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Sonic black holes in dilute Bose-Einstein condensates
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The sonic analog of a gravitational black hole in dilute-gas Bose-Einstein condensates is investigated. It is
shown that there exist both dynamically stable and unstable configurations which, in the hydrodynamic limit,
exhibit behaviors completely analogous to that of gravitational black holes. The dynamical instabilities involve
the creation of quasiparticle pairs in positive and negative energy states. We illustrate these features in two
qualitatively different one-dimensional models, namely, a long, thin condensate with an outcoupler laser beam
providing an ‘‘atom sink,’’ and a tight ring-shaped condensate. We also simulate the creation of a stable sonic
black hole by solving the Gross-Pitaevskii equation numerically for a condensate subject to a trapping potential
which is adiabatically deformed. A sonic black hole could, in this way, be created experimentally with
state-of-the-art or planned technology.
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I. INTRODUCTION

Many investigations of dilute gas Bose-Einstein cond
sates are directed toward experimentally creating nontri
configurations of the semiclassical mean field, or to pred
ing the properties of such configurations in the presence
quantum fluctuations. Such problems are hardly peculia
condensates: the quantum neighborhoods of interesting
sical backgrounds are important areas of research in m
fields of physics. But ultracold dilute gases are so easy
manipulate and control, both experimentally@1# and theoreti-
cally @2#, that they may allow us to decipher less amena
systems by analogy. As an essay in such an applicatio
condensates, in this paper we discuss the theoretical fra
work and propose an experiment to create the analog
black hole in the laboratory and simulate its radiative ins
bilities.

It is now commonly believed, even in the context of e
ementary particle physics, that quantum field theory ari
from a still unknown underlying structure: it is an effectiv
dynamical theory, describing the low-energy limit of colle
tive phenomena of the underlying microscopic theory. Fr
this viewpoint, our description of~more! fundamental phe-
nomena, such as gravity or electromagnetism, is actu
similar to the theoretical descriptions of many phenomena
condensed matter. To understand superfluidity, supercon
tivity, or dilute Bose-Einstein condensation, we describe
dynamics of the system in terms of collective modes~quasi-
particles! whose typical size is much larger than the d
tances between the particles that constitute the underl
medium; but even electrons and photons must be consid
as quasiparticles of a deeper theory we do not yet know
this sense we may say that the major difference between
fundamental theories and those we use in condensed m
is that in the latter case the next microscopic level of desc
tion is actually well understood.

With this fundamental background in mind, it is not s
surprising that condensed matter analogs of nontrivial c
1050-2947/2001/63~2!/023611~13!/$15.00 63 0236
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figurations appearing in relativistic quantum field theor
and gravitation can be constructed. For example,3He was
proposed as a laboratory counterpart of high-energy par
physics. It was argued that, under appropriate conditio
excitations around the ground state of the system may
semble the particle spectrum of gauge theories of hi
energy physics@3#. These condensed-matter systems w
also used to simulate topological defects characteristic
gauge theories, and which are considered to have play
cosmological role in the early stages of the evolution of
universe such as monopoles and cosmic strings@3#.

The past decade witnessed an increasing interest in s
lating gravitational configurations and processes
condensed-matter systems in the laboratory. The key ob
vation was originally made by Unruh@4,5# and further ana-
lyzed by Visser@6,7#: phononic propagation in a fluid is
described by a wave equation which, under appropriate c
ditions, can be interpreted as propagation in an effective r
tivistic curved space-time background, the space-time me
being entirely determined by the physical properties of
fluid under study, namely, its density and flow velocity. U
ruh urged a specific motivation@4# for examining the hydro-
dynamic analog of an event horizon@8#, namely, that as an
experimentally and theoretically accessible phenomeno
might shed some light on the Hawking effect@9# ~thermal
radiation from black holes, stationary insofar as backreac
is negligible!. In particular, one would like to gain insigh
into the role in the Hawking process of ultrahigh frequenc
@5,10,11#.

An event horizon for sound waves appears in princi
wherever there is a surface through which a fluid flows at
speed of sound, the flow being subsonic on one side of
surface and supersonic on the other. There is a close ana
between sound propagation on a background hydrodyna
flow, and field propagation in a curved space-time; and
though hydrodynamics is only a long-wavelength effect
theory for physical~super!fluids, so also field theory in
curved space-time is to be considered a long-wavelength
©2001 The American Physical Society11-1
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proximation to quantum gravity@5,7#. Determining whether
and how sonic black holes radiate sound, in a full calculat
beyond the hydrodynamic approximation or in an actual
periment, can thus offer some suggestions about black-
radiance and its sensitivity to high-frequency physics~be-
yond the Planck scale!. The possibility that such high fre
quencies might have consequences for observably l
frequency phenomena is one of the main reasons that b
holes have deserved much attention: there is reason to ex
that an event horizon can act as a microscope, giving u
view into physics on scales below the Planck length. Thi
because modes coming from an event horizon are redsh
into the low-energy regime as they propagate out to be
served far away from the black hole. Conversely, if we ima
ine tracking the observed signal back towards its source,
closer we come to the horizon the shorter the wavelengt
the signal must be, until at the very horizon we must eit
reach infinite energy scales or encounter a breakdown in
eral relativity and quantum field theory in curved space-ti
@12#.

In understanding this problem, hydrodynamic a
condensed-matter analog of black holes may offer som
the experimental guidance otherwise difficult to obtain in
case of gravity@12#. Under appropriate conditions and a
proximations~which can be basically summarized in the r
quirement that the wavelengths of the perturbations be s
ciently large!, the propagation of collective fluctuation
~phonons! admits an effective general relativistic descriptio
in terms of a space-time metric. This long-wavelength
gime would correspond analogically to quantum field the
in curved space-time. The effective phonon metric may
scribe black holes, as in general relativity, and so a pho
Hawking effect may be possible; certainly the problem
arbitrarily high frequencies at the horizon is also present.
in this case, when at short wavelengths the metric appr
mation is no longer valid and a more microscopic theo
must be used instead, the accurate microscopic theory is
tually known. If the hydrodynamic system is a dilute Bos
Einstein condensate, the microscopic theory is actually t
table enough that we can make reliable calculations fr
first principles. As we will argue, trapped bosons at ultral
temperature can indeed provide an analog to a black-
space-time. Similar analogs were proposed in other conte
such as superfluid helium@13#, solid-state physics@14#, and
optics@15#, but the outstanding recent experimental progr
in cooling, manipulating, and controlling atoms@16# make
Bose-Einstein condensates an especially powerful tool
this kind of investigation.

The basic challenge of our proposal is to keep the trap
Bose-Einstein gas sufficiently cold and well isolated to ma
tain a locally supersonic flow long enough to observe
intrinsic dynamics. Detecting thermal phonons radiat
from the horizons would obviously be a difficult addition
problem, since such radiation would be indistinguisha
from many other possible heating effects. This further di
culty does not arise in our proposal, however, because
black-hole radiation we predict is not quasistationary,
grows exponentially under appropriate conditions. It sho
therefore be observable in the next generation of atom tr
02361
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and may also raise new issues in the theory of gravitatio
black holes.

In this paper, we extend and generalize the results of R
@17#, including a more detailed analysis of the model cons
ered there as well as a new qualitatively different case. T
paper is organized as follows. In Sec. II, we show how so
horizons in dilute Bose-Einstein condensates may appea
the hydrodynamic approximation, and discuss the regime
validity of such approximation, as well the validity of one
dimensional models. Section III is devoted to the study
sonic horizons in condensates subject to tight ring-sha
external potentials. We present numerical results show
that both stable and unstable black holes may be cre
under realistically attainable conditions in current or ne
future laboratories. We also study the nature of the dyna
cal instabilities that appear for certain configurations. In S
IV, we discuss a different configuration, namely, that of
sink-generated black hole in an infinite one-dimensional c
densate, and show that there also exist black-hole config
tions, although they are not stable. We summarize and c
clude in Sec. V. The Appendix is devoted to the issues
redundancy and normalization of the dynamically unsta
Bogoliubov modes~associated with complex eigenfreque
cies!.

II. SONIC BLACK HOLES IN CONDENSATES

A Bose-Einstein condensate is the ground state o
second-quantized many-body Hamiltonian forN interacting
bosons trapped by an external potentialVext(x) @2#. At zero
temperature, when the number of atoms is large and
atomic interactions are sufficiently small, almost all the
oms are in the same single-particle quantum stateC(x,t),
even if the system is slightly perturbed. The evolution ofC
is then given by the well-known Gross-Pitaevskii equatio
which in appropriate units can be written as

i\] tC5S 2
\2

2m
¹21Vext1

4pa\2

m
uCu2DC,

wherem is the mass of the individual atoms, anda is the
scattering length. The wave function of the condensate
normalized to the total number of atoms*d3xuC(x,t)u25N.

Our purposes do not require solving the Gross-Pitaev
equation with some given external potentialVext(x); our con-
cern is the propagation of small collective perturbations
the condensate, around a background stationary state

Cs~x,t !5Ar~x!eiq(x)e2 imt/\,

wherem is the chemical potential. Thus it is only necessa
that it be possible, in any external potential that can be g
erated, to create a condensate in this state. Indeed, m
realistic techniques for ‘‘quantum state engineering,’’ to c
ate designer potentials and bring condensates into spe
states, have been proposed, and even implemented suc
fully @16#; our simulations indicate that currently know
techniques should suffice to generate the condensate s
that we propose.
1-2
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SONIC BLACK HOLES IN DILUTE BOSE-EINSTEIN . . . PHYSICAL REVIEW A63 023611
Perturbations about the stationary stateCs(x,t) obey the
Bogoliubov system of two coupled second-order differen
equations. Within the regime of validity of the hydrodynam
~Thomas-Fermi! approximation@2#, these two equations fo
the density perturbation% and the phase perturbationf in
terms of the local speed of sound

c~x![
\

m
A4par~x!

and the background stationary velocity

v[
\

m
¹q

read

%̇52¹S m

4pa\
c2¹f1v% D , ḟ52v¹f2

4pa\

m
%.

Furthermore, low-frequency perturbations are essentially
waves of ~zero! sound. Indeed, the Bogoliubov equatio
may be reduced to a single second-order equation for
condensate phase perturbationf. This differential equation
has the form of a relativistic wave equatio
]m(A2ggmn]nf)50, with g5detgmn , in an effective
curved space-time with the metricgmn being entirely deter-
mined by the local speed of soundc and the background
stationary velocityv. Up to a conformal factor, this effectiv
metric has the form

~gmn!5S 2~c22v2! 2vT

2v 1 D .

This class of metrics can possess event horizons. Fo
stance, if an effective sink for atoms is generated at the c
ter of a spherical trap~such as by an atom laser out-couplin
technique@18#!, and if the radial potential profile is suitabl
arranged, we can produce densitiesr(r ) and flow velocities
v(x)52v(r )r /r such that the quantityc22v2 vanishes at a
radiusr 5r h , being negative inside and positive outside. T
sphere at radiusr h is a sonic event horizon completely anal
gous to those appearing in general relativistic black holes
the sense that sonic perturbations cannot propagate thr
this surface in the outward direction@4,5,7#. This can be seen
explicitly by writing the equation for the radial null geode
sics of the metricgmn ,

ṙ 652v6c,

which can be obtained from setting the proper intervalds2

5gmndxmdxn equal to zero, and restricting the allowed m
tion to the radial direction, so that

2~c22v2!12v ṙ 1 ṙ 250.

The ingoing null geodesicr 2(t) is not affected by the pres
ence of the horizon, and can cross it in a finite coordin
time t. The outgoing null geodesicr 1(t), on the other hand
needs an infinite amount of time to leave the horizon si
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ṙ 150 at the horizon. The physical mechanism of the so
black hole is quite simple: inside the horizon, the bac
ground flow speedv is larger than the local speed of soundc,
and so sound waves are inexorably dragged inward.

In fact there are two conditions which must hold for th
dragged sound picture to be accurate. Wavelengths la
than the black hole itself will of course not be dragged in, b
merely diffracted around it. Also, perturbations must ha
wavelengths

l@
p\

mc
,

p\

mcAu12v/cu
.

Otherwise they do not behave as sound waves, since the
outside the regime of validity of the hydrodynamic appro
mation. These short-wavelength modes must be describe
the full Bogoliubov equations, which allow signals to prop
gate faster than the local sound speed, and thus permit es
from sonic black holes. So, to identify a condensate stateCs
as a sonic black hole, there must exist modes with wa
lengths larger than these lower limits„which in terms of the
local healing length j(x)[\/@mc(x)# read l
@2pj, 2pj/Au12v/cu…, but also smaller than the black
hole size. Even if such an intermediate range does exist,
modes outside it may still affect the stability of the bla
hole, as discussed below.

As it stands, this description is incomplete. The cond
sate flows continually inward, and therefore atr 50 there
must be a sink that takes atoms out of the condensate.
erwise, the continuity equation¹(rv)50, which must hold
for stationary configurations, will be violated. From a phy
cal point of view, such a sink can be accomplished by me
of an outcoupler laser beam at the origin.~Such outcouplers
are the basic mechanisms for making trapped condens
into ‘‘atom lasers,’’ and they were already demonstrated
perimentally by several groups. A tightly focused laser pu
changes the internal state of the atoms at a particular poin
the trap, and can also be made to give them a large mom
tum impulse. This ejects them so rapidly through the alwa
dilute condensate cloud that they do not significantly dist
it; effectively, they simply disappear.!

We analyzed several specific systems which may be s
able theoretical models for future experiments, and fou
that the qualitative behavior is analogous in all of the
Black holes which require atom sinks are both theoretica
and experimentally more involved, however; moreov
maintaining a steady transonic flow into a sink may requ
either a very large condensate or some means of replen
ment. We will therefore first discuss an alternative config
ration which may be experimentally more accessible, a
whose description is particularly simple: a condensate i
very thin ring that effectively behaves as a periodic on
dimensional system~Fig. 1!. Under conditions that we will
discuss, the supersonic region in a ring may be bounded
two horizons: a black-hole horizon through which phono
cannot exit, and a ‘‘white-hole’’ horizon through which the
cannot enter. Then we will analyze another simple o
1-3
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L. J. GARAY, J. R. ANGLIN, J. I. CIRAC, AND P. ZOLLER PHYSICAL REVIEW A63 023611
dimensional model, of a long, straight condensate with
atom sink at the center~Fig. 2!.

The existence of instabilities that do not show up in t
one-dimensional approximation is an important question
condensate physics, which is under active theoretical
experimental investigation. The essential principles h
long been clear, inasmuch as the current dilute condens
really are the weakly interacting Bose gases that have b
used as toy models for superfluidity for several decades.
fact that actual critical velocities in liquid helium are gene
ally far below the Landau critical velocity is understood
be due partly to the roton feature of the helium dispers
relation, but this is not present in the dilute condensa
Viscosity also arises due to surface effects, however,
these may indeed afflict dilute condensates as well. The p
here is that in addition to the bulk phonon modes conside
by Landau, and quite adequately represented in our o
dimensional analysis, there may in principle be surfa
modes, with a different~and generally lower! dispersion
curve. If such modes exist and are unstable, it is very o
the case that, as they grow beyond the perturbative reg
they turn into quantized vortices, which can cut through
supercurrent and so lower it.

Whether or not such unstable surface modes actually e
in the Bogoliubov spectrum of a dilute condensate is an is

FIG. 1. The tight ring-shaped configuration, with both black a
white horizons, and no singularity. Arrows indicate condensate fl
velocity, with longer arrows for faster flow.

FIG. 2. The tight cigar-shaped configuration, with two blac
hole horizons and a ‘‘singularity’’ where the condensate is o
coupled. Arrows indicate the condensate flow velocity, with lon
arrows for faster flow.
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that was recently analyzed both numerically and analytica
and it is quite clear that such surface modes exist only if
confining potential is quite rough~which is not only easy to
avoid with a magnetic or optical trapping field, but very ha
to achieve! @19#, or if the condensate dynamics in the dire
tions perpendicular to the flow is hydrodynamic. That is, t
condensate must be at least a few healing lengths thick
that surface modes decaying on the healing length scale
satisfy all the required boundary conditions@20#. By saying
that we are considering an effectively one-dimensional c
densate, we mean precisely that this is not the case.
instance, for the tight-ring model, in this regime, the rad
trap scale is the shortest length scale in the problem, and
radial trap frequency is the highest frequency; this effectiv
means that excitations of nontrivial radial modes, includi
surface modes, are energetically frozen out.~In the limit of
radial confinement within the scattering length, our mod
breaks down for other reasons—but the scattering length
easily be two orders of magnitude smaller than the hea
length.! The issue of the supercurrent stability in tightly co
fined ring shaped traps was addressed in Ref.@21#, where the
authors arrived at a positive conclusion and also clarified
role of finite temperature and possible trap anisotropy.

III. SONIC BLACK ÕWHITE HOLES IN A RING

In a sufficiently tight ring-shaped external potential of r
dius R, motion in radial~r! and axial~z! cylindrical coordi-
nates is effectively frozen. We can then write the wave fu
tion asC(z,r ,u,t)5 f (z,r )F(u,t), and normalizeF to the
number of atoms in the condensate*0

2pduuF(u)u25N,
where with the azimuthal coordinateu we have introduced
the dimensionless timet5(\/mR2)t. The Gross-Pitaevski
equation thus becomes effectively one-dimensional,

i ]tF5S 2
1

2
]u

21Vext1
U
N

uFu2DF, ~1!

whereU[4paNR2*dzdrru f (z,r )u4, and Vext(u) is the di-
mensionless effective potential~in which we have already
included the chemical potential! that results from the dimen
sional reduction. The stationary solution can then be writ
asFs(u,t)5Ar(u)ei *duv(u), and the local dimensionless an
gular speed of sound asc(u)5AUr(u)/N. Periodic bound-
ary conditions around the ring require the ‘‘winding num
ber’’ w[(1/2p)*0

2pduv(u) to be an integer.
The qualitative behavior of horizons in this system is w

represented by the two-parameter family of condensate d
sities,

r~u!5
N

2p
~11b cosu!,

wherebP@0,1#. Continuity,]u(rv)50, then determines the
dimensionless flow-velocity field

v~u!5
UwA12b2

2pc~u!2
,

w

-
r

1-4
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which depends onw as a third discrete independent para
eter. Requiring thatFs(u,t) be a stationary solution to th
Gross-Pitaevskii equation then determines how the trapp
potential must be modulated as a function ofu. All the prop-
erties of the condensate, including whether and where it
sonic horizons, and whether or not they are stable, are
functions ofU, b, andw. For instance, if we require that th
horizons be located atuh56p/2, which imposes the relation
U52pw2(12b2), then we must havec22v2 positive for
uP(2p/2,p/2), zero atuh56p/2, and negative otherwise
provided thatU,2pw2. The further requirement that pertu
bations on wavelengths shorter than the inner and the o
regions are indeed phononic impliesU@2p, which in turn
requiresw@1 and 1@b@1/w2. In fact, a detailed analysi
shows thatw*5 is sufficient.

A. Stability

The mere existence of a black-hole solution does not n
essarily mean that it is physically realizable: it should also
stable over sufficiently long-time scales. Since stability m
be checked for perturbations on all wavelengths, the full B
goliubov @2# spectrum must be determined. For large bla
holes within large, slowly varying condensates, this Bogo
bov problem may be solved using WKB methods that clos
resemble those used for solving relativistic field theories
true black-hole space-times@11#. A detailed adaptation o
these methods to the Bogoliubov problem will be presen
elsewhere@22#. The results are qualitatively similar to thos
we found for black holes in finite traps with low windin
number, where we resorted to numerical methods becaus
these cases, WKB techniques may fail for just those mo
which threaten to be unstable.

Our numerical approach for our three-parameter family
black/white holes in the ring-shaped condensate has bee
write the Bogoliubov equations in discrete Fourier space,
then truncate the resulting infinite-dimensional eigenva
problem. Indeed, writing the wave funtion asF5Fs
1wei *duv(u), decomposing the perturbationw in discrete
modes

w~u,t!5(
v,n

e2 ivteinuAv,nuv,n~u!

1eiv* te2 inuAv,n* vv,n* ~u!,

and substituting into the Gross-Pitaevskii equation, we
tain the following equation for the modesuv,n andvv,n :

vS uv,n

vv,n
D 5(

p
S hnp

1 f np

2 f np hnp
2 D S uv,p

vv,p
D .

In this equation,

f np5
1

2pE0

2p

due2 i (n2p)uc~u!2,
02361
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6 56

n2

2
dnp1

1

2pE0

2p

due2 i (n2p)u

3Fpv~u!2
1

2
v8~u!6S c~u!21

1

2

c9~u!

c~u! D G ,
which, after some lengthy calculations, can be written as

f np5
U

2p S dn,p1
b

2
dn,p111

b

2
dn,p21D ,

hnp
6 5

1

2
~n1p!wA12b2an2p

6S f np1
4n221

8
dn,p1

12b2

8
bn2pD ,

where

a i5 (
j >u i u, i 1 j even

` S 2b

2 D j S j

~ i 1 j !/2D ,

b i5 (
j >u i u, i 1 j even

` S 2b

2 D j S j

~ i 1 j !/2D ~ j 11!.

Eliminating Fourier components above a sufficiently hi
cutoff Q has a negligible effect on possible instabilitie
which can be shown to occur at relatively long wavelengt
We then face an eigenvalue problem for the 2(Q11)
32(Q11) matrix built out of blocks of the form

S hnp
1 f np

2 f np hnp
2 D .

.

The numerical solution to this eigenvalue equation,
gether with the normalization condition*du(uv* ,n

* uv8,n8
2vv* ,n

* vv8,n8)5dnn8dvv8 , provides the allowed frequen
cies. Real negative eigenfrequencies for modes of posi
norm are always present, which means that black-hole c
figurations are energetically unstable, as expected. This
ture is inherent in supersonic flow, since the speed of so
is also the Landau critical velocity. In a sufficiently cold an
dilute condensate, however, the time scale for dissipa
may in principle be made very long, and so these energ
instabilities need not be problematic@23#.

More serious are dynamical instabilities, which occur f
modes with complex eigenfrequencies. Since the Bogoliu
theory is based on a quantized Hamiltonian that is Hermiti
there are certainly no complex energy eigenvalues; but
natural frequencies of normal modes can indeed be com
@in which case the usual rule, that energy eigenvalues
\(n11/2) times the mode frequencies, simply breaks dow#.
A detailed discussion of the quantum mechanics of dyna
cal instability is presented in the Appendix; for the purpos
of our main discussion it suffices to note that compl
~mode! eigenfrequencies are indeed genuine physical p
nomena, and by no means a numerical artifact. For su
1-5
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cently high values of the cutoff~e.g.,Q>25 in our calcula-
tions!, the complex eigenfrequencies obtained from
truncated eigenvalue problem become independent of
cutoff within the numerical error. The existence and rapid
of dynamical instabilities depend sensitively on (U,b,w). For
instance, see Fig. 3 for a contour plot of the maximum of
absolute values of the imaginary part of all eigenfrequenc
for w57, showing that the regions of instability are lon
thin fingers in the (U,b) plane. Figure 4 shows the size of th
largest absolute value of the instabilities for each point
the dashed curve of Fig. 3. It illustrates the important f
that the size of the imaginary parts, which gives the rate
the instabilities, increases starting from zero, quite rapi
with b, although they remain small as compared with the r
parts.

B. Creation of a blackÕwhite hole

The stability diagram of Fig. 3 suggests a strategy
creating a sonic black hole from an initial stable state. Wit
the upper subsonic region, the vertical axisb50 corresponds
to a homogeneous persistent current in a ring, which ca
principle be created using different techniques@24#. Gradu-
ally changingU and b, it is possible to move from such a
initial state to a black/white hole state, along a path lyi

FIG. 3. Stability diagram for winding numberw57. Solid dark-
gray areas represent the regions of stability. Smaller plots at hi
resolution confirm that the unstable ‘‘fingers’’ are actually smoo
and unbroken. Points on the dashed curve are states with horizo
uh56p/2, so that the black/white hole fills half the ring.

FIG. 4. Stability digram for black/white holes of maximum siz
i.e., along the dashed line of Fig. 3.
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almost entirely within the stable region, and only pass
briefly through instabilities where they are sufficiently sm
to cause no difficulty.

Indeed, we have simulated this process of adiabatic
ation of a sonic black/white hole by solving numerically~us-
ing the split operator method! the time-dependent Gross
Pitaevskii equation~1! that provides the evolution of the
condensate when the parameters of the trapping pote
change so as to move the condensate state along va
paths in parameter space. One of these paths is shown in
3 ~light-gray solid line!: we start with a current atw57 and
b50, and sufficiently highU @Fig. 5~a!#; we then increaseb

er

s at

FIG. 5. Simulation of creation of a stable black/white hole, a
subsequent evolution into an unstable region.~a!–~d! are snapshots
taken at the initial time~a!; at an intermediate time, still within the
subsonic region~b!; when black/white holes of maximum size a
approached~c!; and after a long time in that configuration~d!. Then
the parameters are changed along the dashed curve of Fig. 3 to
an unstable region~e! and kept there~f!–~i!. It can be observed tha
a perturbation grows at the black-hole horizon, and travels rig
ward until it enters the white-hole horizon.
1-6
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adiabatically keepingU fixed until an appropriate value i
reached@Fig. 5~b!#; finally, keepingb constant, we decreas
U adiabatically~which can be physically implemented b
decreasing the radius of the ring trap!, until we meet the
dashed contour for black holes of comfortable size@Fig.
5~c!#. Our simulations confirm that the small instabilitie
which briefly appear in the process of creation do not disr
the adiabatic evolution. The final quantum state of the c
densate, obtained by this procedure, indeed represen
stable black/white hole. We have further checked the sta
ity of this final configuration by numerically solving th
Gross-Pitaevskii equation~1! for very long periods of time
~as compared with any characteristic time scale of the c
densate! and for fixed values of the trap parameters. T
evolution reflects the fact that no imaginary frequencies
present, as predicted from the mode analysis, and that
final state is indeed stationary@Fig. 5~d!#. Once the black/
white hole has been created, one could further change
parameters (U,b) so as to move between the unstable ‘‘fi
gers’’ into a stable region of higherb ~a deeper hole!.

C. Quasiparticle pair creation

Instead of navigating the stable region of parameter sp
one could deliberately enter an unstable region@Figs. 5~e!–
5~i!#. In this case, the black hole should disappear in an
plosion of phonons, which may be easy to detect experim
tally. Such an event might be related to the evaporat
process suggested for real black holes, in the sense that
of quasiparticles are created near the horizon in both pos
and negative energy modes. We will explain this po
briefly; a more detailed exposition is included in the Appe
dix.

In the language of second quantization, the perturba
field operatorw satisfies the linear equation

i ẇ52
1

2
w92 ivw81S 1

2

c9

c
2

i

2
v81c2Dw1c2w†,

which, taking into account that@w(u),w†(u8)#5d(u2u8),
can be written as

i ẇ5@w,H#,

where the Bogoliubov Hamiltonian is

H5E duF2
1

2
w†w92 ivw†w81S 1

2

c9

c
2

i

2
v81c2Dw†w

1
1

2
~w†w†1ww!G . ~2!

The Hermiticity of the Bogoliubov linearized Hamiltonia
implies that eigenmodes with complex frequencies alw
appear in dual pairs, whose frequencies are complex co
gate. In the language of second quantization, the linear
Hamiltonian for each such pair has the form

H5(
n

~vAv* ,n
† Av,n1v* Av,n

† Av* ,n!,
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and the only nonvanishing commutators among these op
tors are@Av,n ,Av* ,n8

†
#5dnn8 . The asterisk on the subscrip

is important: the mode with frequencyv* is a different
mode from the one with frequencyv, andAv* ,n

† is not the
Hermitian conjugate ofAv,n

† ! It is therefore clear that none o
these operators is actually a harmonic oscillator creation
annihilation operator in the usual sense. However, the lin
combinations

an5
1

A2
~Av,n1Av* ,n!, bn5

i

A2
~Av,n

† 1Av* ,n
†

!,

and their Hermitian conjugates, are true annhilation and c
ation operators, with the standard commutation relations,
in terms of these the Bogoliubov Hamiltonian becomes

H5(
n

@Re~v!~an
†an2bn

†bn!2Im~v!~an
†bn

†1anbn!#.

This interaction obviously leads to self-amplifying creatio
of positive and negative frequency pairs. Evaporat
through an exponentially self-amplifying instability is no
equivalent, however, to the usual kind of Hawking radiati
@11#; this issue will be discussed in detail elsewhere.

IV. SINK-GENERATED BLACK HOLES

Condensates which develop black-hole behaviors
means of flows generated by laser-driven sinks also pre
regions of stability and instability in parameter space and
this sense, their behavior is analogous to that in a ri
shaped trapping potential. Here we present a simple mo
that exhibits the main qualitative features of more gene
situations and that can be studied analytically. Although
this model we study a condensate of infinite size, in m
realistic models or experiments it will suffice to take conde
sates which are sufficiently large, since the stability patter
not significantly affected by the~large but finite! size of the
condensate.

A. Model

Let us consider a tight cigar-shaped condensate of infi
size such that the motion in the (y,z) plane is effectively
frozen. In appropriate dimensionless units, the effectiv
one-dimensional Gross-Pitaevskii equation thus become

i ]tF5~2 1
2 ]x

21Vext1UuFu2!F,

with the normalization condition

lim
D→`

1

2DE
2D

D

dxuF~x!u25n.

In this equation,Vext is the dimensionless effective potenti
that results form the dimensional reduction, which alrea
includes the chemical potential.
1-7
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In order to obtain a black hole configuration, let us choo
the potentialVext so that it produces a profile for the speed
soundc(x)5AUr(x) of the form

c~x!5H c0 , uxu,L

c0@11~s21!x/e#, L,uxu,L1e

sc0 , L1e,uxu,

with s.1, and a flow velocity in the inward direction. Th
continuity equation then provides the flow velocity profile

v~x!52
v0c0

2

c~x!2

x

uxu
,

where v0 is the absolute value of the flow velocity in th
inner region.

As it stands, this model fails to fulfill the continuity equa
tion at x50. In order to take this into account, we will als
introduce a sink of atoms atx50 that takes atoms out of th
condensate~this can be physically implemented by means
a laser!. From a mathematical point of view, this can b
modeled by an additional term in the equation of the fo
2 iEd(x), which indeed induces loss of atoms atx50.
Equivalently, it can be represented by boundary conditi
of the form

F~01,t!2F~02,t!50,
~3!

F8~01,t!2F8~02,t!522iEF~0,t!,

which determine the flow velocity inside in terms of th
characteristics of the outcoupler laser, namely,v05E.

Perturbations f around this stationary stateFs

5Arei *v(x)dx, such thatF5Fs1f ~note that for conve-
nience we have chosen a different convention as comp
with the ring in whichF5Fs1wei *v), must satisfy bound-
ary conditions~3! and the equation

i ḟ52
1

2
f91~c22v2/21c9/2c!f1c2e2i *xvf* ,

where

c9

c
5

s21

e Fd~ uxu2L !2
1

s
d~ uxu2L2e!G .

As a further simplifying assumption, we will assume th
v0e!1, so that

U E
L

x

dx8v~x8!U<E
L

L1e

dx
v0

@11~s21!x/e#2
<v0e!1.

Let us now expand the perturbationf in modes

f5(
v,k

@Av,kuv,k~x!e2 ivt1Av,k* vv,k~x!* eiv* t#.

Then, the modesuv,k(x) andvv,k(x) satisfy, in each region
the Bogoliubov equations
02361
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vuv,k52
1

2
uv,k9 1~c22v2/2!uv,k1c2e2i *xvvv,k ,

~4!

vvv,k5
1

2
vv,k9 2~c22v2/2!vv,k2c2e22i *xvuv,k .

B. Matching conditions

The intermediate regionsL,uxu,L1e provide a connec-
tion between the perturbation modes in the inner and o
regions. Once these connection formulas have been es
lished, in the limit of smalle, we will only need to study the
inside and outside modes and their relation through s
formulas. The case of an abrupt horizon, in which the ba
ground condensate velocity is steeply and linearly ram
within a very short interval, is obviously quite special, and
does not particularly resemble the horizon of a large bla
hole in Einsteinian gravity. But the connection formula th
we derive for this case will qualitatively resemble those th
are obtained, with considerably more technical effort,
smoother horizons@22#. In addition, the results we will ob-
tain for the global Bogoliubov spectrum of the condens
black hole will indeed be representative of more gene
cases.

In the intermediate regions,L,uxu,L1e, the factors
e62i *xv in the last terms of Eqs.~4! become 11O(e). Then
the solutions of these equations are

uv,k5av,k1bv,kx/e1O~e2!,
~5!

vv,k5gv,k1kv,kx/e1O~e2!,

as can be easily seen by defining the variableq5x/e so that
the equations become

]q
2uv,k5]q

2vv,k5O~e2!.

The singular character ofc9/c at uxu5L,L1e can be sub-
stituted by matching conditions atuxu5L,L1e, which will
in turn provide the connection formulas between the mo
outside (uxu.L) and the modes inside (uxu,L). Further-
more, the symmetry of the problem allows us to study
regionx.0.

These matching conditions are

f~L1!2f~L2!50,

f8~L1!2f8~L2!5
s21

e
f~L !,

f~L1e1!2f~L1e2!50,

f8~L1e1!2f8~L1e2!52
s21

se
f~L1e!.

These equations, together with the form of the modes in
region L,x,L1e, provide the connection formulas be
tween the inside and outside modes~from now on we will
drop the subindexv)
1-8
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uin,k~L !52euout,k8 ~L !1
1

s
uout,k~L !,

uin,k8 ~L !5suout,k8 ~L !,

and likewise for the modesv in,out.

C. Dispersion relation and boundary conditions for largex

In each of the regions~inside and outside!, we can write

uk~x!5uke
i (k2uvu)(x2L), vk~x!5vke

i (k1uvu)(x2L).

Upon substitution of this expansion into the Bogoliub
equations~4!, we obtain, for each region, the set of algebra
equations

hk
2uk1c2vk50, c2uk1hk

1vk50,

where hk
65k2/21c26(kuvu1v). For these equations t

have a solution, the determinant must vanish, thus provid
the dispersion relation

k4/41~c22v2!k222vuvuk2v250, ~6!

which, for fixedv, is a fourth-order equation fork. For each
of the four solutions,uk andvk must be related by

vk5hkuk with hk52
1

c2
~k2/21c22kuvu2v!.

The constant coefficientsuk can be regarded as normaliz
tion constants, and will be set to unity. Let us study t
possible solutions to the dispersion relation depending
whetherv is real or complex.

Complex frequencies. In this case all four solutions ar
pure complex, two of them with positive imaginary parts a
two of them with negative imaginary parts.

In order to prove this statement, let us first assume
there exists a real solutionk for a complexv5Ã1 ig. Then
the imaginary part of Eq.~6! implies thatÃ52kuvu. Intro-
ducing this result into its real part leads tog252(k4/4
1c2k2) which is impossible to fulfill becausek is real. So
the four solutions are complex.

Because of continuity, allv in the upper-half complexv
plane have the same number of solutions with posit
imaginary part. Otherwise, for somev ’s there should exist a
real solution that interpolates between positive and nega
imaginary part solutions; however, this is not possible, as
have seen.

Now let us concentrate on small frequencies, i.e., on
quencies aroundv50. For v50, we have a double root a
k50. The other two solutions arek562Av22c2, which are
real for c2,v2 ~i.e., inside! and pure imaginary forc2.v2

~i.e., outside!. Let us follow these four solutions whenv
5 i«. The solutions coming from the double rootk50 will
now be of the formk5kr1 i«ki . It is easy to see thatkr
50 andki51/(2uvu6c). If c.uvu, one is positive and one
is negative. Ifc,uvu, both of them are negative. On the oth
hand, the solutionsk562Av22c2, for c2.v2, are already
02361
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complex conjugate. Forc2,v2, we write k5kr1 i«ki and
introduce it into Eq.~6!. We then see that at first order in«,
ki5uvu/(v22c2).0. Thus we have seen that forv5 i«, we
have two solutions with positive imaginary part and two w
negative parts in any case~inside and outside!. But if this is
so forv5 i« it must be true in the whole upperv plane and
consequently in the whole complexv plane. In the inside
region all possible solutions are in principle allowed but o
side we are only left with the two that have Im(k).0, be-
cause the other two grow exponentially.

Real frequencies. Outside (c2.v2), there are two real and
two complex conjugate solutions. Of these two complex
lutions, only one is allowed@the one with Im(k).0# because
the other grows exponentially. Inside (c2,v2), for v
.vmax, there are two real and two complex conjugate so
tions; for v,vmax there are four real solutions; the valu
v5vmax is a bifurcating point.

D. Connection formulas for complex frequencies

Since we are interested in the existence of dynamical
stabilities, we will concentrate on the case in whichv is
complex. Then, as we have seen, the dispersion equatio~6!
has four complex solutions fork in each region. Inside, al
four solutionskin,i , i 51, . . . ,4 are inprinciple possible, but
outside those with Im(kout),0 will increase exponentially.
Therefore, up to corrections coming from the finite size
the condensate, which we ignore here, only modes assoc
with kout,a , a51, 2, such that Im(kout,a).0, are allowed.
Each modeuout,a(x)5ei (kout,a2v0 /s2)(x2L) will match a lin-
ear combinationuin,a(x)5( iFa iuin,i(x) of modesuin,i(x)
inside, i.e.,

uin,a~x!5(
i

Fa ie
i (kin,i2v0)(x2L),

and similarly forvout,a andv in,a ,

v in,a~x!5(
i

Fa ihin,ie
i (kin,i1v0)(x2L).

After some straightforward calculations, it can be se
that these connecting coefficientsFa i are given by Fa i
5( j (M 21) i j Ca j , where

M5S 1 1 1 1

kin,1
2 kin,2

2 kin,3
2 kin,4

2

hin,1 hin,2 hin,3 hin,4

hin,1kin,1
1 hin,2kin,2

1 hin,3kin,3
1 hin,4kin,4

1

D ,

Ca5S 1/s2 i ekout,a
2

skout,a
2

~1/s2 i ekout,a
1 !hout,a

skout,a
1 hout,a

D .

In these equations,
1-9
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kin,i
6 5kin,i6v0 and kout,a

6 5kout,a6v0 /s2.

E. Boundary conditions at the sink. Complex eigenvalues

We have already found the modes in the inner and o
regions, as well as their relation. To determine wh
~complex-frequency! modes will be present, it only remain
to impose the boundary conditions dictated by the prese
of the sink atx50.

As we already mentioned, the symmetry of the syst
under reflection (x→2x) allows us to study only the regio
x.0, provided that we study the even and odd perturbati
separately. For odd fluctuations@fo(x,t)52fo(2x,t)#,
boundary conditions~3! become

fo~0,t!50

at all timest. This implies that theu andv components off
must separately satisfy the boundary condition. Since we
have any linear combination of the two solutions that de
outside the horizon, we therefore have a 232 matrix con-
straint. The condition that a nonzero solution exists is t
the determinant

detS uin,1~0! uin,2~0!

v in,1~0! v in,2~0!
D 50,

and therefore

(
i j

F1iF2 j~hin,i2hin, j !e
2 i (kin,i1kin, j )L50. ~7!

For even fluctuations@fe(x,t)5fe(2x,t)#, boundary
conditions~3! become

fe8~0,t!1 iv0fe~0,t!50,

which implies that

(
i j

F1iF2 j~hin,i2hin, j !kin,ikin, je
2 i (kin,i1kin, j )L50. ~8!

For fixed L, U, v0, ands, the quantitiesF, hin , andkin
that appear Eqs.~7! and ~8! are only functions ofv. There-
fore, the solutions to these equations are all the poss
complex eigenfrequencies, which depend on the free par
eters that determine the model, namely, the size 2L of the
inner region, the speed of sound insidec0, the relative
change of the speed of sound between the inner and the
regionss, and the flow velocity insidev0 ~related to the
characteristics of the outcoupler laser!. In practice, there are
also other parameters of the condensate such as its sizD
~which has been made arbitrarily large! and the size of the
intermediate regionse ~which has been made arbitraril
small!.

Equations~7! and ~8! can be solved numerically for dif
ferent values of the parameterss, U, v0, andL. The numeri-
cal method employed is the following. The equations abo
have the form
02361
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f ~v;s,U,v0 ,L !50,

wheref andv are both in general complex. We plot contou
of constant absolute value off in the complexv plane; where
u f u approaches zero, we have an eigenfrequency.

The distribution of complex solutions in the complexv
plane depends on the size of the inner regionL, for givens,
U, andv0. Direct inspection of the numerical results show
that the number of instabilities increases by one when
black-hole sizeL is increased byp/k0, wherek05Av0

22c0
2.

More explicitly, for L smaller thanp/k02d (d being much
smaller thanp/k0) there are no complex eigenfrequencie
for (L1d)k0 /pP@n,n11#, with n51,2, . . . , wehave n
complex solutions except forL5(n11/2)p/k0, where we
find n21 complex solutions instead ofn @i.e., there is one
mode for which Im(v)50 within numerical resolution#.
This can be easily interpreted qualitatively since the unsta
modes are basically the bound states in the black hole,
the highest wave numberk on the positive norm uppe
branch, for the barely bound state withv→02, is exactlyk0.
So the threshold is simply when the well becomes la
enough to have a bound state; the smalld displacement
comes in because the horizon is not exactly a hard wall;
situation is similar for the extra bound state everyp/k0.
Thus stability can only be achieved for small sizes of t
inner region,L&p/k0. As we discussed in Sec. II, the wave
length 2p/k of the perturbations must be smaller than th
size, which impliesk.2p/L*2k0. However, for these per
turbations the hydrodynamic approximation, which requi
k&2k0, is not valid. Therefore there are no stable black-h
configurations in a strict sense. The sizes of the imagin
parts of the complex solutions decrease as the sizeL of the
interior of the black hole increases. Thus, although a lar
hole has more unstable modes, it is actually less unst
~and might even became quasistable in the sense that it
stability timescale would be longer than the experimen
duration!.

V. CONCLUSIONS

We have seen that dilute Bose-Einstein condensates
mit, under appropriate conditions, configurations that clos
ressemble gravitational black holes. We have analyzed
detail the case of a condensate in a ring trap, and propos
realistic scheme for adiabatically creating stable sonic bla
white holes, and we have seen that there exist stable
unstable black-hole configurations. We have also studie
model for a sink-generated sonic black hole in an infin
one-dimensional condensate. The dynamical instabilities
be interpreted as coming from quasiparticle pair creation
in the well-known suggested mechanism for black-h
evaporation. Generalizations to spherical or quasi-tw
dimensional traps, with flows generated by laser-driven at
sinks, should also be possible, and should behave simila
While our analysis has been limited to Bogoliubov theo
further theoretical problems of backreaction and other c
rections to simple mean-field theory should be more tracta
for condensates than for other systems analogous to b
holes. We expect that experiments along the lines we h
1-10
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proposed, including both creation and evaporation of so
black holes, can be performed with state-of-the-art
planned technology.
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APPENDIX: COMPLEX FREQUENCIES. REDUNDANCY
AND NORMALIZATION

In this appendix, we will analyze the issue of the redu
dancy and normalization of the Bogoliubov modes in t
presence of complex frequencies from a general poin
view. Dynamical instabilities in quantum field theory, an
the quantization of dynamically unstable modes, do not se
to be widely understood: for instance, it is common to re
axiomatic statements that one must only quantize posi
norm modes, even though this implicitly neglects dynami
instabilities, and does not follow in general from the fund
mental commutation relations. However, some explicit tre
ments of quantum instabilities have been available in
literature for some time@25#; here we review this subject in
the specific Bogoliubov context.

We will begin by writing the Bogoliubov equations i
their most usual form,

\v j S uj

v j
D 5S h0~x! c~x!2e2iq(x)

2c~x!2e2iq(x) 2h0~x!
D S uj

v j
D ,

~A1!

where h0(x)52(\2/2m)¹21Vext(x)12mc(x)22m. In
terms of these modes, the atomic second-quantized field

erator has the well-known formĈ(x,t)5Cs(x,t)1ĉ(x,t),
with

ĉ~x,t !5(
j

@ â juj~x!e2 iv j t1â j
†v j~x!* eiv j* t#. ~A2!

If there is a solution (uj ,v j ) to Eq. ~A1! with mode
frequency v j , then straightforward substitution show
that (uj 8 ,v j 8)5(v j* ,uj* ) must be a solution with fre-
quency v j 852v j* . If we examine the contributions o
these two solutions, however, we find that together they y
but a single term, of the form (â j1â j 8

† )e2 ivtuj (x)1(â j
†

1â j 8)e
iv* tv j* (x). It is thus a quite trivial fact that the two

modesj and j 8 are redundant. We are free to simplify o
notation by redefiningâ j1â j 8

† →â j , and eliminating mode
j 8 ~leaving it out of the sum over frequencies!. Alternatively
we could of course eliminatej and keepj 8. Which of these
two notational conventions we should take is best de
mined by the commutator@ â j1â j 8

† ,â j
†1â j 8#, which will tell

us whether the coefficient ofuj5v j 8
* is properly an annihi-

lation operator or a creation operator.
02361
ic
r

-

-

-

f

m
d
e
l
-
t-
e

p-

ld

r-

Since the only commutation relations that we are giv
are those ofĉ and ĉ†, we must derive the orthogonalit
relation for solutions of Eq.~A1!, and use it to invert Eq.
~A2!. We can use Eq.~A1! to show that

~v j1vk!M jk[E d3x~ujvk2v juk!50,

~v j2vk* !Njk[~v j2vk* !E d3x~ujuk* 2v jvk* !50,

~A3!

where in the case of infinite volume the right-hand sides
zero in the distributional sense, being infinitely rapidly osc
lating boundary terms. This obviously implies thatM jk van-
ishes unlessvk52v j , and Njk vanishes unlessvk5v j* .
One can then show that it is always possible to take lin
combinations among degenerate modes, and to eliminat
dundant modes as just discussed, in such a way as to m
M jk always vanish, andNjk5dk̄ , where for everyj there is
a single dual modē , with v ̄5v j* . In the case of realv j ,

but only then, we havē5 j . In general, however, duality is
reciprocal~the dual mode of̄ is alwaysj ).

The result is that we can now insert Eq.~A2! into the
second-quantized Hamiltonian, with theT-matrix approxi-
mation for the interparticle interaction, to obtain the linea
ized Bogoliubov Hamiltonian for the perturbations:

Ĥ5\(
j

v j â̄

†
â j . ~A4!

Since the sum over all modesj also includes the dual to
every mode with complexv j , Ĥ is manifestly Hermitian,
even thoughv j need not be real. We can also invert Eq.~A2!
to learn that

â j5E d3x@u
̄
* d̂c1v ̄d̂c†#, ~A5!

which with Eq.~A3! implies the commutation relations

@ â j ,âk
†#5dk̄ , @ â j ,âk#50. ~A6!

For all j with real v j , Eq. ~A6! are merely standard ca
nonical commutation relations; our normalization conve
tions M jk50 andNjk5d jk are likewise the ones most ofte
presented. In the case of complexv j where ̄5” j , however,
Eq. ~A6! imply that thecanonicalconjugate ofâ j is â

̄

† , and

this is no longer the same as theHermitian conjugateâ j
† . In

fact for complexv j we have@ â j
† ,â j #50; this already fol-

lows from the second line of Eq.~A3!, which implies that the
normNj j of any mode with complexv j is zero. But ifâ j and
â j

† commute, then it is clear that neitherâ j nor â̄ is really a
harmonic-oscillator annihilation operator in the usual sen
nor areâ j

† or â
̄

† proper creation operators. The commutati
relations~A6! are validly derived from the fundamental com
mutation relations forĉ andĉ†; however, they do not imply,
1-11
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for instance, that eitherâ j
†â j or â

̄

†
â j has the discrete, equall

spaced spectrum, bounded from below, that one expects
quasiparticle number operator.

To understand the dual pairs of modes with complex f
quencies, we can define the ordinary annihilation operat

b̂ j5
1

A2
~ â j1â̄!, b̂̄5

i

A2
~ â j

†2â
̄

†
! ~A7!

and their Hermitian conjugates, among which the only n
vanishing commutators are the ordinary

@ b̂ j ,b̂ j
†#5@ b̂̄ ,b̂

̄

†
#51. ~A8!

In terms of these operators, which are harmonic-oscilla
annihilation and creation operators with all the familiar pro
erties of such, thej ,̄ subsector of the Bogoliubov Hamil
tonianĤ appears as

Ĥ j ,̄5Re~v j !@ b̂ j
†b̂ j2b̂

̄

†
b̂̄#2Im~v j !@ b̂†b̂

̄

†
1b̂ j b̂̄#.

~A9!

Note that Eq.~A9! is only the simplest form in which one
may write thej ,̄ sector of the Hamiltonian: by introducin
appropriate factors ofe6 ia/2/cosa into Eq. ~A7!, for anya,
we can make Im(v j )→Im(v j )/cosa and add a term
Im(v j )tana(b̂ j

†b̂ j1b̂
̄

†
b̂̄).

We can now examine the spectrum ofĤ j ,̄ by considering

it in the basis of eigenstates ofn̂5b̂ j
†b̂ j1b̂

̄

†
b̂̄ and D̂

5b̂ j
†b̂ j2b̂

̄

†
b̂̄ . In fact, D̂ commutes withĤ j ,̄ , so defining

uED&5 (
n50

`

cnun1D&un&D>0,

~A10!

uED&5 (
n50

`

cnun&un1D&D<0,
an

in

ing

n
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whereb̂ j
†b̂ j um&un&5mum&un& andb̂

̄

†
b̂̄um&un&5num&un&; we

find Ĥ j ,̄uED&5@\D Re(v j )1ED#uED&. We have the recur-
sion relation

EDcn5Im~v j !@An~n1D!cn211A~n11!~n1D11!cn11#.

~A11!

As n→`, we havecn11→2cn21, and so(nucnu2 does not
converge: none of the eigenstates ofĤ j ,̄ is normalizable.
However, one can obtain delta-function normalization fo
continuous spectrum of realED , bounded neither above no
below.

That the HamiltonianĤ is unbounded from below doe
not indicate anything unphysical about our model: we ha
simply linearized about an unstable excited state of the n
linear full Hamiltonian, which is bounded from below. Re
negative frequenciesv j , where our conventionNj j 51 has
been imposed, indicate energetic instabilities, whereby
system will decay in the presence of dissipation. Comp
v j , on the other hand, indicate dynamical instabilities. Cl
sically, a dynamically unstable system will exponentially d
verge from an initial stationary state if is perturbed, ev
without dissipation. Quantum mechanically, we have j
seen that a dynamically unstable system has no normaliz
stationary states. If an initially stable system is driven into
state which is stationary but dynamically unstable at the c
sical ~mean-field! level, the initial state will have had finite
Hilbert space norm, and hence under unitary evolution
final state will have the same norm. Thus it will not be
stationary state; one may say that quantum fluctuations
always trigger the dynamical instability. For a logarithm
cally long period of time, however, the linearized theory w
still remain valid. In this sense, our linearized description
quantum dynamical instabilities is sound.
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