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Nonlinear atomic Fabry-Perot interferometer: From the mean-field theory
to the atom blockadeeffect

I. Carusotto
Scuola Normale Superiore and INFM, Piazza dei Cavalieri 7, 56126 Pisa, Italy
(Received 27 March 2000; revised manuscript received 20 June 2000; published 16 January 2001

We have investigated nonlinear atom optical effects which arise from atom-atom collisional interactions in
a single-mode atomic Fabry-Perot cavity driven by a coherent cw atom laser beam. When the nonlinear
interaction energy per single atom is small, the exact numerical solution of the master equation is well
reproduced by a mean-field treatment in which quantum fluctuations are included linearizing the stochastic
equations of the Positive-P representation. On the other hand, when the damping of the cavity mode is very
weak and its wave-function is tightly confined in space, a regime of strong nonlinearity can be achieved. For
the specific case of an incident atom laser frequency at resonance with the empty cavity, the numerical
calculations predict a sort @atom blockadeeffect, which is a sort of atom optical analog of the well-known
Coulomb blockade effect of electronic transport through microscopic structures: only one atom can occupy the
cavity mode at a time and the statistical properties of the transmitted beam, being very similar to the resonance
fluorescence from a single two-level system, show definitely nonclassical behaviors such as antibunching. Only
at very large incident intensities, more than one atom can be simultaneously forced inside the cavity mode: in
this regime, the results of the numerical calculations can be successfully interpreted using a dressed cavity
model. From the formal analogy between atomic matter waves and optical light waves in nonlinear media, it
follows that the same results hold for photonic systems.

DOI: 10.1103/PhysRevA.63.023610 PACS nuntder03.75.Dg, 03.75.Fi, 42.50.Dv, 42.65

[. INTRODUCTION effects are expected to occur in atom optical systems: both
the light and the matter fields are in fact described by opera-
Since the realization in 1995 of atomic Bose-Einstein contors obeying Bose statistics and in both cases the interactions
densategBEC) [1], atom optics has begun to exploit the introduce cubic terms in the wave equation. In addition,
accumulation of a macroscopic number of atoms in the samgince the collisional atom-atom interactions are generally
guantum state in order to generate coherent matter wavesuch stronger than the photon-photon interactions mediated
which are the atomic analog of laser ligi2§. Very recently, by the underlying nonlinear medium, atom optics is expected
suchatom laserbeams have started to be used for experito be an even more favorable field for the study of definitely
ments in nonlinear atom optid8], in which the classical quantum optical effects. For example, the switching thresh-
wave character of the atom laser pulses plays a fundamentald for optical bistability in the atomic FP described [i8]
role. The atomic analog of the nonlinear susceptibility ofhas been predicted to be as low as a few®1@t/cn? s,
optical media is given by atom-atom interactigds5]: two-  which in the case of visible light corresponds to intensities of
body elastic collisions are in fact responsible for a nonlineathe order ofuW/cn?.
cubic term in the atomic field evolution equation of the same In the present article we investigate the coherence prop-
form as a Kerr nonlinear refractive indé¢&]. erties of the transmitted beam through a single-mode atomic
Meanwhile, a large amount of theoretical work has beerfFabry-Perot interferometer when this is illuminated by a
devoted to the study of a number of different nonlinear atommonochromatic and coherent atom laser beam: the field dy-
optical effects in various configurations, such as atomic fournamics is numerically studied by solving the full quantum
wave mixing[7], atom optical limiting and atom optical bi- master equation for the cavity mode and the results obtained
stability [8]. For the observation of this latter effect, in par- are physically interpreted by comparing them with the avail-
ticular, new models of atomic Fabry-Per@P) resonators able approximate theories.
have been proposd@], which are predicted to give an en-  As expected, mean-field theof/FT) [16] is found to
hanced mode spacing and more tightly confined mode wavegive accurate results in the weak nonlinearity case, i.e., when
functions with respect to previous proposgd. an appreciable nonlinear modulation of the transmission re-
In recent years, since the development of photonic caviquires the presence of a large number of atoms in the cavity
ties with very large Q-factorfl0,11 and optical materials mode. Within MFT, the atomic Bose field is considered as a
with very strong nonlinearitiegl 2], a large interest has been classicalC-number field and its fluctuations around the clas-
devoted by théphotor) optical community to the search for sical steady-state are treated in a linearized way by means of
optical schemes in which nonlinear optical effects are trigthe stochastic differential equations of Positive-P representa-
gered by a very small number of photofik3,14. In such tion [17] in their linearized forn{18].
systems, in fact, the quantum state of the field can be ma- In the opposite strong nonlinearity case, when the trans-
nipulated down to the single quantum level and definitelymission state is substantially modified by the presence of a
nonclassical states can be generdtes]. single atom in the cavity mode, the discrete nature of the
Thanks to the formal analogy between light waves inmatter field is important: MFT, which is based on a classical
Kerr-like nonlinear media and Bose matter waves, similarfield assumption, breaks down and a full quantum calculation
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is necessary in order to accurately describe the peculiar non-  Outcoupling Cavity mode
classical properties of the transmitted beam. field Incident Y
For the specific case of an incident field at resonance with neicen
. . . At.Beam
the empty cavity mode, the numerical solution of the full

master equation predicts a sort afom blockadeeffect, BEC ///f\,\\,\m,\,\,}
which reminds one of the well-known Coulomb blockade é’TM’\'

Trasmitted
At.beam

effect of electronic transport through microscopic structures: / // Reflected

if the electrostatic potential change following the injection of At.Beam

a single carrier is able to substantially affect the injection of At.waveguide

the successive carriers, the current shot-noise is strongly sup-

pressed19]. Analogously, atom-atom interactions in our FP At.mirrors

cavity can be so strong that the presence of a single atomFIG. 1. Sketch of the experimental scheme under examination.
shifts the mode frequency off-resonance from the incident
atom laser beam and the following atoms are effectively for-of the nonlinear cavity, the atom laser beam can be modeled
bidden from resonantly entering the cavity before the firstas a monochromatic classigatnumber wave24].
atom has left. For moderate incident intensities, the cavity As shown in Fig. 1, suppose we inject such an outcoupled
therefore behaves as a two-level system and the transmitté¢ave into a single mode atomic waveguids] in order to
atomic beam has the usual nonclassical properties of res@eeze the transverse atomic motion; in this way, the system
nance fluorescence light, such as a strong antibunchingehaves as a one-dimensional one. At the same time, the use
[20,21]. Only at very large incident intensities—much larger of a horizontal waveguide allows us to counteract the effect
than the saturation intensity of the effective two-levelof gravity, so that the longitudinal wavefunction of the out-
system—more than one atom can be forced to be in the cagoupled beam is simply a plane wavej(x,t)
ity mode at the same time and a peculiar dependence on the ;€' X~ Y of frequencyw; and momentunk .
incident intensity is found for both the coherent and the in- Suppose now we send such a cw coherent atomic beam
coherent transmission. In this regime, some of the most peento an atomic Fabry-Per@EP) cavity, formed by a pair of
culiar features resulting from the numerical calculation areparallel atomic mirrors which confine atomic matter waves
well explained by a dressed cavity mo@2R,23, in particu-  in the space between them; atomic motion between the mir-
lar the frequencies of the incoherent transmission peaks. rors is quantized in discrete cavity modes, which are coupled
Most of the present discussion concerns cases in whict9 externally propagating modes because of the nonperfect
the nonlinearity gives rise to an optical limiter behavior; ef- reflectivity of the cavity mirrors. Several simple schemes
fects related to atom optical bistability are postponed to avhich realize such a device have been proposed, most of
forthcoming publication. which are based on the optical potential applied to the atoms
In Sec. Il, we shall introduce the Hamiltonian of the by far off-resonance laser fields: some of thgghuse a blue
model and we shall describe the physical processes involvedetuned laser field to create potential hills between which the
as well as the physical parameters which control them. Iratoms are confined; some oth€8s26] use optical lattices in
Sec. Il we shall address the weak nonlinearity case, in whiclerder to create the atomic analog of DBR microcavif2g|.
the full numerical calculation is well reproduced by MFT  As it is well known from photon optic$6], if the fre-
with a linearized treatment of fluctuations. In Sec. IV, we quencyw, of the incident atom laser beam is far from reso-
shall discuss the results obtained for the opposite case of ance with all the cavity modes, the atomic beam is effec-
strong nonlinearity. Finally, Sec. V is devoted to conclusiongtively forbidden from entering the cavity and therefore is
and future work. nearly completely reflected back. On the other hand, ifis
close to the frequencw, of one of the cavity modes, this
Il. THE MODEL mode is resonantly excited: a substantial fraction of the inci-

Consider a quasi-cw beam of atoms coherently extracte ent atoms resonantly enter the cavity and are transmitted on

; - the other side where they form the transmitted beam.
[2] from a trapped Bose-Einstein condensdBEC) by . ;
means of a radio-frequency field or of a pair of optical beams If we assume that the frequency spacing of the different

in a Raman configuration. Thanks to the coherent nature dfaviy modes is much larger than both the laser linewidth

the outcoupling mechanism used to transfer atoms from th@nd the atom-atom interaction energy, and if we suppose the

trapped BEC to the propagating beam, the all-order coheAtom '?‘SEf freq_uenc;o,__ to be cl_ose to a cavity resonance,
ence of the BEC transfers into a similar property for aem only this mode is effectively excited, while the other ones are

laser beam. If the intensity of the outcoupled beam is Weaksafely neglect_ed. If we develop the atomic field inside the
and the number of atoms in the trapped BEC large, th&aVity on its eigenstates

e S o e ek e e 09-3 605 ®
tensity as well as a constant frequency; this limitation on the, . . S : .
atom laser intensity could clearly be overcome if the BEcth|sAS|ngIe—modeapprOX|mat|0n is equivalent to assuming all
were continuously replenished, making a true atom lasefthec, to be effectively negligible but for one of them, which
Provided phase diffusion of the condensate occurs on a timeill be called in the followinga; let ¢(x) be the wave func-

scale much longer than any of the characteristic time scale$on of such mode.
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In this approximation, the Hamiltonian of the driven cav- the first (Hamiltoniar) term keeps track of the driving, the

ity can be written in the simple forrfil5,1§ linear oscillations and the atom-atom interactions, while the
o o o second term keeps track of the dissipative effects. This latter
H=fiw,a'a+hoya’a’aa+inspipae '+ H.c., has been written in terms of the superoperdda]p, de-

2 fined as usual as

wherea anda' are respectively the destruction and creation D[alp=apa’— ! (atap+ pata): )
operators for the localized cavity mode. Thanks to the Bose

nature of the atomic species under examination, such operghe coefficienty has the usual meaning of damping rate of
tors satisfy the usual Bose commutation relat[cfnéT] the cavity excitation.

=1. In the actual calculations, the steady-state of the density

The .fII’St term of the Hamiltonian E@2) describes linear matrixf;eq is determined by letting evolve according to Eq.
oscillations at frequency, ; the second term keeps track of (4) for a time much longer than the characteristic relaxation
the (collisiona) atom-atom interactions, whose strength istime of the system under examination. The expectation val-
quantified by thew, parameter. This is easily related 10 the o5 /&) of the observable® of interest are calculated as
cavity mode wavefunctiorp(x) and thes-wave scattering . A A

mean values over the steady-state density matifip[O];

lengtha, [28]; for the determination of a two-time correlation function
(O,(t)04(0)), we have to first apply the observatiy to

3 4. R A
f d*x| (1% ) the left of pey, then let the resulting density matr®; peq
evolve for a timet according to the master equati¢f) and

as expected, its sign is positivaegative for repulsive(at-  finally take the expectation value of second observébje
tractive) interactions. Since the atomic density inside the From a numerical point of view, several different repre-

payity is, at resonance, much larger than the_density i_n thgentations can be chosen fbr[15,17,29' our actual simu-
incident atom laser beaf], atom-atom interactions outside lations have been performed using a Fock representation in

the cavity are safely neglected; in additio_n, the_ Single'mOd‘\e/vhich the density matrix is expanded in the number-state
approach neglects all those processes in which atoms are

~ - “basisM, ,»=(n|p|n’). The time evolution is numerically
transferred from the mode to the other modes of the cavity performed using a standard fourth-order Runge-Kutta

k_)y the mtgractlons;.such an approxmgmon is generally JUSthethod and then checking the numerical stability of the re-
tified provided the interaction energy is much smaller tha

h ina of adiacent cavity mod nd parametric r ns_ult with respect to a reduction in the integration time step.
€ spacing of adjacent cavity modes and parametric 1eso-, ya case of symmetric systems, in which the front and

naq_(;]es d?{vtize k;nt?]aazv‘i‘;“’r: “(’j“” grihabisneri‘é' nt atom | rback mirrors have the same transmission properties, the
€ g ot the cavily mode by the incident atom lase i,k coefficients are related to the dampimdoy the rela-

beam is taken into account by the last two terms. Thanks tg - Bi=(y0/2)2 and k= (y/20)2, which follow from

the stationarity and _al_l-ord_er c_oherence assumptions dI%'he well-known property that the transmission through any
cussed above, the driving field is well modeled as a monoy.

chromatic and classicaC-number field gre 1t which linear, symmetric and nonabsorbing cavity is, at exact reso-

. ) . . nance, exactly one(see, e.g. [30], Chap. 9; v
forces the cavity mode to oscillate. In particular, the coupllng:(zﬁw /m)*2 denotes thdgroup velocity of free atoms
coefficient 3; is proportional to the transmission amplitude ° g Y

of the front cavity mirror. Analogously, the amplitude of the which coincide on the cavity at resonance,
y ' 9 Y, P Depending on the specific scheme adopted for the cavity,

transmitted field through the cavity, is proportional to the  processes of different kinds can be responsible of additional
internal amplitudea times axy, coefficient proportional to incoherent nonradiative losses which are the atomic analog
transmission amplitude of the back mirror; all the statisticalof light absorption in materials; in particular, if the confine-
properties of the transmitted field can thus be expressed iment is a magnetic one, Majorana spin flips may occur,
terms of the internal field ond45,22. while spontaneous emission of light may take place in the

From the point of view of the sole cavity, the coupling to presence of an optical confinemé81]. Such effects have to
the continuum of propagating external modes through thée handled by means of additional terms in E4). of the

nonperfectly reflecting mirrors, which underlies the driving same formy,,D[a]p: their main consequences are a broad-

of the cavity mode by the incident beam as well as the forening of the resonance and a reduction of the peak transmit-

mation of the transmitted beam, is a dissipative process anglity by a factor (y+ ypd/ v.

thus cannot be included in a simple Hamiltonian formalism.  The single-mode nonlinear cavity model described in the
From the general theory of quantum damp[i§,22, it present section has been widely applied to optical Fabry—

follows that the dynamics of the single-mode cavity underperot interferometefsl4,18,32; in that case, the field opera-

examination is completely described by the followimgster tor a describes an electromagnetic field instead of a matter

equationfor the density matrix, field and the nonlinear interaction between photons results
from the third-order nonlinear polarizability'® of the cav-

ity material. The main difference consists in the strength of
the nonlinear coupling, which can be quantified by the num-

2mha,

W=

ap

2 — b M1+ DIalp; @
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ber N,= v/ w, of quanta which are necessary for having antransverse confinement, the isolated cavity resonance can
appreciable nonlinear effect on the transmittivity. Since theshow a nonlinear coupling,, comparable or even larger
optical nonlinearity of usual materials is very weak, conven-than the mode linewidthy and thereforeN,<1. In this re-
tional optical resonators are characterizedNyy>1, which ~ gime, MFT breaks down and a full quantum calculation
means that a huge number of photons have to be excitdepsed on the master equatih) is required; the peculiar
inside the cavity before the effect of optical nonlinearity to coherence properties which result from the calculations will
be apparent; for this reason, such systems have been mosf§ discussed in Sec. IV.
studied within a mean-field approach with linearized fluctua-  With respect to optical systems, the Hamiltonian of the
tions. Section Il of the present article is devoted to a de-atomic FP cavity allows for a more transparent discussion of
tailed discussion of the validity of such an approach: in parthe quantum dynamics: the collisional nonlinearity for the
ticular, the approximated predictions of MFT are comparecatomic matter field is described by a simple quartic term in
to the result of our exact numerical calculations and agreethe field Hamiltonian, while in the case of strongly nonlinear
ment is found in the classic&,>1 limit; in terms of the  optical media the internal dynamics of the atoms must gen-
many-body theory of the interacting Bose gas, this conditiorfrally be taken into account explicitly in the calculations.
would correspond to the classical diluteness conditiag
<1 (n being the spatial density of the 3D gas 11l. WEAK NONLINEARITY CASE: MEAN-FIELD

Only very recently, an active interest has been focused on THEORY AND LINEARIZED FLUCTUATIONS

the possibility of achieving the opposité, =1 regime with The approximation scheme most commonly used for the

light: optical materials with very strong nonlinearities as well ; . . :
as very high Q-valued cavities have been investigated in 0r§tudy of the dynamics of trapped atomic Bose-Einstein con-

der to generate nonclassical states of the field and even eﬂ@nsgte.s{BE_C) IS ce.rtalnly the meap-ﬂeld theor_[\16]: the
tangled ones. atomic field is described as a classi€@humber field equal

First of all, high finesse optical cavities containing a smallto the mean value of the quantum fighx,t) = (4(x.t)) and
number of atoms have been investigated in the realm of caJactorization is assumed for the operator products involved
ity quantum electrodynamidgl1]: in this case, the nonlin- N the motion equation of this macroscopic wavefunction;
earity mechanism is the intrinsic one of two-level atoms:fluctuations are then treated in a linearized way by means of
with a smaller number of atoms, a smaller number of phofhe Bogoliubov's technique. _
tons is required for the saturation of the transition, but at the USing the many-body theory of 3D Bose gases, this ap-
same time the weaker polarizability imposes a stronger reProach can be proven to give correct results in the case of
quirement on cavity finesse. Furthermore, an additional los§ilute systems in which the densityis low enough for the
channel is introduced by the spontaneous decay of excitefé@n interparticle distange ' to be much larger than the
atoms. scattering lengtha,; current atomic samples well satisfy

Second, quantum coherence effects in multilevel atomsuch a condition. In other terms, for a constant mean-field
dressed by strong pump fields have been theoretically showfteraction energywhich is proportional tona,), MFT is
to give enhanced nonlinear susceptibilities as well as devalid in the classical limita,—0 andn—c, in which the
pressed absorptiond2,14]: despite the formal difficulties discrete nature of the matter field is effectively washed out.
related to the Comp|ex internal dynamics of the three-level For the Single-mode nonlinear interferometer described in
atoms[33,34], such arrangements are now beginning to behe previous section, the mean-field approach leads to a
exploited for low intensity nonlinear optics experimefits] single differ(?ntial equation for the mean value of the cavity
as well as for the study of very slow pulse propagafi®sl.  field a(t)=(a(t)) of the form[15,1§

Finally, new cavity geometries with enhanced Q-factors
are also being investigated: in particular, the whispering gal- da
lery modes of cylindrical or spherical resonators look very dt
promising, since fused silica spheres and disks with spatial
sizes of the order of micrometer and very weak surfac&rom which we can immediately obtain the steady-state value
roughness are currently available; unfortunately, the nonling iy —ge-ieLt with
ear susceptibility of fused silica is very weak and the inser-

—~i(wo+ 205lal’)a+ Bse =22, (6)

tion of localized active impurities is generally necessary ; _
[10]. a= A L %
On the other hand, recent theoretical work on atomic WL~ W~ 2wy|a]*+iy/2

Fabry-Perot interferometef8] has shown that the use of

spatially modulated optical lattices allows for well separatedf fluctuations of the cavity field are completely neglected,
cavity modes with narrow linewidths and tight longitudinal the transmitted field),= kpa has the same all-order coher-
confinement: in particular, it has been shown that atom-atonence properties as the incident one. Lowest-order fluctua-
interactions can give rise to atom optical bistability with ations around the mean value can be taken into account just
very low threshold intensity of the order of $0at/cns. by solving the linearizef18] version of the stochastic equa-
Provided transverse motion is appropriately frozen by meansons of Positive-P representatigt7]; this procedure is a

of a single-mode atomic waveguidi25], such systems be- sort of generalization of Bogoliubov's approach to driven
have as effectively one-dimensional ones. Thanks to théissipative systems.
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~ Using the Positive-P representation of a quantum Bosghe empty cavity mode\ = |a|? is the mean-field number of
f|e|d, it can be shown that the dynam|CS of the field in aquanta in the Cavity mode andmf: zwnIN is the corre-

nonlinear single-mode cavity is described by a pair of stosponding frequency shift of the cavity mode; finally, for no-

chastic differential equations tational simplicity, we have set
H —iw Y . .
da=| ~i(wo+20na* @)at Brie - S adt Mow)= I[(w—wL)-i—(Aw—Zwmf)]-i—% -(I[(w—wl_)
+V—2iwya’dy,, (8) Y 5
~(A0=20m)]+ 5~ why (14)
. ot Y
da* =|i(wo+2wyaa®)a* + B7 ¢ e L' - S a”|dt As expected, for a fixed value of the mean-field interaction
energyw s, the contribution of fluctuations is inversely pro-
+V2iwya*?dy, (9)  portional to the number of atoms in the cavity mode and thus

vanishingly small in the classical limite{,;—0, N-—o0).
for the field variablesa and o*, which are now complex \With a similar procedure we can determine the one-time
conjugates of each other only in the mean. The noise termsecond-order correlation functiafi?(0):
dn are independent Gaussian noise termsly;( Apagan
=0, d7 dz;=38 ;dt) [36]. In terms of the stochastic field 9®(0)= <af‘ aa), g mf
variablese anda*, the mean value of any normally ordered (a'a) IMwp)[N
observable can be expressed as (15

Finally, a Fourier transform of the first-order correlation
function leads to the spectrum of the transmitted intensity

(Aw— o).

(a™mam=a*Ma™. (10

Linearizing the stochastic Eq&8) and(9) around the steady-
statea=ae '“L!, a* =a*e'“L! of the deterministic evolu-
tion, we get to a pair of linear stochastic equations for the

S(@) = Seotl @)+ Syl @) = 2 F (2T (12(0))

. — 2
: s H — o t_ * yw
slowly varying field fluctuationssa=a€'“'~a and éa _Y NS(0— @)+ —om (16)
=a*e 'ott—a* 2 27\ (w)|?
N Tove. o 2ax Y in which we again recognize the elastic and inelastic contri-
déa=| —i(-Aw+4wylal®) da—2iwpa‘sa 2 dar|dt butions; the former corresponds to the delta-function peak at
_ o, while the latter gives a pair ofinelastio Lorentzian
+\—2iwya’dy,, (11  peaks at the frequencies

0 = * \/Aw2—4Awwmf+3wr2nf, (17

which correspond to the dressed states of the driven system.
_ Poles at these same frequencies appear in the linear response
+V2iwya*?dy,. (12)  of the driven system to additional probe beaf8,37,3§.
Whenever the argument of the square root is negative, the
From these equations, all the stationary moments can be exvo peaks coalesce into a single onewat.
tracted using the standard techniques for the solution of lin-  These results are to be compared to the exact solution of
ear stochastic differential equatiof86]. We shall not repro- the full master equatiori4) obtained using the numerical
duce here all the details of the calculations, which can erchnique sketched in the previous section. In Fig. 2, we
found in the original papefr18], but we shall only give the have plotted the coherent and the incoherent transmitted in-
final results and compare them with the exact result of oukensitiesl| ., and I, vs. the incident intensity;.=v|#;|?

déa* = dt

i(—Aw+dwy(a]?) da* +2iwya* 25a— %501*

numerical calculations. _ _ = (21y)|Bsyi|? for different values of the nonlinearity pa-
As described in[18], the mean transmitted intensity is rameteN,= y/w,, at zero detuningw=0. In the plots, the
given by intensities (defined as the number of atoms per unit time

flowing along the waveguidehave been normalized in units
of the characteristic intensityy?/w,=7yN,, so that the
mean-field curves for the coherently transmitted intensity su-
perimpose on each other exactly.

the first terml cohs which describes the COherenﬂiye., elas- In the zero detunin¢w:0 case we are Considering’
tically) traﬂsmitted intensity, corresponds to the mean-fieldygTt [Eq. (7)] predicts an optical limitef6] behavior for the
amplitudea; the second ong,. accounts for quantum fluc- transmitted intensity: for growing intensities, in fact, the
tuations and thus describes the incoherefithelastically mean-field interaction energy#v,|al? tends to shift the
transmitted intensity. Withw=w, — w, we have denoted cavity mode out of resonance with respect to the incident
the detuning of the incident atom laser beam with respect tbeam and thus to lower the effective transmittivity. In par-

2
Dyt

N+ =——
2|)\(wL)|

=lcontInc: (13

N
lo=vl x| (813) = 2
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FIG. 2. Transmission properties of a nonlinear Fabry-Perot in- FIG. 3. Coherence properties of the transmitted beam as a func-
terferometer in the weak nonlineariflarge N,) regime: in the up-  tion of the incident intensityl;,c: in the upper panel, long-time
per panel, coherent intensity,, as a function of the incident inten- first-order coherencep=1.,/ly; in the lower panel, one-time
sity linc; in the lower one, incoherent intensity,. All intensities  second-order coherengéz)(O):(éTéTéé)KéTé)z. The solid and
have been normalized to the characteristic intengftyw, . Inthe  the dotted curves are the approximated results of linearized theory
upper panel, the solid curve is the result of the linearized approachor N,=8 andN,=2, respectively, while the long-dashed and the
while the long- and short-dashed ones correspond to the exact calot-dashed are the exact ones for the same parameter choices. The
culations forN,=8 andN,=2, respectively. In the lower panel, arrows in the lower panel are the predictions of the analytical ex-
the solid and the long-dashed lines are again the approximate reression Eq(21) for g‘?(0) in the low-intensity limit.
sults, while the short-dashed and the dot-dashed are the exact ones.

The upper curves are fd,=2, the lower ones are fd¥,=8. A similar behavior is found also for the one-time second-

_ _ , , S , order coherencg®(0) which is plotted in the lower panel
ticular, while at low intensity the transmitted intensity grows ¢ ihe same figure; a value fgf2)(0) smaller than 1 means
linearly with the incident intensity, in the large intensity limit 5t the transmitted beam is antibunched. i.e.. has reduced
the transmitted intensity grows only as its power 1/3. In ajnensity fluctuations as compared to a classical coherent

log-log scale, the transition between these two regimes cafaam. Such a quantum property is a consequence of the op-

be observed as a rather smooth bending. tical limiter response and is at lowest order inversely propor-
The discrepancy of the MF result for the coherently transsjgnal to N, .

mitted intensity with respect to the exact one is concentrated pq previously, the MF result is found to keep track in a

mostly in the crossover region and, as expected, te€nds {Qyrrect way of the lowest order fluctuations: the discrepancy

lcii_sagpe:r in tk;e classical limh, e (sk()ee upgerf par;}el Of with the exact result is in fact of higher orderNej * for any
ig. 2). An analogous comparison can be made for the incoj iqent intensity. In particular, for the low intensity limit

perent.ly ttrlansmtltte(gJ |nItEenS|1t§3,‘see Iovr\]/er panetl_tof. thefsatme I, —0 the mean field theory prediogs?— 1 [see Eq(15)],
|?uNre|). a otvk\]/es tﬁr ef hq'( t)]’ Sutc.b ei.quan Idyt;f a .?C orl since in this regime the system behaves as an effectively
0 ower than the coherent contribution an US IS 1€1a%haar one. On the other hand, the exact calculation gives a

tiye weight vanishes in the clafssical limit. As expected, th_evalue lower than 1, which is an unambiguous signature of
discrepancy of the MF result with respect to the exact one 'the discrete nature of the field: while t@number variable

. . 71
of higher order inN,, . _ ~which describes the field in the linearized treatment can as-
In the upper panel of Fig. 3, we have plotted the first-g e any value, the quantum system can only be in a dis-
order long-time coherence of the transmitted beam crete ladder of states. For an incident beam at exact reso-

nance with the empty cavity, thén=1) state is on

lon t””;|<éT(t)é(0)>| resonance, while the second excited ¢ne-2) is already
n= |—= HAT—A (18 out of resonance of a finite frequencyg. A straightfor-
r (a'(0)a(0)) ward but somewhat lengthy analytical calculation for the

steady-state value of the density maﬁs'@& at lowest order in

as a function of th€normalized incident intensity for dif- I leads to the expressions

ferent values ofN,. All curves show a single minimum at a
value of the incident intensity which, being related to the 4 B2
crossover in the optical limiter response curve, is approxi- pi= —2' (19
mately proportional toyN, ; the depth of such a minimum is Y

approximately inversely proportional td,. Perfect coher-

encen=1 is recovered in the classical linfit,— . and
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0.06 . ' by the MFT are in excellent agreement with the exact result.
’ As previously, the larger thé&l, parameter, the closer the
. 0.04 1 similarity.
8 In the present article, we shall not specifically address the
m‘é 0.02 | 1 case of a detuned driving field w#0 and we shall limit
ourselves to a few remarks. In the case where the detuning
""""""" has opposite sign with respect to the nonlinear frequency

0.00 = - - ‘ >
-60 -40 -20 00 20 40 60 shift of the cavity mode, the feedback of the nonlinearity on

0.06 . ' the transmission is still negative and leads to the same opti-
] cal limiter behavior previously described; only the frequen-
cies of the dressed modes in H47) are different. On the
other hand, when the detuning has the same sign as the non-
linear shift, the feedback of the nonlinearity is positive and
MFT predicts the possibility of multiple steady-state solu-
‘ ‘ = tions of Eq.(7) for a single value of the incident intensity
0 00 2.0 4.0 6.0 [6]. In this case, the linearized theory can account only for
(0)—0)L)/Y the fluctuations occurring in the neighborhood of each
FIG. 4. Incoherently transmitted intensity spectra: in the upperStéady-statgl8], but it does not keep track of effects related
panel,N,=8; in the lower oneN,=2. The solid lines refer to the 10 quantum tunneling from one steady-state to another
exact calculations, while the dot-dashed ones are the result of tHel5,39. Nevertheless, the numerical solution of the full mas-
linearized approach. The incident intensities are equall;fp  ter equation(4), as it has been described in the present ar-
=0.24y and 1;,,=80y for the upper panel spectra, and kg, ticle, can provide us exact results for the coherence proper-

0.04

Spe()

0.02

0.00 == y :
-6.0 -4.0 -2

=0.06y andl;,.= 20y for the lower panel ones. ties of the transmitted beam. Given their complexity, a
complete discussion of these points is postponed to a forth-
4 coming publication.
pSi 8| B1 il 20 gp
227
YA(Y?+40?) IV. STRONG NONLINEARITY: THE ATOM BLOCKADE
EFFECT

. eq_ 11> _ eq__

for the matrix elements;=(n 1|p?4n p .an.d P2z .<n In the previous section we have discussed the solution of
=2|peqn=2). From these expressions, it is immediate toy, quantum master equati@d) in the weak nonlinearity
obtalp an expression of the one-time second-order coherentf\?0>l regime in which the exact numerical solution is accu-
function rately approximated by the analytic mean-field result. In that
2p53 1 case, in fact, the behavior of the quantum field has been
(592 = 1rane (21) shown to be well reproduced by a classical field while the

11 ° discrete nature of the field was taken into account simply by
which is valid in the low-intensity limit for any value i, . means of noise terms in the stochastic motion equatibs
This exact analytical prediction is marked with horizontal and (12). Unfortunately, an exact solution of the complete
arrows in the lower panel of Fig. 3 and the agreement withPositive-P equation) and(9) does not mathematically ex-
the numerical result is excellent. As expected, in the classicast for small values oN, because of the well-known diver-
N,—oe limit, the analytical expression EqR1) tends to the gences of the field amplitud¢40]. Since a relatively small
mean-field prediction of 1 and, at lowest order, the discrepvalue of N, means that only a moderate number of Fock
ancy is proportional tN, 2. states are actually involved in the dynamics, a numerical

Finally, in Fig. 4 we have plotted a few spectra of the calculation in the Fock basis can be easily performed within
inelastically transmitted intensity in the zero detunimge{  a short computation time; moreover, the results of the nu-
=0) case and we have compared the approximate result ofierical calculations are themselves best understood in the
MFT to the exact one. Apart from the small central peak athumber-state basi®).
®=w_ = w, Which appears at smaller valuesi§, both the In this basis, the Hamiltonian of the driven nonlinear
position and the intensities of the external peaks as predictesingle-mode cavity has the form

9?(0)=

0 Eielout 0 0
gikeith W, \/Egiefith 0
H : .
z: 0 \/Egikelet 2w0+ 2(!)n| \/§gieflw|_t , (22)
0 0 V3&rel et 3wyt 6wy
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where the Rabi frequency of the driving|=|B;y;| is de-  amount much larger than both the atom laser and the cavity
termined by the incident intensity,,.=(2/y)|&;|>. For a  mode linewidths.

vanishing driving incident intensity&=0), the eigenvec- For strong nonlinearitiesN,<<1), the characteristic inci-
tors of H are the Fock statefn) themselves, and their dent intensity scalég, for the saturation of the two-level
eigenenergies are equalit@,+n(n—1)w,; because of the system, which is of the order of, is well separated from the
presence of nonlinear interactions, the energy splitting of adeharacteristic intensity,= y/Nf, for substantial population
jacent modes, given bw,+2nwy, is a monotonically in- of the|n=2) state. Hence it exists an intensity winddwy,
creasing(decreasingfunction of n for repulsive(attractive ~ <I;,.<I, in which the two-level system is effectively satu-
interactions. rated but the higher excited states are still unpopulated: in

In the zero-detuning Xw=0) case, only the transition this window the atom blockade is most effective in imposing
[n=0)—|n=1) is on resonance with the driving field; in- the strict upper limitl,< y/4 to the total transmitted inten-
deed, the higher states are shifted off thatom resonance sity. In this same intensity window, the spectral distribution
of a frequency (—1)wy, . In particular, an incident intensity of the transmitted intensity is characterized by the usual co-
linc Of the order of &)ﬁ|/y=8y/N§ is required for the Rabi herent delta-like peak ab, due to coherentelastig trans-
frequency|& | to be equal to the detuning of the=2) level ~ mission plus a triplet of peakghe so-called Mollow triplet
and thus for this to be effectively populated. [41]) resulting from incoherent transmissi¢see Fig. 6.

This physical picture is confirmed by the results of the Physical behaviors of this kind are, however, very gen-
numerical calculations reproduced in Figs. 5 and 6: for moderal, since they follow from the structure of the spectrum of
erate intensities;.<|,=y/N2, the cavity shows a behavior the system: if the spacing of the levels is far from being
analogous to the one of a driven two-level system; in paruniform, a driving which is resonant with the lowest lying
ticular, the transmitted atomic beam has the same statistic#lansition cannot excite the higher ones except at large values
properties as the resonance fluorescence from a single twéf its intensity, so that the system effectively behaves as a
level atom[15,22. two-level one. This behavior is found, e.g., in the optical

Such an effect can be considered as a sort of atom optic&¢sponse of atoms, for which a two-level approximation is
analog of the well-knowrCoulomb blockadef microscopic ~ generally justified by the fact that the higher-lying optical
electronic systemgL9]: in this case, the electrostatic charg- transitions have frequencies much different from the funda-
ing energy due the injection of a single carrier inside themental one. Also cavity QED systems containing a few at-
device is able to bring the energy of the electronic state®ms[11] as well as cavity electromagnetically induced trans-
involved in transport above the Fermi level of the injectorparency[34] can give rise to effective two-level systems
and therefore to forbid the injection of other carriers. In theunder appropriate conditions for which the spacing of the
atomic case, the collisional interaction energy following thelowest-lying dressed states is significantly different from the
presence of a single atom is able to shift the cavity modeépacing of the higher ones.
frequency of an amount equal tawg . If the incident beam The intensity scale separatidg,<I, translates into the
is initially on resonance with the cavity, and if we are in a characteristic dependence of the total transmitted intensity on
strong nonlinearity regime,,> vy, the entrance of a second the incident intensity that can be observed in the upper panel
atom in the cavity is an off-resonant process, and thus it i®f Fig. 5. First of all, when the two-level system is not satu-
strongly suppressed. This means that before a second carri@ted, the transmitted intensity is a linear function of the
can enter the cavity, the first one must have left. As usualincident one; then, fok;,. of the order ofy, saturation of the
the antibunching of the transmitted beam which follows fromtwo-level system occurs and the response flattens. Finally,
this atomic blockadeeffect results in a suppression of inten- for I;,; of the order ofy/Nf,, the transmitted intensity starts
sity noise below the shot-noise limit. to grow again thanks to the contribution of the=2) state.

There are, however, significant differences between the The behavior of the single coherent and incoherent con-
two cases: in the electronic case, the device is driven by &ibutions to the transmitted intensity as functions of the in-
multimode and incoherent thermal gas, possibly Fermicident intensity can also be interpreted within this same pic-
degenerate, and the transport of electrons involves a corare. As in the classical two-level systefi22], at low
tinuum of transverse electronic states so that the transmittedcident intensities most of the transmission is coherent,
current is generally carried by transversally incoherent elecsince the coherent fractidp,, is a linear function of;,. and
trons. In order for the Coulomb blockade not to be destroyedhe incoherent fraction,. a quadratic one. When the two-
by thermal effects, the energy position of the electronic statekevel system is appreciably saturated, the incoherent fraction
in the device after the injection of a single carrier has tostarts to dominate, while the coherent one drops to nearly
differ from the Fermi energy of the injector by an amountzero. As the incident intensity grows even further, more than
much larger than the thermal energy. In the atomic case, ane atom can be simultaneously stored in the cavity mode, so
cavity with well-spaced discrete modes has been considerethat the|n=2) state is populated as well; therefore the co-
which is driven by a coherent atom laser beésh course, herent component starts to grow again, while the incoherent
this is possible only with bosonic atomsn this case, the one starts to decrease. In other terms, the first-order coher-
transmitted beam maintains at least partially the coherence @nce » shows a minimum as a function of the incident in-
the incident beam. In order for the atom blockade effect to beensity at a value corresponding to the saturation plateau of
apparent, atom-atom interactions have to shift the cavitghe two-level transition. The population of the=2) state
mode off-resonance from the incident atom laser by artan be singled out just by looking at the one-time second-
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order coherence functiog®(0). For theideal two-level 0 & 0 0
system, this quantity is rigorously zero for any valud gf;

a)r/1y departurg from )t/his vglue is gn unambigu)(;us singIQaJture 0 & —Aw \/Egi 0

a population of thén=2) levels. For low incident intensites —=| 0 \/55}* —2Aw+ 2wy \/§£i
g‘®(0) has the very small valug?/4 [see Eq(21)], while it 0 0 J3e* 3wt 6w
is substantially larger than zero only above the saturation ' &
plateau.

In order to explain the incoherent transmission spectra (23)

reproduced in Fig. 6, it can be useful to apply the dressed

states technique to the physical system formed by the cavitis it is sketched in Fig. (&), transitions between one mani-
plus the driving field22,23. In analogy to what is usually fold to the immediately lower one occur because of radiative
done in the dressed atom model, we shall label the quantutesses through the nonperfectly reflecting mirrors and give
states of such a system with a pair of integer numhafsy, rise to the incoherent component of the transmitted beam.
respectively denoting the number of atoms in the drivingPenoting with w, the energy of they,) eigenstate of a
field and in the cavity mode. In the dressed atom model, th&anifold, we expect that the spectrum of incoherently trans-
integer numben is generally replaced by a discrete index Mitted atoms will be peaked at the frequencies+ (v,
running over the different internal states of the fluorescing™ @s); the intensity of each peak is proportional to thezma-
atom and\ has the physical meaning of number of photonstrix element of the corresponding transitidtw,|a|y4)|

in the incident laser beam. times the populatioN, of the departure levely,).

Neglecting for the moment the radiative damping of the ~For moderate intensitids,.< y/N3 the mixing of the bare
cavity mode, the total number of atorhs=A+n is a con- ~ States into the new dressed states is limited to the two lowest
served quantity; sinca/ is assumed to be very large, adja- States of the manifold, while the upper states nearly coincide
cent manifolds have the same structure and are spaced froffith the [n=2) states and are nearly unpopulated; for this
each other by an amount equal to the incident laser frel€@SOn transitions involving these upper states give a negli-
quencyw, ; in particular, the corresponding eigenstates Omyglple cqntnbuuon to the incoherent transmission spectra. In
differ for the numbe\’ of atoms in the driving field. Within 'S édime, these spectra are thus the usual Mollow spectra
each constanN- manifold. the Hamiltonian of the dressed of resonance fluorescence from driven two-level systems: at

T ’

: ! . very low intensity, there is a single peakay; for intensi-
system in the Focln) basis has the simple form ties at least of the order of the saturation intengity= vy,

there starts to be a symmetric triplet of peaks at respectively

04 |
0.5 I ]
. ,§ 0.3
S— L .
= o4 = 02| 1
- 03 w4l
= 02 T ~
S /,/ /’ ~-y 0.0
=01t e 1 -10 10
5 —__—;‘7“ _______________ _—’
- 0.0 = : ‘
S 107 10” 10° 10" 10°
—_
>
-
a
0
=g

FIG. 6. Incoherently transmitted intensity spectra in the strong
nonlinearity regime l,=0.125) for growing values of the incident

FIG. 5. Transmission and coherence properties of a nonlineaintensity: in the upper panel;,./y=0.2,2,6.5; in the lower one,
Fabry—Perot interferometer in the strong nonlinearity regifdg (  1;,c/y=20,60,240. The arrows correspond to the transition frequen-
=0.125) as a function of the incident intensity: in the upper panelcies resulting from the dressed cavity approach; the chosen param-
transmitted intensity,, (solid line), coherentl ., (dashed linfand  eters are the samé;(./y=6.5,240) as for the solid line spectra. In
incoherentl . (dot-dasheflcomponents. In the lower panel, long- the lower panel, solid arrows correspond to transitions involving
time first-order coherence (solid line) and one-time second-order only the|n=0,1) states, while the dotted and dashed ones corre-
coherencg(®(0) (dashed ling Atom blockadéehavior occurs for  spond to weaker transitions which involve respectively |ine 2)
linc cOMprised betweeh,,= y andl,=64y. and the|n=23) states.
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(a) a=2
n=0,12 -~ E wei Nz
/N 2 0 manifold
c‘)L
n=012 -~ et Ne_y
- flf manifold
~— a=0
30
(b) | wr,—w
~ -+ | FIG. 8. Effect of a finite detuning w on the incoherently trans-
= 10 [ [ mitted intensity spectra in the strong nonlinearity reginié, (
§ | | (=D =0.125, 1,,,=160y): in the upper panel, spectra fdtw/y=
é 0|~ —8,0,8 (respectively, dashed, dot-dashed and solid Jinasows
~ l indicate the transition frequencies according to the dressed cavity
~10} | | model: solid arrows refer to th& w/y=8 spectrum, dotted arrows
I | (a=0) to theAw/y=—8 one. In the lower panel, plot of the dressed state
| frequencies as function of the detunidgs. The vertical dashed
0 50 100 150 200 250 30

lines correspond to the values of the detuning which have been used
Line /¥ in panel(a).

FIG. 7. Strong nonlinearity regimeN=0.125): sketch of the numerical peaks is excellent. Solid arrows refer to the tran-
dressed cavity level schem@anel a; dressed state frequencies sitions involving onIy|n=O> and|n:1>, which are visible
(panel b as a function of the incident intensity,. for the Aw=0 at any intensity. On the other hand, dott@hshed arrows
case. The vertical dashed lines correspond to the intensity valuegenote transitions which involve ttie=2) (|n=3)) state as
used in Fig. 6. well; given their weakness, the corresponding peaks can be

distinguished from the underlying pedestal only at high in-
w, andw,*|& |, the central peak having a height three timetensities.
larger than the lateral onésee Fig. @)]. Remarkably, the intensity of the central peakeg de-

At stronger intensities, when a larger number of states o€reases for growing intensity with respect to the first pair of
the cavity begins to be effectively populated, the structure okide peaks: this evolution suggests a smooth transition to-
the manifolds becomes more complex and additional peaksards the two-peaked spectra obtained by means of the
can be found in the wings of the fluorescence spectra; theemiclassical approach described in the previous section; at
stronger the driving field, the larger the mixing pf=2) very high driving intensity, in fact, when the mean occupa-
states with the lower ones and, consequently, the stronger thi®sn number of the cavity is much larger than one, fluctua-
intensity of the peaks corresponding to transitions involvingtions result again well described by the linearized theory of
such states. the previous section.

A simple numerical diagonalization of the Hamiltonian  The dressed cavity model can be extended to the case of a
Eq. (23) gives the frequencies of the peaks: in Figh)Awe  nonvanishing detuning\w as well: the positions of the
have reproduced the dependence of the frequency of the lovpeaks are again well reproduced in terms of transitions con-
est dressed states on the driving strength. Obviously, sinagecting dressed states of adjacent manifolds. In the upper
the higher state population is very small as well as the matriyanel of Fig. 8 we have plotted a series of spectra for differ-
elements of the transitions reaching them, only a few peakent detunings: the spectra are centered at the incident fre-
are visible in the actual spectra plotted in Fig. 6. Comparisomuencyw, , i.e., the spacing between adjacent manifolds.
between the two approaches is easily made: the transition When Aw and w, have opposite signs, the nonlinear
frequencies as they are predicted by the dressed state pictifeedback on transmission is negative and the population of
have been marked by vertical arrows; the agreement with ththe upper states of the manifold is further reduced with re-
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spect to theAw=0 case; the lateral peaks in the spectra aressimultaneously forced into the cavity mode; this is reflected
therefore even weaker. On the other hand, whenandw,  in a peculiar behavior of the transmitted intensity, a function
have the same sign and the nonlinear feedback is positivef the incident intensity. The multiplet of peaks which char-
the population of the upper states of the manifold is en-acterizes the spectral distribution of the incoherently trans-
hanced and the spectra show a larger number of peaks. Asitted atoms can be interpreted as arising from radiative
previously, their frequencies result in good agreement withiransitions between dressed states of the driven cavity: the
the predictions of the dressed cavity model, which areagreement between the predictions of the dressed cavity
marked with arrows in the figure. In the lower panel of themodel and the frequencies of the numerical peaks is excel-
same Fig. 8, we have specifically plotted the position of thdent.

different dressed states as functions of the detuning as they Although all the discussion has been focused on the case
have been determined by numerically diagonalizing theof an atomic Fabry-Perot cavity, similar results hold for an

Hamiltonian Eq.(23). optical resonator filled with a nonlinear medium; in this case,
since the intrinsic optical nonlinearity of current materials is
V. CONCLUSIONS AND PERSPECTIVES generally very weak, clever schemes have to be adopted in

order to enhance the nonlinear coupling per photon and de-

In the present article we have investigated the nonlineapress |osses so to attain the quanthg=1 regime. On the
atom optical effects which arise from atom-atom collisionalpther hand, the Fabry-Perot cavity for atomic matter waves
interactions in a single-mode atomic Fabry-Perot cavityyroposed i8] is expected to be already close to this con-
driven by a coherent atom laser beam; in particular, we havgition.
numerically solved the full quantum master equation in a As a following step, we plan to address the problem of
number-state basis and we have given a physical interpretgtom optical bistability in the strong nonlinearity regime; in
tion of the obtained results. _ _this case, the stationary state of the system corresponds to a

Provided the nonlinear interaction energy per atom ijensity matrix which is a statistical mixture of the “trans-
small, the exact results are well reproduced by the mean-fielgitting” and “nontransmitting” steady-states of mean-field
theOI’y in which the atomic field is described as a CIaSSica{heory_ Since quantum tunne"ng from one Steady_state to the
C-number field and quantum fluctuations are taken into acpther may be effective on a time scale comparable to the
count using a linearized version of the stochastic differentiakayity damping timey, the transmitted beam is expected to

equations of Positive-P representation. _show peculiar statistical properties.
In the opposite limit of strong nonlinearity, the mean-field

theory breaks down; for an incident beam exactly on reso-

nance yvith the empty cavity, a _sort afom plockadeeffect ACKNOWLEDGMENTS
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