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Damping of condensate collective modes due to equilibration with the noncondensate

J. E. Williams and A. Griffin
Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7

~Received 30 March 2000; published 17 January 2001!

We consider the damping of condensate collective modes in the collisionless regime at finite temperatures
arising from lack of equilibrium between the condensate and the noncondensate atoms, an effect that is ignored
in the usual discussion of the collisionless region. As a first approximation, we ignore the dynamics of the
thermal cloud. Our calculations should be applicable to collective modes of the condensate that are oscillating
out-of-phase with the thermal cloud. We obtain a generalized Stringari equation of motion for the condensate
at finite temperatures, which includes a damping term associated with the fact that the condensate is not in
diffusive equilibrium with the static thermal cloud. This intercomponent collisional damping of the condensate
modes is comparable in magnitude to the Landau damping considered in the recent literature.
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I. INTRODUCTION

The collective oscillations of a condensate at zero te
peratureT50 are well described by the solutions of the li
earized Gross-Pitaevskii~GP! time-dependent equation o
motion for the condensate wave functionF(r ,t). At finite
temperatures, the condensate dynamics is modified by in
actions with the noncondensate atoms in the thermal clo
which has the effect of renormalizing and damping the c
densate oscillations. Recently the coupled dynamics of
condensate and the thermal cloud has been the subje
several theoretical studies@1–5#. Such calculations lead to
generalized GP equation forF(r ,t) and some appropriat
Boltzmann-like kinetic equation describing the dynamics
the noncondensate atoms. In the present paper, we mak
of the recent formulation of Zaremba, Nikuni, and Griffi
~ZNG! @3# to discuss a new kind of damping of condens
oscillations that arises from collisions between the cond
sate and noncondensate components. In contrast to Ref@3#,
which discussed the collision-dominated hydrodynamic
gime, here we discuss the collisionless regime. Within
well-known Thomas-Fermi~TF! approximation, we derive a
generalized Stringari wave equation describing the cond
sate normal modes@6# that is valid at finiteT and includes
damping due to the fact that the condensate is not in equ
rium with the thermal cloud. This new source of damping
in addition to the usual Landau and Beliaev damping con
ered in the collisionless region at finiteT @7–14#.

Our theory can be used to generalize any discussion b
on the usual GP equation atT50. This simplicity is due to
our neglect of any dynamics of the thermal cloud. Availab
studies of collective modes@3# at finite T suggest that, for
any given mode symmetry, one mode mainly involves m
tion of the condensate~with a small out-of-phase motion o
the noncondensate!. This mode is a natural extension of th
T50 oscillation of a pure condensate and should be
scribed by our theory. The other mode, of the same sym
try, mainly involves the motion of the thermal cloud~with a
small in-phase motion of the condensate! and can be viewed
as the natural extension of the oscillations above the crit
temperatureTBEC @15,16#. Our present calculations do no
apply to such ‘‘normal-fluid’’ oscillations, which include th
1050-2947/2001/63~2!/023612~7!/$15.00 63 0236
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Kohn mode at the trap frequency.

II. DERIVATION OF MODEL

Our starting point is the finiteT generalized GP equatio
derived by ZNG~see also Refs.@1# and @2#!

i\
]F

]t
5F2

\2

2m
¹21Uext1gnc12gñ2 i\RGF, ~1!

where the interaction parameterg54p\2a/m, a is the
s-wave scattering length,nc(r ,t)5uF(r ,t)u2, and ñ(r ,t) is
the noncondensate local density. The damping term in
~1! is given byR(r ,t)[G12(r ,t)/2nc(r ,t), with

G12~r ,t !5E dp

~2p\!3
C12@ f ~p,r ,t !,F~r ,t !#. ~2!

This involves the collision integralC12@ f ,F# describing col-
lisions of condensate atoms with the thermal atoms, wh
also enters the approximate semiclassical kinetic equation
the single-particle distribution functionf (p,r ,t) ~valid for
kBT@gnc0 andkBT@\v0)

] f

]t
1

p

m
•“ r f 2“U•“p f 5C12@ f ,F#1C22@ f #. ~3!

Here the collision integralC22@ f # describes binary collisions
between noncondensate atoms. It does not change the
ber of condensate atoms and hence doesnot appear explicitly
in Eq. ~1!. These coupled equations~1!–~3!, along with Eqs.
~23a! and ~23b! of Ref. @3# defining the collision integrals
C12 and C22, were derived in the semiclassical approxim
tion. However, they are expected to contain all the essen
physics in trapped Bose-condensed gases at finiteT, in both
the collisionless and hydrodynamic domains. They assu
that the atoms in the thermal cloud are well-described by
single-particle Hartree-Fock spectrum«̃p(r ,t)5p2/2m

1U(r ,t), where U(r ,t)5Uext(r )12g@nc(r ,t)1ñ(r ,t)#.
We expect this semiclassical description to break down o
for very low temperatures where the Bogoliubov excitati
©2001 The American Physical Society12-1
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J. E. WILLIAMS AND A. GRIFFIN PHYSICAL REVIEW A 63 023612
spectrum is more appropriate@17#. Our entire discussion is
within what is called the Popov approximation in that w
have ignored all effects associated with the anomalous
correlationsm̃(r ,t)5^c̃(r ,t)c̃(r ,t)&.

The coupled equations~1!–~3! have been used to deriv
the generalized two-fluid hydrodynamic equations in
collision-dominated region described by a local-equilibriu
Bose distribution@3,18#. They also have been recently us
to give a detailed analysis of condensate growth by quen
ing the thermal cloud distribution@19#. In these papers, Eqs
~1!–~3! are solved with both the condensate and noncond
sate being treated dynamically and allowed to be out of e
librium. The key limitation of the present paper is that w
only consider the dynamics of the condensate, with the th
mal cloud being in static equilibrium. This assumption
lows a simple theoretical development and should be
equate for out-of-phase modes. The key role of
condensate and noncondensate being out of diffusive e
librium was first stressed in a series of papers by Gard
and co-workers@4,20#. These were based on a kinet
Master-equation formalism quite different from what we u
and no application was made to the damping of conden
collective modes.

It is important to understand what is meant by thecolli-
sionless regimeand to clarify how this terminology relates t
the present paper. AboveTBEC ~whereC1250), Eq. ~3! re-
duces to the Boltzmann equation describing a normal
@15,16#. In this case, the collisionless region is well defin
and corresponds to havingv itcl@1, where v i is the
collective-mode frequency of the gas, on the order of the t
frequency, andtcl can be approximated by the mean tim
between collisions described by the classical Boltzmann
lision integralC22. In static equilibrium, this collision rate
for a uniform gas is given by

1

tcl
5A2ns v̄, ~4!

wheren is the density of atoms,s58pa2 is the quantum
collision cross section, andv̄ is the average speed of an ato
in the gas. Both above and belowTBEC, the analogous col-
lision time corresponding to collision processes described
C22 in Eq. ~3! will give an estimate of the lifetime of a
single-particleexcitation in the thermal cloud. This is dis
tinct from the physics given byC12, which describes the
collisions of condensate atoms with atoms from the ther
cloud. In particular, one finds that if the thermal cloud
described by the equilibrium Bose distribution (f 5 f 0), then
C22@ f 0,F#50 butC12@ f 0,F#Þ0. ThusC12 will give rise to
damping of condensate oscillations even when the ther
cloud is treated statically. Of course, in the collisionless
gion, there is another source of damping arising from
dynamical mean-field coupling between the condensate
thermal cloud that is also included in Eq.~1! and~3!; this is
Landau damping@7–14#, which will be discussed below.

A. Static Popov approximation

In the present paper, we use these equations to calc
the damped normal modes of the condensate given by
02361
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solutions of Eq.~1! assuming that the noncondensate ato
always remain in static thermal equilibrium. For our mod
this means we take

f ~p,r ,t !. f 0~p,r !5
1

expb@p2/2m1U0~r !2m̃0#21
,

~5!

where m̃0 is the equilibrium chemical potential of the non
condensate andU0(r )5Uext(r )12g@nc0(r )1ñ0(r )#. The
detailed analysis given by ZNG shows that the Bose-Eins
distribution in Eq.~5! is a stationary solution to Eq.~3! when
the condensate and noncondensate are in diffusive equ
rium, which requiresm̃05mc0, wheremc0 is the equilibrium
chemical potential of the condensate as described by Eq.~1!.

Using our finiteT ‘‘static Popov’’ approximation, Eq.~1!
can be simplified to

i\
]F

]t
5F2

\2

2m
¹21Uext1gnc12gñ02 i\R0GF, ~6!

which describes the condensate motion within the static th
mal cloud. Hereñ0 is the equilibrium density of the noncon
densate and the damping termR0 is calculated using

G12
0 ~r ,t ![E dp

~2p\!3
C12@ f 0~p,r !,F~r ,t !#. ~7!

Notice that G12
0 (r ,t) depends on time now only throug

F(r ,t). Using the explicit general expression forC12 given
in Eq. ~23b! of ZGN, one finds~see also Ref.@4#!

G12
0 ~r ,t !5

nc~r ,t !

t12~r ,t !
@e2b@m̃02«c~r ,t !#21#, ~8!

where we have defined theC12 collision time

1

t12~r ,t !
[

2g2

~2p!5\7E dp1E dp2E dp3d~pc1p12p22p3!

3d~«c1 «̃p1
2 «̃p2

2 «̃p3
!~11 f 1

0! f 2
0f 3

0 . ~9!

Here the condensate atom local energy is«c(r ,t)5mc(r ,t)
1 1

2 mvc
2(r ,t) with the nonequilibrium condensate chemic

potential

mc~r ,t !52
\2

“

2Anc

2mAnc

1Uext1gnc12gñ0 . ~10!

The condensate atom momentum ispc5mvc , and f i
0

5 f 0(r ,pi). We have introduced the usual condensate vel
ity defined in terms of the phaseu of the condensate
F(r ,t)5Anc(r ,t)expiu(r ,t) as vc5\“u(r ,t)/m. A closed
set of equations forF(r ,t) is given by Eq.~6! and its com-
plex conjugate combined with Eqs.~8!–~10!.
2-2
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DAMPING OF CONDENSATE COLLECTIVE MODES DUE . . . PHYSICAL REVIEW A 63 023612
We note that in terms ofnc andvc , Eq. ~6! is completely
equivalent to the coupled equations@3#

]nc

]t
1“•~ncvc!52G12

0 @ f 0,F#,

~11!

mS ]

]t
1vc•“ D vc52“mc .

It is easy to see from Eq.~8! that when the condensate is
equilibrium with the thermal cloud according tomc→mc0

5m̃0 , G12
0 (r ,t) then vanishes. It is clear that the descripti

of the system given by Eqs.~5! and ~6!, or equivalently Eq.
~11!, is valid only if the condensate is slightly perturbed fro
equilibrium and the condensate motion is essentially
coupled from that of the thermal cloud, which we can th
treat statically. In order to describe the condensate osc
tions about equilibrium, we use the quantum hydrodynam
variablesnc(r ,t)5nc0(r )1dnc(r ,t) and vc(r ,t)5dvc(r ,t),
where nc0(r ) is the equilibrium density of the condensa
with the associated equilibrium chemical potentialmc0. Al-
ternatively, one may work with the fluctuations ofF(r ,t)
and derive coupled Bogoliubov equations@21,23,24# gener-
alized to include the effect of theR0 damping term. This
generalization will be discussed elsewhere@22#.

B. Finite-T Stringari wave equation

From Eq.~11!, we can obtain linearized equations of m
tion for the condensate fluctuationsdnc anddvc . We use the
fact that, to lowest order in the fluctuations from static eq
librium, Eq. ~8! reduces to

dG12
0 5

bnc0~r !

t12
0 ~r !

dmc~r ,t !, ~12!

where the ‘‘equilibrium’’ C12 collision rate is defined by

1

t12
0 ~r !

[
2g2

~2p!5\7E dp1E dp2E dp3d~p12p22p3!

3dS p1
22p2

22p3
2

2m
2gnc0D ~11 f 1

0! f 2
0f 3

0. ~13!

In the present paper, we restrict ourselves to the Thom
Fermi limit, valid for largeNc ,

]dnc

]t
1“•~nc0dvc!52

1

t8
dnc , ~14!

m
]dvc

]t
52g“dnc . ~15!

The collision timet8(r ) describes collisions between th
condensate and noncondensate atoms when the condens
perturbed away from equilibrium,
02361
-
n
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1

t8~r !
5

gnc0~r !

kBT

1

t12
0 ~r !

. ~16!

In the TF approximation the equilibrium distribution reduc
to f i

05@expb(pi
2/2m1gnc0)21#21. The new term on the

right-hand side of Eq.~14! causes damping of the condensa
fluctuations due to the lack of collisional detailed balan
between the condensate and the static thermal cloud.
note that this collision time is only a function ofr through its
dependence on the static condensate densitync0(r ). Plots of
1/t8(r ) will be discussed below.

We can easily combine Eqs.~14! and~15! to obtain what
we shall refer to as the finiteT Stringari wave equation

]2dnc

]t2 2
g

m
“•~nc0“dnc!52

1

t8

]dnc

]t
. ~17!

Equation~17! is the main result of this paper. If we negle
the right-hand side, we obtain the undamped finiteT Strin-
gari normal modesdnc(r ,t)5dni(r )exp(2ivit) given by the
solution of @6#

2
g

m
“•@nc0~r !“dni~r !#5v i

2dni~r !. ~18!

As has been noted by several authors in recent pa
@11,12,23#, nc0(r ) at finite T can be well approximated by
the TF condensate profile atT50 but with the number of
atoms in the condensateNc(T) now being a function of tem-
perature, since the static mean field of the nonconden
plays such a minor role. With this approximation fornc0(r ),
the solutions of the finiteT Stringari equation~18! will be
identical to those atT50, since theT50 Stringari frequen-
cies do not depend on the magnitude ofNc . Of course, as
shown by calculations solving the coupled Bogoliubov eq
tions @24,23#, the TF approximation breaks down whenNc
&104. Thus the condensate collective mode frequencies
always become temperature dependent close toTBEC, where
the TF approximation is no longer valid. We generalize o
present discussion to deal with this region in Ref.@22#.

We can use the undamped Stringari modes as a basi
to solve Eq.~17! and find the damping of these modes. Wr
ing dnc(r )5( icidni(r ), and using the orthogonality cond
tion *drdni(r )dnj (r )5d i j , one obtains the following alge
braic equations for the coefficientsci

v2ci5v i
2ci2 iv(

j
g i j cj , ~19!

where

g i j [E drdni~r !dnj~r !/t8~r !. ~20!

Assuming the damping is small~we are in the collisionless
region!, Eq. ~19! is easily solved using perturbation theo
by settingg i j 50 for iÞ j . This gives the damped Stringa
frequency~to lowest order! V i5v i2 iG i , with
2-3
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J. E. WILLIAMS AND A. GRIFFIN PHYSICAL REVIEW A 63 023612
G i[
g i i

2
5 1

2 E dr
dni~r !2

t8~r !
. ~21!

This result forG i is reasonable, namely, it involves an ave
age over 1/t8(r ) weighted with respect to the undampe
density fluctuations of the Stringari wave equation~18!. We
find that coupling to other modes (g i j Þ0) is extremely
small.

III. RESULTS

A. Homogeneous gas

Before treating the trapped gas, it is useful to first ap
our theory to a homogeneous gas, which was considered
viously in Ref. @25# in connection with the collision-
dominated hydrodynamic region. For a homogeneous gast8
is independent of position and then Eq.~21! reduces toG i
51/2t8. Although our model in the present paper appl
only to the collisionless region, it is useful to compare t
intercomponent collision time in both the collisionless a
hydrodynamic regimes. In ZNG, it was shown that the int
component collision timetm in the hydrodynamic region is
given by tm5st8, where the temperature-dependent fac
s ~not to be confused with the collision cross section! de-
pends on various thermodynamic functions. In Fig. 1
compare 1/t8 and 1/tm as functions ofT. We see thats
dramatically alters the intercomponent relaxation rate 1tm
appropriate to the hydrodynamic regime, as compared
1/t8 involved in the collisionless regime. For completene
in Fig. 1 we also plot the often-used classical collision tim
given by Eq.~4! as well ast12

0 defined in Eq.~13!.
In a uniform Bose gas at finite temperatures, the Lan

damping (v5cq2 iGL) of condensate modes has be
evaluated in several recent papers@8–14#. Working within
the full second-order Beliaev approximation, one finds

GL5S 3p

8 D akBTq

\
. ~22!

FIG. 1. Collision rates in a homogeneous Bose-condensed
normalized to the collision rate of a classical gas at the Bo
Einstein condensation transition temperaturetcl

21(TBEC). We have
takengn50.1kBTBEC, wheren is the total density. See also Ref
@25,26#.
02361
y
re-

s

-

r

e

to
,

u

This is clearly quite different from our intercompone
damping G51/2t8, as plotted in Fig. 1. Landau dampin
originates from the interaction of a condensate collect
mode with the excitations of the thermal cloud but is n
associated withC12 collisions, which give rise tot8.

In the context of our generalized GP equation in Eq.~1!,
Landau damping comes from the fluctuations in the therm
cloud induced by the condensate mean field,

dñ5x̃0~2gdnc!. ~23!

In the finite temperature region of interest,x̃0 can be ap-
proximated as the density response function of a noninter
ing gas of atoms with a spectrum«̃p and chemical potentia
mc0. For a uniform gas, one sees that using Eq.~23! in Eq.
~1!, with R50, gives condensate modes satisfyingv2

5c2q2(114gx̃0) and thusv5cq2 iGL , where

GL52gcq Im x̃0~q,v5cq!. ~24!

Evaluating Imx̃0 in the limit of small q @7#, one findsGL
5 4

3 akBTq/\. Apart from the slightly larger numerical coef
ficient, this agrees with the exact result given in Eq.~22!
@27#.

B. Trapped gas

We now turn to explicit calculations of the intercomp
nent damping rate using our model for a trapped gas
order to calculateG i for a given mode, the equilibrium
chemical potential mc05m̃0 must be calculated self
consistently for a given total numberN of atoms at a given
temperatureT. In the TF approximation, the procedure
straightforward~see, e.g., Ref.@28#!. In the following, we
consider a harmonic trap with axial symmetryUext(r )
5 1

2 mvr
2(r21l2z2), wherel5vz /vr is the anisotropy pa-

rameter. In the TF approximation, the condensate den
takes the explicit formnc05@mc02mvr

2(r21l2z2)/2#/g
within the TF radius, and the condensate chemical poten
is mc05 1

2 \vr@15lNca/r0#2/5, where r05A\/mvr. The
form of the Stringari normal modesdni(r ) is given explicitly
in the literature@6,21#. We mainly consider the breathin
mode (n51,l 50) for which v105A5vr , for l51.

We choose experimentally accessible parameters in
following calculations for the collisionless region. Howeve
we do not compare our results to the two available exp
ments on damping of normal modes at finiteT, since the TF
approximation is not valid for most of the data of Ref.@29#,
and the experiment described in Ref.@30# is approaching the
collision-dominated hydrodynamic limit where the dynami
of the condensate and noncondensate become more stro
coupled. For87Rb the scattering length isa.5.7 nm @31#.
We first consider a spherically symmetric trapl51, with
trap frequencyn r510 Hz, and we takeN523106. In the
collisionless limit, we requirev itcl@1, takingtcl as defined
in Eq. ~4!. For a trapped gas, we obtain an upper limit
1/tcl by taking the density in the center of the trapn(r 50),
which gives 1/tcl58a2Nvr

3m/(pkBT). For the parameters

s,
-

2-4
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we use,v10tcl'19 ~compared tov02tcl'20 for the data of
Ref. @29#, andv02tcl'2 for the data of Ref.@30#!.

In Fig. 2~a! we plot 1/t8(r ) vs position forT50.9TBEC
and T50.5TBEC. We see that the collision rate increas
steadily up to the condensate boundary, but asT increases,
1/t8(r ) becomes relatively constant. The behavior of 1/t8(r )
just seems to be mimicking the behavior of the noncond
sate densityñ(r ), which we plot in the inset of Fig. 2~b!
along with the condensate density. The condensate m
field pushes the noncondensate density out of the cente
the trap, a well-known result@21#. We also show the breath
ing mode density fluctuation in Fig. 2~b!. The sharp cusp o
ñ(r ) and the sudden drop ofdni(r ) and 1/t8(r ) at the con-
densate boundary are all unphysical artifacts of the TF
proximation. Inclusion of the kinetic-energy pressure in
more accurate calculation would have the effect of smoo
ing out this behavior at the boundary. To illustrate the eff
of the kinetic-energy pressure, we also show in Fig. 2~b! the
breathing mode obtained by solving theT50 coupled Bogo-
liubov equations. We estimate that an improved treatm
which includes the kinetic-energy pressure, will modify o
estimate ofG10 by about 10– 20 %@22#.

In Fig. 3~a! we plot the damping rateG10 for the breathing
mode (n51, l 50) shown in Fig. 2~b! as a function of tem-
perature up toT50.95TBEC, whereNc'73104. At higher
temperatures, the Thomas-Fermi approximation will star
break down and the mode frequencies become tempera
dependent@24,23#.

Landau damping of condensate modes in trapped g
has also been discussed in some detail in recent pa

FIG. 2. Positional dependence of various quantities. In~a! we
plot 1/t8(r ) normalized by its value at the TF radiusRTF . In ~b! we
show the density fluctuationdn10 of the Stringari breathing mode
~solid! for a spherically symmetric trap. We also show the ex
T50 Bogoliubov mode~dashed! for Nc(T50.9TBEC)52.33105.
Both solutions are normalized to unity,*dn10

2 (r )dr51. The densi-
ties of the condensate and thermal cloud are plotted in the inse
T50.9TBEC.
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@10,12#. These papers give results that are in qualitat
agreement with the expression for a uniform gas in Eq.~22!,
with q5vr /c and evaluating the Bogoliubov sound veloci
c for the density at the center of the trap@9#. This simple
estimate for Landau damping is plotted in Fig. 3 for com
parison. We note that it is larger but comparable to the
tercomponent collisional damping that we consider. Clea
a fully satisfactory theory of finiteT damping of normal
modes must includeboth Landau damping as well as th
damping we consider in this paper due to the conden
being out of diffusive equilibrium with the noncondensate

Our theory is easily applied to anisotropic traps. In F
3~b! we show the damping ofm50, 2 quadrupole modes fo
an axially symmetric trap withl5A8. Here we choose a
slightly tighter trapn r523 Hz, and we takeN513106 ~in
this case,Nc'33104 at T50.95TBEC). For these param-
eters, we findv20tcl'6. In Fig. 3~b! we see that Landau
damping is about twice as large as our intercomponent
lisional damping.

It is instructive to also consider the dependence of
mode dampingG i on the total populationN. In Fig. 4, we
show a shaded surface plot ofG10 for the breathing mode in
an isotropic trap as a function ofT andN. The white line at
N523106 corresponds to the solid line plotted in Fig. 3~a!.
As one might expect, the intercomponent damping rate
creases with increasing total population~since the density is
increasing!. It is also important to realize that in current e
periments, the data taken is for a broad range ofN due to

t

or

FIG. 3. Normal-mode damping rates vs temperature. In th
plots, the damping rates are normalized by their correspond
mode frequencies and we only plot up toT50.95TBEC, above
which the Thomas-Fermi approximation will start to break down.
~a! we show the damping rate for the breathing mode (n51, l
50) of a spherically symmetric trap, where the solid line cor
sponds to intercomponent collisional damping given in Eq.~21!. In
~b! we show damping rates for the quadrupole modes (n50, l
52) in a cylindrical trap. The solid line is for them50 mode and
the dot-dashed line is form52.
2-5
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evaporative cooling losses@29,30#. The idealized fixed-N
line can never be achieved in practice and one is inst
dealing with a curve like the longer line on the surface
Fig. 4.

IV. CONCLUSION

In summary, we have calculated a new damping mec
nism of condensate collective modes due to collisions w
the thermal cloud, based on the finite-T equations derived in
Ref. @3#. The essential mechanism involves the lack of d
fusive equilibrium between the condensate and the ther
cloud @4#, which also plays a key role in the theory of co
densate growth@19,20#. Here we have carried out the firs

FIG. 4. Damping rate vsT and totalN of the breathing mode
Here we plot the surface ofG10 and its contours projected onto th
plane below. The solid white line atN523106 corresponds to the
solid line plotted in Fig. 3~a!. The longer line illustrates that in
experiments,N decreases as the temperature is lowered due
evaporative cooling. The upper edge of the surface correspond
the critical temperature (kBTBEC/\vr)50.94N1/3, above whichG10

vanishes.
ev

s.

t/

n
.

02361
d

a-
h

-
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explicit calculation of this damping mechanism for a trapp
gas in the collisionless regime~this intercomponent damping
has recently also been evaluated in the collision-domina
hydrodynamic regime@32#!. In recent discussions of th
damping of condensate collective modes in the collisionl
region, the mechanism we consider is omitted. One inst
focuses on the dynamical mean-field coupling between
condensate and thermal cloud, which gives rise to Lan
and Beliaev damping@7–14#. While we have not considere
it in detail, we have indicated how we could include Land
damping by considering the noncondensate fluctuations
Eq. ~1! induced by the condensate mean field@11#. Compar-
ing Landau damping to the additional mechanism we h
calculated, we find that the two are comparable in size. F
ther experimental studies of the collective modes at fin
temperatures are needed to clarify the relative importanc
these different sources of damping.

In this paper, we have argued that a good first estimat
the intercomponent damping of condensate collective mo
can be obtained by coupling it to a static thermal cloud.
more systematic theory is clearly desirable in which the c
lisionless dynamics of the thermal cloud are allowed f
However, as noted in the introduction, we do not believe t
this will lead to significant corrections to the intercompone
damping of out-of-phase condensate modes in which the
tion of the thermal cloud is not significant. In future wor
we hope to discuss the damping due toC12 collisions of
collective modes that mainly involve the motion of the the
mal cloud, with the condensate being treated statically.
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