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Dissipative dynamics of Bose condensates in optical cavities

Peter Horak and Helmut Ritsch
Institut fir Theoretische Physik, Universtténnsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
(Received 16 February 2000; published 8 January 001

We study the zero-temperature dynamics of Bose-Einstein condensates in driven high-quality optical cavi-
ties in the limit of large atom-field detuning in a one-dimensional model. We calculate the stationary ground
state and the spectrum of coupled atom and field mode excitations for standing-wave cavities as well as for
traveling-wave cavities. Finite cavity response times lead to damping or controlled amplification of these
excitations. Analytic solutions in the Lamb-Dicke expansion are in good agreement with numerical results for
the full problem and show that oscillation frequencies and the corresponding damping rates are qualitatively
different for the two cases.
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[. INTRODUCTION device for condensates have been discussed previously
[18,23.

The experimental realization of Bose-Einstein condensa- We will investigate the ground-state and collective exci-
tion (BEC) in dilute atomic gases a couple of years 4gp tations[24—27 of the coupled condensate-light field system
as a consequence of improved cooling and trapping tecHp the optical potential of the cavity. Because of the strong
niques has dramatically boosted the study of ultracold atom&oupling of the condensate wave function to the cavity
Today, BEC is a widespread tool and a huge range of newnodes, an oscillation of the condensate also leads to an os-

phenomena has been investigated experimentally and thegllation of the intracavity light fields. Accordingly, the os-
retically, see e.g., Ref§2—4] for recent overviews. In this cillation frequencies of the collective excitations are shifted

with respect to an external optical potential of fixed depth,
i.e., the optical potential formed by a free space standing
pvave. Furthermore, for appropriately chosen parameters the

as the reduction of the speed of light by many orders 0dissipative dynamics of the cavity due to cavity decay gives
magpitude[11] and the occurrence of super-radiaridg] rise to damping of the condensate excitations without inco-

have been found. Recently the optical creation Of. Vqrtiqe%erent spontaneous emission. We analyze this damping
[13,14 has been demonstrated and many more intriguinge hanism and study its parameter dependence by numerical
effects have been theoretically predicted. _ solutions of the coupled equations of motion as well as by
In parallel, the field of cavity quantum electrodynamics, apalytic solutions of a simplified model based on the Lamb-
which studies the interaction of matter with one or a fewpjcke expansion.
single light modes, has reached such a level of sophistication This paper is organized as follows. In Sec. Il we discuss
that the interaction of light with the internal and externalthe case of a condensate interacting with the single mode of
degrees of freedom of a single neutral particle can be oba standing-wave cavity. After presenting the set of coupled
served and controlled in a very precise Wa$|. For optical  nonlinear equations of motion for the condensate and the
fields, trapping and cooling of a single atom in a cavity modelight field, we discuss the numerical and analytical solutions
has been demonstratgti,17). It is thus a logical next step for the ground state and the collective excitations. Section Il
to combine these two successful techniques and study thHevestigates the more complicated situation of a condensate
interaction of a BEC with a high finesse optical cavity, thatcoupled to the two independent modes of an optical ring
is, the strong coupling of a far detuned optical mode to thecavity. In Sec. IV we discuss the influence of binary colli-
dynamics of a condensate described by its macroscopical§ions between the atoms within the condensate on the exci-
Occupied wave functio|ﬁ18]_ Several groups have a|ready tation frequgnCIeS a.nd damplng rates. F|na”y, we summarize
been working along these lines and, for example, predicte@ur results in Sec. V.
the amplification of matter wavd49] and the occurrence of

context the interaction of BEC’s with laser light and optical
lattices has been studied intensivgb-10] and effects such

d_ressed condensat@ﬁ]. In the extreme limit one could en- Il BEC IN STANDING-WAVE CAVITY
visage a large atomic cloud trapped and manipulated with a
single photon. Let us first consider the case of a Bose-Einstein conden-

In this paper we extend our recently proposed scheme fagate interacting with a single standing-wave mode. The cav-
cooling one or a few atoms in high-quality optical cavitiesity mode is assumed for all times to be in a coherent state
[21,22 to the case of a BEC. This requires a quantum-a(t)) and the condensate is described by a single wave
mechanical treatment of the external degrees of freedom arfdnction|¢(t)) for all N particles, which is a good approxi-
the inclusion of atom-atom interactions. The system undemation at zero temperature. This means that we factorize the
investigation is a Bose-Einstein condensate interacting witlquantum state of the system and thus neglect any entangle-
the mode(the two modepgof a driven standing-wave cavity ment between the condensate and the cavity field which
(ring cavity). The properties of such a system as a measuringnight build up in the course of the time evolution. This

1050-2947/2001/63)/0236039)/$15.00 63 023603-1 ©2001 The American Physical Society



PETER HORAK AND HELMUT RITSCH PHYSICAL REVIEW A63 023603

simplification is only justified in the limit of a large photon on completely different time scales and could thus be easily
number|a|?. To avoid spontaneous emission, we assume aeparated. We hence chose a simplified one-dimensional
very large detuning of the light field from the atomic reso- model, which does not correspond to a specific experimental
nance. More precisely, we assume that the cavity decay is theetup but demonstrates the main physical effects of the
dominant incoherent process in the system and we thus reondensate-cavity interaction more clearly.
quire thatk>NI's, wherex is the cavity decay rate\ the Equations(1) are two coupled nonlinear equations de-
number of atoms in the condensdfethe spontaneous decay scribing the dynamics of the compound system formed by
rate of the atoms, and the atomic saturation parameter. the condensate and the cavity fi¢R8]. The most interesting
After adiabatic elimination of the atomic excited states weeffects occur for parameters where the coupling between
obtain the following equations of motion, these equations significantly changes the system behavior.
We thus impose the conditioNUy,=k, which guarantees
d _ ) . that the presence of the condensate shifts the cavity fre-
G @ O=[1Ac=IN(U)) — ka(t) + 7, (1a  quency efficiently into or out of resonance with the driving
field. At the same time the optical potential depth?U,,

q 52 should be large enough to provide at least a few bound states
Tl L 2 2 for the atoms. Limitations and the interesting parameter re-
Idtw(x’t) 2m 1OV Ngeon (DI $0x,0). gimes for this model have been discussed in [R23].

(1b)
. ) ) ) A. Ground state
Here A; is the detuning of the pump field from the cavity )
mode, U (x) = U, cog(kx) is the optical potential formed by [ order to obtain the ground state of the compound
a single cavity photonm0=hg§/Aa with the single-photon condensate-cavity system, we have to find the stationary so-

; : lution of the system of coupled nonlinear equatigbs This
Rabi frequencygy and the atom-pump detuning,), and » Lo o .
describes the action of the driving laser. The expectatioffa" be done by elimination ¢f(t)|* in Eq. (1b) using Eq.

lue(U (X)) has to be tak ith t 1o th ; 1a), and a subsequent numerical solution of the resulting
va ue(f (X)} as to eEa en wi 1rbespech 0 e”mkomen aYnonlinear equation for the ground-state wave function with
wave function |.f’[’(t)>‘ . quation (1b) is the we KNOWN *the method of steepest descent. This consists of a numerical
Gross-Pitaevskii equatiofGPE) for a condensate in an ex-

t | field. which i d d th ; propagation of the GPE in imaginary time=it until the
ernal field, whic ;n our case depends on the momentary o e fynction converges to a stationary state.
field intensity| a(t)|*. The last term in the GPE models the

: : f ithin th q h . In this paper we will concentrate on the caselgf>0
Interaction of atoms within the condensate, Wheg IS \yhere the potential minima coincide with the nodes of the
related to the swave scattering lengtha by g

, field (low-field seeking atoms The ground-state wave func-
— 2
go‘:]gznzgt;nwz)' wherew denotes the transverse size of the o, il thus be localized at the field nodes, thereby mini-

. L . . mizing the coupling of the condensate to the light field. For a
Note that we are using a simplified one-dimensional ver-

. : L cavity resonant with the driving field, this means that the
sion ,Of the GPE here. For this approximation to h0|d_Wephoton number is maximum for the stationary ground state.
require that the transverse extensiorof the condensate is Ay excitation of the condensate will then lead to a smaller
smaller than the waist of the cavity field and approxmatelycavity field.
constant during the observation time of the system. This ¢ expected we find that the ground-state wave function
could be achieved, at least in principle, by a transverse COMsacomes better localized for stronger driving fieldsand
fining potential such as a magnetic field or a condensatfarger optical potentiald),. On the other hand, a strong
trapped in the center of a donut mode laser beam. Altemaétom-atom repulsion(large positive values og, 1) in-
tively, in the case of red detuning of the pumping laser Withcreases the width of the BEC wave function anaothus coun-

respect to the atomic_ resonance, one could envisag_e threFe'racts the confining effect of the potential. This, in due
dimensional3D) trapping of the condensate at the antinodes .

NS . , course, leads to an increased coupling of the BEC to the
of the cavity field |t§elf. For blue deFunmg one could think .Of cavity field and hence a smaller field intensity. A more de-
a}condengate thgt is freely expanding n the transverse dlreE’:’liled analysis of the ground-state wave functigg(x), its
tions while falling through the cavity. Then the one- energyu, and the stationary field intensifyro|?> has been
dimensional model only holds for a restricted period of time . 4

. . . . iven in Ref.[23].
until the above condition on the transverse confinement is ng
longer fulfilled. However, in these cases without additional
transverse trapping mechanism, the electric-field gradient of
the cavity mode is about two orders of magnitude larger Let us now turn to weak excitations of the condensate
along the cavity axis than in the transverse directions, anérom the ground state. First, we will calculate the spectrum
thus the dipole forces on the condensate in the longitudinadf collective excitations of the condensate. In contrast to
direction are much stronger too. For instance, for the cavityfixed external fields, the trapping potential in the cavity de-
parameters of the single-atom experiments by Rempe angends on the BEC wave function. Hence, excitations include
co-workers[16] we find a ratio of 150 between the longitu- small deviations of the wave functiaand the cavity fielda
dinal and the transverse trapping frequencies. Hence the efrom their respective stationary state. We may thus write
fects discussed in this paper and any transverse effects occyx,t) = exp(—iut)[ ¢o(X)+ S (x,t)] and a(t)=ag+ da(t).

B. Collective excitations
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For convenience we have already included the ground-state 80
time evolution into the ansatz for the wave function here. _ v,
Inserting this into Eqs(1) and linearizing indy and Sa we g 60
obtain 8
£ 40 v,
d . E}
I 0a=[—Act N(ol U(X)[ o) —ix]da = 20 v,
Ve (a)
+Nao( 39U (X)|¢ho) + Nao( ol U(x)| 4, 9750 100 150 200 250 300
(28) K (units of (DR)
k. Sy= p* 2U+2N 2 ) 6
'a = ﬁ+|ao| +2NQggon| ol “— 1 [ 64 ,;“ ¥,/20 (b)
8 4
+ Ngeonth389* + agU g da* + af Urpda. °
(2b) g, %
5 /\
For largex (more precisely, for X much smaller than the

time scale of the condensate motipthe cavity field follows

adiabatically the changes of the wave function and thaus

can be adiabatically eliminated. In this case one recovers the

limit of Ref. [23]. FIG. 1. Collective condensate excitation® frequenciesv,,
In general the |ineal’ized t|me eVOlUtion Couples the deVia'and (b) decay rategyn VS Cavity decay rate. The parameters are

tions 6y and s« also to their complex conjugates. In order to g, =A.=0, NU,=10«, and 7°=20kNwg, where wg

obtain excitation eigenstates, i.e., periodic solutions, we thus:#k?/(2m).

have to use the simultaneous ansatz

0 50 100 150 200 250 300
K (units of (x)R)

Sy=e yt[e—ivt5¢+(x) e Sy (x)*], field intensities and run down at lower intensities can be
&) achieved on average. The condensate thus loses potential en-
Sa=e "[e "Sa, +e"sa*]. ergy, which is carried away by the cavity output field without

an intrinsic decoherence of the condensate.
The collective excitations are thus defined as the solutions of Furthermore it should be emphasized that the appearance
the eigenvalue problem of a damping rate in the linearized equatid@sis a purely
guantum feature related to the width of the atomic wave

dary dary function. In the semiclassical limit of a pointlike particle, the
Sa_ Sa_ self-consistent ground state yields a particle exactly located
S, (X) =M sy () |7 4 at a node of the cavity and hence all expectation values in
Eqg. (28 vanish. Thus the cavity field decouples from the
oY (X) oy (X) atomic degrees of freedom and no damping of the atomic

motion occurs to lowest order in the elongatiarThis is in
contrast to the case of a ring cavity as will be shown in the
following section.

whereM is easily obtained from Eq$2) as a non-Hermitian
matrix. The complex eigenvalues have the fowp=wv,
—ivyn, Wherew, is the oscillation frequency of theth col- . —_— . .
lective excitation andy, the corresponding damping rate. In Fig. 1 we show the osqllatlon_frequenmes gnd dampmg
Note that, depending on the parameters, negative dampir{éltes of the Iowest coIIe(_:tlve excitations obtained numeri-
rates are possible, leading to an exponential growth of th&@!ly by calculating the eigenvalues of E@) on a spatial
collective excitations. In this case the assumption of smalPfid- The eigenvalues are plotted as a function of the cavity
deviations from the ground state imposed above only hold§€cay rate<. Note that in order to keep the optical potential
for very short times. Hence by changing some cavity paramconstant, we also have to scale the driving figfdand the
eters we can switch between stable and unstable cases attical potential per photod, proportional tox. For clarity,
generate controlled excitations of the condensate and studitomic collisions are neglected here and their effects will be
their decay. In the following we will, however, concentrate discussed separately in Sec. IV.
on the case of positive,, and therefore damped excitations. We see that there exists one single eigenvalye v;
Physically this damping arises from a kind of Sisyphus—iy; that scales approximately proportional#dn contrast
mechanism. For cavity damping ratesof the order of the to all of the other eigenvalues. This specific excitation of the
oscillation frequencies,, the cavity field follows with a system corresponds to an eigenmode where mainly the cav-
certain delay the changes of the condensate wave functionty field oscillates and the condensate wave function is only
By properly choosing the system parameters, having theveakly perturbed. In fact, Eq2a shows that in the case
wave function climb up the potential hills at higher cavity where the atoms are well localized at the nodes of the field
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(semiclassical limjt the cavity mode decouples from the harmonic oscillator. From this we see that the cavity field
matter wave function and the eigenvalue is given &y  only couples to wave-function deviatioidg/ containing the

=—A.—i«k. ground-stateys, and/or the second excited stafe of the
Second, we notice that out of the other modgs n harmonic oscillator. Most of the harmonic-oscillator excited
=1,2,..., theones with odd indices are independentof states are thus unperturbed and we find the collective excita-

and their damping rates vanish. This effect is due to thdions of the form ¢, (X)= ¢y, da,=da_=56¢_(X)=0
spatial symmetry of the problem considered here. For allvith the positive eigenvalue® =nw, for n=1 andn=3.
parameters we find that the ground-state wave funatigis ~ Analogously there exist excitations with negative eigenval-
symmetric in the positiox. Thus for allantisymmetricex- ues w=-—nwg of the form &¢_(X)=4¢,, Sa,.=da_
citations the expectation values in EQa vanish and the =8¢ (x)=0. Hence, in addition to the antisymmetric states
light field decouples. Therefore these odd<1,3,...)exci-  already found to decouple previously, also the higher lying
tations are the same as for a trap of constant light intensitgymmetric states decouple in the harmonic approximation.
and hence there is no Sisyphus damping mechanism at workherefore these symmetric excitations are only damped due
Consequently only the lowestymmetriccollective excita- to the anharmonicity of the potential and due to atomic col-
tions are significantly altered by the interaction with thelisions in the full model.

damped cavity mode. We will discuss the parameter depen- The remaining(and most interestingcollective excita-
dence of the excitation=2 by using an approximate ana- tions are finally found by restricting the wave functiofis..

lytic solution in the next section. in Eq. (4) to the two-dimensional Hilbert space spanned by

Let us finally emphasize that the oscillation frequency andf, and «,. The resulting 6<6 matrix has two zero eigen-
the damping rate of the symmetric collective excitations carvalues and the other four eigenvalues have to be found by
be monitored nondestructively via the cavity output inten-solving the fourth-order polynomial equation
sity.

(—ik+NUg(wr/wg) — o)(—ik—NUy(wr/wg) — @)
C. Harmonic-oscillator approximation X(w2—4wg)—4(NU0wR)2=0. )

In order to gain more insight into the parameter depen-
dence of this damping mechanism, we will now an_alytically-l-hiS gives us thécompley eigenvalueso,
solve an approximate model of our system. To this end w
expand the optical potenti&l (x) = U, cog(kX) with Uy>0
up to second order around the nodes of the field, i.e., we s
U(x)=Ugy(kx)? and assume.,;=0, i.e., no atom-atom in-
teraction. For simplicity we will also assunie,=0.

The ground state of the Sclinger equatior{1b) is thus
the well-known harmonic oscillator ground state that de-
pends on the cavity fielda|? in a parametric way. After
inserting this wave function in the expectation value in Eq.

andw, and their
Fcounterparts of negative frequency. Although an analytic so-
lution of Eq.(8) is possible in principle, the resulting expres-
Sons are rather long and do not provide much insight. In-
stead, we calculate the eigenvalug in the limit of large «

as in Fig. 1, i.e., by keeping,/« and 7%/ k constant. The
zeroth order in this expansion &V « yields the leading order

of the frequency

(1a) we obtain an equation for the self-consistent cavity field -0 1— N?Uoog 9
with the solution Y 472
Y
7]2 N?Uow . . .
|a0|2:__$, (5)  and the first order gives the leading order of the decay rate
K2 42
2112 .2 2 2
where wg=7k?/(2m) is the recoil frequency. The corre- 72:4N UOwR( _N UOwR) _ (10)
sponding harmonic-oscillator frequency is then K3 49
wo=2wg\|ao|?Uy/ wg (6)  Equation (9) gives a quantitative explanation for the fre-
. quency shift ofv, according to the coupling of the BEC and
and the ground-state energyis= wo/2. the cavity mode as compared to the valug,Zor the case of

For the collective excitations we now have to solve Eqsa harmonic-oscillator potential of fixed photon number. We
(2) with the harmonic potential. The last expectation value ofa|so see that the small variation ef in Fig. 1(a) for small
Eq. (2a) thus reads values ofk are in fact of the order &?. Equation(10) leads
R R to the asymptotic behavior like &/for the decay ratey, in
(Po|U(X)| 8p)y = U o tho| (KX)?| 844) Fig. 1(b). In the limit of a strong driving field the frequency
© v, of the second collective excitation approaches the
= _Uo_R<l//0|(a_aT)2|5(//>, 7 harmonic-oscillator value. Smultaneoysly the dampmg rat.e
wo v, tends towards a constant nonvanishing value, which is
) proportional to the square of the atom numberA higher
where we have used the standard relation between the pogiondensate density thus significantly increases the damping
tion operatorx and the ladder operatos and a’ of the  of the collective excitation.
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lll. BEC IN A RING CAVITY A. Ground state

In this section we will now discuss the case of a BEC ina For the calculation of the ground state of the compound
ring cavity. In this case the condensate is coupled to the twsystem formed by the BEC and the cavity modes we will
independent travelling wave modes. . For simplicity we again assume the casg>0. We then find that the ground-
will assume in the following that both modes of the cavity State wave function is localized at the nodes of the driven

are driven with the same pumping raje 28]. Therefore the Modeas and is symmetric irx. Thus the expectation values
equations of motion read of sin(x) in Egs.(12) vanish and Eq(12b) decouples. The

stationary state of the antisymmetric mode is therefore given
by a,0=0. Equations(12g and (120 then reduce to the

d .
— . ()=[iA;—iNUg— k]a. (1) —iNUy(e" ) a_ + 7, Egs. (1) for the standing-wave cavity if one identifies the
dt parameters
(11a
2U5=U3,
H d ﬁZ ikx —ikx|2 r2 2
|ﬁw(x,t)= ﬁ+UO|a+(t)e +a_(t)e ' |ag|?12=af?, (13
V29'= 7"
+NgCO|||zr/,(X1t)|2 l//(xvt) (llb)

for the ring cavity and the standing-wave cavity, respec-

) ] ] tively. The ground state of the system can thus be obtained

Hence, in general, the condensate will scatter light betweepy ysing our previous results for the standing-wave cavity

the left and right running waves and induce a strong couang all of the discussions there equally apply to the ground

pling. This gives additional degrees of freedom to the systemate in the ring cavity.

compared to the standing-wave case. For example, in addi-

tion to intensity shifts the condensate can also induce a rela-

tive phase shift between the two modes, which changes the

position of the potential wells. Analogously, the minima can  The collective excitations are calculated with the same

also be controlled externally by the relative phase of the twdnethod as in the preceding section by linearization of the

driving fields, which allows to selectively excite antisymmet- €quations of motiori12) in small deviations of4), as, and

ric excitations. a, from their stationary statels)g), aso, and 0. Choosing
Considering the important role that the spatial symmetrythe ground-state wave function to be real and taking its sym-

plays for the standing-wave cavity, we will now change themetry into account we obtain

description of the cavity modes bgs=a, +a_ and «,

=a, —a_, which have symmetric and antisymmetric mode iib‘a =[— A+ 2NU{ gho| coS(kX)| tho) —i k] Sex

functions, respectively. In this new basis E¢fsl) read dt ° ¢ oo 0 s

B. Collective excitations

q +2NUgas d (59| cog(kx)| oy +c.c], (149
aas(t)=[iAc—iNuo—iNuO<cos(2k§<)>—K]as(t) .
i— Saa=[— A+ 2NUq( tho| SIFP(KX)| o) — i k] Sery

+NUo(Sin(2kX)) aa(t) + 27, (12a dt
—NUqas d (81sin(2kx)| o) +c.c],  (14b)
d -
aaa(t)z[iAC—iNUO+iNUO<cos(2kx)>— K]aa(t) 52
R ia&//: %+|a310|2Uoco§(k§()+2Ngc0|||z//0|2—,u oy
—NUg(sin(2kx)) ay(t), (12b
+ NQeon 5 8¢* +Ug co(KX) ol as gda’ +c.c)
d p? , .
g _/ P i i i -
Gt 00 =] 2 T Volas(coskn) +iag(sin(kx)| ~ 5 UgSin(2kX) gl g0k — ). (149
+Ngeoill ¢(x,t)|2] W(X,t). (120 From these equations we see that the behavior of the excita-
tion eigenstates strongly depends on their spatial symmetry.

For symmetric excitations Si(x) the last expectation
Note that because of the assumption of a single pumping ratgalue in Eq.(14b) vanishes and the antisymmetric cavity
n for e, anda_, in the new basis only the symmetric mode mode decouples from the wave function. Hence in this case
as is pumped. The antisymmetric mode, only contains we find Sa,=0. The equations of motion fofy and S«
photons that have been scattered by the condensate out thien reduce to their standing-wave counterpart discussed in
as. the previous section if one rescales the parameters as in Eq.
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citations exhibit relevant damping. However, the dependence
of these damping rates on the system parameters is qualita-
tively different according to the different damping mecha-
nisms. We will return to the discussion of these features in
the following subsection where we derive analytic approxi-
mations for the eigenvalues. Notice finally that due to the
relatively small damping rates for some parameter regimes
these effects might be difficult to observe in a full three-
dimensional(3D) experiment depending on the actual trans-
verse dynamics.

C. Harmonic-oscillator approximation

Let us now calculate analytic estimates for the lowest 0s-
cillation frequencies and damping rates along the lines of
Sec. Il C. We will thus again assume.=g.,,;=0.

As we have already seen, the calculation of the ground

0.5 Y state and of the symmetric collective excitations can be re-
Y duced to the problem of the standing wave if the appropriate
000 200 600 800 1000 identification of the system parametéis) is made. We can

K (units of (oR)

therefore use our previous results to obtain the self-

consistent cavity field

FIG. 2. Collective condensate excitations in a ring cavigy:
frequenciesv, and (b) decay ratesy,, vs cavity decay rata. The

47% N?Ugwg
parameters argqo=A.=0, NUg=5«, and 7°=70kNwg. B

|a5’0|2=—

5 5 (15
K K

(13). The symmetric collective excitations are thus the samend the corresponding harmonic-oscillator frequency

as those in a standing-wave cavity.
wozsz\/|as,o|2Uo/wR-

Analogously, for antisymmetricexcitations §¢(x) the

symmetric cavity mode decouples and therefésig=0. We

then find a new set of coupled equations 8 and da,.  For the lowest symmetric excitation, the expansion for large
Thus, in contrast to the case of a standing-wave cavity, alsggjyes of« yields

the antisymmetric excitations are damped in a ring cavity.
However, the damping mechanism is of completely different

(16)

physical origin. Instead of the Sisyphus mechanism dis- vy=2w\|1— N?Uowgr 17)
cussed above, here the coherent scattering of photons from 472
the a cavity mode into thex, mode is responsible for the
damping. This leads to less severe requirements for the cayng
ity parameters as we will see in the following subsection.
Figure 2 shows the spectrum of collective excitations of a 16N2U 262 N2U oo 2
Bose condensate in a ring cavity that is obtained from the = 0 R( — 0TR (18)
numerical solution of Eqs(14). First, we note that in con- K3 477

trast to the case of the standing-wave cavity we now tival

modes with eigenvalues that scale proportional to the cavity Analogously, we can calculate the lowest antisymmetric
decay ratex. In the semiclassical limitatoms well local-  excitation by expanding the expectation values in Eti$b)
ized), these correspond to pure oscillations of the symmetrignq (140 to lowest order irkx. To this order onlysy and
and antisymmetric field mode, respectively, and are thus lag,» proportional to the first harmonic-oscillator wave func-
beledws=vs—iys andw,=va—iy,. The semiclassical lim- 5, . couple to the cavity fielda, and sa* and we thus

its of these eigenfrequencies are obtained from E#. as have to find the eigenvalues of a4 matrix, that is, we

ws=—Ac—ix and wa=—Ac+2NUo—ix. Although the = 5 solve the characteristic polynomial
damping rates of these modes are equal, we see that the

different spatially dependent coupling to the atoms leads to a
large difference in the oscillation frequencies.

For the parameters chosen in Fig. 2 the other oscillation
frequenciesv,, n=1, are mainly independent of. How-
ever, whereas all frequencies witte2 are equally spaced
and hence very well described by harmonic-oscillator states,
the lowest frequency; is significantly shifted downwards. In the limit of k—o (with constantU,/«x and %%/ k) this
For the damping rates we find that only the two lowest ex-yields the oscillation frequency

[—ik+2NUy(1— wr/wg) — ]
><[—iK—2NU0(1—wR/a)o)—w](w2—wS)

—4(NUgwg)%(1— wrlwg)=0. (19
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AN2U2(1- wr/w 600
V1= wq \/1 ol rlwo) . (20 (a) v

K2+ 4AN?UG(1— wr/wg)? g‘ 400 2
The first-order correction in &/ gives the dominant term of §
=200

the corresponding damping rate

v
n

AN?U3(1— wr/ wo)
Wok =75 22 272"
[k“+4N“Ug(1— wr/wg)“]

1= (21)

We can now compare the behavior of the two lowest eigen-
values as a function of the system parameters. As an ex-
ample, let us consider the case of a relatively strong pump,
7?>N2Uqwg. In this limit, the second excitation frequency
v, is only weakly shifted from the harmonic-oscillator fre-

¥, (units of wR)

guency 2oy. On the other hand, the frequency shift of the 0.5

lowest excitationv,; mainly depends on the ratiNUg/«.
Since this ratio has to be larger than one in order to yield a 0

L ) : 2 4 1
significant frequency shift of the cavity by the atoms, Eq. 00 5 00 600800 1000
(20) implies thaty, is strongly shifted towards zero. Simul- N" (units of Nko)

taneously we find for the damping rates that becomes

independent ofy in this limit, in contrast toy,, which is ¢ : 4(b d 2 h
tional tow, and thus proportional tg?. Therefore the requenciesy, and (b) decay ratesy, vs pump strengthy”. T ©
propor 0 ) parameters arg.,;=A.=0, NUy=5«, andk=400wg . The solid

damping rate of the first antisymmetric excitation can be, s are obtained numerically, the dashed curves are the analyti-

increased arbitrarily by increasing the intensity of the pump.,; soiutions obtained in the harmonic-oscillator approximation.
field. The damping rate of the first symmetric excitation is

much harder to manipulate because it is mainly governed by
the optical potential per photon and thus by the quality of the
cavity. On the other hand, we note thgf scales propor- In the discussion so far we have omitted the effects of
tional toN?, whereasy is inversely proportional thl”>. The  atomic interactions, as described by the collision gtg; in
number of atoms thus provides another handle to change thie GPE, on the energies and damping rates of the collective
relative size of the damping rateg and vy,. excitations. Neglecting this has allowed us to obtain analyti-

Another point is worth a comment here. We emphasizedal expressions and therefore to discuss the parameter depen-
in the previous section that the damping mechanism for thelence of our results explicitly. However, atomic collisions
collective excitations in a standing-wave cavity is crucially are known to play a crucial role in experimental realizations
related to the width of the matter wave function and vanishesf Bose-Einstein condensates. We will now discuss the
in the semiclassical limit where the atoms are treated as pointhanges of the collective excitations according to collisions
particles. In contrast to this we find that in the traveling-wavein a numerical example of a condensate in a ring cavity.
cavity the damping mechanism still exists in the semiclassi- We show in Fig. 4 the excitation frequencies and the
cal limit. In fact, our results for the oscillation frequen@0)  corresponding damping rateg as a function of the collision
and the damping rat€21) agree with the semiclassical re- rateg,,, with all other parameters fixed. The main effect on
sults[29] if one takes formally the limitwg/we—0. the stationary ground-state wave functi@3] of a repulsive

In Fig. 3 we show the excitation frequencies, and the interaction between the condensed atoms is to increase the
damping ratesy; , as a function of the pump strengy? for  width of the wave function. Since this larger width also
both the numerical solution and the analytic approximationschanges the coupling to the cavity field, we find that the
We see that for the chosen parameters the approximations fiteady-state photon number decreases with increasing colli-
quite well apart from the values af,. This comes from the sion rate. Consequently, the optical potential becomes more
fact that we obtained the complex eigenvalugsfrom an  shallow and the excitation frequencies decrease. However, as
expansion of Eqs(8) and (19) for small values ofjw,|/x  we can see from Fig. 4, this argument does not hold for the
<1. As we see from Fig. (@) this is well fulfilled for w; for  lowest(antisymmetri¢ excitation. Here the atomic collisions
the chosen parameters, bui,|/x is of the order of one. counteract the strong frequency shift that we found in the
However, in the limit of a strong pump the lowest-order termprevious section and; slightly increases witly.,,. Above
for the frequency, already gives the correct value, namely, a certain threshold value fay,,, , the atom-atom repulsion
twice the harmonic-oscillator frequency. Thus, only thegets stronger than the confining effect of the optical poten-
imaginary parithe damping rate,) of the analytic approxi- tial. In this case the ground-state wave function is no longer
mation deviates from the exact solution in Fig. 3. In param-ocalized and the spectrum of excitations changes into that of
eter regions, wherpw,|/ k<1, we find a much better agree- unbound particles where each excitation frequency is doubly
ment of the two solutions. degenerate.

FIG. 3. Collective condensate excitations in a ring cavity:

IV. INTERACTING BOSE GAS
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(a)

g

[~
]

2

v, (units of coR)

400

600

Y, (units of (OR)

200
NgColl (units of (oR)

FIG. 4. (a) Frequencies,, and(b) decay ratesy, of the collec-
tive excitations vs atomic collision ratg., . The parameters are
Ac=0, NUg=2k, k=400wg, and 7°=200Nkwg.

Figure 4b) shows that collisional effects have an even

more important influence on the damping rates of the collec

tive excitations. We see that the effect differs for the damp
ing ratesy; andy,. While y; weakly decreases with increas-

iNg geon» Yo iNcreases significantly over a broad range of

values ofg., . This is related to the fact that the damping of
the symmetric excitatiory, depends crucially on the width

ready emphasized before. Since the major effect of ato
collisions is to broaden the wave function, the resulting
changes of the damping rates occur predominantly for th
symmetric excitations. Note also that the atomic collision
and the stronger anharmonicity of the potential according t
the lower field intensity enhance the damping of higher col
lective excitations, as can be seen from the damping rates
andy, in Fig. 4(b).

that in the limit of strong cavity pumping the damping rate of
the spatially symmetric excitations becomes independent of
the pump but scales proportional to the square of the atom

PHYSICAL REVIEW A63 023603

magnetic or optical means, or by a freely falling condensate,
in which case our model only holds for a time scale of the
order of the expansion time scale of the condensate. We have
solved the coupled set of nonlinear equations of motion for
the joint dynamics of the condensate and the light field nu-
merically and compared it analytically with a simplified
model based on the Lamb-Dicke expansion. We find that,
even without atom-atom interaction, the oscillation frequen-
cies are shifted with respect to their values in a fixed external
potential.

For a finite cavity response time the collective excitations
are damped or amplified depending on the cavity detuning,
which can be easily controlled externally. We identify two
distinct mechanisms depending on the spatial symmetry of
the excitations. The damping mechanism in standing-wave
cavities and for spatially symmetric excitations in ring cavi-
ties is due to a Sisyphus type effect, which leads to larger
cavity fields at times when the condensate runs up potential
hills than at times when the condensate runs down. On aver-
age this effect extracts kinetic energy from the condensate
which is carried away by the cavity field. On the other hand,
the damping mechanism for the spatially antisymmetric ex-
citations is only present in a ring cavity due to the scattering
of cavity photons between the two counterpropagating
waves. This creates an intensity imbalance, which is coun-
teracted by the cavity damping and hence leads to momen-
tum dissipation.

_ The two damping mechanisms exhibit very distinct pa-
rameter dependences. Our analytical approximations show

number N?, while the damping rate of the antisymmetric

of the ground-state wave function whereas the dampinﬁ]xcnatlons is proportional to the pump field intensity and

mechanism of the antisymmetric excitation does not, as al

versely proportional tdN?, which implies less stringent

rTr}equirements to cavity technology.

The difference between the damping-amplification rates
f excitations with different spatial symmetry could be used
0 manipulate a Bose-Einstein condensate in a controlled
ashion. In addition, in a ring cavity setup, we can also excite

‘oscillations by external phase and amplitude shifts of the

pump light. All the effects could of course be enhanced by
tailored feedback of the measured transmitted intensity onto

the pump. This might give rise to useful applications of such

V. CONCLUSIONS

high-finesse optical cavity in a 1D model. This relies on a

a system in the context of quantum information and quantum
computation in analogy to other recently proposed systems

In summary we have studied in detail the interaction of amn
Bose-Einstein condensate with one or two single modes in a

aking use of particles in optical latticE30—32.
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