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Nonlinear atomic Fabry-Perot interferometer: From the mean-field theory
to the atom blockadeeffect
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~Received 27 March 2000; revised manuscript received 20 June 2000; published 16 January 2001!

We have investigated nonlinear atom optical effects which arise from atom-atom collisional interactions in
a single-mode atomic Fabry-Perot cavity driven by a coherent cw atom laser beam. When the nonlinear
interaction energy per single atom is small, the exact numerical solution of the master equation is well
reproduced by a mean-field treatment in which quantum fluctuations are included linearizing the stochastic
equations of the Positive-P representation. On the other hand, when the damping of the cavity mode is very
weak and its wave-function is tightly confined in space, a regime of strong nonlinearity can be achieved. For
the specific case of an incident atom laser frequency at resonance with the empty cavity, the numerical
calculations predict a sort ofatom blockadeeffect, which is a sort of atom optical analog of the well-known
Coulomb blockade effect of electronic transport through microscopic structures: only one atom can occupy the
cavity mode at a time and the statistical properties of the transmitted beam, being very similar to the resonance
fluorescence from a single two-level system, show definitely nonclassical behaviors such as antibunching. Only
at very large incident intensities, more than one atom can be simultaneously forced inside the cavity mode: in
this regime, the results of the numerical calculations can be successfully interpreted using a dressed cavity
model. From the formal analogy between atomic matter waves and optical light waves in nonlinear media, it
follows that the same results hold for photonic systems.

DOI: 10.1103/PhysRevA.63.023610 PACS number~s!: 03.75.Dg, 03.75.Fi, 42.50.Dv, 42.65.2k
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I. INTRODUCTION

Since the realization in 1995 of atomic Bose-Einstein c
densates~BEC! @1#, atom optics has begun to exploit th
accumulation of a macroscopic number of atoms in the sa
quantum state in order to generate coherent matter w
which are the atomic analog of laser light@2#. Very recently,
suchatom laserbeams have started to be used for expe
ments in nonlinear atom optics@3#, in which the classical
wave character of the atom laser pulses plays a fundame
role. The atomic analog of the nonlinear susceptibility
optical media is given by atom-atom interactions@4,5#: two-
body elastic collisions are in fact responsible for a nonlin
cubic term in the atomic field evolution equation of the sa
form as a Kerr nonlinear refractive index@6#.

Meanwhile, a large amount of theoretical work has be
devoted to the study of a number of different nonlinear at
optical effects in various configurations, such as atomic fo
wave mixing@7#, atom optical limiting and atom optical bi
stability @8#. For the observation of this latter effect, in pa
ticular, new models of atomic Fabry-Perot~FP! resonators
have been proposed@8#, which are predicted to give an en
hanced mode spacing and more tightly confined mode wa
functions with respect to previous proposals@9#.

In recent years, since the development of photonic ca
ties with very large Q-factors@10,11# and optical materials
with very strong nonlinearities@12#, a large interest has bee
devoted by the~photon! optical community to the search fo
optical schemes in which nonlinear optical effects are tr
gered by a very small number of photons@13,14#. In such
systems, in fact, the quantum state of the field can be
nipulated down to the single quantum level and definit
nonclassical states can be generated@15#.

Thanks to the formal analogy between light waves
Kerr-like nonlinear media and Bose matter waves, sim
1050-2947/2001/63~2!/023610~12!/$15.00 63 0236
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effects are expected to occur in atom optical systems: b
the light and the matter fields are in fact described by ope
tors obeying Bose statistics and in both cases the interact
introduce cubic terms in the wave equation. In additio
since the collisional atom-atom interactions are gener
much stronger than the photon-photon interactions media
by the underlying nonlinear medium, atom optics is expec
to be an even more favorable field for the study of definit
quantum optical effects. For example, the switching thre
old for optical bistability in the atomic FP described in@8#
has been predicted to be as low as a few 1013 at/cm2 s,
which in the case of visible light corresponds to intensities
the order ofmW/cm2.

In the present article we investigate the coherence pr
erties of the transmitted beam through a single-mode ato
Fabry-Perot interferometer when this is illuminated by
monochromatic and coherent atom laser beam: the field
namics is numerically studied by solving the full quantu
master equation for the cavity mode and the results obta
are physically interpreted by comparing them with the ava
able approximate theories.

As expected, mean-field theory~MFT! @16# is found to
give accurate results in the weak nonlinearity case, i.e., w
an appreciable nonlinear modulation of the transmission
quires the presence of a large number of atoms in the ca
mode. Within MFT, the atomic Bose field is considered a
classicalC-number field and its fluctuations around the cla
sical steady-state are treated in a linearized way by mean
the stochastic differential equations of Positive-P represe
tion @17# in their linearized form@18#.

In the opposite strong nonlinearity case, when the tra
mission state is substantially modified by the presence o
single atom in the cavity mode, the discrete nature of
matter field is important: MFT, which is based on a classi
field assumption, breaks down and a full quantum calculat
©2001 The American Physical Society10-1
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I. CARUSOTTO PHYSICAL REVIEW A 63 023610
is necessary in order to accurately describe the peculiar
classical properties of the transmitted beam.

For the specific case of an incident field at resonance w
the empty cavity mode, the numerical solution of the f
master equation predicts a sort ofatom blockadeeffect,
which reminds one of the well-known Coulomb blocka
effect of electronic transport through microscopic structur
if the electrostatic potential change following the injection
a single carrier is able to substantially affect the injection
the successive carriers, the current shot-noise is strongly
pressed@19#. Analogously, atom-atom interactions in our F
cavity can be so strong that the presence of a single a
shifts the mode frequency off-resonance from the incid
atom laser beam and the following atoms are effectively f
bidden from resonantly entering the cavity before the fi
atom has left. For moderate incident intensities, the ca
therefore behaves as a two-level system and the transm
atomic beam has the usual nonclassical properties of r
nance fluorescence light, such as a strong antibunc
@20,21#. Only at very large incident intensities—much larg
than the saturation intensity of the effective two-lev
system—more than one atom can be forced to be in the
ity mode at the same time and a peculiar dependence on
incident intensity is found for both the coherent and the
coherent transmission. In this regime, some of the most
culiar features resulting from the numerical calculation
well explained by a dressed cavity model@22,23#, in particu-
lar the frequencies of the incoherent transmission peaks

Most of the present discussion concerns cases in w
the nonlinearity gives rise to an optical limiter behavior; e
fects related to atom optical bistability are postponed t
forthcoming publication.

In Sec. II, we shall introduce the Hamiltonian of th
model and we shall describe the physical processes invol
as well as the physical parameters which control them
Sec. III we shall address the weak nonlinearity case, in wh
the full numerical calculation is well reproduced by MF
with a linearized treatment of fluctuations. In Sec. IV, w
shall discuss the results obtained for the opposite case
strong nonlinearity. Finally, Sec. V is devoted to conclusio
and future work.

II. THE MODEL

Consider a quasi-cw beam of atoms coherently extrac
@2# from a trapped Bose-Einstein condensate~BEC! by
means of a radio-frequency field or of a pair of optical bea
in a Raman configuration. Thanks to the coherent natur
the outcoupling mechanism used to transfer atoms from
trapped BEC to the propagating beam, the all-order coh
ence of the BEC transfers into a similar property for theatom
laser beam. If the intensity of the outcoupled beam is we
and the number of atoms in the trapped BEC large,
depletion rate of the BEC is very slow and the outcoup
beam can be considered as having a weak but constan
tensity as well as a constant frequency; this limitation on
atom laser intensity could clearly be overcome if the BE
were continuously replenished, making a true atom la
Provided phase diffusion of the condensate occurs on a
scale much longer than any of the characteristic time sc
02361
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of the nonlinear cavity, the atom laser beam can be mode
as a monochromatic classicalC-number wave@24#.

As shown in Fig. 1, suppose we inject such an outcoup
wave into a single mode atomic waveguide@25# in order to
freeze the transverse atomic motion; in this way, the sys
behaves as a one-dimensional one. At the same time, the
of a horizontal waveguide allows us to counteract the eff
of gravity, so that the longitudinal wavefunction of the ou
coupled beam is simply a plane wavec(x,t)
5c ie

i (kLx2vLt) of frequencyvL and momentumkL .
Suppose now we send such a cw coherent atomic b

onto an atomic Fabry-Perot~FP! cavity, formed by a pair of
parallel atomic mirrors which confine atomic matter wav
in the space between them; atomic motion between the
rors is quantized in discrete cavity modes, which are coup
to externally propagating modes because of the nonper
reflectivity of the cavity mirrors. Several simple schem
which realize such a device have been proposed, mos
which are based on the optical potential applied to the ato
by far off-resonance laser fields: some of them@9# use a blue
detuned laser field to create potential hills between which
atoms are confined; some others@8,26# use optical lattices in
order to create the atomic analog of DBR microcavities@27#.

As it is well known from photon optics@6#, if the fre-
quencyvL of the incident atom laser beam is far from res
nance with all the cavity modes, the atomic beam is eff
tively forbidden from entering the cavity and therefore
nearly completely reflected back. On the other hand, ifvL is
close to the frequencyvo of one of the cavity modes, this
mode is resonantly excited: a substantial fraction of the in
dent atoms resonantly enter the cavity and are transmitte
the other side where they form the transmitted beam.

If we assume that the frequency spacing of the differ
cavity modes is much larger than both the laser linewi
and the atom-atom interaction energy, and if we suppose
atom laser frequencyvL to be close to a cavity resonanc
only this mode is effectively excited, while the other ones a
safely neglected. If we develop the atomic field inside t
cavity on its eigenstates

ĉ~x!5(
a

fa~x!ĉa , ~1!

this single-modeapproximation is equivalent to assuming a
the ĉa to be effectively negligible but for one of them, whic
will be called in the followingâ; let f(x) be the wave func-
tion of such mode.

FIG. 1. Sketch of the experimental scheme under examinatio
0-2
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NONLINEAR ATOMIC FABRY-PEROT . . . PHYSICAL REVIEW A 63 023610
In this approximation, the Hamiltonian of the driven ca
ity can be written in the simple form@15,18#

H5\voâ†â1\vnlâ
†â†ââ1 i\b fc i â

†e2 ivLt1H.c.,
~2!

whereâ andâ† are respectively the destruction and creat
operators for the localized cavity mode. Thanks to the B
nature of the atomic species under examination, such op
tors satisfy the usual Bose commutation relation@ â,â†#
51.

The first term of the Hamiltonian Eq.~2! describes linear
oscillations at frequencyvo ; the second term keeps track
the ~collisional! atom-atom interactions, whose strength
quantified by thevnl parameter. This is easily related to th
cavity mode wavefunctionf(x) and thes-wave scattering
lengthao @28#:

vnl5
2p\ao

m E d3xuf~x!u4; ~3!

as expected, its sign is positive~negative! for repulsive~at-
tractive! interactions. Since the atomic density inside t
cavity is, at resonance, much larger than the density in
incident atom laser beam@6#, atom-atom interactions outsid
the cavity are safely neglected; in addition, the single-mo
approach neglects all those processes in which atoms
transferred from the modeâ to the other modes of the cavit
by the interactions; such an approximation is generally j
tified provided the interaction energy is much smaller th
the spacing of adjacent cavity modes and parametric r
nances of the kind 2va5va81va9 are absent.

The driving of the cavity mode by the incident atom las
beam is taken into account by the last two terms. Thank
the stationarity and all-order coherence assumptions
cussed above, the driving field is well modeled as a mo
chromatic and classicalC-number field c ie

2 ivLt which
forces the cavity mode to oscillate. In particular, the coupl
coefficientb f is proportional to the transmission amplitud
of the front cavity mirror. Analogously, the amplitude of th
transmitted field through the cavityĉ tr is proportional to the
internal amplitudeâ times akb coefficient proportional to
transmission amplitude of the back mirror; all the statisti
properties of the transmitted field can thus be expresse
terms of the internal field ones@15,22#.

From the point of view of the sole cavity, the coupling
the continuum of propagating external modes through
nonperfectly reflecting mirrors, which underlies the drivin
of the cavity mode by the incident beam as well as the f
mation of the transmitted beam, is a dissipative process
thus cannot be included in a simple Hamiltonian formalis

From the general theory of quantum damping@15,22#, it
follows that the dynamics of the single-mode cavity und
examination is completely described by the followingmaster

equationfor the density matrixr̂,

]r̂

]t
5

i

\
@r̂,H#1gD@ â#r̂; ~4!
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the first ~Hamiltonian! term keeps track of the driving, th
linear oscillations and the atom-atom interactions, while
second term keeps track of the dissipative effects. This la
has been written in terms of the superoperatorD@ â#r̂, de-
fined as usual as

D@ â#r̂5âr̂â†2 1
2 ~ â†âr̂1 r̂â†â!; ~5!

the coefficientg has the usual meaning of damping rate
the cavity excitation.

In the actual calculations, the steady-state of the den
matrix r̂eq is determined by lettingr̂ evolve according to Eq.
~4! for a time much longer than the characteristic relaxat
time of the system under examination. The expectation v
ues ^Ô& of the observablesÔ of interest are calculated a
mean values over the steady-state density matrix Tr@ r̂eqÔ#;
for the determination of a two-time correlation functio

^Ô2(t)Ô1(0)&, we have to first apply the observableÔ1 to
the left of r̂eq, then let the resulting density matrixÔ1r̂eq
evolve for a timet according to the master equation~4! and
finally take the expectation value of second observableÔ2.

From a numerical point of view, several different repr
sentations can be chosen forr̂ @15,17,29#; our actual simu-
lations have been performed using a Fock representatio
which the density matrix is expanded in the number-st
basis Mn,n85^nur̂un8&. The time evolution is numerically
performed using a standard fourth-order Runge-Ku
method and then checking the numerical stability of the
sult with respect to a reduction in the integration time ste

In the case of symmetric systems, in which the front a
back mirrors have the same transmission properties,
b f ,kb coefficients are related to the dampingg by the rela-
tions b f5(gv/2)1/2 and kb5(g/2v)1/2, which follow from
the well-known property that the transmission through a
linear, symmetric and nonabsorbing cavity is, at exact re
nance, exactly one ~see, e.g., @30#, Chap. 9!; v
5(2\vo /m)1/2 denotes the~group! velocity of free atoms
which coincide on the cavity at resonance.

Depending on the specific scheme adopted for the cav
processes of different kinds can be responsible of additio
incoherent nonradiative losses which are the atomic ana
of light absorption in materials; in particular, if the confin
ment is a magnetic one, Majorana spin flips may occ
while spontaneous emission of light may take place in
presence of an optical confinement@31#. Such effects have to
be handled by means of additional terms in Eq.~4! of the
same formgabsD@ â#r̂: their main consequences are a broa
ening of the resonance and a reduction of the peak trans
tivity by a factor (g1gabs)/g.

The single-mode nonlinear cavity model described in
present section has been widely applied to optical Fab
Perot interferometers@14,18,32#: in that case, the field opera
tor â describes an electromagnetic field instead of a ma
field and the nonlinear interaction between photons res
from the third-order nonlinear polarizabilityx (3) of the cav-
ity material. The main difference consists in the strength
the nonlinear coupling, which can be quantified by the nu
0-3
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I. CARUSOTTO PHYSICAL REVIEW A 63 023610
ber No5g/vnl of quanta which are necessary for having
appreciable nonlinear effect on the transmittivity. Since
optical nonlinearity of usual materials is very weak, conve
tional optical resonators are characterized byNo@1, which
means that a huge number of photons have to be exc
inside the cavity before the effect of optical nonlinearity
be apparent; for this reason, such systems have been m
studied within a mean-field approach with linearized fluctu
tions. Section III of the present article is devoted to a d
tailed discussion of the validity of such an approach: in p
ticular, the approximated predictions of MFT are compa
to the result of our exact numerical calculations and agr
ment is found in the classicalNo@1 limit; in terms of the
many-body theory of the interacting Bose gas, this condit
would correspond to the classical diluteness conditionnao

3

!1 (n being the spatial density of the 3D gas!.
Only very recently, an active interest has been focused

the possibility of achieving the oppositeNo<1 regime with
light: optical materials with very strong nonlinearities as w
as very high Q-valued cavities have been investigated in
der to generate nonclassical states of the field and even
tangled ones.

First of all, high finesse optical cavities containing a sm
number of atoms have been investigated in the realm of c
ity quantum electrodynamics@11#: in this case, the nonlin-
earity mechanism is the intrinsic one of two-level atom
with a smaller number of atoms, a smaller number of p
tons is required for the saturation of the transition, but at
same time the weaker polarizability imposes a stronger
quirement on cavity finesse. Furthermore, an additional
channel is introduced by the spontaneous decay of exc
atoms.

Second, quantum coherence effects in multilevel ato
dressed by strong pump fields have been theoretically sh
to give enhanced nonlinear susceptibilities as well as
pressed absorptions@12,14#: despite the formal difficulties
related to the complex internal dynamics of the three-le
atoms@33,34#, such arrangements are now beginning to
exploited for low intensity nonlinear optics experiments@13#
as well as for the study of very slow pulse propagation@35#.

Finally, new cavity geometries with enhanced Q-facto
are also being investigated: in particular, the whispering g
lery modes of cylindrical or spherical resonators look ve
promising, since fused silica spheres and disks with spa
sizes of the order of micrometer and very weak surfa
roughness are currently available; unfortunately, the non
ear susceptibility of fused silica is very weak and the ins
tion of localized active impurities is generally necessa
@10#.

On the other hand, recent theoretical work on atom
Fabry-Perot interferometers@8# has shown that the use o
spatially modulated optical lattices allows for well separa
cavity modes with narrow linewidths and tight longitudin
confinement: in particular, it has been shown that atom-a
interactions can give rise to atom optical bistability with
very low threshold intensity of the order of 1013 at/cm2s.
Provided transverse motion is appropriately frozen by me
of a single-mode atomic waveguide@25#, such systems be
have as effectively one-dimensional ones. Thanks to
02361
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transverse confinement, the isolated cavity resonance
show a nonlinear couplingvnl comparable or even large
than the mode linewidthg and thereforeNo<1. In this re-
gime, MFT breaks down and a full quantum calculati
based on the master equation~4! is required; the peculiar
coherence properties which result from the calculations w
be discussed in Sec. IV.

With respect to optical systems, the Hamiltonian of t
atomic FP cavity allows for a more transparent discussion
the quantum dynamics: the collisional nonlinearity for t
atomic matter field is described by a simple quartic term
the field Hamiltonian, while in the case of strongly nonline
optical media the internal dynamics of the atoms must g
erally be taken into account explicitly in the calculations.

III. WEAK NONLINEARITY CASE: MEAN-FIELD
THEORY AND LINEARIZED FLUCTUATIONS

The approximation scheme most commonly used for
study of the dynamics of trapped atomic Bose-Einstein c
densates~BEC! is certainly the mean-field theory@16#: the
atomic field is described as a classicalC-number field equal
to the mean value of the quantum fieldc(x,t)5^ĉ(x,t)& and
factorization is assumed for the operator products involv
in the motion equation of this macroscopic wavefunctio
fluctuations are then treated in a linearized way by mean
the Bogoliubov’s technique.

Using the many-body theory of 3D Bose gases, this
proach can be proven to give correct results in the cas
dilute systems in which the densityn is low enough for the
mean interparticle distancen21/3 to be much larger than the
scattering lengthao ; current atomic samples well satisf
such a condition. In other terms, for a constant mean-fi
interaction energy~which is proportional tonao), MFT is
valid in the classical limitao→0 andn→`, in which the
discrete nature of the matter field is effectively washed o

For the single-mode nonlinear interferometer described
the previous section, the mean-field approach leads t
single differential equation for the mean value of the cav
field a(t)5^â(t)& of the form @15,18#

da

dt
52 i ~vo12vnluau2!a1b fc ie

2 ivLt2
g

2
a, ~6!

from which we can immediately obtain the steady-state va
a(t)5āe2 ivLt with

ā5
ib fc i

vL2vo22vnluāu21 ig/2
. ~7!

If fluctuations of the cavity field are completely neglecte
the transmitted fieldĉ t5kbâ has the same all-order cohe
ence properties as the incident one. Lowest-order fluc
tions around the mean value can be taken into account
by solving the linearized@18# version of the stochastic equa
tions of Positive-P representation@17#; this procedure is a
sort of generalization of Bogoliubov’s approach to driv
dissipative systems.
0-4
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NONLINEAR ATOMIC FABRY-PEROT . . . PHYSICAL REVIEW A 63 023610
Using the Positive-P representation of a quantum B
field, it can be shown that the dynamics of the field in
nonlinear single-mode cavity is described by a pair of s
chastic differential equations

da5F2 i ~vo12vnla* a!a1b fc ie
2 ivLt2

g

2
aGdt

1A22ivnla
2dh1 , ~8!

da* 5F i ~vo12vnlaa* !a* 1b f* c i* eivLt2
g

2
a* Gdt

1A2ivnla* 2dh2 ~9!

for the field variablesa and a* , which are now complex
conjugates of each other only in the mean. The noise te
dh i are independent Gaussian noise terms (dh i

50, dh i dh j5d i , jdt) @36#. In terms of the stochastic field
variablesa anda* , the mean value of any normally ordere
observable can be expressed as

^â†mâm&5a* mam. ~10!

Linearizing the stochastic Eqs.~8! and~9! around the steady
statea5āe2 ivLt, a* 5ā* eivLt of the deterministic evolu-
tion, we get to a pair of linear stochastic equations for
slowly varying field fluctuationsda5aeivLt2ā and da*
5a* e2 ivLt2ā*

dda5F2 i ~2Dv14vnluāu2!da22ivnlā
2da* 2

g

2
daGdt

1A22ivnlā
2dh1 , ~11!

dda* 5F i ~2Dv14vnluāu2!da* 12ivnlā* 2da2
g

2
da* Gdt

1A2ivnlā* 2dh2 . ~12!

From these equations, all the stationary moments can be
tracted using the standard techniques for the solution of
ear stochastic differential equations@36#. We shall not repro-
duce here all the details of the calculations, which can
found in the original paper@18#, but we shall only give the
final results and compare them with the exact result of
numerical calculations.

As described in@18#, the mean transmitted intensity
given by

I tr5vukbu2^â†â&5
g

2 FN1
vmf

2

2ul~vL!uG5I coh1I nc; ~13!

the first termI coh, which describes the coherently~i.e., elas-
tically! transmitted intensity, corresponds to the mean-fi
amplitudeā; the second oneI nc accounts for quantum fluc
tuations and thus describes the incoherently~inelastically!
transmitted intensity. WithDv5vL2vo we have denoted
the detuning of the incident atom laser beam with respec
02361
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the empty cavity mode;N5uāu2 is the mean-field number o
quanta in the cavity mode andvmf52vnlN is the corre-
sponding frequency shift of the cavity mode; finally, for n
tational simplicity, we have set

l~v!5H i @~v2vL!1~Dv22vmf!#1
g

2J •H i @~v2vL!

2~Dv22vmf!#1
g

2J 2vmf
2 . ~14!

As expected, for a fixed value of the mean-field interact
energyvmf , the contribution of fluctuations is inversely pro
portional to the number of atoms in the cavity mode and th
vanishingly small in the classical limit (vnl→0, N→`).
With a similar procedure we can determine the one-ti
second-order correlation functiong(2)(0):

g(2)~0!5
^â†â†ââ&

^â†a&
2 511

vmf

ul~vL!uN ~Dv2vmf!.

~15!

Finally, a Fourier transform of the first-order correlatio
function leads to the spectrum of the transmitted intensit

S~v!5Scoh~v!1Snc~v!5
g

2
F t^â

†~ t !â~0!&

5
g

2 H Nd~v2vL!1
gvmf

2

2pul~v!u2
J ~16!

in which we again recognize the elastic and inelastic con
butions; the former corresponds to the delta-function pea
vL , while the latter gives a pair of~inelastic! Lorentzian
peaks at the frequencies

v65vL6ADv224Dvvmf13vmf
2 , ~17!

which correspond to the dressed states of the driven sys
Poles at these same frequencies appear in the linear resp
of the driven system to additional probe beams@22,37,38#.
Whenever the argument of the square root is negative,
two peaks coalesce into a single one atvL .

These results are to be compared to the exact solutio
the full master equation~4! obtained using the numerica
technique sketched in the previous section. In Fig. 2,
have plotted the coherent and the incoherent transmitted
tensitiesI coh and I nc vs. the incident intensityI inc5vuc i u2
5(2/g)ub fc i u2 for different values of the nonlinearity pa
rameterNo5g/vnl at zero detuningDv50. In the plots, the
intensities~defined as the number of atoms per unit tim
flowing along the waveguide! have been normalized in unit
of the characteristic intensityg2/vnl5gNo , so that the
mean-field curves for the coherently transmitted intensity
perimpose on each other exactly.

In the zero detuningDv50 case we are considering
MFT @Eq. ~7!# predicts an optical limiter@6# behavior for the
transmitted intensity: for growing intensities, in fact, th
mean-field interaction energy 2\vnluau2 tends to shift the
cavity mode out of resonance with respect to the incid
beam and thus to lower the effective transmittivity. In pa
0-5
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I. CARUSOTTO PHYSICAL REVIEW A 63 023610
ticular, while at low intensity the transmitted intensity grow
linearly with the incident intensity, in the large intensity lim
the transmitted intensity grows only as its power 1/3. In
log-log scale, the transition between these two regimes
be observed as a rather smooth bending.

The discrepancy of the MF result for the coherently tra
mitted intensity with respect to the exact one is concentra
mostly in the crossover region and, as expected, tend
disappear in the classical limitNo→` ~see upper panel o
Fig. 2!. An analogous comparison can be made for the in
herently transmitted intensity~see lower panel of the sam
figure!: at lowest order@Eq. ~13!#, such a quantity is a facto
of N lower than the coherent contribution and thus its re
tive weight vanishes in the classical limit. As expected,
discrepancy of the MF result with respect to the exact on
of higher order inNo

21 .
In the upper panel of Fig. 3, we have plotted the fir

order long-time coherence of the transmitted beam

h5
I coh

I tr

5

lim
t→`

u^â†~ t !â~0!&u

^â†~0!â~0!&
~18!

as a function of the~normalized! incident intensity for dif-
ferent values ofNo . All curves show a single minimum at
value of the incident intensity which, being related to t
crossover in the optical limiter response curve, is appro
mately proportional togNo ; the depth of such a minimum i
approximately inversely proportional toNo . Perfect coher-
enceh51 is recovered in the classical limitNo→`.

FIG. 2. Transmission properties of a nonlinear Fabry-Perot
terferometer in the weak nonlinearity~largeNo) regime: in the up-
per panel, coherent intensityI coh as a function of the incident inten
sity I inc ; in the lower one, incoherent intensityI nc. All intensities
have been normalized to the characteristic intensityg2/vnl . In the
upper panel, the solid curve is the result of the linearized appro
while the long- and short-dashed ones correspond to the exac
culations forNo58 andNo52, respectively. In the lower pane
the solid and the long-dashed lines are again the approximat
sults, while the short-dashed and the dot-dashed are the exact
The upper curves are forNo52, the lower ones are forNo58.
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A similar behavior is found also for the one-time secon
order coherenceg(2)(0) which is plotted in the lower pane
of the same figure; a value forg(2)(0) smaller than 1 mean
that the transmitted beam is antibunched, i.e., has redu
intensity fluctuations as compared to a classical cohe
beam. Such a quantum property is a consequence of the
tical limiter response and is at lowest order inversely prop
tional to No .

As previously, the MF result is found to keep track in
correct way of the lowest order fluctuations: the discrepa
with the exact result is in fact of higher order inNo

21 for any
incident intensity. In particular, for the low intensity lim
I inc→0 the mean field theory predictsg(2)→1 @see Eq.~15!#,
since in this regime the system behaves as an effecti
linear one. On the other hand, the exact calculation give
value lower than 1, which is an unambiguous signature
the discrete nature of the field: while theC-number variable
which describes the field in the linearized treatment can
sume any value, the quantum system can only be in a
crete ladder of states. For an incident beam at exact r
nance with the empty cavity, theun51& state is on
resonance, while the second excited oneun52& is already
out of resonance of a finite frequency 2vnl . A straightfor-
ward but somewhat lengthy analytical calculation for t
steady-state value of the density matrixr̂eq at lowest order in
I inc leads to the expressions

r11
eq.

4ub fc i u2

g2
~19!

and

-

h,
al-

re-
es.

FIG. 3. Coherence properties of the transmitted beam as a f
tion of the incident intensityI inc : in the upper panel, long-time
first-order coherenceh5I coh/I tr ; in the lower panel, one-time

second-order coherenceg(2)(0)5^â†â†ââ&/^â†â&2. The solid and
the dotted curves are the approximated results of linearized th
for No58 andNo52, respectively, while the long-dashed and t
dot-dashed are the exact ones for the same parameter choices
arrows in the lower panel are the predictions of the analytical
pression Eq.~21! for g(2)(0) in the low-intensity limit.
0-6
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r22
eq.

8ub fc i u4

g2~g214vnl
2 !

~20!

for the matrix elementsr11
eq5^n51ur̂equn51& and r22

eq5^n
52ur̂equn52&. From these expressions, it is immediate
obtain an expression of the one-time second-order coher
function

g(2)~0!5
2r22

eq

~r11
eq!2

5
1

114/No
2

, ~21!

which is valid in the low-intensity limit for any value ofNo .
This exact analytical prediction is marked with horizon
arrows in the lower panel of Fig. 3 and the agreement w
the numerical result is excellent. As expected, in the class
No→` limit, the analytical expression Eq.~21! tends to the
mean-field prediction of 1 and, at lowest order, the discr
ancy is proportional toNo

22 .
Finally, in Fig. 4 we have plotted a few spectra of t

inelastically transmitted intensity in the zero detuning (Dv
50) case and we have compared the approximate resu
MFT to the exact one. Apart from the small central peak
v5vL5vo which appears at smaller values ofNo , both the
position and the intensities of the external peaks as predi

FIG. 4. Incoherently transmitted intensity spectra: in the up
panel,No58; in the lower one,No52. The solid lines refer to the
exact calculations, while the dot-dashed ones are the result o
linearized approach. The incident intensities are equal toI inc

50.24g and I inc580g for the upper panel spectra, and toI inc

50.06g and I inc520g for the lower panel ones.
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by the MFT are in excellent agreement with the exact res
As previously, the larger theNo parameter, the closer th
similarity.

In the present article, we shall not specifically address
case of a detuned driving fieldDv5” 0 and we shall limit
ourselves to a few remarks. In the case where the detu
has opposite sign with respect to the nonlinear freque
shift of the cavity mode, the feedback of the nonlinearity
the transmission is still negative and leads to the same o
cal limiter behavior previously described; only the freque
cies of the dressed modes in Eq.~17! are different. On the
other hand, when the detuning has the same sign as the
linear shift, the feedback of the nonlinearity is positive a
MFT predicts the possibility of multiple steady-state so
tions of Eq.~7! for a single value of the incident intensit
@6#. In this case, the linearized theory can account only
the fluctuations occurring in the neighborhood of ea
steady-state@18#, but it does not keep track of effects relate
to quantum tunneling from one steady-state to anot
@15,39#. Nevertheless, the numerical solution of the full ma
ter equation~4!, as it has been described in the present
ticle, can provide us exact results for the coherence pro
ties of the transmitted beam. Given their complexity,
complete discussion of these points is postponed to a fo
coming publication.

IV. STRONG NONLINEARITY: THE ATOM BLOCKADE
EFFECT

In the previous section we have discussed the solution
the quantum master equation~4! in the weak nonlinearity
No@1 regime in which the exact numerical solution is acc
rately approximated by the analytic mean-field result. In t
case, in fact, the behavior of the quantum field has b
shown to be well reproduced by a classical field while t
discrete nature of the field was taken into account simply
means of noise terms in the stochastic motion equations~11!
and ~12!. Unfortunately, an exact solution of the comple
Positive-P equations~8! and~9! does not mathematically ex
ist for small values ofNo because of the well-known diver
gences of the field amplitudes@40#. Since a relatively small
value of No means that only a moderate number of Fo
states are actually involved in the dynamics, a numer
calculation in the Fock basis can be easily performed wit
a short computation time; moreover, the results of the
merical calculations are themselves best understood in
number-state basisun&.

In this basis, the Hamiltonian of the driven nonline
single-mode cavity has the form

r

he
H
\

5S 0 E ie
2 ivLt 0 0

Ei* eivLt vo A2E ie
2 ivLt 0

0 A2Ei* eivLt 2vo12vnl A3E ie
2 ivLt A

0 0 A3Ei* eivLt 3vo16vnl

. . .

D , ~22!
0-7
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I. CARUSOTTO PHYSICAL REVIEW A 63 023610
where the Rabi frequency of the drivinguEi u5ub fc i u is de-
termined by the incident intensityI inc5(2/g)uE i u2. For a
vanishing driving incident intensity (Ei50), the eigenvec-
tors of H are the Fock statesun& themselves, and thei
eigenenergies are equal tonvo1n(n21)vnl ; because of the
presence of nonlinear interactions, the energy splitting of
jacent modes, given byvo12nvnl , is a monotonically in-
creasing~decreasing! function of n for repulsive~attractive!
interactions.

In the zero-detuning (Dv50) case, only the transition
un50&→un51& is on resonance with the driving field; in
deed, the higher states are shifted off then-atom resonance
of a frequency (n21)vnl . In particular, an incident intensity
I inc of the order of 8vnl

2 /g58g/No
2 is required for the Rab

frequencyuEi u to be equal to the detuning of theun52& level
and thus for this to be effectively populated.

This physical picture is confirmed by the results of t
numerical calculations reproduced in Figs. 5 and 6: for m
erate intensitiesI inc!I 25g/No

2 , the cavity shows a behavio
analogous to the one of a driven two-level system; in p
ticular, the transmitted atomic beam has the same statis
properties as the resonance fluorescence from a single
level atom@15,22#.

Such an effect can be considered as a sort of atom op
analog of the well-knownCoulomb blockadeof microscopic
electronic systems@19#: in this case, the electrostatic char
ing energy due the injection of a single carrier inside
device is able to bring the energy of the electronic sta
involved in transport above the Fermi level of the injec
and therefore to forbid the injection of other carriers. In t
atomic case, the collisional interaction energy following t
presence of a single atom is able to shift the cavity mo
frequency of an amount equal to 2vnl . If the incident beam
is initially on resonance with the cavity, and if we are in
strong nonlinearity regimevnl@g, the entrance of a secon
atom in the cavity is an off-resonant process, and thus
strongly suppressed. This means that before a second ca
can enter the cavity, the first one must have left. As us
the antibunching of the transmitted beam which follows fro
this atomic blockadeeffect results in a suppression of inte
sity noise below the shot-noise limit.

There are, however, significant differences between
two cases: in the electronic case, the device is driven b
multimode and incoherent thermal gas, possibly Fer
degenerate, and the transport of electrons involves a
tinuum of transverse electronic states so that the transm
current is generally carried by transversally incoherent e
trons. In order for the Coulomb blockade not to be destro
by thermal effects, the energy position of the electronic sta
in the device after the injection of a single carrier has
differ from the Fermi energy of the injector by an amou
much larger than the thermal energy. In the atomic cas
cavity with well-spaced discrete modes has been conside
which is driven by a coherent atom laser beam~of course,
this is possible only with bosonic atoms!; in this case, the
transmitted beam maintains at least partially the coherenc
the incident beam. In order for the atom blockade effect to
apparent, atom-atom interactions have to shift the ca
mode off-resonance from the incident atom laser by
02361
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amount much larger than both the atom laser and the ca
mode linewidths.

For strong nonlinearities (No!1), the characteristic inci-
dent intensity scaleI sat for the saturation of the two-leve
system, which is of the order ofg, is well separated from the
characteristic intensityI 25g/No

2 for substantial population
of the un52& state. Hence it exists an intensity windowI sat
!I inc!I 2 in which the two-level system is effectively satu
rated but the higher excited states are still unpopulated
this window the atom blockade is most effective in imposi
the strict upper limitI tr<g/4 to the total transmitted inten
sity. In this same intensity window, the spectral distributi
of the transmitted intensity is characterized by the usual
herent delta-like peak atvL due to coherent~elastic! trans-
mission plus a triplet of peaks~the so-called Mollow triplet
@41#! resulting from incoherent transmission~see Fig. 6!.

Physical behaviors of this kind are, however, very ge
eral, since they follow from the structure of the spectrum
the system: if the spacing of the levels is far from bei
uniform, a driving which is resonant with the lowest lyin
transition cannot excite the higher ones except at large va
of its intensity, so that the system effectively behaves a
two-level one. This behavior is found, e.g., in the optic
response of atoms, for which a two-level approximation
generally justified by the fact that the higher-lying optic
transitions have frequencies much different from the fun
mental one. Also cavity QED systems containing a few
oms@11# as well as cavity electromagnetically induced tran
parency @34# can give rise to effective two-level system
under appropriate conditions for which the spacing of
lowest-lying dressed states is significantly different from t
spacing of the higher ones.

The intensity scale separationI sat!I 2 translates into the
characteristic dependence of the total transmitted intensity
the incident intensity that can be observed in the upper pa
of Fig. 5. First of all, when the two-level system is not sat
rated, the transmitted intensity is a linear function of t
incident one; then, forI inc of the order ofg, saturation of the
two-level system occurs and the response flattens. Fin
for I inc of the order ofg/No

2 , the transmitted intensity start
to grow again thanks to the contribution of theun52& state.

The behavior of the single coherent and incoherent c
tributions to the transmitted intensity as functions of the
cident intensity can also be interpreted within this same p
ture. As in the classical two-level system@22#, at low
incident intensities most of the transmission is cohere
since the coherent fractionI coh is a linear function ofI inc and
the incoherent fractionI nc a quadratic one. When the two
level system is appreciably saturated, the incoherent frac
starts to dominate, while the coherent one drops to ne
zero. As the incident intensity grows even further, more th
one atom can be simultaneously stored in the cavity mode
that theun52& state is populated as well; therefore the c
herent component starts to grow again, while the incohe
one starts to decrease. In other terms, the first-order co
enceh shows a minimum as a function of the incident i
tensity at a value corresponding to the saturation platea
the two-level transition. The population of theun52& state
can be singled out just by looking at the one-time seco
0-8
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NONLINEAR ATOMIC FABRY-PEROT . . . PHYSICAL REVIEW A 63 023610
order coherence functiong(2)(0). For the ideal two-level
system, this quantity is rigorously zero for any value ofI inc ;
any departure from this value is an unambiguous signatur
a population of theun>2& levels. For low incident intensities
g(2)(0) has the very small valueNo

2/4 @see Eq.~21!#, while it
is substantially larger than zero only above the satura
plateau.

In order to explain the incoherent transmission spec
reproduced in Fig. 6, it can be useful to apply the dres
states technique to the physical system formed by the ca
plus the driving field@22,23#. In analogy to what is usually
done in the dressed atom model, we shall label the quan
states of such a system with a pair of integer numbers (N,n),
respectively denoting the number of atoms in the driv
field and in the cavity mode. In the dressed atom model,
integer numbern is generally replaced by a discrete ind
running over the different internal states of the fluoresc
atom andN has the physical meaning of number of photo
in the incident laser beam.

Neglecting for the moment the radiative damping of t
cavity mode, the total number of atomsNT5N1n is a con-
served quantity; sinceN is assumed to be very large, adj
cent manifolds have the same structure and are spaced
each other by an amount equal to the incident laser
quencyvL ; in particular, the corresponding eigenstates o
differ for the numberN of atoms in the driving field. Within
each constantNT manifold, the Hamiltonian of the dresse
system in the Fockun& basis has the simple form

FIG. 5. Transmission and coherence properties of a nonlin
Fabry–Perot interferometer in the strong nonlinearity regime (No

50.125) as a function of the incident intensity: in the upper pan
transmitted intensityI tr ~solid line!, coherentI coh ~dashed line! and
incoherentI nc ~dot-dashed! components. In the lower panel, long
time first-order coherenceh ~solid line! and one-time second-orde
coherenceg(2)(0) ~dashed line!. Atom blockadebehavior occurs for
I inc comprised betweenI sat5g and I 2564g.
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D .

~23!

As it is sketched in Fig. 7~a!, transitions between one man
fold to the immediately lower one occur because of radiat
losses through the nonperfectly reflecting mirrors and g
rise to the incoherent component of the transmitted be
Denoting with va the energy of theuca& eigenstate of a
manifold, we expect that the spectrum of incoherently tra
mitted atoms will be peaked at the frequenciesvL1(va
2vb); the intensity of each peak is proportional to the m
trix element of the corresponding transitionu^cauâucb&u2
times the populationNa of the departure leveluca&.

For moderate intensitiesI inc!g/No
2 the mixing of the bare

states into the new dressed states is limited to the two low
states of the manifold, while the upper states nearly coinc
with the un>2& states and are nearly unpopulated; for th
reason transitions involving these upper states give a ne
gible contribution to the incoherent transmission spectra
this regime, these spectra are thus the usual Mollow spe
of resonance fluorescence from driven two-level systems
very low intensity, there is a single peak atvo ; for intensi-
ties at least of the order of the saturation intensityuEi u.g,
there starts to be a symmetric triplet of peaks at respectiv

ar

l,

FIG. 6. Incoherently transmitted intensity spectra in the stro
nonlinearity regime (No50.125) for growing values of the inciden
intensity: in the upper panel,I inc /g50.2,2,6.5; in the lower one
I inc /g520,60,240. The arrows correspond to the transition frequ
cies resulting from the dressed cavity approach; the chosen pa
eters are the same (I inc /g56.5,240) as for the solid line spectra. I
the lower panel, solid arrows correspond to transitions involv
only the un50,1& states, while the dotted and dashed ones co
spond to weaker transitions which involve respectively theun52&
and theun53& states.
0-9
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I. CARUSOTTO PHYSICAL REVIEW A 63 023610
vo andvo6uEi u, the central peak having a height three tim
larger than the lateral ones@see Fig. 6~b!#.

At stronger intensities, when a larger number of states
the cavity begins to be effectively populated, the structure
the manifolds becomes more complex and additional pe
can be found in the wings of the fluorescence spectra;
stronger the driving field, the larger the mixing ofun>2&
states with the lower ones and, consequently, the stronge
intensity of the peaks corresponding to transitions involv
such states.

A simple numerical diagonalization of the Hamiltonia
Eq. ~23! gives the frequencies of the peaks: in Fig. 7~b! we
have reproduced the dependence of the frequency of the
est dressed states on the driving strength. Obviously, s
the higher state population is very small as well as the ma
elements of the transitions reaching them, only a few pe
are visible in the actual spectra plotted in Fig. 6. Compari
between the two approaches is easily made: the trans
frequencies as they are predicted by the dressed state pi
have been marked by vertical arrows; the agreement with

FIG. 7. Strong nonlinearity regime (No50.125): sketch of the
dressed cavity level scheme~panel a!; dressed state frequencie
~panel b! as a function of the incident intensityI inc for the Dv50
case. The vertical dashed lines correspond to the intensity va
used in Fig. 6.
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numerical peaks is excellent. Solid arrows refer to the tr
sitions involving onlyun50& and un51&, which are visible
at any intensity. On the other hand, dotted~dashed! arrows
denote transitions which involve theun52& (un53&) state as
well; given their weakness, the corresponding peaks can
distinguished from the underlying pedestal only at high
tensities.

Remarkably, the intensity of the central peak atvo de-
creases for growing intensity with respect to the first pair
side peaks: this evolution suggests a smooth transition
wards the two-peaked spectra obtained by means of
semiclassical approach described in the previous section
very high driving intensity, in fact, when the mean occup
tion number of the cavity is much larger than one, fluctu
tions result again well described by the linearized theory
the previous section.

The dressed cavity model can be extended to the case
nonvanishing detuningDv as well: the positions of the
peaks are again well reproduced in terms of transitions c
necting dressed states of adjacent manifolds. In the up
panel of Fig. 8 we have plotted a series of spectra for diff
ent detunings: the spectra are centered at the incident
quencyvL , i.e., the spacing between adjacent manifolds

When Dv and vnl have opposite signs, the nonline
feedback on transmission is negative and the population
the upper states of the manifold is further reduced with

es

FIG. 8. Effect of a finite detuningDv on the incoherently trans
mitted intensity spectra in the strong nonlinearity regime (No

50.125, I inc5160g): in the upper panel, spectra forDv/g5
28,0,8 ~respectively, dashed, dot-dashed and solid lines!; arrows
indicate the transition frequencies according to the dressed ca
model: solid arrows refer to theDv/g58 spectrum, dotted arrows
to theDv/g528 one. In the lower panel, plot of the dressed st
frequencies as function of the detuningDv. The vertical dashed
lines correspond to the values of the detuning which have been
in panel~a!.
0-10
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NONLINEAR ATOMIC FABRY-PEROT . . . PHYSICAL REVIEW A 63 023610
spect to theDv50 case; the lateral peaks in the spectra
therefore even weaker. On the other hand, whenDv andvnl
have the same sign and the nonlinear feedback is posi
the population of the upper states of the manifold is
hanced and the spectra show a larger number of peaks
previously, their frequencies result in good agreement w
the predictions of the dressed cavity model, which
marked with arrows in the figure. In the lower panel of t
same Fig. 8, we have specifically plotted the position of
different dressed states as functions of the detuning as
have been determined by numerically diagonalizing
Hamiltonian Eq.~23!.

V. CONCLUSIONS AND PERSPECTIVES

In the present article we have investigated the nonlin
atom optical effects which arise from atom-atom collision
interactions in a single-mode atomic Fabry-Perot cav
driven by a coherent atom laser beam; in particular, we h
numerically solved the full quantum master equation in
number-state basis and we have given a physical interp
tion of the obtained results.

Provided the nonlinear interaction energy per atom
small, the exact results are well reproduced by the mean-
theory in which the atomic field is described as a class
C-number field and quantum fluctuations are taken into
count using a linearized version of the stochastic differen
equations of Positive-P representation.

In the opposite limit of strong nonlinearity, the mean-fie
theory breaks down; for an incident beam exactly on re
nance with the empty cavity, a sort ofatom blockadeeffect
is predicted: the presence of a single atom in the cavity m
pushes the mode frequency off-resonance from the incid
field so that a second atom cannot enter the cavity but at
large incident intensities. The statistical properties predic
by the numerical calculations are very similar to the re
nance fluorescence ones from a two-level system. A v
strong incident beam is necessary for several atoms to
P
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,
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simultaneously forced into the cavity mode; this is reflec
in a peculiar behavior of the transmitted intensity, a functi
of the incident intensity. The multiplet of peaks which cha
acterizes the spectral distribution of the incoherently tra
mitted atoms can be interpreted as arising from radia
transitions between dressed states of the driven cavity:
agreement between the predictions of the dressed ca
model and the frequencies of the numerical peaks is ex
lent.

Although all the discussion has been focused on the c
of an atomic Fabry-Perot cavity, similar results hold for
optical resonator filled with a nonlinear medium; in this ca
since the intrinsic optical nonlinearity of current materials
generally very weak, clever schemes have to be adopte
order to enhance the nonlinear coupling per photon and
press losses so to attain the quantumNo<1 regime. On the
other hand, the Fabry-Perot cavity for atomic matter wa
proposed in@8# is expected to be already close to this co
dition.

As a following step, we plan to address the problem
atom optical bistability in the strong nonlinearity regime;
this case, the stationary state of the system corresponds
density matrix which is a statistical mixture of the ‘‘tran
mitting’’ and ‘‘nontransmitting’’ steady-states of mean-fie
theory. Since quantum tunneling from one steady-state to
other may be effective on a time scale comparable to
cavity damping timeg, the transmitted beam is expected
show peculiar statistical properties.
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