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Sonic black holes in dilute Bose-Einstein condensates
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The sonic analog of a gravitational black hole in dilute-gas Bose-Einstein condensates is investigated. It is
shown that there exist both dynamically stable and unstable configurations which, in the hydrodynamic limit,
exhibit behaviors completely analogous to that of gravitational black holes. The dynamical instabilities involve
the creation of quasiparticle pairs in positive and negative energy states. We illustrate these features in two
qualitatively different one-dimensional models, namely, a long, thin condensate with an outcoupler laser beam
providing an “atom sink,” and a tight ring-shaped condensate. We also simulate the creation of a stable sonic
black hole by solving the Gross-Pitaevskii equation numerically for a condensate subject to a trapping potential
which is adiabatically deformed. A sonic black hole could, in this way, be created experimentally with
state-of-the-art or planned technology.
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[. INTRODUCTION figurations appearing in relativistic quantum field theories
and gravitation can be constructed. For examplée was

Many investigations of dilute gas Bose-Einstein condenproposed as a laboratory counterpart of high-energy particle
sates are directed toward experimentally creating nontriviaphysics. It was argued that, under appropriate conditions,
configurations of the semiclassical mean field, or to predictexcitations around the ground state of the system may re-
ing the properties of such configurations in the presence aemble the particle spectrum of gauge theories of high-
quantum fluctuations. Such problems are hardly peculiar t@energy physic§3]. These condensed-matter systems were
condensates: the quantum neighborhoods of interesting claalso used to simulate topological defects characteristic of
sical backgrounds are important areas of research in moglauge theories, and which are considered to have played a
fields of physics. But ultracold dilute gases are so easy t@osmological role in the early stages of the evolution of the
manipulate and control, both experimentdlly and theoreti-  universe such as monopoles and cosmic striBgs
cally [2], that they may allow us to decipher less amenable The past decade witnessed an increasing interest in simu-
systems by analogy. As an essay in such an application dating gravitational configurations and processes in
condensates, in this paper we discuss the theoretical frameendensed-matter systems in the laboratory. The key obser-
work and propose an experiment to create the analog of wation was originally made by Unrul#,5] and further ana-
black hole in the laboratory and simulate its radiative instalyzed by Visser[6,7]: phononic propagation in a fluid is
bilities. described by a wave equation which, under appropriate con-

It is now commonly believed, even in the context of el- ditions, can be interpreted as propagation in an effective rela-
ementary particle physics, that quantum field theory arisefvistic curved space-time background, the space-time metric
from a still unknown underlying structure: it is an effective being entirely determined by the physical properties of the
dynamical theory, describing the low-energy limit of collec- fluid under study, namely, its density and flow velocity. Un-
tive phenomena of the underlying microscopic theory. Fronruh urged a specific motivatigrt] for examining the hydro-
this viewpoint, our description ofmore) fundamental phe- dynamic analog of an event horiz$@], namely, that as an
nomena, such as gravity or electromagnetism, is actuallgxperimentally and theoretically accessible phenomenon it
similar to the theoretical descriptions of many phenomena ofnight shed some light on the Hawking effd&] (thermal
condensed matter. To understand superfluidity, superconducadiation from black holes, stationary insofar as backreaction
tivity, or dilute Bose-Einstein condensation, we describe thds negligible. In particular, one would like to gain insight
dynamics of the system in terms of collective modgsasi- into the role in the Hawking process of ultrahigh frequencies
particleg whose typical size is much larger than the dis-[5,10,11.
tances between the particles that constitute the underlying An event horizon for sound waves appears in principle
medium; but even electrons and photons must be consideratherever there is a surface through which a fluid flows at the
as quasiparticles of a deeper theory we do not yet know. lispeed of sound, the flow being subsonic on one side of the
this sense we may say that the major difference between owurface and supersonic on the other. There is a close analogy
fundamental theories and those we use in condensed matteetween sound propagation on a background hydrodynamic
is that in the latter case the next microscopic level of descripflow, and field propagation in a curved space-time; and al-
tion is actually well understood. though hydrodynamics is only a long-wavelength effective

With this fundamental background in mind, it is not so theory for physical(supejfluids, so also field theory in
surprising that condensed matter analogs of nontrivial coneurved space-time is to be considered a long-wavelength ap-
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proximation to quantum gravit{s,7]. Determining whether and may also raise new issues in the theory of gravitational
and how sonic black holes radiate sound, in a full calculatiorblack holes.

beyond the hydrodynamic approximation or in an actual ex- In this paper, we extend and generalize the results of Ref.
periment, can thus offer some suggestions about black-hold 7], including a more detailed analysis of the model consid-
radiance and its sensitivity to high-frequency physibs-  ered there as well as a new qualitatively different case. The
yond the Planck scale The possibility that such high fre- Paper is organized as follows. In Sec. Il, we show how sonic
quencies might have consequences for observably lowP0rizons in dilute Bose-Einstein condensates may appear in
frequency phenomena is one of the main reasons that bladRe hydrodynamic approximation, and discuss the regime of
holes have deserved much attention: there is reason to expe@!idity of such approximation, as well the validity of one-
that an event horizon can act as a microscope, giving us dimensional models. Section Iil is devoted to the study of
view into physics on scales below the Planck length. This i$ONI¢ horizons in condensates subject to tight ring-shaped

because modes coming from an event horizon are redshift ternal potentials. We present numerical results showing
into the low-energy regime as they propagate out to be opthat both stable and unstable black holes may be created

served far away from the black hole. Conversely, if we imag_under realistically attainable conditions in current or near-

ine tracking the observed signal back towards its source, thislture laboratories. We also study the nature of the dynami-
closer we come to the horizon the shorter the wavelength gal instabilities that appear for certain configurations. In Sec.
the signal must be, until at the very horizon we must eithet v+ We discuss a different configuration, namely, that of a
reach infinite energy scales or encounter a breakdown in gerfink-generated black hole in an infinite one-dimensional con-

eral relativity and quantum field theory in curved space-timeqensate’ and show that there also exist black-hqle configura-
[12]. tions, although they are not stable. We summarize and con-

In understanding this problem, hydrodynamic ang¢lude in Sec. V. The Appendix is devoted to the issues of

condensed-matter analog of black holes may offer some dfdundancy and normalization of the dynamically unstable
the experimental guidance otherwise difficult to obtain in theS0g0liubov modesassociated with complex eigenfrequen-

case of gravity{12]. Under appropriate conditions and ap- ¢'€9-
proximations(which can be basically summarized in the re-
guirement that the wavelengths of the perturbations be suffi- Il. SONIC BLACK HOLES IN CONDENSATES

ciently largg, the propagation of collective fluctuations . . .
(phonong admits an effective general relativistic description, A Bose-En_qstem condensate IS the_ grou_nd state of a
second-quantized many-body Hamiltonian forinteracting

in terms of a space-time metric. This long-wavelength re- :
gime would correspond analogically to quantum field theor)})osonS trapped by an external potenligh(x) [2]. At zero

in curved space-time. The effective phonon metric may deleémperature, when the nur_nper of atoms is large and the
scribe black holes, as in general relativity, and so a phono tomic |nt_eract|ons are _sufﬂmentl_y small, almost all the at-
Hawking effect may be possible; certainly the problem of®MS aré in the same single-particle quantum sta(a, 1),

arbitrarily high frequencies at the horizon is also present, BugVe" if the system is slightly perturbed. The evolutiorof

in this case, when at short wavelengths the metric approxi'—S then given by the well-known Gross-Pitaevskii equation,

mation is no longer valid and a more microscopic theoryWhICh In appropriate units can be written as

must be used instead, the accurate microscopic theory is ac- 2

; : . ) h Amah?
tually known. If the hydrodynamic system is a dilute Bose- i0 W =| — == V24Vt

m

Einstein condensate, the microscopic theory is actually trac- 2m
table enough that we can make reliable calculations from
first principles. As we will argue, trapped bosons at ultralowwherem is the mass of the individual atoms, aads the
temperature can indeed provide an analog to a black-holgcattering length. The wave function of the condensate is
space-time. Similar analogs were proposed in other context§ormalized to the total number of atorfiel®x| ¥ (x,t)|*=N.
such as superfluid heliufii3], solid-state physicgl4], and Our purposes do not require solving the Gross-Pitaevskii
optics[15], but the outstanding recent experimental progresgquation with some given external potential(x); our con-
in cooling, manipulating, and controlling atori$6] make  cern is the propagation of small collective perturbations of
Bose-Einstein condensates an especially powerful tool fothe condensate, around a background stationary state
this kind of investigation. . '

The basic challenge of our proposal is to keep the trapped Wy(x,t)=Vp(x)e' We~ i,
Bose-Einstein gas sufficiently cold and well isolated to main-
tain a locally supersonic flow long enough to observe itswhereu is the chemical potential. Thus it is only necessary
intrinsic dynamics. Detecting thermal phonons radiatingthat it be possible, in any external potential that can be gen-
from the horizons would obviously be a difficult additional erated, to create a condensate in this state. Indeed, many
problem, since such radiation would be indistinguishableealistic techniques for “quantum state engineering,” to cre-
from many other possible heating effects. This further diffi-ate designer potentials and bring condensates into specific
culty does not arise in our proposal, however, because th&tates, have been proposed, and even implemented success-
black-hole radiation we predict is not quasistationary, buffully [16]; our simulations indicate that currently known
grows exponentially under appropriate conditions. It shouldechniques should suffice to generate the condensate states
therefore be observable in the next generation of atom trap#hat we propose.

(w2 |,
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Perturbations about the stationary stitg(x,t) obey the ;=0 at the horizon. The physical mechanism of the sonic
Bogoliubov system of two coupled second-order differentialpjack hole is quite simple: inside the horizon, the back-
equations. Within the I’egime of Val|d|ty of the hydrodynamic ground flow Speed is |arger than the local Speed of Sound
(Thomas-Fermiapproximation[2], these two equations for and so sound waves are inexorably dragged inward.

the density perturbatiog and the phase perturbatiah in In fact there are two conditions which must hold for this
terms of the local speed of sound dragged sound picture to be accurate. Wavelengths larger
5 than the black hole itself will of course not be dragged in, but
c(x)=—\4map(x) merely diffracted around it. Also, perturbations must have
m wavelengths
and the background stationary velocity
h h
h A>—, ——.
v=—V3d mc' mcy|1-v/c|
read . . .
Otherwise they do not behave as sound waves, since they lie
) _ Amah outside the regime of validity of the hydrodynamic approxi-
e=-V cVo+ve|, ¢=—-VvVep— 0. mation. These short-wavelength modes must be described by

Amah the full Bogoliubov equations, which allow signals to propa-

Furthermore, low-frequency perturbations are essentially jus§ate faster than the local sound speed, and thus permit escape
waves of (zerg sound. Indeed, the Bogoliubov equations from sonic black holes. So, to identify a condensate state

may be reduced to a single second-order equation for th@S @ sonic black hole, there must exist modes with wave-
condensate phase perturbatign This differential equation lengths larger than these lower limitwhich in terms of the

has the form of a relativisic wave equation local healing length &(x)=#/[mc(x)] read X
3M(\/—_99“”c9y¢)=0, with g=detg,,, in an effective >2mé, 2775/\/|'1—U/C|), put also §maller than the bla}ck-
curved space-time with the metrig,, being entirely deter- hole size. Even if such an intermediate range does exist, the
mined by the local speed of sourtdand the background Modes outside it may still affect the stability of the black
stationary velocity. Up to a conformal factor, this effective N0l€, as discussed below.

metric has the form As it stands, this description is incomplete. The conden-
sate flows continually inward, and thereforerat0 there
—(c?=v?) =T must be a sink that takes atoms out of the condensate. Oth-
(QM)=( Y 1 ) erwise, the continuity equatiovi(pv) =0, which must hold

for stationary configurations, will be violated. From a physi-
This class of metrics can possess event horizons. For irfk@l point of view, such a sink can be accomplished by means
stance, if an effective sink for atoms is generated at the cerf2f an outcoupler laser beam at the origiuch outcouplers
ter of a spherical trapsuch as by an atom laser out-coupling '€ the basic mechanisms for making trapped condensates
technique[18]), and if the radial potential profile is suitably into “atom lasers,” and they were already demonstrated ex-
arranged, we can produce densitigs) and flow velocities perimentally _by several groups. A tightly focuseq laser pylse_:
v(x)=—uo(r)r/r such that the quantitg?—v? vanishes at a changes the internal state of the atoms at a particular point in
radiusr =r,,, being negative inside and positive outside. Theth€ trap, and can also be made to give them a large momen-
sphere at radius, is a sonic event horizon completely analo- UM impulse. This ejects them so rapidly through the always
gous to those appearing in general relativistic black holes, ilﬁillute cqndensate clpud thgt they do not significantly disturb
the sense that sonic perturbations cannot propagate through &ffectively, they simply disappear. _ _
this surface in the outward directi®d,5,7]. This can be seen e analyzed several specific systems which may be suit-

explicitly by writing the equation for the radial null geode- @Ple theoretical models for future experiments, and found
sics of the metrig that the qualitative behavior is analogous in all of them.
pvo

Black holes which require atom sinks are both theoretically
and experimentally more involved, however; moreover,
maintaining a steady transonic flow into a sink may require

which can be obtained from setting the proper inteys either a very large condensate or some means of replenish-
=g,,dx“dx” equal to zero, and restricting the allowed mo- ment. We will therefore first discuss an alternative configu-

r-=—v=xc,

tion to the radial direction, so that ration which may be experimentally more accessible, and
whose description is particularly simple: a condensate in a
—(c2—v?)+2vr +r2=0. very thin ring that effectively behaves as a periodic one-

dimensional systen(Fig. 1). Under conditions that we will
The ingoing null geodesic_(t) is not affected by the pres- discuss, the supersonic region in a ring may be bounded by
ence of the horizon, and can cross it in a finite coordinatewo horizons: a black-hole horizon through which phonons
time t. The outgoing null geodesic, (t), on the other hand, cannot exit, and a “white-hole” horizon through which they
needs an infinite amount of time to leave the horizon sinceannot enter. Then we will analyze another simple one-
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White hole horizon that was recently analyzed both numerically and analytically,
/ \ and it is quite clear that such surface modes exist only if the
\ confining potential is quite rougfwhich is not only easy to
” avoid with a magnetic or optical trapping field, but very hard

’ to achieve [19], or if the condensate dynamics in the direc-
tions perpendicular to the flow is hydrodynamic. That is, the
condensate must be at least a few healing lengths thick, so
that surface modes decaying on the healing length scale can

y satisfy all the required boundary conditiof0]. By saying
/ that we are considering an effectively one-dimensional con-

Black hole horizon

densate, we mean precisely that this is not the case. For
instance, for the tight-ring model, in this regime, the radial
trap scale is the shortest length scale in the problem, and the
FIG. 1. The tight ring-shaped configuration, with both black andradial trap frequency is the highest frequency; this effectively
white horizons, and no singularity. Arrows indicate condensate flowmeans that excitations of nontrivial radial modes, including
velocity, with longer arrows for faster flow. surface modes, are energetically frozen @lit.the limit of
radial confinement within the scattering length, our model
rl})reaks down for other reasons—but the scattering length can
atom sink at the centdFig. 2). easily be two orders of magnitude smaller than the healing

The existence of instabilities that do not show up in thel.ength? The issue of the supercurrent st_ability in tightly con-
one-dimensional approximation is an important question ifined ring shaped traps was addressed in f2df, where the

condensate physics, which is under active theoretical anauthors_a_rrived at a positive conclu_sion and al;o clarified the
experimental investigation. The essential principles havél€ Of finite temperature and possible trap anisotropy.

long been clear, inasmuch as the current dilute condensates

really are the weakly interacting Bose gases that have been  Ill. SONIC BLACK /WHITE HOLES IN A RING

used as toy models for superfluidity for several decades. The
fact that actual critical velocities in liquid helium are gener-

ally far below the Landau critical velocity is understood to nates is effectively frozen. We can then write the wave func-
be due partly to the roton feature of the helium dispersion[ion asW¥(zr,0,7)=f(z r)ﬁ)(a 7), and normalizeb to the

relation, but this is not present in the dilute condensates. . - .
Viscosity also arises due to surface effects, however, anaumber .Of atoms_ in the cont_jensaf% d0|q)(.0)|2_N’
these may indeed afflict dilute condensates as well. The poilﬁghe”_e with _the azm_1uthal coordinatewe have mtroducec_i_
here is that in addition to the bulk phonon modes considere € d|.menS|onIess t|me=(ﬁ/mR2)t. The .Gross.—Pltaevsku
by Landau, and quite adequately represented in our ond&duation thus becomes effectively one-dimensional,
dimensional analysis, there may in principle be surface
modes, with a differenfand generally lower dispersion i0.®= _}(?129+Vext+ g|q)|2 D, (1)
curve. If such modes exist and are unstable, it is very often 2 N
the case that, as they grow beyond the perturbative regime,
they turn into quantized vortices, which can cut through thevherei=4maNRe[dzdrrf(z,r)|*, and Ve (6) is the di-
supercurrent and so lower it. mensionless effective potentiéh which we have already
Whether or not such unstable surface modes actually exigfcluded the chemical potentjahat results from the dimen-
in the Bogoliubov spectrum of a dilute condensate is an issugional reduction. The stationary solution can then be written
as®(0,7)=p(6)e'9% () and the local dimensionless an-
gular speed of sound ag #) = VUp(6)/N. Periodic bound-
ary conditions around the ring require the “winding num-
Outcoupler beam g Singularity ber” w=(1/2m) [2"d6v(6) to be an integer.
The qualitative behavior of horizons in this system is well
represented by the two-parameter family of condensate den-
sities,

Condensate cloud

dimensional model, of a long, straight condensate with a

In a sufficiently tight ring-shaped external potential of ra-
dius R, motion in radial(r) and axial(z) cylindrical coordi-

N
p(0)= Z(lercosa),

Black hole heorizons

<« Outcoupled ‘atom
laser beam’

whereb €[ 0,1]. Continuity,d,(pv)=0, then determines the

dimensionless flow-velocity field
FIG. 2. The tight cigar-shaped configuration, with two black-

hole horizons and a “singularity” where the condensate is out- 2
- . : v1-b

coupled. Arrows indicate the condensate flow velocity, with longer v(0)= MW—

arrows for faster flow. 2mc(6)?
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which depends omv as a third discrete independent param- . n? 1 (2= ,

eter. Requiring thatb (9, 7) be a stationary solution to the hnp=*5 dnpt EJ dge'(n=P)¢
Gross-Pitaevskii equation then determines how the trapping 0
potential must be modulated as a functiordofAll the prop-

erties of the condensate, including whether and where it has X
sonic horizons, and whether or not they are stable, are thus

functions oft{, b, andw. For instance, if we require that the WhiCh, after some |engthy Ca|cu|ationS, can be written as
horizons be located a&,= = 7/2, which imposes the relation

U=27w?(1—Db?), then we must have?—uv? positive for U b b

e (—ml2,mw/2), zero atd,,= *= w/2, and negative otherwise, fnp:ﬂ Snpt §5nyp+l+ 55'143*1 '

provided that/<2mww?. The further requirement that pertur-

bations on wavelengths shorter than the inner and the outer L1 5

regions are indeed phononic implig&>27, which in turn hnp=5 (N+P)Wy1—bay_p

requiresw>1 and b>1M?. In fact, a detailed analysis
shows thatwv=5 is sufficient.

1
pv(&)——v'(@)t(c(0)2+—

1 c"(a))
2 2¢co) )|

4n%-1 1-b?

frpt 3 Onpt 8 ,Bn_p),

A. Stability where

The mere existence of a black-hole solution does not nec- . . )
essarily mean that it is physically realizable: it should also be - b)’ J
(i+j)/2

stable over sufficiently long-time scales. Since stability must ai=
be checked for perturbations on all wavelengths, the full Bo-
goliubov [2] spectrum must be determined. For large black o _b)j

i=|i],i+j even( 2

holes within large, slowly varying condensates, this Bogoliu- Bi= (—
bov problem may be solved using WKB methods that closely j2il, 77] even 2
resemble those used for solving relativistic field theories i
true black-hole space-timgd1]. A detailed adaptation of
these methods to the Bogoliubov problem will be presente
elsewherd22]. The results are qualitatively similar to those We then face an eigenvalue problem for theQz(1)

we found for black holes in finite traps with low winding : .
number, where we resorted to numerical methods because, |>§12(Q+1) matrix built out of blocks of the form

these cases, WKB techniques may fail for just those modes ( ht  f )
np np

(j+121).

j
(i+j)/2

nEliminating Fourier components above a sufficiently high
&utoff Q has a negligible effect on possible instabilities,
which can be shown to occur at relatively long wavelengths.

which threaten to be unstable.

Our numerical approach for our three-parameter family of
black/white holes in the ring-shaped condensate has been to
write the Bogoliubov equations in discrete Fourier space, and ) . o )
then truncate the resulting infinite-dimensional eigenvalue The numerical solution to this eigenvalue equation, to-
problem. Indeed, writing the wave funtion a®=®, gether with the normalization conditiofidf(u’. U, '

—fnp hr:p .

+ e /4%(%) decomposing the perturbatiop in discrete  —v*, v, 1) =8 8,, . provides the allowed frequen-
modes cies. Real negative eigenfrequencies for modes of positive
norm are always present, which means that black-hole con-
¢(0’T):z e 197eNIA U, () figurgtipns are gnergetically unstablg, as expected. This fea-
wn o ture is inherent in supersonic flow, since the speed of sound

e is also the Landau critical velocity. In a sufficiently cold and
+e'? Te_maAZ,nUZ,n(@)' dilute condensate, however, the time scale for dissipation
may in principle be made very long, and so these energetic

tabilities need not be problemafi23].

More serious are dynamical instabilities, which occur for
modes with complex eigenfrequencies. Since the Bogoliubov
theory is based on a quantized Hamiltonian that is Hermitian,
Uy.n hf{p frp) (Uop there are certainly no complex energy eigenvalues; but the
w( ) 22 ¢ h ( ) natural frequencies of normal modes can indeed be complex
np [in which case the usual rule, that energy eigenvalues are

f(n+ 1/2) times the mode frequencies, simply breaks down
In this equation, A detailed discussion of the quantum mechanics of dynami-
cal instability is presented in the Appendix; for the purposes

o of our main discussion it suffices to note that complex
f dee~("=Pig( )2, (mode eigenfrequencies are indeed genuine physical phe-
0 nomena, and by no means a numerical artifact. For suffi-

and substituting into the Gross-Pitaevskii equation, we ob!"S
tain the following equation for the modes, , andv,, ,:

np Vao,p

1
T
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800 c(®F 1-W(0)% ()
0.3 1
(a)
600
0 -1
& [~ |
U
400 [~
(c)
200 "
All supersonic
0 {d)
[~ — ]
FIG. 3. Stability diagram for winding number=7. Solid dark- 2]

gray areas represent the regions of stability. Smaller plots at higher
resolution confirm that the unstable “fingers” are actually smooth "] \\'\/JJ/
and unbroken. Points on the dashed curve are states with horizons at
0,= = /2, so that the black/white hole fills half the ring.

[
cently high values of the cutofe.g.,Q=25 in our calcula- WV \V\Nr\ A
tions), the complex eigenfrequencies obtained from the V
truncated eigenvalue problem become independent of the (2)
cutoff within the numerical error. The existence and rapidity F~— M\
of dynamical instabilities depend sensitively @46, w). For WV \[V\/ V
instance, see Fig. 3 for a contour plot of the maximum of the
absolute values of the imaginary part of all eigenfrequencies ® ]
for w=7, showing that the regions of instability are long,
thin fingers in the #,b) plane. Figure 4 shows the size of the F\N\/_’\ VW
largest absolute value of the instabilities for each point on 03 1
the dashed curve of Fig. 3. It illustrates the important fact U
that the size of the imaginary parts, which gives the rate of VA aE N
the instabilities, increases starting from zero, quite rapidly V VW
with b, although they remain small as compared with the real % 1 1o
parts. /2% 8/2n

FIG. 5. Simulation of creation of a stable black/white hole, and
subsequent evolution into an unstable regi@(d) are snapshots
taken at the initial timga); at an intermediate time, still within the

The stability diagram of Fig. 3 suggests a strategy forsubsonic regior(b); when black/white holes of maximum size are
creating a sonic black hole from an initial stable state. Withinapproachedc); and after a long time in that configuratiéd). Then
the upper subsonic region, the vertical dxisO corresponds the parameters are changed along the dashed curve of Fig. 3 to enter
to a homogeneous persistent current in a ring, which can ian unstable regiofe) and kept theréf)—(i). It can be observed that
principle be created using different techniqiigd]. Gradu-  a perturbation grows at the black-hole horizon, and travels right-
ally changingl/ andb, it is possible to move from such an ward until it enters the white-hole horizon.
initial state to a black/white hole state, along a path lying

almost entirely within the stable region, and only passing
briefly through instabilities where they are sufficiently small
0.2 to cause no difficulty.
Indeed, we have simulated this process of adiabatic cre-
ation of a sonic black/white hole by solving numericallys-
0.1 ing the split operator methgdthe time-dependent Gross-
Pitaevskii equation(1) that provides the evolution of the
condensate when the parameters of the trapping potential
0 01 02 s 03 04 05 change so as to move the condensate state along various
paths in parameter space. One of these paths is shown in Fig.
FIG. 4. Stability digram for black/white holes of maximum size, 3 (light-gray solid ling: we start with a current av=7 and
i.e., along the dashed line of Fig. 3. b=0, and sufficiently higli/ [Fig. 5a)]; we then increasb

B. Creation of a black/white hole

Im(w)

0
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adiabatically keepind/ fixed until an appropriate value is and the only nonvanishing commutators among these opera-
reached Fig. 5(b)]; finally, keepingb constant, we decrease tors are[A,, , ,AL*'n,]z Sane - The asterisk on the subscript

U adiabatically (which can be physically implemented by is important: the mode with frequency* is a different
decreasing the radius of the ring tiapintii we meet the  mode from the one with frequenay, andAI)*,n is not the

dashed contour for black holes of comfortable SIFé.  ermitian conjugate oAl !ltis therefore clear that none of

5(c)]. Our simulations confirm that the small instabilities yhese operators is actually a harmonic oscillator creation or
which briefly appear in the process of creation do not distuphynijjation operator in the usual sense. However, the linear
the adiabatic evolution. The final quantum state of the congmpinations

densate, obtained by this procedure, indeed represents a

stable black/white hole. We have further checked the stabil- |

ity of this final configuration by numerically solving the - —_ at t
Gross-Pitaevskii equatiofl) for very long periods of time &n \/E(A“'"+A“’*’”)' n \/E(A"’ 0 Aor )

(as compared with any characteristic time scale of the con-

densatg and for fixed values of the trap parameters. Thisand their Hermitian conjugates, are true annhilation and cre-
evolution reflects the fact that no imaginary frequencies argtion operators, with the standard commutation relations, and

present, as predicted from the mode analysis, and that tha terms of these the Bogoliubov Hamiltonian becomes
final state is indeed stationaf¥ig. 5(d)]. Once the black/

white hole has been created, one could further change the ; ; -
parametersi{,b) so as to move between the unstable “fin- H=2, [Re(w)(ala,—blb,)—Im(w)(alb!+a,b,)].
gers” into a stable region of highdr (a deeper hole "

This interaction obviously leads to self-amplifying creation
of positive and negative frequency pairs. Evaporation
Instead of navigating the stable region of parameter spacéhrough an exponentially self-amplifying instability is not
one could deliberately enter an unstable redibigs. 5e)— equivalent, however, to the usual kind of Hawking radiation
5(i)]. In this case, the black hole should disappear in an exf11]; this issue will be discussed in detail elsewhere.
plosion of phonons, which may be easy to detect experimen-
tally. Such an event might be related to the evaporation
process suggested for real black holes, in the sense that pairs
of quasiparticles are created near the horizon in both positive Condensates which develop black-hole behaviors by
and negative energy modes. We will explain this pointmeans of flows generated by laser-driven sinks also present
briefly; a more detailed exposition is included in the Appen-regions of stability and instability in parameter space and, in

C. Quasiparticle pair creation

IV. SINK-GENERATED BLACK HOLES

dix. this sense, their behavior is analogous to that in a ring-
In the language of second quantization, the perturbatioshaped trapping potential. Here we present a simple model
field operatore satisfies the linear equation that exhibits the main qualitative features of more general

situations and that can be studied analytically. Although in
this model we study a condensate of infinite size, in more
realistic models or experiments it will suffice to take conden-
sates which are sufficiently large, since the stability pattern is

which, taking into account thdte(6),¢"(8')]=8(6—6"),  not significantly affected by thdarge but finit¢ size of the
can be written as condensate.

1

s " ’ 1c"
I(p——zgo —lvgp +

S ——5v' +c?

+c20T,
2¢ 2 prbe

io=[¢,H], A Model

where the Bogoliubov Hamiltonian is Let us consider a tight cigar-shaped condensate of infinite
size such that the motion in the/,@) plane is effectively

1 1c¢” i ; ; : - ;
H= | dol = Zoto"—ivelo +| = —— —p'+c2| o frozen_. In a_ppropnate dlr_nen5|o_r_1less u_mts, the effectively
j { 2¢ ¢ Tlve e 2¢ 2' e one-dimensional Gross-Pitaevskii equation thus becomes
1 19,0=(— 3024 Vet U D|?) D,

. ) i ) . with the normalization condition
The Hermiticity of the Bogoliubov linearized Hamiltonian

implies that eigenmodes with complex frequencies always 1 (D
appear in dual pairs, whose frequencies are complex conju- lim — dx|®(x)|?=n.
gate. In the language of second quantization, the linearized p—=2DJ-p
Hamiltonian for each such pair has the form
In this equation),,; is the dimensionless effective potential
_ t *pat that results form the dimensional reduction, which already
3 ; (@A Aot @™ Ao pAur ), includes the chemical potential.
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In order to obtain a black hole configuration, let us choose 1, , 2 2if%
the potentiall,,, So that it produces a profile for the speed of ®U, k=~ 5 Uyt (CT—v2)u, +C%e TV
soundc(x) = yUp(x) of the form (4)
1 .
Co. Ix[<L wvw,k=§v’;’k— (2=v22)v,, —c?e 2Py, |

c(x)=1 Coll+(o—1)x/e], L<|x|<L+e
7co: L+E<|X|’ B. Matching conditions

with o>1, and a flow velocity in the inward direction. The  The intermediate regioris<|x|<L + € provide a connec-
continuity equation then provides the flow velocity profile tion between the perturbation modes in the inner and outer
regions. Once these connection formulas have been estab-
vocg X lished, in the limit of smalk, we will only need to study the
c(x)2 m inside and outside modes and their relation through such
formulas. The case of an abrupt horizon, in which the back-
wherev, is the absolute value of the flow velocity in the ground condensate velocity is steeply and linearly ramped
inner region. within a very short interval, is obviously quite special, and it
As it stands, this model fails to fulfill the continuity equa- does not particularly resemble the horizon of a large black
tion atx=0. In order to take this into account, we will also hole in Einsteinian graVity. But the connection formula that
introduce a sink of atoms at=0 that takes atoms out of the We derive for this case will qualitatively resemble those that
condensatéthis can be physically implemented by means ofare obtained, with considerably more technical effort, for
a lasey. From a mathematical point of view, this can be Smoother horizon§22]. In addition, the results we will ob-
modeled by an additional term in the equation of the formtain for the global Bogoliubov spectrum of the condensate
—iES8(x), which indeed induces loss of atoms at0. black hole will indeed be representative of more generic

Equivalently, it can be represented by boundary condition§aSes. _ _
In the intermediate regiond, <|x|<L+e¢, the factors

v(X)=—

of the form o
. - e*2J7 in the last terms of Eqg4) become 1 O(e€). Then
®(0",7)—=®(0,7)=0, the solutions of these equations are
. 3
O’ (0", 7)—®' (07, 7)=—2iED(0,7), Uy k= @y kT Bo kXl €+ O(€7),
which determine the flow velocity inside in terms of the Vo k= Yox+ Ko kXl €+ O(€), ©

characteristics of the outcoupler laser, nameps E.
Perturbations ¢ around this stationary statebg  as can be easily seen by defining the variaptex/ e so that
= \/pel/v M9 guch thatd=d.+ ¢ (note that for conve- the equations become
nience we have chosen a different convention as compared ) 5 5
with the ring in which® =+ ¢e'/¥), must satisfy bound- IqUe k= 9gU v, k= O(€).

ary conditions(3) and the equation )
The singular character af'/c at|x|=L,L+ € can be sub-

. 1 . 2.2 % stituted by matching conditions &t|=L,L + €, which will
ip=—5¢"+(c"—v72+c"2c)p+ce Hrer, in turn provide the connection formulas between the modes
outside (x|>L) and the modes inside|x|<L). Further-
where more, the symmetry of the problem allows us to study the
regionx>0.
These matching conditions are

(L") =¢(L7)=0,

”

-1 1
= 81X/ ~L)= ~a(lx| L —e)|.

€

As a further simplifying assumption, we will assume that

<1, so that . , .. o—-1
oo /(L) = ¢'(LT)=———a(L),
X L+e Uo
! < _ < <1. _
dex v(x) fL dX[l—i—(cr—l)X/e]2 voest p(Lte)—(L+e)=0,
ioni o—1
Let us now expand the perturbatighin modes b (L+e)—d' (L+e)=— — H(L+e).
_ —iwT * * plo* 7
¢_w2,k [Aa ko k(X)€ A, o (X)7 € 7. These equations, together with the form of the modes in the

region L<x<L+e¢€, provide the connection formulas be-
Then, the modes,, \(x) andv,, \(X) satisfy, in each region, tween the inside and outside mod@om now on we will
the Bogoliubov equations drop the subindew)
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1 complex conjugate. Foc?<v?, we write k=k,+iek; and
Uin k(L) = — €Ugy(L) + ;uout,k(l—)v introduce it into Eq(6). We then see that at first order én
ki=|v|/(v2—c?)>0. Thus we have seen that fer=is, we
have two solutions with positive imaginary part and two with

u' (Ly=oul (L),
L) = TUoud L) negative parts in any casmside and outside But if this is

and likewise for the modes, oy so forw=i¢ it must be true in the whole upper plane and
consequently in the whole complex plane. In the inside
C. Dispersion relation and boundary conditions for largex region all possible solutions are in principle allowed but out-

. ) ) side we are only left with the two that have IR)&0, be-
In each of the region@nside and outside we can write cause the other two grow exponentially.
i(k+]o)(x—L) Real frequencieutside ¢>v?), there are two real and
' two complex conjugate solutions. Of these two complex so-

Upon substitution of this expansion into the Bogoliubov lutions, only one is allowefthe one with Imk)>0] because

equationg4), we obtain, for each region, the set of algebraicthe other grows exponentially. Insidect<v?), for
equations > wmay, there are two real and two complex conjugate solu-

tions; for w<wpnay there are four real solutions; the value
hg u+c%v, =0, c?u+hv =0, 0= wma IS a bifurcating point.

U(x) =ue k== =gy () =p, e

where h, =k?/2+c?+ (k|v|+w). For these equations to

) ] ) e D. Connection formulas for complex frequencies
have a solution, the determinant must vanish, thus providing

the dispersion relation Since we are interested in the existence of dynamical in-
stabilities, we will concentrate on the case in whiehis
kY4+ (c?—v?)k?—2w|v|k— w?=0, (6)  complex. Then, as we have seen, the dispersion equdion
has four complex solutions fd¢ in each region. Inside, all
which, for fixedw, is a fourth-order equation fdc For each  four solutionsk;,;, i=1, . .. ,4 are irprinciple possible, but
of the four solutionsuy andvy must be related by outside those with Ink,,) <0 will increase exponentially.
Therefore, up to corrections coming from the finite size of
1 the condensate, which we ignore here, only modes associated
_ : T2 2_ _ ) )
v with b= — 5 (K92+¢*~kjp| o). With Koy, @=1, 2, such that Iy, .)>0, are allowed.

Each modetigy ,(x) = &' koute0/7)0L) will match a lin-

The constant coefficients, can be regarded as normaliza- ear combinationu;, ,(x) = =;F 4U, i(x) of modesu;,;(X)
tion constants, and will be set to unity. Let us study theinside, i.e.,
possible solutions to the dispersion relation depending on
whetherw is real or complex.

Complex frequenciedn this case all four solutions are
pure complex, two of them with positive imaginary parts and
two of them with negative imaginary parts. and similarly forv,y., andviy o,

In order to prove this statement, let us first assume that
there exists a real solutidofor a complexw =w +ivy. Then

Uin o(X) = 2 Faiei(kin,i_vo)(X—L)’
' i

the imaginary part of Eq(6) implies thatw = —k|v|. Intro- Uin,a(x):zi F ihip &' (ini Tr0 L)

ducing this result into its real part leads t&=—(k*/4

+c?k?) which is impossible to fulfill becausk is real. So After some straightforward calculations, it can be seen

the four solutions are complex. that these connecting coefficienis,; are given byF,,
Because of continuity, alb in the upper-half complex =3 (M~ 1,.C, , where

plane have the same number of solutions with positive e

imaginary part. Otherwise, for somes there should exist a 1 1 1 1

real solution that interpolates between positive and negative _ _ _ _

imaginary part solutions; however, this is not possible, as we Kin1 Kin2 Kinza Kin,a

have seen. Pin.1 Rin 2 Pin 3 Rina

Now let us concentrate on small frequencies, i.e., on fre- he k- Rkt Bkt e Bk
quencies aroundh=0. For w=0, we have a double root at in,I%in,1 Tin2%n,2 - Hin,3%in,3 - lin,4%in,4
k=0. The other two solutions ake= = 2/uv?— c?, which are

real for c?2<v? (i.e., insid@ and pure imaginary foc?>v? Uo—iekouq
(i.e., outside. Let us follow these four solutions whedm oKouta

=ig. The solutions coming from the double rdot0 will C.,= Yo—iek™ h
now be of the formk=k;+iek;. It is easy to see th&k, (Yo =iekoya)Nouta
=0 andk;=1/(—|v|*c). If c>|v|, one is positive and one Koyt aNouta

is negative. Ifc<|v|, both of them are negative. On the other
hand, the solution&= *+2\v?>—c?, for c>>v?, are already In these equations,
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*

kiﬁ,i =Kini*ve and Kgy,=Kouta™ vola?. f(w;0,Uvg,L)=0,

wheref andw are both in general complex. We plot contours

of constant absolute value bin the complexw plane; where
We have already found the modes in the inner and outelf| approaches zero, we have an eigenfrequency.

regions, as well as their relation. To determine which The distribution of complex solutions in the complex

(complex-frequencymodes will be present, it only remains plane depends on the size of the inner redipfor givena,

to impose the boundary conditions dictated by the presencg, andv,. Direct inspection of the numerical results shows

of the sink atx=0. that the number of instabilities increases by one when the
As we already mentioned, the symmetry of the systenplack-hole size. is increased byr/k,, whereky= \Jv2—cZ.

under reflection X— —x) allows us to study only the region \ore explicitly, for L smaller thanm/k,— 8 (8 being much

x>0, provided that we study the even and odd perturbationgmaller than/k,) there are no complex eigenfrequencies;

E. Boundary conditions at the sink. Complex eigenvalues

separately. For odd fluctuatiorspo(X,7)=—do(=X,7)],  for (L+8)ko/me[n,n+1], with n=1,2,..., wehaven
boundary condition$3) become complex solutions except fdr=(n+ 1/2)w/k,, where we
6(0.7)=0 find n—1 complex solutions instead of [i.e., there is one
J(0,7)=

mode for which Im@)=0 within numerical resolutioh
This can be easily interpreted qualitatively since the unstable
awodes are basically the bound states in the black hole, and

have any linear combination of the two solutions that deca he hir?r}estthw%ve Pug]bd{d O? tthe ﬁicls(i)tivg normtlulfper
outside the horizon, we therefore have & 2 matrix con- ranch, for the barely bound state w » 1S éXxacllyko.

straint. The condition that a nonzero solution exists is that® the threshold is simply whe.n the well pecomes large
the determinant enough to have a bound state; the smalldisplacement

comes in because the horizon is not exactly a hard wall; the

at all timesr. This implies that ther andv components ofp
must separately satisfy the boundary condition. Since we ¢

Uin1(0) Uiy o(0) situation is similar for the extra bound state everyk,.
e*( ’ ’ )zo, Thus stability can only be achieved for small sizes of the
Vin1(0)  vin2(0) inner regionl < 7/ky. As we discussed in Sec. I, the wave-

length 27/k of the perturbations must be smaller than this
size, which impliek>2#/L=2k,. However, for these per-
turbations the hydrodynamic approximation, which requires
> F1iFgj(hini—hiy e Kinitkin )b =0, (7)  k=2k,, is not valid. Therefore there are no stable black-hole
1 configurations in a strict sense. The sizes of the imaginary
parts of the complex solutions decrease as the Isiaéthe
interior of the black hole increases. Thus, although a larger
hole has more unstable modes, it is actually less unstable
, . B (and might even became quasistable in the sense that its in-
be(0.7) +1v0¢he(0.7) =0, stability timescale would be longer than the experimental
duration.

and therefore

For even fluctuationg ¢o(X,7)= ¢o(—X,7)], boundary
conditions(3) become

which implies that

E o+ L V. CONCLUSIONS
F1iF 2 (N — Nin ki ikin j~ ki kndl =0, (8) , .
/1T 2R ing Hin g TN g We have seen that dilute Bose-Einstein condensates ad-

mit, under appropriate conditions, configurations that closely
For fixedL, U, vy, and o, the quantities, h;,, andk;, ressemble gravitational black holes. We have analyzed in
that appear Eq<7) and(8) are only functions ofw. There-  detail the case of a condensate in a ring trap, and proposed a
fore, the solutions to these equations are all the possiblesalistic scheme for adiabatically creating stable sonic black/
complex eigenfrequencies, which depend on the free paramwhite holes, and we have seen that there exist stable and
eters that determine the model, namely, the sikeo® the  unstable black-hole configurations. We have also studied a
inner region, the speed of sound insidg, the relative model for a sink-generated sonic black hole in an infinite
change of the speed of sound between the inner and the outene-dimensional condensate. The dynamical instabilities can
regionso, and the flow velocity insideyy (related to the be interpreted as coming from quasiparticle pair creation, as
characteristics of the outcoupler lasdn practice, there are in the well-known suggested mechanism for black-hole
also other parameters of the condensate such as its Bize 2evaporation. Generalizations to spherical or quasi-two-
(which has been made arbitrarily lajgend the size of the dimensional traps, with flows generated by laser-driven atom
intermediate regions (which has been made arbitrarily sinks, should also be possible, and should behave similarly.
smal). While our analysis has been limited to Bogoliubov theory,
Equations(7) and (8) can be solved numerically for dif- further theoretical problems of backreaction and other cor-
ferent values of the parameters 4, vy, andL. The numeri-  rections to simple mean-field theory should be more tractable
cal method employed is the following. The equations abovdor condensates than for other systems analogous to black
have the form holes. We expect that experiments along the lines we have
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proposed, including both creation and evaporation of sonic Since the only commutation relations that we are given

black holes, can be performed with state-of-the-art orgre those ofy and ¢, we must derive the orthogonality
planned technology. relation for solutions of Eq(Al), and use it to invert Eq.
(A2). We can use EqAL) to show that
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APPENDIX: COMPLEX FREQUENCIES. REDUNDANCY

AND NORMALIZATION where in the case of infinite volume the right-hand sides are

zero in the distributional sense, being infinitely rapidly oscil-

In this appendix, we will analyze the issue of the redun-lating boundary terms. This obviously implies théf, van-
dancy and normalization of the Bogoliubov modes in theishes unlesso,=—w;, andNj, vanishes unless)kzwj* .
presence of complex frequencies from a general point oDne can then show that it is always possible to take linear
view. Dynamical instabilities in quantum field theory, and combinations among degenerate modes, and to eliminate re-
the quantization of dynamically unstable modes, do not seerdundant modes as just discussed, in such a way as to make
to be widely understood: for instance, it is common to readvi; always vanish, andll, = 6,;, where for every there is
axiomatic statements that one must only quantize POsitivg single dual modg, with w;=w¥ . In the case of reab;,
norm modes, even though this implicitly neglects dynam|ca|but —
instabilities, and does not follow in general from the funda-~" _ ]
mental commutation relations. However, some explicit treat'€ciprocal(the dual mode of is alwaysj). .
ments of quantum instabilities have been available in the The result is that we can now insert Egh2) into the
literature for some timé25]; here we review this subject in S€cond-quantized Hamiltonian, with thlematrix approxi-
the specific Bogoliubov context. mauon for .the mterpgruck_a interaction, to obteyn the linear-

We will begin by writing the Bogoliubov equations in ized Bogoliubov Hamiltonian for the perturbations:
their most usual form,

uj) - ( ho(X) c(x)zez“’(x)) ( uj)

o227 —hy(x)

only then, we havge=j. In general, however, duality is

J

ﬁw(
j . . .
Uj Uj Since the sum over all modgsalso includes the dual to

(A1) every mode with complew;, H is manifestly Hermitian,
where hg(X)= — (A2/2m)V2+ Vo (X) + 2mo(x)2— . In  EVeN thoughw; need not be real. We can also invert E42)

terms of these modes, the atomic second-quantized field of2 '€arn that
erator has the well-known form# (x,t) =¥ y(x,t) + (x,t), . o %n <
with a;= f d*x[uSg+v oy, (A5)

fp(x,t)=2 [éjuj(x)e““’it+é;rvj(x)*ei‘“ft]. A2) which with Eq.(A3) implies the commutation relations
j A~ ~ A

[a;,a]]=6¢, [&,a]=0. (AB)

If there is a solution ;,v;) to Eq. (A1) with mode
frequency w;, then straightforward substitution shows
that (u;/,vj)=(v] ,u) must be a solution with fre-
quency wj/z—wj*. If we examine the contributions of
these two solutions, however, we find that together they yiel . : _ e
but a single term, of the forméﬁ_*_é}r,)efiwtuj(x)_k(é;‘ Eq. (A6) imply that thecanonicalconjugate ofa; is ar, and
_i_ajl)eiw*tvj*(x). It is thus a quite trivial fact that the two this is no longer the same as thiermitian conjugatea; . In

modesj andj’ are redundant. We are free to simplify our fact for complexw; we have[a/,a;]=0; this already fol-

notation by redefiningﬁjﬂté;,—éj, and eliminating mode lows from the second line of EgA3), which implies tAhat the
j’ (leaving it out of the sum over frequenciedlternatively ~ NOrmN;; of any mode with complex; is zero. But ifa; and
we could of course eliminateand keepj'. Which of these a]T commute, then it is clear that neithey nor a; is really a

two notational conventions we should take is best deterharmonic-oscillator annihilation operator in the usual sense,

For all j with real wj, Eq. (A6) are merely standard ca-
nonical commutation relations; our normalization conven-
tions M =0 andN;= &j are likewise the ones most often

d)resented. In the case of complex wherej_aéj, however,

mined by the commutatds; +éjT, ./ +a;,], which will tell  nor area/ or éji proper creation operators. The commutation
us whether the coefficient af; :U}*, is properly an annihi- relations(A6) are validly derived from the fundamental com-
lation operator or a creation operator. mutation relations fory and¢'; however, they do not imply,
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for instance, that eitheaa oré}éj has the discrete, equally whereb!b;|m)[n)=m|m)|n) andB}Bﬁm)|n>=n|m)|n); we
spaced spectrum, bounded from below, that one expects offg |2|J. J|Ea)=[%A Re(w;)+E,]|Es). We have the recur-
quasiparticle number operator. sion relation

To understand the dual pairs of modes with complex fre-
guencies, we can define the ordinary annihilation operators

EaCh=Im(w)[Vn(n+A)c, 1+ V(n+1)(n+A+1)cy q].

P L P
bj=—2(aj+aj), bjz—z(aj—aj—) (A7)

2 2

and their Hermitian conjugates, among which the only non-
vanishing commutators are the ordinary

(A11)

) As n—o, we havec,  ;— —C,_1, and soZ|c,|? does not

~ Ct_re— o . ~ . .

[bj.bj]=[by,b]=1. (A8)  converge: none of the eigenstates fbf; is normalizable.
However, one can obtain delta-function normalization for a

In terms of these operators, which are harmonic-oscillatoggntinuous spectrum of re&, , bounded neither above nor
annihilation and creation operators with all the familiar prop-pejow.

erties of such, thg,J subsector of the Bogoliubov Hamil-  That the Hamiltoniard is unbounded from below does

tonianH appears as not indicate anything unphysical about our model: we have
N fpe o otn ciat o oa simply linearized about an unstable excited state of the non-
H; ;= Re(w;j)[b; bj—bjbﬂ—lm(wj)[thﬁ"" b;b}]. linear full Hamiltonian, which is bounded from below. Real

(A9) negative frequencie®;, where our conventioiN;;=1 has
. . _ . been imposed, indicate energetic instabilities, whereby the
Note that Eq.(A9) is only the simplest form in which one gygiem will decay in the presence of dissipation. Complex
may write thej,j sector of the Hamiltonian: by introducing ), , on the other hand, indicate dynamical instabilities. Clas-
appropriate factors of*'“’?/cosa into Eq. (A7), for anye,  sically, a dynamically unstable system will exponentially di-
we can make Imb;)—Im(w;)/cosa and add a term verge from an initial stationary state if is perturbed, even
Im(wj)tana(6f6j+6}6j). without dissipation. Quantum mechanically, we have just
seen that a dynamically unstable system has no normalizable
o ) ) ~ ptp ot N stationary states. If an initially stable system is driven into a
it in the basis of eigenstates af=Dbjb;+bb;" and A gtate which is stationary but dynamically unstable at the clas-
:E)JTE)J._B}BJ—. In fact,A commutes witrﬂw—, so defining sical (mean-field level, the initial state will have had finite
Hilbert space norm, and hence under unitary evolution the

We can now examine the spectrumFdefJ—by considering

- final state will have the same norm. Thus it will not be a
[Es)= 2, caln+A)[n)A=0, stationary state; one may say that quantum fluctuations will
n=o always trigger the dynamical instability. For a logarithmi-
o (A10) cally long period of time, however, the linearized theory will
|Ey)= E caln)n+AYA<O, still remain vaIid: In 'ghis sense, our linearized description of
n=0 quantum dynamical instabilities is sound.
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