

lection of independent harmonic oscillators with frequencyAs is well known, the irreversible properties of the reservoir

oj, couplingsk;, and whose canonical coordinatgsand are obtained only when an infinite number of oscillators,

p; have been appropriately rescaled. The total system Hamiblistributed over a continuum of frequencies, is considered.

tonian is[13,15,24 The continuous limit has to be performed according to the
following prescription:

1
2.2
Hs+52j [(pj—kja)?*+ wq’]. (2.17 i N dn 27 (0
E k: _)f dwkz(w)£~ ..=7f dw---,
The quantum Langevin equations can be obtained from the . 0 0 (2.25
Heisenberg equations fay(t), p(t), and the reservoir anni- '
hilation operators;(t) =[ w;q;(t) +ip;(t)]/ V2% w;, wheredn/dw is the oscillator densityy is just the friction
| coefficient, and() is the frequency cutoff of the reservoir
()= —[H., , 21 oscillator spectrum. When the continuous limit is considered,
act ﬁ[ s:a(v)] (2.18 the Heisenberg equations for the Brownian particle become
: [ : p(t)
P(D= FTHsPOT+2 kP —ka()]., (219 =", (2.26
. i . i ~ ~
a;(t)= —iw;a;(t)—k; \/jq(t). (2.20 P(D)=7[Hs,p(1]+Q(1) =275(t—to)q(to)
. . ) . e t - tl
If we integrate the equation fa(t) starting from the initial “2p | dtBe-t) p( ), 2.27)
time ty, we get to m
aj(t) =exd —iw;(t—tg)]a;(to) =k where we have defined the following function
oj [t , ) ) - 10
x \/gﬁodt exf —iwj(t=t")]a(t"), 3()="—| dwcogwt). (2.28
0
(2.21 ) ) _

Equations(2.26) and (2.27) become identical to the usual
which, using integration by parts and the fact that(i/#)  Langevin equation$2.8)—(2.9) when the usual assumption
X[Hg,q]=p/m, can be rewritten as of a reservoir dynamics much faster than that of the Brown-

ian particle is made. This means making a coarse-grained

. 1 ] description in time equivalent to assuming the infinite cutoff
a;(t) =ik; \/—Zﬁqu(t)Jrexp[—ij(t—to)]aj(to) limit Q— o0, under which the functiod(t) becomes a Dirac
delta function. The reservoir operat@(t) in Eq. (2.27)
; 1 ; lays, therefore, the role of the random Langevin force, com-
—ikj \ 57— exd —iwj(t—tg)]a(to) piays, the e g » con
2fi w; muting with a generic system operator evaluated at the initial
K T time ty, for every value oft. This fact suggests interpreting
i dt’exd —iw;(t—t")]p(t"). Q(t) as the input noise of the system and the above quantum
m N 2hwj )y, Langevin equations in terms of the input-output formalism

(2.22  developed by Gardiner and Coll¢gt5]. However, the inter-

) pretation ofQ(t) as an input noise must be made with care,
Then we replace Eq(2.22 in the equation forp(t), Eq.  becauséts commutation relations are different from those of

(2.19, which becomes the typical input noise operatofsee Eq.(2.4)]. In fact, us-
. ing definition (2.24) and the continuous limit prescription
) i - ; ; ; P
p(t) = g[Hs,p(t)]ﬂLQ(t)—; kfco{wj(t—to)]q(to) (2.29, one derives the following commutation relation:
-~ = d-
t t' [Q(1),Q(t")]=2ifinp o(t—t"), (2.29
—J dt'>, k2cogw;(t—t")] %, (2.23 dt
to J

which is not a delta function int(-t’), even in the coarse-
where we have defined the reservoir operator grained time limitQ)—oo. In this respect, it is interesting to

023812-4



PHASE-NOISE MEASUREMENT IN A CAVITY WITH A ...

PHYSICAL REVIEW A63 023812

consider also the correlation function of the noise operatoevolution, they maintain the initial commutation rules for the
Q(t), which is generally defined as a trace over the reservoipystem operators. This property is preserved also by the stan-

degrees of freedom,

(QUQ(t")) s=trx{Q(HQ(t )Ry}, (2.30

dard quantum Langevin equatio(&8)—(2.9), which are the

QO —oo limit of Egs. (2.26—(2.27), provided that the correct
noise commutation relation is used. Let us see this fact in
detail. If we do not restrict to the usual conditibrty, under

whereR,; is the density operator of the reservoir at thermalthe () — o limit, Egs. (2.26) and(2.27) have to be written as

equilibrium at temperatur€,

hwal a:
R0=H ex;{—% (1—e /KTy (2.3))
i
Using again Eqs(2.24 and(2.25, one gets
~ o~ h
OB s=—HA -V +IF(t-1)}, (232

with

0

fr(r)=fndw wcos(wr)cot?‘(;i%>, (2.33

(see Appendix

a(t)=p(t)/m, (239
()= + [Hs P+ (0~ 275t~ t)a(te)
’s 2.3
~Ls(t—top(n), (2.39

where S(t) is the sign function[defined such thatS(0)
=0].

If we consider, for example, the commutator between
q(t) andp(t), differentiate it with respect t, and use Eq.

(2.36), we obtain

Q d-
F(r)=—| d i —7—3(7). (2.3 d ~
(=7 ]y do osmen=mg ol 230 Lg,p)=- Zst-tola.p 1+ [a0,3(0].

(2.37

The antisymmetric part, corresponding’p, is a direct con-
sequence of the commutation relatio(&29 and, as We | order to solve this equation, we need the commutator be-
have seen, is never a Dirac delta, while the symmetric par

corresponding tdr, , explicitely depends on temperature andE\Neen‘ 9“) and Q(1). ~Mo’re generally, we coDsu?er both
becomes proportional to a Dirac delta function only if theduantities X(t):_[Q(,t)’Q(_t )] and J(t)=[p(1),Q(t")] as
high-temperature limitkk T>#Q first, and the infinite fre- functions oft, with t” an independent parameter. If for sim-
quency cutoff limitQ — later, are taken. Equatiorg.29 plicity we restrict tq the case of mtergst herg .of a hqrmom-
and (2.32—(2.34 show the non-Markovian nature of quan- cally bound Brownian p"’?”'d‘HS: _mquZ/Z, it is possible
tum Brownian motion, which becomes particularly evidentto obtain the equation fak{(t) and)(t) using Eqs(2.36
in the low-temperature limif22]. Therefore, assuming the
independent oscillator model for the reservoir, which is the (2.38
usual starting point for the derivation of the Brownian mo-
tion Master equation, we have derived taract quantum Sy 4) a2 ; PN Y
Langevin equation$2.26) and (2.27, which reduce to the A= =Magd()+2ih 78" (t=t) mot— o) ML),
usual quantum Langevin equatiof®.8)—(2.9) in the limit (2.39
() —, However, these equations must not be used as usual . -
input-output equations, as it is implicitely dictated by theW_h_ere we _h_ave used qu'zg) in the Q—eo limit an_d the
SBMME of Eq. (2.7) (see Ref[12]), but the appropriate initial condition X(tg) =0. Using Eq.(2_.36), the sol_utlon of
commutation relations(2.29 and correlation functions EUS:(2-38—(2.39 can be expressed in the following form:
(2.32—(2.349 must be used. Therefore, the inadequacies
found in Ref.[12] are not due to the form of the Langevin
equations but only to the inappropriate form of the noise
correlation function dictated by the SBMME. It is also im-
portant to stress that our Langevin equation description of
guantum Brownian motion is more general than that associ-
ated with a Master equation approach, because it is \alid
all temperaturesand it does not need any high-temperatureith
limit.

Another criticism to the standard quantum Langevin
equations presented in R¢l2] is that they do not preserve , ,
the commutation relations of system operators. This can also ~Olo= DO~ (to—t"), (242

be traced back to the inappropriate form of the commutatioRyhere ¢(7) is the Heaviside step functidulefined such that
relations of the noise operat@(t). Actually, Egs.(2.26 0(0)=1/2]. Using Eg.(2.36 within Eq. (2.40 and setting
and(2.27) are exact and, because of the unitarity of the timet=t’, it is possible to observe that

X(t)=(t)/m,

a
X(t)=27lﬁ{[Q(t),Q(t’)]E(t,t',to)}, (2.40

1%
W)= ZﬂI{[p(t)'Q(t')] E(ttto)}, (24D

E(tt',tg)=0(t—tg) (t—t") 6(t' — 1)
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A "N A+ _77 ' ' ’ . _ 2 n thBSt t ~
At)=[a(t"),Q(t")]=_—St"—to)[a(t"),p(t")]. p(t)=—mwsq(t) = —p()+ ——[b(H)+b (D ]+Q(V),
(2.43 (3.6)
Finally, using this results in Eq2.37) with t’=t, one gets ) ¥e 0By
the desired result, i.e., that the time derivative of the com-  b(t)=— ?JriA b(t)+i Tq(t)+ Vyebin(t),

mutator betweem(t) andp(t) is equal to zero. Similar ar-
guments can be used to prove the preservation of all the

other commutation relations between Brownian particle op- . )
erators P Pivhere we have chosen the phase of the cavity mode field

such thatB; is real and

(3.7)

Ill. HOMODYNE SPECTRUM

2
hwg

————|B4{? 3.8
mwé L2| St| (

Let us now consider again the dynamics of the optical A=wc—wo—
mode of the cavity with a movable mirror. Using the results
of the preceding section, the dynamics fort, of the sys- ) , )
tem can be described by the following set of coupled quaniS the cav_lty mode detuning. We shall consider from now on
tum Langevin equations in the interaction picture with re-2 =0, which corresponds to the most common experimental
spect toh web'b [see Egs(2.1), (2.3), and(2.36], snyaupn, and whlqh can always be achieved by appropriately
adjusting the driving field frequency,. In this case the
dynamics becomes simpler, and it is easy to see that only the
phase quadratur®(t)=i[b'(t)—b(t)] is affected by the
5 mirror position fluctuatio?sq(t), while the amplitude field
N2 YA @We + quadratureX(t)=b(t) +b'(t) is not. In particular, in the
P(t) M5q(H)+Q() mp(t)+ L b ()b(V), limit of a sufficiently large cavity mode bandwidth
(3.2 y.>y/m,ws (Which is usually satisfiedthe dynamics of the
phase quadrature adiabatically follows that of the mirror po-

q(t)=p(t)/m, (3.1)

: . . Ye . We sition, that is
b(t)Z—(lwc—le—F? b(t)+ITQ(t)b(t)+E
4wcBst .
+Vvcbin(t), (3.3 Y(t)= >l q(t)+ (noise terms. (3.9

where the commutation relations and correlation functions o

the input noiseb;.(t) are given, respectively, by Eq&2.4), tI'herefore, a phase-noise measurement, such as the homo-

. ~ , dyne measurement of the field quadrat¥i¢), gives direct
(2.9, and(2.6), while those 0fQ(t) are given by Eq(2.29 information on the mirror Brownian motion. In particular,

and EQs(2.32—(2.39 considering the limi)—o. —  yho jnteresting measurable quantity is the output power-
In standard interferometric applications, the driving field density spectrum of the phase quadrature

is very intense. Under this condition the system is character-

ized by a semiclassical steady state with the internal cavity

mode in a coherent statB,), and a new equilibrium posi- sy(w):[ f dTein<Yout(t)Yout(t+ 7))] (3.10
tion for the mirror, displaced bgjs;=% w¢|Bg|?/mw? L with t

respect to that with no driving field. The steady-state ampli-

tude is given by the solution of the nonlinear equation 1 )
=5 J do'exg —i(w+w’)t]

E
B= ,
2+ i we—i wo—i (w2 MwiL2)|Bg?

3.9 ,
><<Yout(w Woul@)) | (3.11)

t
which is obtained by taking the expectation values of Egs. ]
(3.1)—(3.3), factorizing them, and setting all the time deriva- wher$ {---} denotes the time average over You(t)
tives to zero. EquatiofB.4) shows a bistable behavior which =i[boyi(t) =bou(t)] is the output phase quadrature,

has been experimentally observed in R&B]. You@)=[dte Yo, (t) is its Fourier transform, and
Under these semiclassical conditions, the dynamics is
well described by linearizing the quantum Langevin equa- bout(t) +bin(t) = Vycb(t) (3.12

tions (3.1)—(3.3) around the steady state. If we now rename
with q(t) and b(t) the operators describing the quantumis the usual input-output relatiof27]. If we now take the
fluctuations around the classical steady state, one gets  Fourier transform of Eqg3.5)—(3.7), one gets the following
expression for the Fourier transform of the correlation func-
q(t)=p(t)/m, (3.5 tion of the cavity mode annihilation operator
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b( )= 1
«|i wcBst hchst\/Vc bin(w)"_biJrn(w) = )
mL L i w—v./2 @
— (02— w?—ino/m)\ybin()], (3.13 s .
N
with 107 10° ©(Hz) 10°
D(w)= iw—%)(m%— wz—inw/m). (3.19 FIG. 2. Phase-noise spectrum of E®@.18 (full line). The
dotted-dashed line refers to the shot-noise specffinst term of

For the evaluation of the phase-noise specti®p(o), Eq. (3.18]; the dashed line refers to the_ radiation pressure term
has t Ed3.1 d th der th N f[second term of Eq.3.18] and the dotted line to the thermal-noise

ohne a_s 0 usg 43.13 an hi En consl ﬁr de.sp((ajcfrum Oh term [third term of Eq. (3.18]. Parameter values arevg

the various noise terms, which are easily derived from t 9:1.3><105 Hz, 7]/m23><10_2 Hz, wC:l.8><1015 Hz, 7.

(2.32, (2.33, and(2.34%: =105 W.
(Q(0)Q(w"))=277hw 1+cot|-( ﬁ_‘”) Sw+o'), explicitely shown. The full line refers to the total homodyne
2kT spectrum, while the dashed-dotted line describes the shot

(319 noise, which is frequency independdattually Sy(w) has
been defined so to be normalized just to the shot-noise]level

T AN
(bip(@)bjn(0"))=0, (316  The dashed line describes the second term in Bd.9),
N , which is the one associated with the radiation pressure; fi-
(bin(w)bjy(0")) =270+ o), (3.17  nally the dotted line describes the last term which is just the

h h d in the infini i ..thermal-noise contribution.
g ere .Weh avel as_sum](ca h again the '? Ir?lteh cutol Mt The homodyne spectrum derived in RgL2] with the
—¢ In the evaluation of the spectrum of the thermal-noise, jqhtion of the Disi Master equation of Ref14] coincides

operatorQ(t). One finally obtains with Eq. (3.18 except for a different thermal-noise term,
5 )\ 2 which is obtained from that of Eq3.18 with the replace-
ﬁwc')’c|Bst| 1 ment
ST T (Gd et in e
e h cotk( ﬁw) ey P TI) o
) —|— _ .
wg"]')’c|Bst|2 2kT 6kT

o 2 P w cot m . ) . ) o

m-L ID(w)| However, despite this formal difference, the two predictions

(3.18 become practically indistinguishable if typical experimental
parameters are considered. In fact, the prediction of [R&f.

This is the phase-noise spectrum associated with the homaeeincides with the high-temperature expansianfirst order
dyne measurement of the phase quadraittf®, and the in Zw/kT) of Eqg. (3.18 except for the additional factor
only assumptions made in its derivation are the linearizatiorh 2/6m2k T. However, in typical experiments, mechanical
around the semiclassical steady state and the time coarsescillators with a very good quality factor are always used,
grained descriptiof) — . Its temperature dependence is in- so that the terrk?%?/6m?k T will be in practice always neg-
stead exact and therefore H§.18) is valid even at very low ligible with respect to%2w?/6kT in Eq. (3.19. This means
temperatures, differently from the spectra obtained with theéhat an appreciable discrepancy between the two expressions
approaches based on the Master equation, as in[R2f.  of the thermal-noise term manifests itself only whkm
which cannot be applied in the low-temperature limit. <hw, which means prohibitively small temperatures, or al-

Notice thatSy(w) is an even function ob, as it must be ternatively, very large frequenciérger than 1 THz at lig-
due to stationarity and the commutation rules of output fieldsiid He temperatures Moroever, at these high frequencies
[12]. In fact, the nonsensical term of the spectrum found inthe thermal-noise contribution is completely blurred by the
Ref.[12] in the case of the standard quantum Langevin deshot-noise term and therefore we can conclude that with
scription is due to the inappropriate form of the correlationpresent technology the phase-noise spectrum of(84.8
function of the Langevin noise dictated by the SBMME, andand that evaluated in R€flL2] cannot be experimentally dis-
it is absent when the correct spectrum of the quantuntinguished. Nonetheless, the result of E8.18) is important
Brownian noise term of Eq3.15 is used. This spectrum is because it shows that the standard quantum Langevin equa-
plotted in Fig. 2(see the figure caption for parameter vajues tions [supplemented with the appropriate commutation rela-
where also the three contributions to the noise spectrum ar@ons (2.29 and correlation function$2.32—(2.34) of the
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random Langevin forcedo give an adequate description of

guantum Brownian motion, which is even more general than
that associated with the Master equation, which is not valid

at very low temperatures.

IV. CONCLUSIONS

We have considered in this paper the dynamics of a cavity

mode with a movable mirror, which is often used for the
interferometric detection of very weak forces. We have fo-
cused in particular on the description of the quantum Brown
ian motion of the mirror, which is responsible for the
thermal-noise term in the measured phase-noise spectrum

the light reflected from the cavity. We have shown that the

standard quantum Langevin equatid@s8)—(2.9) provide an
adequate and consistent description of quantum Brownia

motion. We have derived the quantum Langevin equations

directly from the independent oscillator modptoviding the

PHYSICAL REVIEW A 63023812

APPENDIX

In order to justify the presence of the sign functis(t)

on Eq.(2.36), let us consider the step function

1 ifr>0
O(r)={ 12 ifr=0 (A1)
0 if <0,

and the formal identity
of

t
I(t,ty) = f dt’ s(t—t")p(t")
n o

[ avs-pe - -a o),

commonly used description for the oscillator reservoir, see

Refs.[13,15,23,24), and we have seen that they provide a
quite general description of quantum Brownian motion, valid
at any temperatures. This is instead not true for Master
equation-based approaches,
low-temperature limif22]. The inadequacies found in the
guantum Langevin approach are to be traced back to the fa
that the quantum Langevin force appearing in it is different
from the standard input noise terms of the input-output for
malism[25], since it is characterized by a different commu-
tation relation[see Eq(2.29] which does not coincide with
a Dirac delta in any limit.

W
l?e‘?ties of8(t) on Eq.(A2), one can verify that fot>t, and

f

(A2)

hich holds for everyt andt,. Now using the formal prop-

for t<tqy, Z(t,tp)=p(t)/2 and Z(t,ty) = — p(t)/2, respec-
(/ely, while, of course,Z(ty,tg) =0. This can be written
using the sign functio(7) = 6(7) — 6(— 7) in the following

way:

I(t,te) = S(t—to) p(t)/2. (A3)
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