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Damping of condensate collective modes due to equilibration with the noncondensate
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We consider the damping of condensate collective modes in the collisionless regime at finite temperatures
arising from lack of equilibrium between the condensate and the noncondensate atoms, an effect that is ignored
in the usual discussion of the collisionless region. As a first approximation, we ignore the dynamics of the
thermal cloud. Our calculations should be applicable to collective modes of the condensate that are oscillating
out-of-phase with the thermal cloud. We obtain a generalized Stringari equation of motion for the condensate
at finite temperatures, which includes a damping term associated with the fact that the condensate is not in
diffusive equilibrium with the static thermal cloud. This intercomponent collisional damping of the condensate
modes is comparable in magnitude to the Landau damping considered in the recent literature.
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I. INTRODUCTION Kohn mode at the trap frequency.
The collective oscillations of a condensate at zero tem- Il. DERIVATION OF MODEL

peratureT =0 are well described by the solutions of the lin- . L . ) .
earized Gross-PitaevskiGP) time-dependent equation of Qur starting point is the finitd generalized GP equation
motion for the condensate wave functidn(r,t). At finite  derived by ZNG(see also Refd1] and[2])

temperatures, the condensate dynamics is modified by inter-
actions with the noncondensate atoms in the thermal cloud,
which has the effect of renormalizing and damping the con-
densate oscillations. Recently the coupled dynamics of the ) ) ) )
condensate and the thermal cloud has been the subject Wf1€re the interaction parametgr=4wm#°a/m, a is the
several theoretical studi¢s—5]. Such calculations lead to a s-wave scattering lengtm(r,t)=|®(r,t)|%, andn(r,t) is
generalized GP equation fab(r,t) and some appropriate the noncondensate local density. The damping term in Eq.
Boltzmann-like kinetic equation describing the dynamics of(1) is given byR(r,t)=1I",(r,t)/2n.(r,t), with

the noncondensate atoms. In the present paper, we make use

of the recent formulation of Zaremba, Nikuni, and Griffin dp

(ZNG) [3] to discuss a new kind of damping of condensate Fao(r,t)= f ———Cyd f(p,r, 1), d(r,1)]. (2

o ; -~ (27h)
oscillations that arises from collisions between the conden-
sate and noncondensate components. In contrast td Ref.
which discussed the collision-dominated hydrodynamic re
gime, here we discuss the collisionless regime. Within th
well-known Thomas-FermiTF) approximation, we derive a
generalized Stringari wave equation describing the conde
sate normal modek6] that is valid at finiteT and includes
damping due to the fact that the condensate is not in equilib-
rium with the thermal cloud. This new source of damping is
in addition to the usual Landau and Beliaev damping consid-
ered in the collisionless region at finife[7—14).

Our theory can be used to generalize any discussion bas
on the usual GP equation &=0. This simplicity is due to
our neglect of any dynamics of the thermal cloud. Available
studies of collective modgls3] at finite T suggest that, for
any given mode symmetry, one mode mainly involves mo
tion of the condensatevith a small out-of-phase motion of

IfLWZ

P he -
—mV +Ugetgn.+2gn—iaR|®, (1)

This involves the collision integral, f,®] describing col-
lisions of condensate atoms with the thermal atoms, which
&lso enters the approximate semiclassical kinetic equation for
the single-particle distribution functioh(p,r,t) (valid for
r|<'BT>gnCO andkgT>% wg)

p
ST Ve f=VUV i=Cf f,@]+Cxdf].  (3)

re the collision integraC,, f ] describes binary collisions
etween noncondensate atoms. It does not change the num-
ber of condensate atoms and hence dusppear explicitly
in Eq. (1). These coupled equatioli¥)—(3), along with Egs.
(239 and (23b) of Ref. [3] defining the collision integrals
C,, andC,,, were derived in the semiclassical approxima-

the noncondensateThis mode is a natural extension of the tion. 'Hoyvever, they are expected to contain all the essential
T=0 oscillation of a pure condensate and should be dephys'cs.'r.] trapped Bose-condense_d gases at fhibe both
scribed by our theory. The other mode, of the same symmet-he coII|5|onIes§ and hydrodynamic domains. Th_ey assume
try, mainly involves the motion of the thermal clodith a that the at(?ms in the thermal cloud are wsll—descrlbed by the
small in-phase motion of the condengaaed can be viewed Single-particle  Hartree-Fock spectrumap(r,t)ipZ/Zm

as the natural extension of the oscillations above the criticalt U(r,t), where U(r,t)=Ugr)+2g[n.(r,t)+n(r,t)].
temperatureTgee [15,16. Our present calculations do not We expect this semiclassical description to break down only
apply to such “normal-fluid” oscillations, which include the for very low temperatures where the Bogoliubov excitation
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spectrum is more appropriafé7]. Our entire discussion is solutions of Eq.(1) assuming that the noncondensate atoms
within what is called the Popov approximation in that we always remain in static thermal equilibrium. For our model,
have ignored all effects associated with the anomalous pathis means we take

correlationsm(r,t) = ((r,t) %(r,t)).

The coupled equationd)—(3) have been used to derive f(p,r,H)=f%p,r)= 1 _ ,
the generalized two-fluid hydrodynamic equations in the expBp?/2m—+Uqy(r)— uo]l—1
collision-dominated region described by a local-equilibrium (5)

Bose distribution 3,18]. They also have been recently used
to give a detailed analysis of condensate growth by quenchwhere y, is the equilibrium chemical potential of the non-
ing the thermal cloud distributiofL9]. In these papers, Egs. condensate andJo(r) = U o (1) + 29[ Neo(r) + No(r)]. The

(1)—(3) are solved with both the condensate and nonconderygajled analysis given by ZNG shows that the Bose-Einstein
sate being treated dynamically and allowed to be out of equig;stribution in Eq.(5) is a stationary solution to E¢3) when

librium. The key limitation of the present paper is that we he condensate and noncondensate are in diffusive equilib-
only consider the dynamics of the condensate, with the therfium which requires,.— where is the equilibrium
mal cloud being in static equilibrium. This assumption al- ’ quIreSLo= Lo, Ko d

lows a simple theoretical development and should be ad(-:hem'Cal potential of the condensate as described byIq.

equate for out-of-phase modes. The key role of the Using our finiteT “static Popov” approximation, Eq(1)

condensate and noncondensate being out of diffusive equ?—an be simplified to

librium was first stressed in a series of papers by Gardiner o 72

and co-workers[4,20]. These were based on a Kkinetic ih—:[ — — V24 Uyt gn.+2gny—ihiRy |®, (6)

Master-equation formalism quite different from what we use, ot 2m *

and no application was made to the damping of condensate

collective modes. which describes the condensate motion within the static ther-
It is important to understand what is meant by twdli- mal cloud. Hera, is the equilibrium density of the noncon-

sionless regimand to clarify how this terminology relates to densate and the damping teRy is calculated using

the present paper. AbovBsec (WhereC,,=0), Eq.(3) re-

duces to the Boltzmann equation describing a normal gas dp
[15,16. In this case, the collisionless region is well defined F(l)z(r,t)zf —3C12[f°(p,r),d>(r,t)]. (7
and corresponds to having;7y>1, where w; is the (2mh)

collective-mode frequency of the gas, on the order of the trap 0 )

frequency, andry can be approximated by the mean time Notice thatT';,(r,t) depends on time now only through
between collisions described by the classical Boltzmann col®(r,t). Using the explicit general expression 101, given
lision integralC,,. In static equilibrium, this collision rate in Ed. (230 of ZGN, one finds(see also Refl4])

for a uniform gas is given by

1 ror,t)= (1)
— =\2nov, (4) e 7121, 1)

Tel

wheren is the density of atomsy=8ma? is the quantum Where we have defined t@,, collision time

collision cross section, andis the average speed of an atom 1 22
in the gas. Both above and beldWgec, the analogous col- = B 7] dplf dpzf dp3d(pc+P1—P2—P3)
lision time corresponding to collision processes described byle(r’t) (2m)°h

Cy, in Eq. (3) will give an estimate of the lifetime of a
single-particleexcitation in the thermal cloud. This is dis-
tinct from the physics given b¥,,, which describes the
collisions of condensate atoms with atoms from the thermaHere the condensate atom local energy ir,t) = u(r,t)
cloud. In particular, one finds that if the thermal cloud is+%mv§(r,t) with the nonequilibrium condensate chemical
described by the equilibrium Bose distributiof=(f%), then  potential

C,J f0,®]=0 butC,4 f°,®]+#0. ThusC,, will give rise to

[efﬁ[ﬁo*%(r,t)]_l], 8)

X 8(8ctep, —Ep,—Ep ) (L+FFIFS. 9

damping of condensate oscillations even when the thermal #2v2\n, 5
cloud is treated statically. Of course, in the collisionless re- pe(rt)=———+Ugetgn.+2gn,. (10
gion, there is another source of damping arising from the 2m\/n—C

dynamical mean-field coupling between the condensate and
thermal cloud that is also included in Ed) and(3); thisis ~ The condensate atom momentum fg=mv,, and f’

Landau damping7-14], which will be discussed below.  =£O(r,p;). We have introduced the usual condensate veloc-
] o ity defined in terms of the phasé@ of the condensate
A. Static Popov approximation d(r,t)=/n.(r,t)expid(r,t) asv,=xaV(r,t)/m. A closed

In the present paper, we use these equations to calculaset of equations fo(r,t) is given by Eq.(6) and its com-
the damped normal modes of the condensate given by thglex conjugate combined with Eq&)—(10).
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We note that in terms af, andv., Eg.(6) is completely 1 gne(r) 1
equivalent to the coupled equatiofs = . (16)
7(r) kT 7o,r)

% +V-(nve)= _F(l)z[folq)], In the TF approximation the equilibrium distribution reduces

Jt to fi°=[exp,8(pi2/2m+gnco)—1]*1. The new term on the
11 right-hand side of Eq.14) causes damping of the condensate
m i+v Viv=—v fluctuations due to the lack of collisional detailed balance

a c ¢ Ke- between the condensate and the static thermal cloud. We

note that this collision time is only a function pthrough its

It is easy to see from E8) that when the condensate is in dependence on the static condensate dengifr). Plots of
equilibrium with the thermal cloud according f@,—ue  1/7'(r) will be discussed below. .
=70, TO(r,t) then vanishes. It is clear that the description /€ can easily combine Eqél4) and(15) to obtain what

of the system given by Eq¢5) and (6), or equivalently Eq. we shall refer to as the finit€ Stringari wave equation
(11), is valid only if the condensate is slightly perturbed from
equilibrium and the condensate motion is essentially un-
coupled from that of the thermal cloud, which we can then at?
treat statically. In order to describe the condensate oscilla-

tions about equilibrium, we use the quantum hydrodynamidequation(17) is the main result of this paper. If we neglect
variablesng(r,t) =ng(r) + ong(r,t) andvg(r,t)=4dv.(r,t), the right-hand side, we obtain the undamped fifit&trin-
where no(r) is the equilibrium density of the condensate gari normal modegn.(r,t) = én;(r)exp(—iwit) given by the

J%on, gv V8= 1 9én.
= “(NeeVéne) = ~a

(17)

with the associated equilibrium chemical potengial,. Al-  solution of[6]

ternatively, one may work with the fluctuations &f(r,t)

and derive coupled Bogoliubov equatiof#l,23,24 gener- _9¢. . _ 2o

alized to include the effect of thR, damping term. This mV [Neo(r)V oni(r)]= wf oni(r). (18

generalization will be discussed elsewhg2@].
As has been noted by several authors in recent papers

[11,12,23, n(r) at finite T can be well approximated by
the TF condensate profile &=0 but with the number of

From Eq.(11), we can obtain linearized equations of mo- atoms in the condensalé,(T) now being a function of tem-
tion for the condensate fluctuatiods, andév.. We use the perature, since the static mean field of the noncondensate
fact that, to lowest order in the fluctuations from static equi-plays such a minor role. With this approximation fog(r),

B. Finite-T Stringari wave equation

librium, Eq. (8) reduces to the solutions of the finitd Stringari equatior(18) will be
identical to those at =0, since theT=0 Stringari frequen-
5r2223r;°_f’(r)5ﬂc(r,t), (12)  cies do not depend on the magnitudeNyf. Of course, as
A1) shown by calculations solving the coupled Bogoliubov equa-
tions [24,23, the TF approximation breaks down whah
where the “equilibrium” C4, collision rate is defined by =<10* Thus the condensate collective mode frequencies will

always become temperature dependent cloSgte, where
2 the TF approximation is no longer valid. We generalize our
5ﬁ7f dplf dpzf dp3S(p1—P2—Pa) present discussion to deal with this region in Heg].
We can use the undamped Stringari modes as a basis set

to solve Eq(17) and find the damping of these modes. Writ-
(1+fDF93. (13 ing on(r)=3;c;n;(r), and using the orthogonality condi-
tion [dréni(r)dn;(r) = &;;, one obtains the following alge-
Sb_raic equations for the coefficients

1 _ 29
7,(r)  (2m)

pi—p3—p3
2m

X0 —0gNco

In the present paper, we restrict ourselves to the Thoma
Fermi limit, valid for largeN.,
wZCi = a)iZCi —i wz ’}/HCJ , (19)
aong :
ot

1
+V - (NgdV.)=——dng, (14
( c0 c) - c where

m&j:/C:—gV&Tc- (15 'yijEf dréni(ryon;(r)/7'(r). (20

Assuming the damping is smallve are in the collisionless
The collision time 7’ (r) describes collisions between the region, Eq. (19) is easily solved using perturbation theory
condensate and noncondensate atoms when the condensatbyissettingy;; =0 for i #j. This gives the damped Stringari
perturbed away from equilibrium, frequency(to lowest order ;= w;—IiTI";, with

023612-3



J. E. WILLIAMS AND A. GRIFFIN PHYSICAL REVIEW A 63 023612

3 ‘ ‘ ‘ 7 This is clearly quite different from our intercomponent
dampingI'=1/27", as plotted in Fig. 1. Landau damping
originates from the interaction of a condensate collective
mode with the excitations of the thermal cloud but is not
associated witlC 4, collisions, which give rise ta'.

In the context of our generalized GP equation in Eg,
Landau damping comes from the fluctuations in the thermal
cloud induced by the condensate mean field,

sn=Yxo(2g4n,). (23)

In the finite temperature region of interesty can be ap-
proximated as the density response function of a noninteract-

ing gas of atoms with a spectruE@, and chemical potential

FIG. 1. Collision rates in a homogeneous Bose-condensed gagtco- FO @ uniform gas, one sees that using &) in Eq.
normalized to the collision rate of a classical gas at the Bose{l), with R=0, gives condensate modes satisfying

Einstein condensation transition temperatufg(Tged). We have = c?q?(1+4gy,) and thusw=cq—il'| , where
takengh=0.1kgTgec, Wheren is the total density. See also Refs.
[25.28. I’ =2gcqImxo(q,0=caq). (24)
r=Xi_[ g oni(r)? (21) Evaluating Imy, in the limit of smallq [7], one findsI',
22 7 = zakgTq/%. Apart from the slightly larger numerical coef-

ficient, this agrees with the exact result given in E2R)
This result forl; is reasonable, namely, it involves an aver-[27].
age over 1#'(r) weighted with respect to the undamped
density fluctuations of the Stringari wave equatid8). We B. Trapped gas
find that coupling to other modesy(+#0) is extremely

small We now turn to explicit calculations of the intercompo-

nent damping rate using our model for a trapped gas. In
order to calculatel’; for a given mode, the equilibrium

chemical potential uo=m, mMust be calculated self-
A. Homogeneous gas consistently for a given total numbéf of atoms at a given

Before treating the trapped gas, it is useful to first applylemperatureT. In the TF approximation, the procedure is
our theory to a homogeneous gas, which was considered prétraightforward(see, e.g., Ref(28]). In the following, we
viously in Ref. [25] in connection with the collision- con5|deér a harmonic trap with axial symmettye,(r)
dominated hydrodynamic region. For a homogeneousdas, = zMw;(p”+\?z°), whereA=w,/w, is the anisotropy pa-
is independent of position and then 1) reduces tdl’; rameter. In the TF approximation, the condensate density
=1/27'. Although our model in the present paper appliestakes the explicit formngo=[co—maw’(p?+1?2%)/2]/g
only to the collisionless region, it is useful to compare thewithin the TF radius, and the condensate chemical potential
intercomponent collision time in both the collisionless andis uco= 3%, [ 15\N.a/po]?®, where py=fi/mw,. The
hydrodynamic regimes. In ZNG, it was shown that the inter-form of the Stringari normal mode;(r) is given explicitly
component collision timer,, in the hydrodynamic region is in the literature[6,21]. We mainly consider the breathing
given by 7,=o7’, where the temperature-dependent factormode (1=1,=0) for which w,o= \/§wp, forn=1.

o (not to be confused with the collision cross sec}icie- We choose experimentally accessible parameters in the
pends on various thermodynamic functions. In Fig. 1 wefollowing calculations for the collisionless region. However,
compare 1#' and 1k, as functions ofT. We see thatr  we do not compare our results to the two available experi-
dramatically alters the intercomponent relaxation ratg, 1/ ments on damping of normal modes at finftesince the TF
appropriate to the hydrodynamic regime, as compared tapproximation is not valid for most of the data of REZ9)],

1/7" involved in the collisionless regime. For completenessand the experiment described in REg0] is approaching the

in Fig. 1 we also plot the often-used classical collision timecollision-dominated hydrodynamic limit where the dynamics
given by Eq.(4) as well as73, defined in Eq.(13). of the condensate and noncondensate become more strongly

In a uniform Bose gas at finite temperatures, the Landagoupled. For®’Rb the scattering length ia=5.7 nm[31].
damping @=cq—il') of condensate modes has beenWe first consider a spherically symmetric trap=1, with
evaluated in several recent pap8s-14]. Working within  trap frequencyr, =10 Hz, and we takéN=2x1C°. In the
the full second-order Beliaev approximation, one finds collisionless limit, we requirev; 7> 1, taking as defined

in Eq. (4). For a trapped gas, we obtain an upper limit on
akgTq 29 1/7¢ by taking the density in the center of the tmar =0),
ho (22 which gives 1+c|=8a2Nwim/(7-rkBT). For the parameters

Ill. RESULTS

37
8

L=
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FIG. 2. Positional dependence of various quantities(@nwe FIG. 3. Normal-mode damping rates vs temperature. In these

plot 1/7'(r) normalized by its value at the TF radiBg¢. In (b) we plots, the damping rates are normalized by their corresponding
show the density fluctuatiodny, of the Stringari breathing mode mode frequencies and we only plot up 16=0.95Tzc, above
(solid) for a spherically symmetric trap. We also show the exactwhich the Thomas-Fermi approximation will start to break down. In
T=0 Bogoliubov mode(dashedl for Ny(T=0.9Tgeo) =2.3x 10P. () we show the damping rate for the breathing mode=(, |

Both solutions are normalized to unitfgn3(r)dr=1. The densi- =0) of a spherically symmetric trap, where the solid line corre-
ties of the condensate and thermal cloud are plotted in the inset f@ponds to intercomponent collisional damping given in 4). In
T=0.9Tggc- (b) we show damping rates for the quadrupole modes @, |

=2) in a cylindrical trap. The solid line is for thm=0 mode and
we use,w g7y~ 19 (compared towg,7,~20 for the data of the dot-dashed line is fan=2.

Ref.[29], and wg,7~2 for the data of Ref[30]).

In Fig. 2@) we plot 1/'(r) vs position forT=0.9Tsec  [10,17. These papers give results that are in qualitative
and T_= 0.5Tgec. We see that the collision rate increases agreement with the expression for a uniform gas in @8),
steadily up to the condensate boundary, bu ascreases, i q=w,/c and evaluating the Bogoliubov sound velocity
1/7'(r) becomes relatively constant. The behavior of i¢) ¢ for the density at the center of the trf®]. This simple
just seems t~o be mimicking the behavior of the noncondengstimate for Landau damping is plotted in Fig. 3 for com-
sate densityn(r), which we plot in the inset of Fig.(B)  parison. We note that it is larger but comparable to the in-
along with the condensate density. The condensate measrcomponent collisional damping that we consider. Clearly,
field pushes the noncondensate density out of the center ef fully satisfactory theory of finitélT damping of normal
the trap, a well-known resul21]. We also show the breath- modes must includédoth Landau damping as well as the
ing mode density fluctuation in Fig(?. The sharp cusp of damping we consider in this paper due to the condensate
n(r) and the sudden drop a@;(r) and 14'(r) at the con-  being out of diffusive equilibrium with the noncondensate.
densate boundary are all unphysical artifacts of the TF ap- Our theory is easily applied to anisotropic traps. In Fig.
proximation. Inclusion of the kinetic-energy pressure in a3(b) we show the damping ah=0, 2 quadrupole modes for
more accurate calculation would have the effect of smoothan axially symmetric trap withh = /8. Here we choose a
ing out this behavior at the boundary. To illustrate the effecslightly tighter trapy, =23 Hz, and we také&=1x10° (in
of the kinetic-energy pressure, we also show in Fitp) Zhe  this case,N.~3X10* at T=0.95Tgco). For these param-
breathing mode obtained by solving the=0 coupled Bogo- eters, we findw,y7y~6. In Fig. 3b) we see that Landau
liubov equations. We estimate that an improved treatmentglamping is about twice as large as our intercomponent col-
which includes the kinetic-energy pressure, will modify our lisional damping.
estimate ofl"; by about 10—209%22]. It is instructive to also consider the dependence of the

In Fig. 3(@) we plot the damping ratE,, for the breathing mode dampind’; on the total populatiomN. In Fig. 4, we
mode fi=1, | =0) shown in Fig. 2b) as a function of tem- show a shaded surface plot Bf, for the breathing mode in
perature up tor =0.95Tgec, WhereN.~7x 10*. At higher  an isotropic trap as a function dfandN. The white line at
temperatures, the Thomas-Fermi approximation will start tdN=2x 10 corresponds to the solid line plotted in FigaB
break down and the mode frequencies become temperatufs one might expect, the intercomponent damping rate in-
dependeni24,23. creases with increasing total populati(since the density is

Landau damping of condensate modes in trapped gaséscreasing. It is also important to realize that in current ex-
has also been discussed in some detail in recent papeperiments, the data taken is for a broad rangéNadue to
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0.05. o - explicit calculation of this damping mechanism for a trapped
00.04 e - T : i gas in the collisionless reginithis inFercompor}e_nt damp.ing

g 0.03d .o : has recently also been evaluated in the collision-dominated
Rl ; hydrodynamic regimdg32]). In recent discussions of the

;8-212 '''' o damping of condensate collective modes in the collisionless

: : region, the mechanism we consider is omitted. One instead

0 focuses on the dynamical mean-field coupling between the
‘ condensate and thermal cloud, which gives rise to Landau

and Beliaev dampin{7—14]. While we have not considered

it in detail, we have indicated how we could include Landau

160120 damping by considering the noncondensate fluctuations in
kg T/hv, 80 5 3 4 5 Eqg. (1) induced by the condensate mean figld|. Compar-
40 L 10°N ing Landau damping to the additional mechanism we have

calculated, we find that the two are comparable in size. Fur-
FIG. 4. Damping rate v§ and totalN of the breathing mode. ther experimental studies of the collective modes at finite
Here we plot the surface df,, and its contours projected onto the temperatures are needed to clarify the relative importance of
plane below. The solid white line &=2X10° corresponds to the these different sources of damping.
solid line plotted in Fig. 8). The longer line illustrates that in In this paper, we have argued that a good first estimate of
experiments,N decreases as the temperature is lowered due tghe intercomponent damping of condensate collective modes
evaporative cooling. The upper edge of the surface corresponds tan be obtained by coupling it to a static thermal cloud. A
the critical temperaturekg Tgec/fiw,) = 0.94N*?, above which'1o  more systematic theory is clearly desirable in which the col-
vanishes. lisionless dynamics of the thermal cloud are allowed for.
. . . . . However, as noted in the introduction, we do not believe that
evaporative cooling Io.sse@9{3(]. Th? idealized f|?<e(.N this will lead to significant corrections to the intercomponent
line can never be achleved In practice and one is Instea amping of out-of-phase condensate modes in which the mo-
dgalmg with a curve like the longer line on the surface "Ntion of the thermal cloud is not significant. In future work,
Fig. 4. we hope to discuss the damping due@g, collisions of
collective modes that mainly involve the motion of the ther-
IV. CONCLUSION mal cloud, with the condensate being treated statically.

In summary, we have calculated a new damping mecha-
nism of condensate collective modes due to collisions with
the thermal cloud, based on the finifeequations derived in
Ref. [3]. The essential mechanism involves the lack of dif- This work grew out of discussions with E. Zaremba about
fusive equilibrium between the condensate and the thermdhe role ofC, collisions in the collisionless region. We also
cloud[4], which also plays a key role in the theory of con- thank T. Nikuni for useful comments. This research was sup-
densate growth19,20. Here we have carried out the first ported by a grant from NSERC.
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