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Strongly focused light beams interacting with single atoms in free space
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Norman Bridge Laboratory of Physics, California Institute of Technology 12-33, Pasadena, California 91125

~Received 31 May 2000; published 12 January 2001!

We construct three-dimensional solutions of Maxwell’s equations that describe Gaussian light beams fo-
cused by a strong lens. We investigate the interaction of such beams with single atoms in free space and the
interplay between angular and quantum properties of the scattered radiation. We compare the exact results with
those obtained with paraxial light beams and from a standard input-output formalism. We put our results in the
context of quantum information processing with single atoms.
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I. MOTIVATION

The ability to manipulate small quantum systems in
vidually is a necessary requirement for quantum compu
and quantum communication. For example, in order to p
form single-qubit operations on a particular ion in an ion tr
quantum computer@1–3# one has to focus a laser beam to t
position of that ion with a sufficiently high-spatial resolutio
@4#. Similarly, quantum communication protocols using
oms trapped inside optical cavities@5,6# require single-bit
and two-bit operations on specific atoms. One question
arises is whether strong focusing has an undesired side
fect, namely, that the scattered light contains informat
about the state of the qubit. The fear would be that the la
intensity would have to be turned down so much, that
absence of a photon from the laser beam becomesin prin-
ciple detectable.

Conversely, if an atom in free space would indeed be a
to modify appreciably the state of a light field, then th
effect could be used to our advantage: a single atom coul
used to perform quantum-logic operations on single phot
in free space@7#. An atom inside an optical cavity strongl
coupled to a cavity mode is known to be able to perfo
such tasks@8#, but such an experiment would be mo
straightforward to conduct in free space.

At first sight the prospects of such an experiment se
good: the scattering cross section of a two-level atom iss
53l2/(2p) for light of wavelengthl @9#, and thus focusing
light down to an areaA,s should be sufficient to induce
strong coupling. However, this picture is too simplist
Light beams are transversely polarized, which implies t
only part of the light entering the interaction region w
carry the polarization that the atom is sensitive to. Usin
different picture, since the atom would emit a dipole patte
~in a givenm→m8 transition!, it would be most efficiently
excited by a field matching an ‘‘incoming’’ dipole field, a
follows from time-reversal symmetry. Since a focused la
beam does not have a large overlap with such a dipole
tern, the effective absorption cross section is smaller t
indicated bys.

Early experiments@10,11# on the detection of single atom
fluorescence did not reach the strong focusing limit ofA
;l2. Recently, however, impressive progress has been m
in experiments on single molecules in condensed matter
efficient detection of the fluorescence light has become p
1050-2947/2001/63~2!/023809~9!/$15.00 63 0238
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sible @12–14#. Experiments on single atoms aiming at th
strong focusing limit are underway as well@15#.

In a recent paper@16# we gave the results of explicit cal
culations on the behavior of single atoms in free space i
diated by tightly focused light beams. We were particula
interested in the quantum aspects of the scattered light,
in evaluating how much a single atom is able to modify t
intensity and phase properties of the incident light. Here
present all the details of that calculation and discuss poss
extensions. These results will be compared with similar c
culations using~i! paraxial Gaussian beams@17# and ~ii ! a
well-known quantum-optical input-output formalism th
was used in Refs.@18# and@19# to study photon statistics an
intensity correlations of the field emitted by an atom in fr
space. The latter model is basically a quasi-one-dimensio
model, with one spatial variable describing the propagat
of the light beam, and with one additional parameter desc
ing the solid angle subtended by the laser beam at the ato
position ~coinciding with the focal point of the light beam!.
As we will demonstrate, however, neither this model nor,
expected, paraxial beams accurately represent the case
strongly focused light beam.

II. STRONGLY FOCUSED GAUSSIAN BEAMS

Here we wish to calculate the field that one obtains
focusing a monochromatic Gaussian~paraxial! beam by an
ideal strong lens. We do that by expanding the outgoing fi
~i.e., the field after the lens! in a complete set of modes. I
principle one can use any complete set of modes to desc
exact solutions of Maxwell’s equations. In view of the cylin
drical symmetry of the problem we are interested in, t
most convenient is to choose a set that takes a simple for
cylindrical coordinates. In particular, we will use a set
eigenmodes of four commuting operators corresponding
the following four physical quantities: energy~with eigen-
value\kc5\v per photon@20#!, angular momentum in the
z direction @m\#, momentum in thez direction @\kz#, and
helicity @s\kz /k#. The modes are thus characterized by t
four numbersn[(k,kz ,m,s), which, once the field has bee
quantized, play the role of quantum numbers. These mo
were constructed in Ref.@21# to clarify the meaning of or-
bital angular momentum of light@22#, and thus by construc
tion possess simple properties under rotations around
propagation~z! direction. The complete orthogonal set
©2001 The American Physical Society09-1
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modesFW n is defined such that the free electric field~i.e., the
solution of the source-free Maxwell equations! can be ex-
panded in this set as

EW 52ReF(
n

anFW n exp~2 ivt !G , ~1!

with arbitrary complex amplitudesan . This requires the
mode functions to be transverse, i.e.,“•FW n50. The summa-
tion overn is a short-hand notation for

(
n

[E dkE dkz(
s

(
m

. ~2!

The dimensionless mode functionsFW n in cylindrical coordi-
nates (r,z,f) are defined by@21#

FW n~r,z,f!5
1

4p

sk2kz

k
G~k,kz ,m11!ê21

1

4p

sk1kz

k

3G~k,kz ,m21!ê12 i
A2

4p

kt

k
G~k,kz ,m!ẑ,

~3!

wherekt5Ak22kz
2 is the transverse part of the wave vecto

ê65( x̂6 i ŷ)/A2 are the two circular polarization vector
and

G~k,kz ,m!5Jm~ktr!exp~ ikzz!exp~ imf!, ~4!

with Jm the mth order Bessel function. The mode functio
satisfy the orthogonality relations

E dVFW n* ~rW !•FW n8~rW !5d~k2k8!d~kz2kz8!dmm8dss8 /k,

~5!

where the integration extends over all space. The orthogo
ity of the modes follows directly from the fact that the mo
functions are eigenfunctions of commuting Hermitian ope
tors. The normalization can be found by a direct calculat
of the left-hand side of Eq.~5!.

For the remainder of this section, we will consider on
monochromatic beams propagating in the positivez direction
(kz.0) with a fixed value ofk52p/l. For convenience we
take kt as a mode number instead ofkz and we denote the
reduced set of mode numbers bym[(kt ,m,s), and introduce
the notation

(
m

[E dkt(
s

(
m

. ~6!

For fixed k the modes FW m are orthogonal in plane
z5constant:

E
z5constant

dSFW m* ~rW !•FW m8~rW !5d~kt2kt8!dmm8dss8 /~2pkt!,

~7!
02380
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which is a useful relation for defining the action on lig
beams of an ideal lens positioned in a planez5constant.

A. Focusing with an ideal lens

The action of the lens is modeled here by assuming
the field distribution of the incoming field is multiplied by
local phase factor

w5exp~2 ikr2/2f !, ~8!

with f the focal length of the lens@23,24#. An ideal parabolic
lens would be represented by a phase factorwp

5exp@ikAr21( f 2r2/2f )2#. In the paraxial limit f @r this
factor becomes equivalent tow. It may be that the simple
lens factor used here,w, does not give rise to the stronge
possible focusing, and thatwp would improve on this. More-
over, actual lens systems designed to focus light down tA
;l2 consist, ofmultiple lenses~for instance, 12 in ongoing
experiments@15#!, partly to accommodate for the finite siz
finite thickness, and other imperfections of real lenses
compared to ideal lenses. We nevertheless, for convenie
chose a single lens factorw: it allows for analytical evalua-
tions and the class of light beams thus constructed does r
the focusing limit@25# of A's ~for instance, see the plot
corresponding tof 5100l). This is sufficient for our pur-
poses of showing that even focusing down to an area of
size of the atomic cross section does not quite~by about a
factor of ;5) lead to the strong effects one may have e
pected or hoped for.

If in the plane of the lens, sayz50, the incoming beam is
given by

FW in5FW 0~r,f!, ~9!

then the output field is given by

FW out~rW !5(
m

kmFW m~rW !, ~10!

with

km52pktE
z50

dSexpS 2 i
kr2

2 f DFW 0•FW m* . ~11!

This definition is such that the limit off→` corresponds to
free-space propagation, as follows from the orthogonality
lation ~7!. Note that the field distribution~10! is an exact
solution of Maxwell’s equations, irrespective of the choi
for FW 0 ~in particular, we can take the incoming beam to
paraxial!.

If we approximate the incoming beam by a circularly p
larized ~lowest-order! Gaussian beam with Rayleigh rang
zin with kzin@1 by1 its dimensionless amplitude

1Here we assume for simplicity that the focal plane of the inco
ing beam and the plane of the lens coincide.
9-2
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FW 0~r,f!5expS 2
kr2

2zin
D ê1 , ~12!

thenkm is given by

km5dm1pkt

kz1sk

k E
0

`

dr rJ0~ktr!

3expS 2 i
kr2

2 f DexpS 2
kr2

2zin
D . ~13!

This integral can be evaluated using

E
0

`

dx xJ0~bx!exp~2ax2!5
1

2a
exp~2b2/4a!, ~14!

and gives the result

km5pdm1

kt

k

kz1sk

k
j expS 2

kt
2

2k
j D , ~15!

with

j5zR2 iz0 ,

zR5
f 2zin

zin
2 1 f 2

, ~16!

z05
f zin

2

zin
2 1 f 2

.

The delta functiondm1 expresses the fact that a lens cann
absorb angular momentum from a cylindrically symmet
light beam upon normal incidence@26,27#: the indexm of the
outgoing beam is 1, because the incoming beam has one
of ‘‘spin’’ angular momentum.

When the paraxial limit is valid for theoutgoingbeam,
i.e., whenkzR@1, zR andz0 correspond, as we will show, t
the Rayleigh range and the position of the focal plane of
outgoing beam, respectively. But also outside the para
limit, the focused light beam is characterized by the t
parameterszR and z0. The largest component of the outp
field ~10! is thee1 component, which is given by

F15
zR2 iz0

2 E
0

k

dkt

kt

k

2k22kt
2

k2
J0~ktr!

3expS 2
kt

2

2k
~zR2 iz0! Dexp~ ikzz!, ~17!

with F1[FW • ê* . Note here the similarity between Eq.~17!
and the expression given in Ref.@28# for a class of light
beams generalizing Laguerre-Gaussian~LG! beams @17#.
The ẑ andê2 components of the output field are proportion
to higher-order Bessel functions,J1(ktr) and J2(ktr), re-
spectively, and will therefore vanish on thez axis. As we will
be interested in the interaction of an atom on axis with
02380
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focused light beams, we will not consider these compone
here, but they may be important in other circumstances. N
as an aside that these two components represent beams
1 and 2 units of orbital angular momentum, and 0 and21
units of spin angular momentum, respectively, so that
total angular momentum of the outgoing beam is indeed\
per photon. See Ref.@29# for a discussion how these differen
forms of angular momentum are transferred to the inter
and external angular momenta of an atom.

Returning to theê1 component, when the paraxial ap
proximation is valid for the outgoing beam, we may take o
a factor exp(ikz), usek2kz'kt

2/2k, and extend the integra
tion limit in Eq. ~17! to infinity. Defining

zw5zR1 i ~z2z0!, ~18!

these approximations lead to

F1'
zR2 iz0

2
exp~ ikz!E

0

`

dkt 2
kt

k
J0~ktr!expS 2

kt
2zw

2k D
5

~zR2 iz0!exp~ ikz!

zw
expS 2

kr2

2zw
D , ~19!

which, as announced, represents a Gaussian beam with
leigh rangezR and its focal plane located atz5z0. We can in
fact rewrite the exact result~17! into a different form that
explicitly displays the corrections to the paraxial approxim
tion,

F15exp~ ikz!
zR2 iz0

2
@F11F22F3#, ~20!

with

F15F 2

zw
2

2

kzw
2 S 12

kr2

2zw
D GexpS 2kr2

2zw
D ,

F25E
0

k

dkt

kt

k

2k22kt
2

k2
J0~ktr!expS 2

kt
2zw

2k D
3FexpS i S kz2k1

kt
2

2kD zD 21G ,
F35E

k

`

dkt

kt

k

2k22kt
2

k2
J0~ktr!expS 2

kt
2zw

2k D .

~21!

Outside the paraxial limit, whenkzR is not large, the focal
plane is no longer atz5z0 but moves towards the lens b
several wavelengths, as shown in Figs. 1 and 2, where
eral examples of intensity profiles of focused beams are p
ted. Furthermore, unlike in the paraxial approximation, t
shape of the field is not just determined by the value ofzR ,
but depends onz0 as well.

The plots of the transverse-mode profiles show that
yond a certain point the width of the field no longer d
creases with stronger focusing. One cannot focus dow
laser field to below a certain limit, roughly about half
9-3
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wavelength, with the ideal lens with lens factor~8!, no mat-
ter how smallzR becomes. Moreover, one notes the asy
metry of the outgoing beam around the focal plane, in c
trast to a paraxial beam that is symmetric in its focal pla
Since there is noa priori symmetry under reflections in th
focal plane, this fact should not be surprising.

Let us note here that strongly focused light beams in g
eral will display phase singularities~rings in space where

FIG. 1. ~a! Field strengthuF1u of strongly focused Gaussia
beams on thez axis as a function ofZ[(z2z0)/l. Note that the

maximum field strength of the incoming fieldFW 0 is 1. The lens is
located at z50 and is characterized byf 5100l, so that z0

'100l. The incoming Gaussian beam has increasing values
zin /l513103,33103,13104, . . . ,33105, respectively, for the
bottom to top curves. This implies, for the outgoing beam, decre
ing values ofzR'10l,10l/3,l, . . . ,l/30. ~b! Field strength in the
focal plane as a function of the transverse coordinater/l.

FIG. 2. As Fig. 1 but for f 5500l and zin /l533104,1
3105, . . . ,13106,33106.
02380
-
-
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certain components ofEW vanish!, of the kind investigated
~both theoretically and experimentally! in Refs.@30–33#. For
Gaussian illumination of a spherical lens, however, no s
singularities appear@31#.

Finally, it may also be interesting to consider tightly fo
cused donut beams, i.e., beams of light produced by focu
an incoming higher-order LG beam@17#. In the case of an
incoming first-order LG beam, the incoming field distrib
tion FW 0 can be written as~again assuming its focal plan
coincides with the plane of the lens!

FW 0
65expS 2

kr2

2zin
Dexp~6 if!

r

zin

x̂1 i ŷ

A2
. ~22!

For the coefficientskm
6 we find then

km
65dm2,0pkt

kz1sk

k E
0

`

dr
r2

zin
J1~ktr!

3expS 2 i
kr2

2 f DexpS 2
kr2

2zin
D , ~23!

wheredm2,0 indicates that for the1 sign in Eq.~22! we get
dm2 and for the2 sign dm0. These delta functions agai
express conservation of angular momentum: the outgo
beam possesses the same angular momentum as the in
ing beam@26,27#, which has one unit of ‘‘spin’’ angular
momentum and61 units of ‘‘orbital’’ angular momentum.
The integral can be evaluated using

E
0

`

dx x2J1~bx!exp~2ax2!5
b

4a2
exp~2b2/4a!, ~24!

and gives the result

km5pdm2,0

kt
2

k2

kz1sk

k

j2

zin
expS 2

kt
2

2k
j D . ~25!

For km
2}dm0, there is a nonzero field on axis of a differe

polarization than the incoming field: thez component, which
would be neglected in the paraxial limit, is in fact the on
nonvanishing component on axis. In this case, however,
field on axis will be sensitive both to deviations of the le
from an ideal spherical lens, and to deviations of the inco
ing beam from a pure donut beam, even in the paraxial lim
For some explicit examples of this sensitivity see, for
stance, Refs.@26# and @32#.

III. SCATTERING LIGHT OFF OF A SINGLE ATOM
IN FREE SPACE

In this section we will investigate the response of an at
located in the focal region of a strongly focused laser be
of the form~17! at rW5rW0. We consider aJg50→Je51 tran-
sition in the atom, as it is the simplest case where all th
polarization components of the light in principle play a ro
For simplicity we will assume the atom to be located on t
z axis, so that it in fact interacts only with a single (ê1)

of

s-
9-4
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STRONGLY FOCUSED LIGHT BEAMS INTERACTING . . . PHYSICAL REVIEW A63 023809
polarization component; as mentioned above, the other
polarization components vanish on the axis.

We are mostly interested in calculating the second-or
correlation function for the light field as a function of pos
tion and time. For that purpose, the Heisenberg picture is
most convenient. In the Heisenberg picture, the electric-fi
operator can be written as the sum of a ‘‘free’’ part and
‘‘source’’ part @34#,

EW 5EW f1EW s , ~26!

where the free part is given by

EW f~rW,t !5(
n

FW n~rW !an exp~2 ivt !1H.c.[EW f
(1)1EW f

(2) .

~27!

Here we separated the field in positive- and negati
frequency parts and used the spatial mode functionsFW n(rW)
from Eq. ~3!, with an the annihilation operator for moden.
The source part for the case of aJg50→Je51 transition is
given by @34#

EW s
(1)~rW !5(

i
cW i~rW8!s i

2~ t2urW8u/c!, ~28!

whererW885rW2rW0, ands i
2 is the atomic lowering operator

and the sum is over three independent polarization direct
i 561,0. Equation~28! is valid in the far field, withcW i(rW)
the dipole field

cW i~rW !5
v0

2

4p«0c2 FdW i

r
2

~dW i•rW !rW

r 3 G . ~29!

Here v0 is the atomic resonance frequency, anddW i5dûi is
the dipole moment between the ground stateug& and the
excited stateuei& in terms of the standard unit circular ve
tors,

û215 ê2 ,

û05 ẑ, ~30!

û152 ê1 ,

and the reduced atomic dipole matrix elementd.
Expressions containing the electric field in time-order

and normal-ordered form~as measured using standard ph
ton detectors!, such as the intensity and the second-or
intensity correlation function, can be transformed into wh
Ref. @34# denotes asO-ordered form, whereEW s

(1) is placed to

the left of EW f
(1) , EW f

(2) to the left of EW s
(2) , and where the

source parts are time ordered. For instance, if we assum
initial state of the light field to be a coherent state then
normally ordered intensity can be written as
02380
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I ~ t,rW !5^EW (2)~ t,rW !•EW (1)~ t,rW !&

5 (
i , j 521,0,1

cW j* ~rW !•cW i~rW !see
i j ~ t r !1uau2uFW out~rW !u2

1 (
i 521,0,1

2 Re@a* exp~ iv0t !

3FW out* ~rW !•cW i~rW !seg
i ~ t r !#, ~31!

wherea determines the amplitude of the coherent state, s
that ^EW (1)&5aFW out. In Eq. ~31! we introduced the retarde
time t r5t2urW8u/c, and seg

i 5^s i
2& and see

i j 5^s i
1s j

2& are
expectation values of the corresponding atomic operat
The three terms in Eq.~31! correspond to the intensityI d of
the dipole field,I L of the incoming laser beam, and the in
terference term. Similarly, the second-order correlation fu
tion ~where we now suppress the dependence of the field
rW)

G(2)~ t,t,rW !5 (
l ,m5x,y,z

^El
(2)~ t !Em

(2)~ t1t!

3Em
(1)~ t1t!El

(2)~ t !& ~32!

consists of 16 terms. Fort50, 7 of those vanish identically
and the remaining ones are

G(2)~ t,0,rW !5uau4uFW outu41(
i , j

2uau2uFW outu2cW i* •cW jsee
i j ~ t r !

1(
i

4Re@a* exp~ iv0t !#FW out* •cW i uau2uFW outu2

3seg
i ~ t r !1(

i , j
2uau2~FW out•cW i* !

3~FW out* •cW jsee
i j ~ t r !. ~33!

For the evaluation of the atomic quantities we assume
atom reaches a steady state. DefineCi5adW i* •FW out(0)/\ and
the matricesM andM1,2 by

M 1
i j 5

CiCj* /G

G/21 iD
,

M 2
i j 5

CiCj* /G

G/22 iD
, ~34!

M5~M11M2!/~M11M211!,

with G the decay rate of the excited states@34#,

G5
d2va

3

3p\e0c3
~35!

andD5v02va the detuning of the laser field from atom
resonance. In the steady state we have then
9-5
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sgg5
1

11Tr M ,

see5sggM, ~36!

seg5
isggCW 2 iseeCW

G/22 iD
exp~2 iv0t !.

We are mainly interested in finding the maximum effect t
atom may have on the outgoing beam. We therefore cons
the case of weak on-resonance excitation, i.e.,uCW u!G and
D50. We then calculateg(2)(t,rW)[G(2)(t,rW)/I 2(rW) at t
50—there is no dependence ont in the steady state and fo
simplicity we leave the argumentt out— as a function of
position in the far field. Results are shown in Figs. 3 and
The distance to the atom is fixed atR550l for numerical
reasons. Note that the angular spectrum does depend o
precise value ofR. Only in the forward direction do the
dipole field and a laser field display the same asympt
behavior. In the forward direction, i.e., on thez axis, the laser
field turns out to overwhelm the scattered field, irrespect
of how strongly the light is focused onto the atom. This m
be compared to a similar result for classical scattering fr
spherical dielectrics with light focused down to spot siz
larger than 5 times the size of the spheres@35#. Hence we
find that g(2)(0,rW)'1 for forward scattering, which is in
sharp contrast with the result from Ref.@18# which predicts a
large bunching effect~i.e., g(2)@1) for tight focusing~in the

FIG. 3. Plot ~a! gives the relative intensities of the laser fiel
the dipole field, and the total field as a function of the anglef/p

with the z axis ~i.e, at positionrW5@R sinf,0,R cosf# where we
choseR550l here and for all further calculations. The paramet
for the incoming beam and the lens aref 5500l and zin53
3104l, so thatzR58.3l and z05500l, where we chosel5852
nm, corresponding to theD2 transition in Cs, and the atomic dipol
momentd adjusted so as to give the correct corresponding spo
neous emission rateG52p35 MHz for the 6P3/2 states of Cs. Plot

~b! givesg(2)(0,rW) as a function off/p.
02380
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model of Ref.@18# the dipole field can be of the same ma
nitude as the laser field, see discussions below!. The figure
also shows that in a perpendicular direction the dipole fi
dominates, so thatg(2)(0,rW)50 for f→p/2 ~i.e., there the
light is almost purely fluorescence light, which is an
bunched@36,37#!. g(2) reaches a maximum around angl
where the scattered and laser fields are comparable in m
nitude. The oscillations indicate thatg(2)(0,rW) is very sensi-
tive to the relative phase between the dipole and the la
field. In fact, maxima ing(2) appear when the free field an
the dipole field interfere destructively. Indeed, this impli
that the total field is smaller than the laser field, which im
plies a photon has just been absorbed by the atom. The a
is therefore in its excited state, and hence one can expe
fluorescent photon to appear soon, thus leading to a str
bunching effect.

Going from Fig. 3 to 4 corresponds to tighter focusing (zR
decreases by a factor of 2! and we see that:

~1! In the forward direction, the ratio of the amounts
laser and scattered light decreases~but it’s still much larger
than 1!.

~2! The region whereg(2) reaches its maximum move
outward to larger anglesf.

~3! The ratio of the amounts of laser and scattered ligh
f590° increases by a large amount.

We can compare these results with those for a Gaus
beam with the same beam parameters. Figures 5 and 6 s
that the 3 conclusions still hold. However, a Gaussian be
exaggerates the amount of light in the forward directi
~small f) at the cost of greatly underestimating it for larg
angles. This implies that the region whereg(2) reaches its
maximum is moved to smaller anglesf for a paraxial beam.

We now focus on forward scattering, and plot in Fig.
the ratio of the intensities of the laser field and the dip
field, i.e.,K5uEW f u2/uEW su2, in the forward direction (f50) as
a function of the normalized~dimensionless! beamwidthw,
defined as

s

a-

FIG. 4. As Fig. 3, but the parameters for the incoming beam
the lens aref 5500l and zin563104l, so thatzR54.2l and z0

5500l.
9-6
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w5A zR

pl
. ~37!

The laser field intensity is seen to be much larger than
dipole field intensity, by at least a factor of;500. For a
Gaussian beam, on the other hand, the ratio becomes
trarily small for smallw. This has immediate consequenc
for the value ofg(2)(0,rW) ~see Fig. 8!.

For a Gaussian beam, the intensity in the focal region
not bounded. In fact, for decreasing values ofw, more and
more energy is concentrated in the focal region, so much
that the dipole field will eventually dominate the field in th
forward direction. In that case, the forward direction w
display antibunching~for w smaller than approximately
0.07!. Before that, however,g(2) reaches a large maximum a
aboutw'0.2, namely, when the dipole and laser fields a

FIG. 5. As Fig. 3, but for a paraxial beam characterized by
same beam parameterszR58.3l andz05500l.

FIG. 6. As Fig. 4, but for a paraxial beam characterized by
same beam parameterszR54.2l andz05500l.
02380
e

bi-

is

so

e

comparable in magnitude. For larger values ofw, the scat-
tered field will be negligible, andg(2)→1, but only after
reaching a minimum close to zero aroundw50.3. The latter
characteristics were also found in Ref.@18#. For the exact
solutions, however, none of these effects is present, and
laser field always dominates the dipole field, so thatg(2)

'1 for all values of the beamwidth.
Let us finally quantify the effects of focused light on a

oms in a different way by considering the following. If th
atomic dipole isdW , then the relevant quantity determining th
excitation probability of an atom isudW •EW (2)(rW0)u2 evaluated
at the atom’s positionrW0, while the total incoming energy
flux is given by*dSuEW (2)u2. In contrast to the naive expec

e

e

FIG. 7. The relative intensity of the laser beam to the dip
field in the forward directionK, as a function of the beamwidth
parameterw for the casef 5500l. SincezR< f /2, the beamwidthw
satisfiesw<6.3. The dashed curve corresponds to the exact s
tion, the solid curve to a Gaussian beam.

FIG. 8. g(2)(0,rW) in the forward direction as a function of th
beamwidth parameterw. The solid curve corresponds to a Gaussi
beam, the dashed curve to the exact solution~17!.
9-7
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tation R;s/A, the actual ratioRs that determines the frac
tion of the energy incident on the atom that will be scatte
is given by

Rs5
3l2ud̂•EW (2)~rW0!u2

2pE dSuEW (2)u2
. ~38!

This ratio is plotted in Fig. 9 as a function of the widthw
5wR/l for several values of the focal parameterf. For
smallerf the best achievable ratio increases, as expected
for realistic lens parameters, the optimumRs is about 20%.
Even for small values off, the maximum scattering ratio
does not go beyond 1/2. This can be understood by no
that the optimum shape of the illuminating field would be
dipole field. Here with light coming only from one direction
one may expectRs to be at most 1/2. Obviously, with on
mirror behind the atom, one can improve the scattering r
Rs by a factor of 2. And of course, by building an optic
cavity around the atom, the atom-light interaction can
enhanced by many orders of magnitude, but that’s a diffe
story @39#.

IV. DISCUSSION AND CONCLUSIONS

We constructed propagating wave solutions of Maxwe
equations describing tightly focused laser beams. T

FIG. 9. The scattering ratioRs as a function of the normalized
beamwidth w5wR /l. The different curves correspond tof /l
52.5,5,10,25,50,100,250,500,1000, respectively, for top to bot
curves.
.
ol

J.

02380
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method we used consisted of expanding the outgoing b
in a complete set of solutions and matching it at the plane
a lens to a given incoming beam. The lens was assumed i
~infinitely thin! and the incoming beam was chosen to
Gaussian.

We then investigated quantum-statistical properties of
light emitted by an atom in free space, when it is illuminat
by such a beam. Light detected in the forward direction d
not display any bunching, nor antibunching effects: the fi
is dominated by the laser light, and the normalized seco
order intensity correlation function is practically unity. Th
may not be surprising but is in contrast to results obtained
using Gaussian beams and by a standard quantum-op
input-output model. Gaussian beams are no longer valid
proximate solutions under strong focusing conditions, and
particular exaggerate the focal intensity by a large amou
On the other hand, the input-output formalism implicitly a
sumes that the scattered field propagates in the same ma
as the incident light beam; in free space this would cor
spond to illumination with a laser field whose profile mimi
the dipole pattern. Inside a cavity, however, the mode
expected to apply, as the situation there is, to a good appr
mation, one dimensional. Indeed, the equations ultima
assume the same form as those for an atom coupled
cavity mode in the bad-cavity limit@38#.

Although the model of a single ideal lens with a simp
lens factor of Eq.~8! may not lead to the strongest possib
focusing@15#, the amount of focusing reached is sufficient
strong~focusing areasA less than or equal to the absorptio
cross sections53l2/(2p) of an atom! to conclude that the
interaction of a focused light beam with an atom is not
strong as might be expected on the basis of the ratios/A
~see Fig. 9!. Its consequence for quantum information pr
cessing may be phrased as: in free space it is easier and
efficient to use light to process quantum information carr
by an atom, than to use an atom to process quantum in
mation carried by photons.
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