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Strongly focused light beams interacting with single atoms in free space

S. J. van Enk and H. J. Kimble
Norman Bridge Laboratory of Physics, California Institute of Technology 12-33, Pasadena, California 91125
(Received 31 May 2000; published 12 January 2001

We construct three-dimensional solutions of Maxwell’'s equations that describe Gaussian light beams fo-
cused by a strong lens. We investigate the interaction of such beams with single atoms in free space and the
interplay between angular and quantum properties of the scattered radiation. We compare the exact results with
those obtained with paraxial light beams and from a standard input-output formalism. We put our results in the
context of quantum information processing with single atoms.
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[. MOTIVATION sible [12—14. Experiments on single atoms aiming at the
strong focusing limit are underway as wglls)].

The ability to manipulate small quantum systems indi- In a recent papefl6] we gave the results of explicit cal-
vidually is a necessary requirement for quantum computingulations on the behavior of single atoms in free space irra-
and quantum communication. For example, in order to perdiated by tightly focused light beams. We were particularly
form single-qubit operations on a particular ion in an ion trapinterested in the quantum aspects of the scattered light, and
quantum computdrl—3] one has to focus a laser beam to thein evaluating how much a single atom is able to modify the
position of that ion with a sufficiently high-spatial resolution intensity and phase properties of the incident light. Here we
[4]. Similarly, quantum communication protocols using at-present all the details of that calculation and discuss possible
oms trapped inside optical caviti¢5,6] require single-bit extensions. These results will be compared with similar cal-
and two-bit operations on specific atoms. One question thatulations using(i) paraxial Gaussian beani$7] and (ii) a
arises is whether strong focusing has an undesired side eiell-known quantum-optical input-output formalism that
fect, namely, that the scattered light contains informatiorwas used in Ref§18] and[19] to study photon statistics and
about the state of the qubit. The fear would be that the lasgntensity correlations of the field emitted by an atom in free
intensity would have to be turned down so much, that thespace. The latter model is basically a quasi-one-dimensional
absence of a photon from the laser beam becomegsin- model, with one spatial variable describing the propagation
ciple detectable. of the light beam, and with one additional parameter describ-

Conversely, if an atom in free space would indeed be abléng the solid angle subtended by the laser beam at the atom’s
to modify appreciably the state of a light field, then this position (coinciding with the focal point of the light begm
effect could be used to our advantage: a single atom could b&ds we will demonstrate, however, neither this model nor, as
used to perform quantum-logic operations on single photongxpected, paraxial beams accurately represent the case of a
in free spacd7]. An atom inside an optical cavity strongly strongly focused light beam.
coupled to a cavity mode is known to be able to perform
such tasks[8], but such an experiment would be more
straightforward to conduct in free space.

At first sight the prospects of such an experiment seem Here we wish to calculate the field that one obtains by
good: the scattering cross section of a two-level atomr is focusing a monochromatic Gaussigraraxia) beam by an
=3\?/(27) for light of wavelengthn [9], and thus focusing ideal strong lens. We do that by expanding the outgoing field
light down to an are®A <o should be sufficient to induce a (i.e., the field after the lemnsn a complete set of modes. In
strong coupling. However, this picture is too simplistic. principle one can use any complete set of modes to describe
Light beams are transversely polarized, which implies thaexact solutions of Maxwell’s equations. In view of the cylin-
only part of the light entering the interaction region will drical symmetry of the problem we are interested in, the
carry the polarization that the atom is sensitive to. Using anost convenient is to choose a set that takes a simple form in
different picture, since the atom would emit a dipole patterncylindrical coordinates. In particular, we will use a set of
(in a givenm—m’ transitior), it would be most efficiently eigenmodes of four commuting operators corresponding to
excited by a field matching an “incoming” dipole field, as the following four physical quantities: enerdwith eigen-
follows from time-reversal symmetry. Since a focused lasevalueZikc=%w per photon20]), angular momentum in the
beam does not have a large overlap with such a dipole pat direction[m#], momentum in thez direction[#k,], and
tern, the effective absorption cross section is smaller thahelicity [ sfik,/k]. The modes are thus characterized by the
indicated byo. four numbersy=(k,k,,m,s), which, once the field has been

Early experiment$10,11 on the detection of single atom quantized, play the role of quantum numbers. These modes
fluorescence did not reach the strong focusing limitfof were constructed in Ref21] to clarify the meaning of or-
~\2. Recently, however, impressive progress has been madsgtal angular momentum of ligH22], and thus by construc-
in experiments on single molecules in condensed matter artibn possess simple properties under rotations around the
efficient detection of the fluorescence light has become pogropagation(z) direction. The complete orthogonal set of

II. STRONGLY FOCUSED GAUSSIAN BEAMS
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modesF , is defined such that the free electric figle., the ~ Which is a useful relation for defining the action on light
solution of the source-free Maxwell equatidrsan be ex- beams of an ideal lens positioned in a plaeconstant.
panded in this set as

A. Focusing with an ideal lens
, (1) The action of the lens is modeled here by assuming that

the field distribution of the incoming field is multiplied by a
local phase factor

EzzR{E a,F,exp —iot)

with arbitrary complex amplitudes,. This requires the
mode functions to be transverse, iE.-,If,,ZO. The summa- p=exp —ikp?/2f), (8
tion overv is a short-hand notation for
with f the focal length of the len®3,24]. An ideal parabolic
_ lens would be represented by a phase factpp
EV _J dkf dkzz % ' @ =exikypZ+ (f—p%/2f)?]. In the paraxial limitf>p this

factor becomes equivalent . It may be that the simple

The dimensionless mode functioRs in cylindrical coordi-  lens factor used heres, does not give rise to the strongest
nates p,z,¢) are defined by21] possible focusing, and that, would improve on this. More-
over, actual lens systems designed to focus light dowA to
sk—k, 1 sk+k, ~\2 consist, ofmultiple lenses(for instance, 12 in ongoing

- 1 -
Fulp.z,¢)= 47 K Gk,kz,m+1)e- /P experimentg15]), partly to accommodate for the finite size,
2k

finite thickness, and other imperfections of real lenses as
compared to ideal lenses. We nevertheless, for convenience,
"a7 K chose a single lens factar: it allows for analytical evalua-
tions and the class of light beams thus constructed does reach
@ the focusing limit[25] of A=~ ¢ (for instance, see the plots
T corresponding tdf =100\). This is sufficient for our pur-
\A/vhereAkt—.A K*—k; is the transvgrse part of t.he Wave vector, poses of showing that even focusing down to an area of the
e.=(x*iy)/\2 are the two circular polarization vectors, size of the atomic cross section does not quitg about a
and factor of ~5) lead to the strong effects one may have ex-
B . . pected or hoped for.
G(k,kz,m)=Jn(kip)explik z)exp(ime), (4) If in the plane of the lens, sa=0, the incoming beam is
given by

X G(k,k,,m—1)e, — G(k,k,,m)z,

with J,,, the mth order Bessel function. The mode functions
satisfy the orthogonality relations

Fin=Fo(p, ), 9
j dVFS(r)-F (1) = 8(k—k) 8(k;~K}) Sy s K, then the output field is given by
(5)
where the integration extends over all space. The orthogonal- Foull)= % Ky F (), (10)

ity of the modes follows directly from the fact that the mode
functions are eigenfunctions of commuting Hermitian opera- it
tors. The normalization can be found by a direct calculation
of the left-hand side of E(5). ko2
For the remainder of this section, we will consider only Kk, =2k, dSex;{ —ii) ﬁo. E* (1)
monochromatic beams propagating in the positidirection a z=0 2f a
(k,>0) with a fixed value ok=27/\. For convenience we
takek, as a mode number instead lof and we denote the This definition is such that the limit df— o corresponds to
reduced set of mode numbers py= (k,,m,s), and introduce ~ free-space propagation, as follows from the orthogonality re-
the notation lation (7). Note that the field distributiorf10) is an exact
solution of Maxwell's equations, irrespective of the choice
E Ef dktE 2 . ©6) for Ifo_ (in particular, we can take the incoming beam to be
m s ‘N paraxia).
If we approximate the incoming beam by a circularly po-
For fixed k the modes ﬁ# are orthogonal in planes larized (lowest-ordey Gaussian beam with Rayleigh range

7z=constant: Z;, with kz,>1 by its dimensionless amplitude
dSF(r)-F,(r)=8(ki—k{) Smur s 1 (277Ky),
Jz:constant ”( K ( (ki ko) S 5 /€ ! IHere we assume for simplicity that the focal plane of the incom-

(7) ing beam and the plane of the lens coincide.
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. kp?\ . focused light beams, we will not consider these components
Folp.d)=exp —5_—|€+, (12)  here, but they may be important in other circumstances. Note
" as an aside that these two components represent beams with
then,, is given by 1 and 2 units of orbital angular momentum, and 0 andl

units of spin angular momentum, respectively, so that the

k,+sk (= total angular momentum of the outgoing beam is indéed
K= Om Ky K JO dp pJo(kip) per photon. See Re29] for a discussion how these different
forms of angular momentum are transferred to the internal
kp? kp? and external angular momenta of an atom.
xexg —iog ex - 2z,)" (13 Returning to thee, component, when the paraxial ap-
proximation is valid for the outgoing beam, we may take out
This integral can be evaluated using a factor expikz), usek—k,~k?/2k, and extend the integra-
1 tion limit in Eq. (17) to infinity. Defining
—_ 2 = — —_ 2 .
J; dXx XJ( Bx)exp(— ax?) 2aexp( Bla), (14) 2,=2r+1(2—2y), (18)
and gives the result these approximations lead to
— o kZZ
K, k,+ sk K2 Tz f ke _ Kizw
KM=775m1f zk §exﬁ(—2—;<§)a (15) F. 5 expikz) . dktZkJO(ktp)ex oK
. Zr—izp)explikz kp?
with _ (Zrizo)exnl )exp( - L), (19
Zy 2z,
é:: ZR_ iZO, . . )
which, as announced, represents a Gaussian beam with Ray-
f25 leigh rangezi and its focal plane located atz,. We can in
Zp= o (16)  fact rewrite the exact resull7) into a different form that
zﬁ]+ f2 explicitly displays the corrections to the paraxial approxima-
tion,
fz2 .
Zy= . _ . ZR—1Zg
o+ 2 F. =explikz) = —[F1+F,—Fa], (20)

The delta functions,,; expresses the fact that a lens cannotyith
absorb angular momentum from a cylindrically symmetric
light beam upon normal inciden¢26,27): the indexm of the
outgoing beam is 1, because the incoming beam has one unit Fi=
of “spin” angular momentum.

When the paraxial limit is valid for theutgoing beam,
i.e., whenkzg>1, zg andz, correspond, as we will show, to (%, ke ?— t2 t2 w
the Rayleigh range and the position of the focal plane of the Fo= fo ke K2 Jolkip)exp — =
outgoing beam, respectively. But also outside the paraxial
limit, the focused light beam is characterized by the two 4( k2 ) } (21

exp i| k,—k+ =-]z|—1],
2k

2k2—Kk?

parameterzy and z,. The largest component of the output X
field (10) is the e, component, which is given by
; = ki t ktZZW
Zr—izo % kg 2K2—k{ F:fdk—————Jk a%— .
P2 [ ke = i) T ke T

K2 Outside the paraxial limit, whekzg is not large, the focal
xexr{ — —t(zR—izo))exp(ikzz), (17)  plane is no longer at=z, but moves towards the lens by
2k several wavelengths, as shown in Figs. 1 and 2, where sev-
oA eral examples of intensity profiles of focused beams are plot-
with F,=F-€*. Note here the similarity between E@L7)  ted. Furthermore, unlike in the paraxial approximation, the
and the expression given in RdR8] for a class of light shape of the field is not just determined by the valueof
beams generalizing Laguerre-GaussidiS) beams[17].  put depends om, as well.
Thez ande_ components of the output field are proportional  The plots of the transverse-mode profiles show that be-
to higher-order Bessel functiondy(kip) and J,(kip), re-  yond a certain point the width of the field no longer de-
spectively, and will therefore vanish on thexis. As we will  creases with stronger focusing. One cannot focus down a
be interested in the interaction of an atom on axis with thdaser field to below a certain limit, roughly about half a
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certain components of vanish, of the kind investigated

S5 (both theoretically and experimentallyn Refs.[30—33. For
2. Gaussian illumination of a spherical lens, however, no such
% a0 singularities appedi31].
,_%3_320 Finally, it may also be interesting to consider tightly fo-
cused donut beams, i.e., beams of light produced by focusing
ob — - - L L . an incoming higher-order LG beafi7]. In the case of an
@ position incoming first-order LG beam, the incoming field distribu-

tion lfo can be written agagain assuming its focal plane
coincides with the plane of the lens

, A
Ifgzexp<—ki)exp(ii¢)zﬂ_x+ly- (22)

2z, J2

For the coefficientsx; we find then

) 05 1 15 2 25 3 35 4 45 5
position

(b)

5 ka+Sde Pk
Ky = Om2,0T tT K 0 Pz_in 1(kep)

FIG. 1. (a) Field strength|F,| of strongly focused Gaussian . ko2
beams on the axis as a function oZE(z—zg)/)\. Note that the Xex;{ i 2 )ex;{ - L), (23
maximum field strength of the incoming fiefe, is 1. The lens is
located atz=0 and is characterized by=100\, so that z, o L.
~100\. The incoming Gaussian beam has increasing values of/Nerédm o indicates that for thet- sign in Eq.(22) we get
Zn/N=1X10°,3x 10%,1x10% ...,3x10°, respectively, for the Ome and for the — sign omo- These delta functions again
bottom to top curves. This implies, for the outgoing beam, decreas€XPress conservation of angular momentum: the outgoing
ing values ofzg~10N,100/3\, . .. \/30. (b) Field strength in the beam possesses the same angular momentum as the incom-
focal plane as a function of the transverse coordipdte ing beam[26,27, which has one unit of “spin” angular

momentum andt 1 units of “orbital” angular momentum.
wavelength, with the ideal lens with lens fact®), no mat- The integral can be evaluated using
ter how smallzgz becomes. Moreover, one notes the asym-

metry of the outgoing beam around the focal plane, in con- dex 21 ( BX)exp — aX2)=£GX|i—,82/4a), (24)
trast to a paraxial beam that is symmetric in its focal plane. 0 4a?

Since there is n@ priori symmetry under reflections in the

focal plane, this fact should not be surprising. and gives the result
Let us note here that strongly focused light beams in gen- K Kt sk 2 2
. . . . . . S
eral will display phase singularitiegings in space where KM:7T5m2,0k_t2 zk Z_-ex;{ _2_;(5). 25)
in

n
=3
S

For k, = oo, there is a nonzero field on axis of a different
polarization than the incoming field: tticomponent, which
would be neglected in the paraxial limit, is in fact the only
nonvanishing component on axis. In this case, however, the

E field on axis will be sensitive both to deviations of the lens
/—\ from an ideal spherical lens, and to deviations of the incom-
20 25 20 15 -10 -5 0 ing beam from a pure donut beam, even in the paraxial limit.

position .. . e . .

(a) For some explicit examples of this sensitivity see, for in-
stance, Refd.26] and[32].

a
S

field strength
g

Ill. SCATTERING LIGHT OFF OF A SINGLE ATOM
IN FREE SPACE

field strength

In this section we will investigate the response of an atom
located in the focal region of a strongly focused laser beam
A - of the form(17) atr =r,. We consider dy=0—J,=1 tran-

0 05 1 15 2 25 3 35 4 45 5 .. . . .

b position sition in the atom, as it is the simplest case where all three

®) polarization components of the light in principle play a role.
FIG. 2. As Fig. 1 but forf=500\ and z,/\=3x10*1  For simplicity we will assume the atom to be located on the

X10°, ..., 1x10°,3x 10, z axis, so that it in fact interacts only with a singlé+()
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polarization component; as mentioned above, the other two I(t,F)=<I§(‘)(t,F)-E“’(t,ﬂ)
polarization components vanish on the axis.

We are mostly interested in calculating the second-order
correlation function for the light field as a function of posi- = 2
tion and time. For that purpose, the Heisenberg picture is the
most convenient. In the Heisenberg picture, the electric-field
operator can be written as the sum of a “free” part and a + 2

= g (1) (1) odeltr) +[ 2| Foul )2

ij=—1,0,1

2 Rd a* exp(i wgt)

i=-1,0,1
“source” part [34],
. XFad0)- (N obgtn)], (31
E=E;+E,, (26)
wherea determines the amplitude of the coherent state, such
where the free part is given by that(é(”) alfOut In Eq (31) we introduced the retarded
time t,=t—|r’|/c, and o4,=(o;, ) and ol;=(o, o] ) are
»f(r»t)=2 IfV(F)a exp(—iwt)+H.c.El§$+)+I§$‘). expectation values of the correspondmg atomic operators.

The three terms in Eq31) correspond to the intensity; of
(27)  the dipole field,I, of the incoming laser beam, and the in-

terference term. Similarly, the second-order correlation func-
Here we separated the field in positive- and negativetion (where we now suppress the dependence of the fields on
frequency parts and used the spatial mode functl%;(f) F)
from Eq. (3), with a, the annihilation operator for mode
The source part for the case oflg=0—J.=1 transition is 2 > (-) (=)
given by[34] & G )(t,r,r)—l,m;(’y’z (ECOES (t+7)

- S XER(t+ DE{ (1) (32

ECO(N) =2 di(r)ay (t=]r'|/c), (28
: consists of 16 terms. Far=0, 7 of those vanish identically,

R o and the remaining ones are

wherer’'=r—rq, ando; is the atomic lowering operator,

and the sum is over three independent polarization d|rect|ons G@(t,07)

i=+1,0. Equation(28) is valid in the far field, withy;(r)

the dipole field

_|a|4|Fout|4+2 2|a|2|Fout| ’zb| ‘/’]0' ot

. + 2 4Rda* expliogh) I3y il al*|Foul?
@o

gi(r)= —— (29)

d; (ai-F)Fl
. 5 3 . ) . o
mEeC r X O'Ieg(tr)+ ,ZJ 2|a|2(Fout' ‘/ﬁ*)

Here w, is the atomic resonance frequency, ahe-duy; is

the dipole moment between the ground sthge and the X(Four ¢jedtr). 33
[ i) f th it circul - : . i
teoxrgted statge;) in terms of the standard unit circular vec For the evaluation of the atomic quantities we assume the

atom reaches a steady state. Deflye ad?* - F,(0)/% and
the matricesM and M, , by

a_]_: ;_ y
o ] CCy/r
Up=2, (30 MI=FRrn
Ui=—e,, Mij_cicrlr 34
2 T2—iA’ (34
and the reduced atomic dipole matrix elemdnt
Expressions containing the electric field in time-ordered M= (My+ M) ( M+ My+1),
and normal-ordered forrfas measured using standard pho-
ton detectors such as the intensity and the second-ordewith I' the decay rate of the excited staf@d],
intensity correlation function, can be transformed into what
Ref.[34] denotes a&)-ordered form, wher&!") is placed to e ol 35
the left of E{™), E{) to the left of E{), and where the a 37t ec®

source parts are time ordered. For instance, if we assume the
initial state of the light field to be a coherent state then theand A = wy— w, the detuning of the laser field from atomic
normally ordered intensity can be written as resonance. In the steady state we have then
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FIG. 3. Plot(a) gives the relative intensities of the laser field, FIG. 4. As Fig. 3, but the parameters for the incoming beam and
the dipole field, and the total field as a function of the angler the lens ara‘=500\, andz,=6x 10\, so thatzg=4.2\ andz,
n ’ .

with the z axis (i.e, at positionr =[R sin¢,0R cos¢] where we  —50q\ .

choseR=50\ here and for all further calculations. The parameters

for the incoming beam and the lens afe=500\ and z,,=3 model of Ref[18] the dipole field can be of the same mag-
X 10°\, so thatzz=8.3\ andz,=500\, where we chosa=852  hitude as the laser field, see discussions bgldlie figure
nm, corresponding to tHB2 transition in Cs, and the atomic dipole also shows that in a perpendicular direction the dipole field
momentd adjusted so as to give the correct corresponding spontadominates, so thag(z)(O,F):O for ¢p— /2 (i.e., there the
neous emission raé=2m7x5 MHz for the 6P, states of Cs. Plot  light is almost purely fluorescence light, which is anti-

(b) givesg®(0y) as a function of/ . bunched[36,37). g reaches a maximum around angles
where the scattered and laser fields are comparable in mag-
1 nitude. The oscillations indicate thgt?)(0r) is very sensi-
S99 1 Tr M tive to the relative phase between the dipole and the laser

field. In fact, maxima ing'®) appear when the free field and
the dipole field interfere destructively. Indeed, this implies
that the total field is smaller than the laser field, which im-
plies a photon has just been absorbed by the atom. The atom
igggé—igeeé . is therefore in its excited state, and hence one can expect a
Ueg=WeXp(—lwot)- fluorescent photon to appear soon, thus leading to a strong
bunching effect.

We are mainly interested in finding the maximum effect the Going from Fig. 3 to 4 corresponds to tighter focusiag (

. . ‘decreases by a factor oj and we see that:
atom may have on the outgoing beam. We therefore consider (1) In the forward direction, the ratio of the amounts of

the case of weak on-resonance excitation, |@€|<I" and  |aser and scattered light decreagest it's still much larger
A=0. We then calculatg@(7,r)=G@(7,r)/1%r) at  than .

=0—there is no dependence bim the steady state and for (2) The region whergy® reaches its maximum moves
simplicity we leave the argumeritout— as a function of outward to larger angleg.

position in the far field. Results are shown in Figs. 3 and 4. (3) The ratio of the amounts of laser and scattered light at
The distance to the atom is fixed B&=50\ for numerical ¢$=90° increases by a large amount.

reasons. Note that the angular spectrum does depend on theWe can compare these results with those for a Gaussian
precise value ofR Only in the forward direction do the beam with the same beam parameters. Figures 5 and 6 show
dipole field and a laser field display the same asymptotithat the 3 conclusions still hold. However, a Gaussian beam
behavior. In the forward direction, i.e., on thaxis, the laser exaggerates the amount of light in the forward direction
field turns out to overwhelm the scattered field, irrespectivgsmall ¢) at the cost of greatly underestimating it for larger
of how strongly the light is focused onto the atom. This mayangles. This implies that the region wheg€’ reaches its

be compared to a similar result for classical scattering frommaximum is moved to smaller anglésfor a paraxial beam.
spherical dielectrics with light focused down to spot sizes We now focus on forward scattering, and plot in Fig. 7
larger than 5 times the size of the sphef85]. Hence we the ratio of the intensities of the laser field and the dipole
find that g®(0r)~1 for forward scattering, which is in field, i.e.,K=|E|%/|E?2, in the forward direction $=0) as
sharp contrast with the result from REE8] which predicts a a function of the normalizeddimensionlessbeamwidthw,

large bunching effedti.e., g®>1) for tight focusing(in the  defined as

Oege= 0ggM, (36)
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L . A . A . . .
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40+ 1
s0F 1 10° 1
20+ g
10 g
104 1 Io 1
0 L L L 107 10 10
) 002 004 006 008 0.1 012 014 016 018 02 w
(b)

) ] ) FIG. 7. The relative intensity of the laser beam to the dipole
FIG. 5. As Fig. 3, but for a paraxial beam characterized by theyig|q in the forward directiork, as a function of the beamwidth

same beam parameterg=_8.3x andz,=>500\. parametew for the case =500\. Sincezg=< f/2, the beamwidthw
satisfiesw=6.3. The dashed curve corresponds to the exact solu-
ZR tion, the solid curve to a Gaussian beam.
W= H (37)

comparable in magnitude. For larger valueswgfthe scat-
The laser field intensity is seen to be much larger than théered field will be negligible, ana)®—1, but only after
dipole field intensity, by at least a factor e§500. For a  reaching a minimum close to zero aroune-0.3. The latter
Gaussian beam, on the other hand, the ratio becomes arlwharacteristics were also found in R¢18]. For the exact
trarily small for smallw. This has immediate consequencessolutions, however, none of these effects is present, and the

for the value ofg®(0r) (see Fig. 8 laser field always dominates the dipole field, so th&?
For a Gaussian beam, the intensity in the focal region i~ 1 for all values of the beamwidth. _
not bounded. In fact, for decreasing valueswgfmore and Let us finally quantify the effects of focused light on at-

more energy is concentrated in the focal region, so much s@ms in a different way by considering the following. If the
that the dipole field will eventually dominate the field in the atomic dipole i, then the relevant quantity determining the
forward direction. In that case, the forward direction will excitation probability of an atom igi- E(-)(r)|? evaluated

display antibunching(for w smaller than approximately , T - : .
) at the atom’s positiomry, while the total incoming ener
0.07). Before that, howeveg® reaches a large maximum at P 0 g 9y

is gi =(0))2 i -
aboutw~0.2, namely, when the dipole and laser fields areflux is given by [dS[E™|". In contrast to the naive expec

10"

7 v
107 g 10° |

L I I I 1 L
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

5
g2

120 T T T

10° [
100

80

60

40

20+ 10° .
10° 107 10°
o ; , ; ; X . . '
0 002 004 006 008 0.1 012 014 016 018 02
(b)

FIG. 8. g®?(0r) in the forward direction as a function of the
FIG. 6. As Fig. 4, but for a paraxial beam characterized by thebeamwidth parametav. The solid curve corresponds to a Gaussian
same beam parameters=4.2\ andz,=500\. beam, the dashed curve to the exact solutibn.
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05 ' ' ' ; ; ' method we used consisted of expanding the outgoing beam
in a complete set of solutions and matching it at the plane of
a lens to a given incoming beam. The lens was assumed ideal
(infinitely thin) and the incoming beam was chosen to be
Gaussian.

We then investigated quantum-statistical properties of the
light emitted by an atom in free space, when it is illuminated
by such a beam. Light detected in the forward direction does
not display any bunching, nor antibunching effects: the field
is dominated by the laser light, and the normalized second-
order intensity correlation function is practically unity. This
may not be surprising but is in contrast to results obtained by

01
using Gaussian beams and by a standard quantum-optical
001 //—\ input-output model. Gaussian beams are no longer valid ap-
o . . . . .

045
04}
035
03}
cast
02}

015

proximate solutions under strong focusing conditions, and in

w ' ' ' particular exaggerate the focal intensity by a large amount.
On the other hand, the input-output formalism implicitly as-
sumes that the scattered field propagates in the same manner
RS the incident light beam; in free space this would corre-
spond to illumination with a laser field whose profile mimics
the dipole pattern. Inside a cavity, however, the model is
tation R~ o/A, the actual ratidR that determines the frac- €xpected to apply, as the situation there is, to a good approxi-

tion of the energy incident on the atom that will be scatterednation, one dimensional. Indeed, the equations ultimately
is given by assume the same form as those for an atom coupled to a

cavity mode in the bad-cavity lim{t38].
Although the model of a single ideal lens with a simple
s (39 lens factor of Eq(8) may not lead to the strongest possible
277[ dSEC)|2 focusing[15], the amount of focusing reached is sufficiently
strong(focusing area#\ less than or equal to the absorption
cross sectionr=3\?%/(27) of an atom to conclude that the
—wr/\ for several values of the focal parameter For interaction of a focused light beam with an atom is not as

smallerf the best achievable ratio increases, as expected, biong as might be expected on the basis of the rafi

for realistic lens parameters, the optimiRg is about 20%. (S€€ Fig. 9. Its consequence for quantum information pro-
Even for small values of, the maximum scattering ratio ©€SSing may be phrased as: in free space it is easier and more
does not go beyond 1/2. This can be understood by notingff'C'ent to use light to process quantum information carried
that the optimum shape of the illuminating field would be aby an atom, than to use an atom to process quantum infor-
dipole field. Here with light coming only from one direction, mation carried by photons.

one may expecR; to be at most 1/2. Obviously, with one

mirror behind the atom, one can improve the scattering ratio

R by a factor of 2. And of course, by building an optical ACKNOWLEDGMENTS
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FIG. 9. The scattering ratiBg as a function of the normalized
beamwidth w=wg/N. The different curves correspond t'A
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curves.

3NFd-EC)(rp)|?
o _3NIRET

This ratio is plotted in Fig. 9 as a function of the width
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