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We present a numerically tractable method to solve exactly the evolutiomNdi@son system with binary
interactions. The density operator of the systeiis obtained as the stochastic average of particular operators
| W )(W,| of the system. The statg¢¥, ,) are either Fock statdd: ¢, ,) or coherent statelzoh:¢, ,) with
each particle in the state; (x). We determine the conditions on the evolution¢gf,, which involves a
stochastic element, under which we recover the exact evolutign 8fe discuss various possible implemen-
tations of these conditions. The well known positReepresentation arises as a particular case of the coherent
state ansatz. We treat numerically two examples: a two-mode system and a one-dimensional harmonically
confined gas. These examples, together with an analytical estimate of the noise, show that the Fock state ansatz
is the most promising one in terms of precision and stability of the numerical solution.
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[. INTRODUCTION act numerical calculation of the properties of the gas is avail-
able, using the quantum Monte Carlo techniques, based on
Since the experimental realization of the first atomic gasFeynman path integral formulation of quantum mechanics
eous Bose-Einstein condensates a few years[agd], the [11,12. The aim of this paper is to present an alternative
physics of dilute Bose gases has been considered with a réxact and numerically tractable solution to the problem of
newed interest. One fascinating aspect of these new systerfli interacting Bose gas, a method not restricted to the case

is the possibility to accumulate in a single quantum state &f thermal equilibrium but which allows for the study of the -
large fraction of the atoms confined in a trap. dynamics of the gas. The method is based on a stochastic

evolution of Hartree states, in which all atoms have the same

At very low temperature, a simple theoretical description ; ; -
of the dynamics of these systems is obtained by neglectingave function, these Hartree states being either Fock states

the uncondensed atoms, and by considering the wave fun ixed number of atomsor coherent states. As a particular

tion of the condensate, which obeys a Scimger equation case of this solution with coherent states, we recover the
with a nonlinear term c;riginating from the mean-field inter- stochastic scheme corresponding to the evolution of the den-

. sity operator of the system in the posititerepresentation
actions betwegn the atom§. Such an appr_oach neglects tw [3-15. This scheme, which has been applied already to
and more-particle correlations and is valid under a weak

) . - S . study the dynamics of Bose-Einstein condensatg¢46nl7],
interaction condition which is usually stated in terms of theis  nown to lead to strong unstability problems, which for-

i i 3y1/2 k .
densityn and the scattering lengta of the gas asia’)™  tynately do not show up for other implementations of the
<1. Current gaseous condensates satisfy such a conditiogresent method.

Nevertheless effects beyond the Gross-Pitaevskii equation The outline of the paper is the following: In Sec. II, we
may be considered at zero temperature; also finite temper@resent the stochastic formulation of the evolution of these
ture phenomena are not accounted for by the pure state meaartree states which, after average over the stochastic com-
field approach. ponent, leads to the exact evolution. Section Il is devoted to
More complex theories have been developed in order téhe presentation of two particular schemes implementing this
cope with effects beyond the Gross-Pitaevskii equationstochastic formulation. We first present a “simple” scheme,
Bogoliubov’s approach takes into account the next term irwhich minimizes the statistical spread of the calculated
the (na®)Y2 expansion(5,6]. Also quantum kinetic theories N-atom density matrix. We also investigate a more elaborate
have been developed to study the formation of the conderscheme in which the trace of the calculated density matrix
sate and to include the effect of the noncondensed particleemains strictly constant in the evolution. With this con-
[7-9]. Unfortunately the corresponding calculations are quitestraint, we recover for coherent states the known stochastic
heavy for 3D nonhomogeneous systems such as trappeimulation associated with the positiPerepresentatiofl6].
gases, and this constitutes a first limitation to the use of thesinally we investigate in Secs. IV and V two examples, a
methods. Also approximations used in some of the existingwo-mode model system and a one-dimensional Bose gas,
mean field theories are not under rigorous control, making itespectively. These examples illustrate the accuracy and the
difficult to assess their domain of validitjor a review see, limitations of the method. Generally speaking we find that
e.g.,[10]). Therefore a computational scheme capable to prothe “simple” scheme simulations are only limited by the
vide exact results can have a great importance both from eomputation power: the number of realizations needed for a
purely theoretical point of view and for a quantitative analy-good statistical accuracy increases exponentially with time
sis of experimental data. for the simulation with Fock states. On the contrary the
When the Bose gas is at thermal equilibrium such an exsimulations with constant trace are subject to divergences of
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the norms of the stochastic wave functions in finite time, a ~ag(X) h2vy?2
phenomenon already known for coherent states in the con-  1i——=| = 5 =+ Vex(X) | () +(N—1)
text of the positiveP representatiofl3,18|.
’ Y \|2
Il. STOCHASTIC FORMULATION OF THE N-BOSON X( f dx’ V(x=x")|(x")|*| (x).  (4)

PROBLEM USING HARTREE FUNCTIONS ) ] )
For an interaction potential(x—x’) modeled by a contact

termgd(x—x') (whereg=4#2a/min a three-dimensional
The Hamiltonian of the trapped interacting Bose gas un{roblem it reduces to the Gross-Pitaevskii equation com-

der examination can be written in terms of the Bose fieldnonly used to analyze the dynamics of pure Bose-Einstein

operatord (x) as conde.nsed gases.

A first attempt to improve the accuracy of the Hartree

- - L fb et ansatz(3) is to allow for a stochastic contributiahB in the
H:f dx W (x)hoW (x) + EJ f dx dx W (x)¥T(x’) evolution of the macroscopic wave functign

XV(x—x")P(x)¥(x), (1) d(t+dt)=(t)+F dt+dB. (5)

wherex is the set of spatial coordinates of a partidig= In all this paper the noisdB is treated iLhe standard Ito

— (h22m)V2+ Vo, (x) is the single particle Hamiltonian in formalism[20] so that it has a zero meatB=0 anddB?
the external confining potential,,, and where interactions dt; a deterministic contribution is given by the “force”
are assumed to occur via a two-body potenék—x'). term Fdt. In this framework, theN-body density matrix

In practice we consider the dilute gas and the low temWould result from the stochastic mean over noise or, in other

perature regimes, which correspond respective|yn|tﬂ|3 terms, from a mean over the time dependent probability dis-
<1 and |aj<\ for a three-dimensional problemx( tribution () in the functional space of the wave functions
=h/(2mmkgT)Y? is the thermal de Broglie wavelength ¢:
The true interaction potential can then be replaced by a sim- )

ler model potential leading to the same scattering leagth '
grovided thgt the range ofgthis model potential isg mt?gh p(t):<|N:¢(t)><N:¢(t)|>St°Ch:f D¢ Pu(p)|N: )(N: 4.
smaller than the healing lengt=(87na) 2 and than\ (6)

[5,6]. This ensures that the physical results do not depend on . ) ) o
b. For simplicity we will use here repulsive Gaussian poten/An immediate advantage of this prescription over the pure

tials corresponding to a positive scattering lengthO. state ansatz Ed3) is that it could deal with finite tempera-
ture problems[21]. However as shown in Sec. Il E, the

simple generalization Eq5) of the Gross-Pitaevskii equa-
tion cannot lead to an exact solution of tNebody problem

From a mathematical point of view, the exact evolution of[22]. Therefore we have to enlarge the family of dyadics
theN-body density matri can be obtained from the Hamil- over which we expand the density operator; more precisely
tonian(1) using the quantum-mechanical equation of motionwe use Hartree dyadics in which the wave functions in the
bra and in the ket are different:

. 1
p()= 7 [Hp(D], 2 (1) =N: 1 ())(N: y(1))]. (7)

A. Model considered in this paper

B. A stochastic Hartree ansatz with Fock states

but any concrete calculation is impracticable even for mod-The two wave functionsp,(x) and ¢,(x) are assumed to

erate particle numbefs, due to the multi-mode nature of the evolve according to Ito stochastic differential equations:
roblem leading to a huge dimensionality of tiéody Hil-

i Space. g g Y y bo(t+d)= () +F,dt+dB, (a=12. (8

. For this reason approximate theorigs have been_d_evelope\q1e expansion Eq6) is then replaced by

in order to get useful results at least in some specific ranges

of parameters; the simplest one is the so-called mean-field  p(t)=(|N:¢1(t)){N: ¢2(t)])stocn

theory, in which theN-particle density matrix is approxi-

mated by a Fock state Hartree ansatz

p(1)=[N: (1) (N: (1), () _ , . o

We will see in the following that within this extended Har-
where|N: ¢) represents the state with particles all in the tree ansatz one can find a stochastic evolutiongfps repro-
same modéor single-particle stajep. The evolution of the ducing the exact time evolution.
normalizedcondensate wave functiah is determined using Actual calculations(see Secs. IV and Mwill be per-
either a factorization approximation in the evolution equationformed with a Monte Carlo technique, in which the evolution
for the field operatof6] or a variational procedurfd9]. The  of the probability distributiori” is simulated by a large but
result is the well-known mean-field equation finite number A/ of independent realizationsb(l',)z(t), i

:J JD¢1D¢27’t(¢1:¢’2)|N3¢’1><N3¢2|- 9
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=1,... M. At any time the(approximatg density matrixp  set ¢(1i1'iz)= ,7[,(1'1)5(].1’]2) and ¢(21'1~J'2)= l/l(jZ)galJz)’ to put
is given by the mean over such an ensemble of wave funcN:Mz and to reindex . j,) as a single index, in order
tions: to recover the expansion E(.0). Note that this expansion is
1N not unique and does not have the pretension to be the most

p(t)= JT/E IN: (1)) (N: p0 (1)]. (100  efficient one. For instance if the system is initially in a Har-

i=1 tree state|N:¢,), such a procedure is clearly not needed
_ . since one has just to setl)(t=0)= ¢4 (t=0)= ¢,. This

The expectation value of any opera@iis thus expressed by il be the case of the numerical examples in Secs. IV and V.

N
<©>: i E (N:¢g)(t)|©|N:¢(li)(t)). (12) C. Stochastic evolution of a Fock state Hartree dyadic
N . . L
In this subsection we calculate the stochastic time evolu-
For an Hermitian operator one can equivalently considefion during an infinitesimal time intervalt of the dyadic
only the real part of this expression since the imaginary par¢(t) given in Eq.(7). This will be used later in a comparison
is vanishingly small in the largd/ limit. with the exact master equation. _
Consider as an example the one-particle density matrix of After dt, the dyadico has evolved into

the gas, usually defined as
9 y o(t+dt)=|N: g+ deby ) (N: b+ d by, (17)

W x x")y=(TT(x")T ' . .
p0GX) = (W (X)W (X)) (12 \whered¢; anddd,, defined according to Eq8), contain
Inserting in this expression our form of the complete densit)p(y[h the detgrm|n|st|c contrlb_utlo.ﬁa(jt and the _stoc_:hastlc
matrix (10), we obtain the simple result onedB,. Splitting each contribution into a longitudinal and
an orthogonal component with respectgq and isolating a
pD(x,x" ) =N(b1(X) d3 (X)W 2| p1)N Verocns (13~ Gross-Pitaevskii term in the deterministic contribution, we

can write
from which it is easy to obtain the spatial densityx) |
=pM(x,x) and the correlation functiong®(x,x") dB.(X)= ¢o(X) dy,+dB,(X), (18
=pW(x,x")/(n(x)n(x"))*2. Also, the condensate fraction - |
can be obtained from the largest eigenvalue@f(x,x’). Fa(X)=F 5 (X) + N o o(X) +FL(X). (19
1. Remarks Our choice of the Gross-Pitaevskii term is the following one:

(1) The desired stochastic evolution, which has to satisfy 1 (N—1)
Tr[p]=1, cannot preserve the normalizationd , to unity; FCP(X)= —| ho+ _f dx' V(X—X")|do(x")|?
we can write indeed ‘ i I pall®

T p(H)]=((b2(D]$1(1)"stocr=1, (14) 1| (N=1) (atpalVIdatha)
e X (X~ T bal0).

which for | 1) # | ¢b,) imposes]| || || bol|>1 for some re- I bal

alizations. (20)
(2) The expansion E(9) is always possible with a posi-

tive distribution functionP;(¢,,¢,). We prove this state- The first term gives the standard Gross-Pitaevskii evolution,
ment by showing that a general density operatatan be including the kinetic term, the potential energy of the trap
written as in Eq(10) in the limit A= + . Using the identity ~and the mean-field interaction energy; the second term,
which arises naturally because we are considering Fock

) 1M ) ) states(rather than coherent states as commonly gdales
ldy=lim v Z IN: D) (N2 (19  into account the difference between the total mean-field en-
Mo+ 171 ergy per particle of the condensate and its chemical potential

where the functiong') have a uniform distribution over the * [23]. _ o .
unit sphere in the functional space, we obtain We split the field operator in its longitudinal and trans-
' verse components, keeping in mind that the wave functions

1T M _ ¢, are not of unit norm:
p= lim — > |N: 1Dy
Mo+ M j1ii=1 N Cf’Z(X)A ~
. . . Pi(x)= Say +ovi(x), (21)
X(N:gU2|(N: g2 p[N: 3 02). (16) I pal®
This expression is not yet in the form of EQ.0) since the with
matrix elements(N:U2|p|N:yU2)) are complex. Fortu-
nately we can always write this matrix element as tihdt? L 4
power of the complex numbefr(jl,jz) . It is then sufficient to a,~ dX po(x) ¥ (x). (22
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The relevant bosonic commutation relations then read a component of the field operator orthogonaldip. Using
Jdx ¢o(x) 8% (x)=0 we shall transform integrals involv-

A~ oap o 2 2 it - -
(35,85 1=l ¢al* and[a,.o¥,(0)]=0. (23 51 (x) as follows:

We will also need the projecto®, onto the subspace or-
thogonal to¢,, : f dxg(x,x', ...) oW (x)

(X)
O (x X' X! 8 -
Qu TYxX!, - )]= 906X, ||¢a||2f Y $aly) =J dx QWLy(xx', .. )16%T(x). (25)

XYy X', ... (29) : o :
Inserting these definitions in E¢L7) the expression fowr
This projector arises in the calculation as we have introducedt timet+dt can be written as

a(t+dt)—cr(t)=S(1°)|N:¢1><N:¢2|+e.c.+f dx SP(x) 8P I(x)[N—1:1)(N: p,| +€.cC.
+f f dx dx SP(x,x") W (x) 6T (x")|N—2:1)(N: ¢p,| +e.cC.

+f fdx dx ST, x") ST I(X)|N=1:p ) (N—1:h,| 5F 5(X'), (26)

where the notation e.c. stands for #achangedndconjugateof a quantity, that is the complex conjugate of the quantity after
having exchanged the indices 1 and 2. The explicit expressions fcﬁ(ﬁh&re

FGP _ 2
S(1°)=N<¢1|—12>dt+N)\1dt+Ndyl+ Mdy?r N—dndy’zﬂ (27)

Il 2 ?
SI(x) = N{QPFSP(x)]dt+FE(x)dt+dBE(x)+ (N—1)dy; dBL (x)+ N dBE(x)dy5 8)
S(lz)(xyx/):—V'\l(';_l)dsi(x)dBi(x’), (29
SHD(x,x")=NdBj (x)dB5* (x). (30)

Analogous expressions f@&”, S{!, S{?) are obtained by exchanging the subscripts 1 and 2. In the next subsection, we
evaluate the exact evolution of the same dyadic during a time intdtyab that we can determine the constraints on the force
and noise terms entering into these equations.

D. Exact evolution of a Fock state Hartree dyadic

To make the stochastic scheme described in the previous sections equivalent to the exact dynamics as it is givén by Eq.
the final result of the previous subsection, E@8)—(30), has to be compared with the exact evolution of the density matrix
a(t). Consider a dyadio=|N:¢,)(N: ¢,| at timet; according to the equation of moti¢8), and using the fact that the state

IN: ¢,) is a vacuum state for the opera@‘i'a(x), we find that the dyadic has evolved after an infinitesimal time dtapto

dt .
a(t+dt)=(r(t)+m(Ho(t)—a(t)H)=o(t)+E(1°)|N:¢1)(N:¢2|+e.c.+f dx ED(x) oW I (x)[N—1:1)(N: p,| +€.cC.

+f fdx dx EP(x,x") oW I(x)sWI(x")IN—2:¢,)(N: 5| +e.C., (31)

where theE(") are given by

co_Ndtf (galholdy)  (N-1) <¢1¢1|V|¢1¢1>1 @2

l - .
] ¢l 2 1 pal®
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dtyN (N-1)
E(l)(x)z.—Q(x){ ho+ ——— | dx’' V(x—x") (x’)2>¢(x), (33
000= e [ hor T 61002 6
dtyN(N—-1 )
EP(xx)= % QPIQPIIV(X=X") $a(x) ba(X)]. (34

Analogous expressions f@&y), ESY, E{?) are obtained by
exchanging the subscripts 1 and 2.

E. Validity conditions for the stochastic Fock state Hartree
ansatz

The similarity of the structures of Eq&6) and(31) sug-
gests the possibility of a stochastic scheme equivalent to t

exact evolution: to achieve this, it is necessary to find out

specific forms of deterministi€19) and stochasti¢18) terms

for which the mean values of tHg) equal theE!):
SO+ g =04+ P (35
P00 =P, (36)
SPxx)=EP(xx"), (37)
SED(x,x)=0. (39)

From the last equatio(B38), it follows immediately why
independent bras and kets are needed in the a®ain the
cased;= ¢,= ¢ such a condition would in fact lead to a

vanishing orthogonal noise and finally to the impossibility of

satisfying Eq.(37).

In terms of the different components, these conditions cal

be rewritten as

(N-1

(N +N3)dt+ >

[dyf+dy5*]+Ndy,dys =0,
(39)

F1(x)dt+(N—1)dB;(x) dy;+NdB;(x) dys =0,

F. A stochastic Hartree ansatz with coherent states

Up to now we have worked out the case of a Fock state
ansatz|N: ¢1){(N:¢,|. Actually coherent states rather than
Fock states are generally used, both in quantum optics and in
condensed matter physics. We now show that our stochastic
procedure also applies with a coherent state ansatz of the
form

h

a(t)=TI(t)|coh:¢,)(coh:¢p,|, (44

with

lvac), (45

|coh:p,)= ex;{ ﬁl’zf dx ¢, (x)¥(x)

whereN is the mean number of particles. We have included
here a prefactofI(t) which was absent in the case of the
Fock state ansatf’); in the Fock state case indeed such a
prefactor could be reincluded into the definition ¢f and
¢,. The wave functionsp,(x) and the prefactor factokl
evolve according to Ito stochastic differential equations

d¢,=F. dt+dB,,

dIl=f dt+db. (46)
nSplitting the field operator as
W () =N g(x)+ 6 o(x) (47)
and using
oW ,(x)|coh:e,)=0, (48)

we find that the equivalence of the stochastic scheme and the
exact evolution translates into the following set of condi-

(40 tions:
F5(x)dt+(N—1)dB;(x) dy,+NdB;(x) dyf =0, f=0, (49)
(41
1 dt
dt , F1(x)dt+ 5 db dBy(X) = =-hoda(X), (50)
dB, () dB,(X")= Q507 [V(X=X) $a(X) bu(X)],
(42 1 dt
Fo(x)dt+ —db* dBy(X) = —-hopa(X), (51
L L *x ry — H* ih
dB(x)dB;*(x")=0. (43
As we shall discuss in detail in Sec. Ill, several different dBa(x)dBa(x’):.d—tV(x—x’)¢a(x)¢a(x’), (52)
stochastic schemes can be found satisfying E8@—(43); if
each of them gives an evolution identical in average to the .
exact one, but the statistical properties can be very different. dBy(x)dB3 (x")=0. (53
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As we shall see in Sec. lll, such conditions are satisfied by t

several stochastic schemes. Very remarkably, the stochastic do==[H, o]+ dos, (58
evolution deduced from the positiié representatior24]

arises naturally as one of them.

Within this coherent state ansatz the one-particle densit¥heredos is a zero-mean noise term lineardt,, (anddb
matrix is evaluated using or the coherent state simulatiorin the case of simulation

with Fock states it is given by
pMGX) =N (X) 3 (X )TI(t) eXPN(b2| 1)) stoch:
59 =N [ dx aB, 000N~ 1:0,)(N:05

In a practical implementation of the simulation it turns out to

be numerically more efficient to represdi(t) as the expo- _ e
nential of some quantity + [ dxdB3(x)[N:pp)(N=Ligho|W(x) 1. (59
_ ANS(t
(1) =" (59 In the case of simulation with coherent states it is given by

and to evolveS(t) according to the stochastic equation

dos=db|coh:¢,)(coh: +N1’21'[[ dx dB;(x
db  a/db |coh:¢,)(coh:e,| f Bi(X)
S=— - (56)

NIT  ONII A

X WT(x)|coh:g,){coh:g,|+ | dx dBS(x)

ll. PARTICULAR IMPLEMENTATIONS OF THE
STOCHASTIC APPROACH X |coh:¢1)<coh:¢2|\1'(x)}. (60)

In the previous section we have derived the conditions
that a stochastic scheme has to satisfy in order to recover the e calculate the variation af duringdt, replacingo by
exact evolution given by the Hamiltonid#); in the case of ;4§ in Eq. (57) and keeping terms up to orddt. Using
the Fock state ansaf), we get the systert89)—(43), while  the jnvariance of the trace in a cyclic permutation and aver-

in the case of the coherent state ansa#) we get the con-  aging over all possible realizations, we finally obtain
ditions (49)—(53). As the number of these equations is actu-

ally smaller than the number of unknown functions there is
by no mean uniqueness of the solutions, that is of the simu-
lation schemes. We need a strategy to identify interesting
solutions. which is a positive quantity. Minimization of this quantity is
We therefore start this section by considering various inthe subject of Sec. Il B. PhysicallgA=0 means that the
dicators of the statistical error of the simulatitBec. 1l A) impurity of the stochastic density operator always in-
which can be used as guidelines in the search for simulationreases in average, while the exact density operator has a
schemes. These indicators are defined as variances of relenstant purity Trp?].
evant quantities which are conserved in the exact evolution The second kind of indicator that we consider measures
but which may fluctuate in the simulation. We show thatthe statistical error on constants of motion of the exact evo-
these indicators are nondecreasing functions of time; atution. Consider a time independent operaxocommuting
tempts to minimize the time derivative of a specific indicatorwith the Hamiltonian. The stochastic evolution leads to a
will lead to particular implementations of the general sto-statistical error on the expectation valueXolith a variance
chastic method, such as teemplescheme(Sec. Il B) and  given by the ensemble average
the constant tracescheme(Sec. 111 O.

dA:<Tr[d‘Tid0’s]>stocha (61)

Ax(t)={| T X (t)]= Tr[Xp(t)1?)stoch

A. Growth of the statistical errors 5 5
=(|T X (D)%) siocri— [TTXp(D]]*. (62

The first indicator that we consider measures the squared
deviation of the stochastic operate(t) from the exact den-
sity operatorp(t):

A =(Tr (" (t) = p(1))(a(t) = p(1))stoch
d
=(T o' (1) (1) D)stocii~ TrLp(1)?]. (57) d(T[ Xo]) = %Tr(X[H,a])ﬁLTr[Xdas]. (63)

From Eq.(58) we obtain the variation after a time stdp of
the expectation value of along a stochastic trajectory:

We now show thatA(t) is a nondecreasing function of
time. When the stochastic scheme satisfies the validity condsing the invariance of the trace under cyclic permutation
ditions derived in the previous section, we can write the stoand the commutation relatigri{, X]=0 we find that the first
chastic equation foo as term in the right-hand side of E¢63) vanishes so that
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dAX:<Tr[xdgs]-rr[x‘rdgl])mh' (64) Secondly the terms involving the transverse noise in Eq.
(66) are bounded from below: As the modulus of a mean is

a quantity which is always non-negative. less than or equal to the mean of the modulus, we have

Using expressioii64) one can “design” simulations pre-
serving exactly the conserved quantity, the constraint to meet |dBL(x)dB(x)|<dB,(x)dB,*(x), (68)
being Tf Xdos]=0: for instance in the Fock state simula-
tion, one first chooses the transverse noidBg satisfying  with the left-hand side of this inequality fully determined by
Egs.(42) and(43); then one simply has to take for the lon- condition Eq.(42).
gitudinal noise of¢, For the remaining part of the present secti@ec. Il B)
we assume that the interaction potentidk) has a positive
1 Fourier transform
dy;=— \/_N(<N:¢2|X|N3¢1>)lf dx dB (x)
V(k)=0 for all k, (69)
X(N: o XSW1(x)[N=1:61) (65
where the Fourier transform &f(x) is defined as

and a similar expression faty,; finally the force termd=,
are adjusted in order to satisfy Eq89)—(41). As natural
examples of conserved quantities one can chotse or
X="H; the former case is discussed in detail in Sec. Ill C.

V(k)= f dx V(x)e . (70)

In Sec. V, we will choose a repulsive Gaussian interaction
B. The simple schemes potential, which satisfies the condition E9). Note that as

g consequence of E@69) and of the inverse Fourier trans-

These schemes are characterized l_)y_the minimization 36rm formula the model interaction potential is maximal and
the incremental variation of the statistical spread of the

N-particle density matrix-(t), a spread that we have already positive inx=0:
quantified in Eq.(57) by A(t). To be more specific we as-

sume that we have evolved a dyadic up to timend we V(0)=|V(x)| for all x. (71
look for the noise terms that minimize the increase of
Tr o' o] betweent andt+dt. Under the assumption Eq69) we have found for the
transverse noise a choice which fulfills Eqg2) and (43)
1. Simulation with Fock states and which saturates the inequality E&8). We first dis-

In the case of the Fock state ansatz, we calculate eXplicc_retlze the Fourier space with an arbitrarily small wave vec-

itly the variation of Tfo'o] from Eq.(59) and we get tor stepdk and we set

dTro'o] B dBt X)=(.—) oM
ST N(dytdyd) Ayt +dyo)+ S [l 2 077 Qe
NTrlo'o] a=12
Vak .
1/2,ikX Al 0, (K)
xf dx dBL(X)ABL* (x)+[dy,+dys +c.cl. X| ¢al0 2, 2@k wee!fald,

(66) (72
We now look for the noise termdy, anddB. minimizing ~ Whered is the dimension of position space. The phadgs
this quantity subject to the constraints E(39)—(43). have the following statistical property:

We first note that we can choosky;=dvy,=0 without

affecting the transverse noises, as shown by E2#—(43): el 0a(K) @i fa(K') = S (73)

the correlation function of the transverse noises do not in-
volve thedy,, and we can accommodate for any choice of
dv, by defining appropriately the force terlﬁﬁ A, Inthe
particular case defining our simple scheme we take all thes
force terms equal to zero so that the force teFysoincide
with the mean field forces defined in EQO):

andé,, 0, are uncorrelated. In practice for half of tkespace
e.g.,.k,>0) 6,(k) is randomly chosen between 0 and;2

r the remainingk’s we takeéd,(—k)=—-6,(k). One can
then check that this choice for the transverse noise repro-
duces the correlation function Eqg2) and (43).
Gp We show now that the implementati¢i2) saturates the

F (X)=F7"(x). (67) inequality Eq.(68), so that it leads to the minimal possible
value ford Trfo'o] within the validity constraints of the

Note that the choice of vanishirdyy’s immediately leads to stochastic approach. We calculate explicitly the right-hand
a vanishing noise term in Eg¢66). side of Eq.(68):
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=dB.(x)dBL*(x) ¢,’'s is simply the mean field contribution, so that the whole
correction to the mean field evolution is provided by the
dt / transverse noise$B_ . Also the evolutions of the two states
= xX)*x ~(x") ERVIAYE ’ , -
h (Qa™ Qo IVIX=X) ¢ (X) fulX") D= ¢, are totally independent from each other.

| (Y)|? 2. Simulation with coherent states

V(X—-y)

| pall? In the case of the coherent state ansatz, an explicit calcu-
lation ofd Tr[(rTa] from Eq. (60) gives

dt
=S 19.007 Vo) -2 ay

2

+ 1’ (74) dTro'o]

[¢all* db < x «

“ =|7 +N | dx dBy(X)$7 (X) +dB3 (X) ha(X)
To'o] I

where Q% projects onto the subspace orthogonalp and

where we have used the positivity of the Fourier transfofm +N 2 dx dB,(x)dB* (x)

of the model interaction potential. The left-hand side of Eq. a=12 “ “

(68) is calculated using Eq42):

db —
+|—=—+N [ dx dB;(x)¢7 (X)
dt I f !
dB,,(X)?= $2(X) V<0)—2fd lﬁ(ll)l V(x-y)
ba +dB3 (x) ¢,(x) +c.c|, (79
| al|* ' where|dz|? stands fordz dZ in the Ito sense.

We now proceed to the minimization of the increment of
As the expressions between square brackets in(#§sand  Tr[o'o] within the coherent state ansatz along the same
(74) are real positive we deduce the equality in E&B). lines as the previous subsection. First we optimize the noise
We can now calculate explicitly the variation of[Bt' o] db on the normalization factoll:
by integrating Eq(74) overx:

dTro'o] B dt
NTHo'e] #

arPalVida, b
s @ PalVId

MO T el

>] db=—ﬁn(fddel(x)¢;(x)+dB;(x)¢2(x) :
- (80)

(76)  This choice leads to a vanishing noise term in Et®). We

insert this expression fadb in the validity conditions Eg.
This expression is particularly useful since it allows one to(50) and Eq.(51) and we obtain

derive an upper bound on the increase ofdlir]: as we
assume here a positive Fourier transform of the potential 1 _
V(x—x'), the matrix element{¢,,¢,|V|d,,d,) is also Fa(X)=E{ho+NJ dx’ V(X_X,)|¢a(x,)|2}¢a(x)'
positive so that the right-hand side of E@6) is smaller than 81)
2V(0)dt/h. After time integration we obtain
N N ANV Finally if the model interaction potential has a positive
Trlo'o](t)<Trlo'c](0)e : (77 Fourier transformcf. Eq. (69)] minimization of the contri-

AN ant  this | lity is that Pution of the noise termdB,, with the constraint Eq(52) is
n important consequence of this inequality is that none of, ..o\ ed with the choice

the solutions of the stochastic equations of this scheme ex-

plodein finite time dt) 22 Jdk .

Using Eq.(57) and the fact that the trace of the squared  dB,(x)= ( ) ba(X) > (V(k))Y2eikxgl al),
density operatop? is a constant under Hamiltonian evolu- K (2m)¥?
tion we can deduce an upper bound on the squared statistical (82

error A(1): where the phase8, (k) are randomly generated as in Eg.

1< 2771a2NV(0)t/4 (73).
A+ TpT=[A0) +TpTle ' (78 The first equatiori81) fixes the deterministic evolution to

Note that it involves the model dependent quaniit®) and ~ the usual mean-field equatiod). We note here that the
not only the physical parameters of the problem such as thgean-field term in Eq(81) does not contain the normaliza-
chemical potential or the scattering length. It may be theretion of the spatial densit\|,(x')|2 by || ¢,||2, a feature
fore important to adjust the model interaction potentiék  present in the Fock state simulatifsee Eq(20)]. This is a
—x') in order to minimize the growth of the statistical error disadvantage of the coherent state simulation since this nor-
for given physical parameters. malization factor appearing in the Fock state simulation has a

To summarize the proposed simple scheme has severatgularizing effect: the normse,|| may indeed deviate sig-
noticeable properties. The deterministic force acting on thaificantly from unity in the stochastic evolution. The second
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equation(82) determines the stochastic noise on the wave ¢,|#,)=1 at any time. This actually corresponds to a con-
functions in a way very similar to the Fock state cé88. In  served trace of each single dyadi€t). This possibility is
particular the evolutions o, and ¢, are still uncorrelated. analyzed in Sec. Il C 1; it is extended to the coherent state
The only difference is the disappearance of the proje@pr simulation in Sec. Il C 2, leading to the well-known positive
in the expression of the noise, which leads to an increaseB-representation formalism.
noise with respect to the simulation with Fock states.

As in the Fock state case, the deterministic evolution of 1. Simulation with Fock states
the present scheme has a Gross-Pitaevski form and thus con-\yjithin the Fock state ansatz, the conservation of the trace
serves the normf ¢, Jl|. This condition, together with the ¢ ihe dyadic Tfo] can be achieved byi) choosing the
upper bound;; ;<V(0)dt|| ¢, J|?/% on the eigenvalues,,  yransverse noises$B’, according to the formula E¢72) and

of the noise covariance operatdiB,(x)dBj(x'), can be using the expression E@65) for the longitudinal noise
used to prove that the stochastic equations possess a finifgii x=1. Point(ii) gives

non-explodingsolution valid for all times(see[25] in Sec.

IV E). -
As in the previous subsection we now estimate the dy1=—(¢2|b1) 1J’ dx 3 (x)dB(X). (89
squared erro. We calculate the variation of lo"o] for
the choice of noise Eq82): The force terms. , andF, are fixed by the condition9)—
o (42):
1 dTro'e] NV(0)
a2 l1edlP @3 N-1 s \
Trlo'o] a=12 Mdt:_T<¢>2|¢1> dx dx' ¢35 (X)
The average over all stochastic realizations of the norm %/ L Loy
squared of the wave functions can be calculated exactly: X 2 (X)dBy (x)dBy (x') (90
d
(1 alP)sioch )=V po]|Dsi0ef 0. (84 "
L — _ -1
This leads to a remarkable identity on the tracerbé: F100dt=(N=1)(¢,|¢1)
(INTr o 0] stoe( 1) =(IN Tr 0T 0]V eoe{ 0) + N(eV (O — 1) X f dx’' ¢3(x")dBy(x')dB;(x). (91
><< > ||¢a||2> (0). (85)  The expressions fady,,\, andF;(x) are obtained by ex-
a=12 stoch changing the indices 1 and 2 in these resullts.

Using finally the concavity of the logarithmic function, lead-
ing to the logarithm of a mean being larger than the mean of

the logarithm we obtain a lower bound on the squared error |n the case of the coherent state ansatz, the valakrof
A on theN-body density matrix: which is the zero-mean noise term entering the variation of

- the dyadico during a time steplt, is given in Eq.(60). The
A(t)+Tr[ p?]=Aexd 2BN(eV(©/% —1)], (86)  requirement of a constant trace[ & =[1e{¢2/%1) |eads to
the following condition on the noise terms:

2. Simulation with coherent states

where we have introduced the constant quantities

A=exd(InTr{ oo ])st0c 0)], (87) db+ﬁﬂf dx(¢3 (x)dBy(x) +dBj3 (X) ¢1(x))=0.
(92
— 2
B= 2 < Q:ELZ 1l > (0). (88) We choose the noise ternd8, as in Eq.(82). The remain-
stoch ing parameters=, are now unambiguously determined by

We recall that a vanishing(0) would correspond here to an Eds.(50) and (51):
identically vanishing interaction potentis(x), according to

1 _
Eq. (71). Fl(X):E[ho‘FN f dxX' ¢35 (X IV(x=x)a(X") | pa(x),
C. The constant traceschemes (93)
We have given the expression of the one-body density 1 — o ) ,
matrix p) in terms of ¢,(x) for the simulation with Fock ~ F2(X)= = ho+Nj dx" @7 (X" )V(X=X") pa(X") | pa(X).

states Eq(13). This expressions shows thza(tl) is very sen- (94)
sitive in the largeN limit to fluctuations of({¢,|¢1). The

same remark applies to two-body observables. In order tdhis scheme exactly recovers the stochastic evolution in the
improve the statistical properties of the simulation one carpositiveP representation, which was originally obtained with
consider the possibility of a simulation scheme witha different mathematical procedui24].
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IV. STOCHASTIC VERSUS EXACT APPROACH (a) (b)
FOR A TWO-MODE MODEL 0.1t e 1 r ~ 1

In order to test the convergence of the stochastic schemes. = s Lo N
developed in the preceding section we now apply this 0.05 - / 10 / A
method to a simple two-mode model for which the exact / i
solution of theN-body Schrdinger equation can also be ob-
tained by a direct numerical integration. This allos to %, 05 ” 15 0 2 P 6
check that the stochastic methods when averaged over man
realizations give the correct result indeed, dfijito deter- (c) (d)
mine the statistical error for each of the four implementations I I
of the stochastic approadticonstant trace” vs “simple,” a
Fock vs coherent states 2 0.05 | i

The toy-model that we consider is motivated by the dy-
namics of two self-interacting condensates coherently
coupled one to the other, as it is the case for two condensate: ¢, 05 ” 15 0 P 4 P
separated by a barri¢26] (Josephson-type couplingr for Qt Qt
condensates in two different internal states coupled by an _ _
electromagnetic field[27] (Rabi-type coupling In this FIG. 1. In the two-mode model mean fraction of atoms in the

model we restrict the expansion of the atomic field operatof"d€Us as function of time, obtained witta) the positiveP rep-
to two orthogonal modes resentation(b) the Fock state simulation with constant tra@,the

simple simulation with coherent states, afol the simple simula-
tion with Fock states. The solid line represents the average over
N=2X10° simulations, with corresponding error bars. The dashed
line is the direct numerical solution of the ScHimger equation.
The number of atoms =17, initially all in modeuy, . The inter-
O . o action constant isc=0.1Q). The time step used in the numerical
H=—(a'b+b'a)+7ix(a’a’+b"%b?), (96) stochastic calculation i©dt=10"2. The calculations itfa) and(b)
2 have been stopped after the divergence of one realization.

P(X)=aug(x)+b up(x). (95)

The Hamiltonian Eq(1) takes the simple form

wherea,b annihilate a particle in modas, anduy,, « char- . .
P &5 b K Cﬁqr N=17 particles and/Q=0.1, together with the result of

the direct integration of the Schdimger equation.
The first row in the figure concerns the constant trace
mulations. Figure (B) shows results of the simulation
based on the positive representation, that is the constant
trace simulation with coherent states. As well kndd,1§
IjiI%is scheme leads to divergences of the nfim|| || #,|| for
some realizations of the simulation. We have cut the plot in
Fig. 1 at the first divergence, a procedure shown to be justi-
fied for the positiveP representation if13,18. The same
type of divergences occurs in the constant trace simulation
with Fock stategFig. 1(b)], and we heuristically cut the
divergencies with the same procedure. Note however that the
atoms are in modai,, either in a Fock statén,=0, characteristic time for the first divergence to occur is some-
=N) (for the Fock state simulation®r in a coherent state Wh.at longer. We have _c_hecl_<ed_ for_these constant trace simu-
- _ _ lations that the probability distribution ¢ff¢4|| || ¢,|| broad-
1/20 1 p y 1 2

xexpN 2bl)|0,0> (for the coherent state simulationsVe  ong with time, eventually getting a power law tail. The
watch the time AevAqutlon of the mean fraction of particles iNcorresponding exponent decreases in time below the criti-
modeu,, p,=(a'a)/N. cal valuea;=3 for which the variance dfl || || #,|| be-

Mean-field theory(the Gross-Pitaevskii equatipnvalid  comes infinite. This scenario is identical to the one found
in the limit N>1 with a fixed N/ [28], predicts periodic  with the positiveP representatiofil3,18.
oscillations of(afa)/N; the peak-to-peak amplitude of the  The simple simulation schemes plotted on the second row
oscillations is equal to unity ikN/Q <1, and is smaller than of Fig. 1 provide results which are at all time in agreement
one otherwisg?29]. In the exact solution the oscillations are with the direct integration within the error bars. Contrarily to
no longer periodic due to emergence of incommensurablghe constant trace schemes we do not observe finite time
frequencies in the spectrum bf. divergences in the simple schemes. For a given evolution

In the simulation method we evolve sets of two complextime we have checked that the error bars scale as\V1/
numbers representing the amplitudes of the functiops)  whereA is the number of stochastic realizations. For a given
and ¢,(x) on the modesi, ,(x) (plus thell coefficient in A we found that the error bars increase quasiexponentially
the coherent state cgs@he results are presented in Fig. 1 with time.

condensate an€) is the Rabi coupling amplitude between
the two condensates. Here we have restricted for simplicityé.
to the case wheré) the condensates have identical interac- !
tion properties(ii) the interactions between atoms in differ-
ent wells are negligible, anii) the Rabi coupling is reso-
nant. The most general two-mode case could be treated alo
the same lines.

The direct numerical solution of the Schlinger equation
is performed in a basis of Fock statfs,,n,) with n,
particles in modesi, ,u,. The numerical integration is sim-
plified by the fact that,+n, is a quantity conserved by the
Hamiltonian evolution. We start with a state in which all
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FIG. 2. Statistical error on th&l-body density matrix for the v
two-mode modelfa) “simple” scheme with coherent states afig)
“simple” scheme with Fock states. The solid line is the numerical
result of the simulations. The dashed lineganand(b) correspond 0

ht 6 8
FIG. 3. Fraction of atoms in mode, in the two-mode model,

The noise in the simple simulation schemes is investifor the parameters of Fig. 1. The dashed line is the direct numerical
gated in more detail in Fig. 2 which shows the error estima-solution of the Schrdinger equation. The solid line with error bars
tor (Tr[ngDStoch as function of time, for coherent states in is the result of the “simple” scheme simulation with Fock states
Fig. 2(a) and for Fock states in Fig.(). The coherent state with A/=10° realizations. To keep a reasonable computation time
result confirms the prediction E¢86). The Fock state result With such a large value of/we have increased the time step in the
is found to be notably smaller than the upper bound(Z§). numerical stochastic integration by a factor 25 with respect to Fig.
This is due to the fact that the terms proportional tol. This explains the small sy§tfematic deviation of the simulation
(bo,dalV|b, . b,) in Eq. (76) are not negligible as com- result from the exact result visible for exampl_e at tnﬁe:z(_i. _
pared to the terv(0). We have checked these conclusions The quantum phenomenon of collapse and re\_/lval of the oscillation
for various values oN and «/Q. amplitude clearly apparent on the exact result is well reproduced by

For a large number of particles it is knowWa&0] that the the simulation.

oscillations of(é*é) experience a collapse followed by re-
vivals. These revivals are purely quantum phenomena for the
field dynamics and they cannot be obtained in classical field
approximation such as the Gross-Pitaevskii equation. We ex-
pect to see a precursor of this phenomenon even for the small
number of particle®dN=17. As the simple scheme simulation
with Fock states is the most efficient of the four schemes for
the investigation of the long time limit, we have pushed it toAt time t=0" the trap frequency is suddenly increased by a
the time at which a “revival” can be seen, as shown in Fig.factor two, which induces a breathing of the cldid—-33.
3. This figure is obtained witth'=10% simulations. This expected breathing is well reproduced by the numeri-
cal simulations. The mean squared spatial wiRtthof the
cloud as function of time is obtained by taking
=3N_,XZ/N in Eq. (11) wherex, is the position operator of
the kth particle. The quantityr? is shown in Fig. 4 for the
The interacting Bose gas is in general a multimode probsimulation schemes with Fock states. One recovers the key
lem, and the simulation schemes may have in this case f®ature of the constant trace simulation, that is a divergence
behavior different from the one in a few-mode model such a®f the norm||¢4|| || #,|| in finite time for some realizations.
in Sec. IV. We have therefore investigated a model for aBefore the occurrence of the first divergence the stochastic
one-dimensional Bose gas. The atoms are confined in a havariance of the size squared of the cloud, defined as
monic trap with an oscillation frequenay. They experience
binary interactions with a Gaussian interaction potential of
strengthg and rangeb:

respectively to the lower and upper bounds, 8§) and Eq.(78).
The parameters are the same as in Fig. 1.

nrd*¢ 1
M¢(X)=—ﬁ§+§mw X“p(x)+(N—1)

Xf dx' V(x=x")|(x")|2h(x). (99)

V. STOCHASTIC APPROACH FOR A ONE-DIMENSIONAL
BOSE GAS

N
VIR o= 2, [RE(D—RAOTE,  with

RZ(t)=Re (N: %) ()| O|N: (" (1)1, 99
V(x—x')= o g;mbexp[—(x—x’)z/(zbz)]. (97) (=RE(N: 2 (D]OIN: 617(1)] 99
i is notably smaller in the constant trace scheme than in the
simple scheme, as shown in Figab This contrast between
At time t=0 all the atoms are in the same normalized s#ate the two schemes for the statistical error on one-body observ-

solution of the time independent Gross-Pitaevskii equation ables was absent in the two-mode model of Sec. IV.
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FIG. 4. Mean squared spatial widB? of a harmonically con-
fined cloud ofN=10 atoms as a function of time. The breathing of
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VI. CONCLUSION AND PERSPECTIVES

In this paper we have investigated a general method to
solve exactly theN-body problem in the bosonic case. The
principle of the approach is to add to the usual mean-field
Gross-Pitaevskii equation a fluctuating term. We have deter-
mined the general conditions ensuring that the average over
all possible realizations of this stochastic equation repro-
duces the exad¥-body Schrdinger equation.

This idea already received a particular implementation in
guantum optics, in the frame of the positiReepresentation.
We recover here the scheme based on the poditivepre-
sentation as a particular case of a simulation evolving coher-
ent states of the bosonic field with the constraint that the
trace of the density operator should remain exactly equal to
unity for each single realization. This provides a simple deri-
vation of the stochastic evolution within this representation
alternative to the usual orj@4] based on analyticity proper-
ties.

Among the many possible implementations of the general

the cloud is induced by an abrupt change of the trap frequency frongtochastic approach we have also investigated schemes

o t0 2w. The widthR is measured in units of the harmonic oscil-
lator lengthan,= (%/(mw))Y. The interaction potential is chosen
such thath=0.5a,,, andg= 0.4 wa,,, leading to a chemical poten-
tial u=1.7hw in the Gross-Pitaevskii equatid®8). The calcula-
tion is performed on a spatial grid with 32 points ranging from
—6ap, to +6ay, (with periodic boundary conditions®: Constant
trace simulation with\/=1000 realizations. Fowt>3.5 a diver-

gence has occured for one of the realizations and the calculation h?ﬁ

been stopped.]: Simple scheme simulation with’=40 000 real-
izations.

We have also investigated the noise on Méody den-
sity matrix characterized byTr oo ])gocn [SEE Fig. B0)].

evolving Fock statesgthat is number stat¢sather than co-
herent states. This is well suited to situations where the total
number of particles is conserved. In particular we have iden-
tified a scheme preserving exactly the trace of the density
operator which is for number states the counterpart of the
one based on the positi\ representation.
Schemes with constant trace are subject to divergence of
e norm of some realizations in finite time. This effect, al-
ready known in the context of the positierepresentation
[13,18, makes these schemes difficult to use.

In order to overcome this divergence problem we have
investigated schemes in which the condition on the trace is

As expected this error indicator is smaller with the simplerelaxed. We have chosen instead to minimize the statistical
scheme. For this simple scheme it varies quasi exponentiallypread on thé\-body density matrix, which gave rise to the

with time with an exponenty=4w, which is smaller by a
factor roughly 2 than the one of the upper bound E®).
This difference is due to the fact that the rangef the

“simple” schemes, either with coherent states or Fock
states. In this case thié-body density operator is obtained as
a  stochastic average of dyadics such as

interaction potential is chosen here of the same order as ﬂ"%oh:W1/2¢1><C0h:ﬁl/2¢2| or |N: 1 )(N: ¢b,|, where the evo-

size R of the cloud so that the term&p,,¢.|V|d., b
neglected in the derivation of the upper bound are actuall
significant. We have checked for various randesnuch
smaller thanR that y then approaches the upper bound
2NV(0)/A.

) stoch

var(R 2

2
ot

2
ot

lutions of ¢, and ¢, are fully decoupled. The deterministic

)f)arts are given by Gross-Pitaevskii equations, which pre-

serves the norm o, ,, contrarily to the case of constant
trace schemes. The decoupling between the evolutiogs of
and ¢, allows a reinterpretation of our representation of the
N-body density operator. If the initial density operator is
given by p(t=0)=|N:¢o){(N: ¢l it will be given at timet

by

p(O)=[T ()T ()], (100
with the N-particle state vector
N

()= lm = > [N:¢0(1)). (102)
N—oo IV =1

FIG. 5. For the one-dimensional Bose gas in the conditions of ) ) 0 ) o )
Fig. 4, (a) stochastic variance of the size squared of the cloud andn this expressionp'’ are stochastic realizations with the

(b) noise on theN-body density matrix. Solid lines: simple scheme

initial condition ¢0)(t=0)= ¢,.

with Fock states. Dashed lines: constant trace scheme with Fock The “simple” schemes have much better stability prop-

states.

erties than the constant trace schemes: differently from the
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case of constant trace schemes, the deterministic evolution of This work has several possible perspectives of extension.
the “simple” schemes has a Gross-Pitaevskii form and thu®ne can first use as building block a more sophisticated an-
conserves the normge¢, J|. Furthermore we have shown satz than the Hartree-Fock stdié: ¢), such as Bogoliubov
that the corresponding stochastic equations possess a finitgacua(that is squeezed states of the atomic fielda mul-
nonexplodingsolution for all times. timode Hartree-Fock ansatthat is an arbitrary coherent su-
We have numerically applied the simulation schemes to &erposition of number states in several adjustable modes of
two-mode model and to a one-dimensional Bose gas. In bothe field. One can also look foapproximaterather than
cases we found that the constant trace schemes lead to SORE; -t stochastic solutions to thil-body problem but that
diverging realizations, while the simple schemes lead t0 §,5,id be better than mean-field approaches in some given

statistical spread on thi-body density operator increasing i ations. We hope to address some of these perspectives in
exponentially with time with an exponent<NV(0)/%. The the near future

simple schemes are therefore not well suited to determine
small deviations from the mean-field approximation in the
large N limit but can be more efficiently applied to systems
with a small number of particles, such as small atomic clouds
tightly trapped at the nodes or antinodes of an optical lattice.
In the one-dimensional numerical example of this paper We thank Klaus Mtmer and Gora Shlyapnikov for very

we have presented results for a simple one-body observabluitful interaction at an early stage of this work. We ac-
the size of the atomic cloud. We have actually extended th&nowledge helpful discussions with our colleagues at ENS,
calculations to more elaborate observables such as the first particular Claude Cohen-Tannoudji and Franck Laloe
order and the second order correlation functions of the fieldPart of this work was performed at the University of Illinois
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