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Dissipative dynamics of Bose condensates in optical cavities
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We study the zero-temperature dynamics of Bose-Einstein condensates in driven high-quality optical cavi-
ties in the limit of large atom-field detuning in a one-dimensional model. We calculate the stationary ground
state and the spectrum of coupled atom and field mode excitations for standing-wave cavities as well as for
traveling-wave cavities. Finite cavity response times lead to damping or controlled amplification of these
excitations. Analytic solutions in the Lamb-Dicke expansion are in good agreement with numerical results for
the full problem and show that oscillation frequencies and the corresponding damping rates are qualitatively
different for the two cases.
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I. INTRODUCTION

The experimental realization of Bose-Einstein conden
tion ~BEC! in dilute atomic gases a couple of years ago@1#
as a consequence of improved cooling and trapping te
niques has dramatically boosted the study of ultracold ato
Today, BEC is a widespread tool and a huge range of n
phenomena has been investigated experimentally and t
retically, see e.g., Refs.@2–4# for recent overviews. In this
context the interaction of BEC’s with laser light and optic
lattices has been studied intensively@5–10# and effects such
as the reduction of the speed of light by many orders
magnitude@11# and the occurrence of super-radiance@12#
have been found. Recently the optical creation of vorti
@13,14# has been demonstrated and many more intrigu
effects have been theoretically predicted.

In parallel, the field of cavity quantum electrodynamic
which studies the interaction of matter with one or a fe
single light modes, has reached such a level of sophistica
that the interaction of light with the internal and extern
degrees of freedom of a single neutral particle can be
served and controlled in a very precise way@15#. For optical
fields, trapping and cooling of a single atom in a cavity mo
has been demonstrated@16,17#. It is thus a logical next step
to combine these two successful techniques and study
interaction of a BEC with a high finesse optical cavity, th
is, the strong coupling of a far detuned optical mode to
dynamics of a condensate described by its macroscopic
occupied wave function@18#. Several groups have alread
been working along these lines and, for example, predic
the amplification of matter waves@19# and the occurrence o
dressed condensates@20#. In the extreme limit one could en
visage a large atomic cloud trapped and manipulated wi
single photon.

In this paper we extend our recently proposed scheme
cooling one or a few atoms in high-quality optical caviti
@21,22# to the case of a BEC. This requires a quantu
mechanical treatment of the external degrees of freedom
the inclusion of atom-atom interactions. The system un
investigation is a Bose-Einstein condensate interacting w
the mode~the two modes! of a driven standing-wave cavit
~ring cavity!. The properties of such a system as a measu
1050-2947/2001/63~2!/023603~9!/$15.00 63 0236
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device for condensates have been discussed previo
@18,23#.

We will investigate the ground-state and collective ex
tations@24–27# of the coupled condensate-light field syste
in the optical potential of the cavity. Because of the stro
coupling of the condensate wave function to the cav
modes, an oscillation of the condensate also leads to an
cillation of the intracavity light fields. Accordingly, the os
cillation frequencies of the collective excitations are shift
with respect to an external optical potential of fixed dep
i.e., the optical potential formed by a free space stand
wave. Furthermore, for appropriately chosen parameters
dissipative dynamics of the cavity due to cavity decay giv
rise to damping of the condensate excitations without in
herent spontaneous emission. We analyze this dam
mechanism and study its parameter dependence by nume
solutions of the coupled equations of motion as well as
analytic solutions of a simplified model based on the Lam
Dicke expansion.

This paper is organized as follows. In Sec. II we discu
the case of a condensate interacting with the single mod
a standing-wave cavity. After presenting the set of coup
nonlinear equations of motion for the condensate and
light field, we discuss the numerical and analytical solutio
for the ground state and the collective excitations. Section
investigates the more complicated situation of a conden
coupled to the two independent modes of an optical r
cavity. In Sec. IV we discuss the influence of binary col
sions between the atoms within the condensate on the e
tation frequencies and damping rates. Finally, we summa
our results in Sec. V.

II. BEC IN STANDING-WAVE CAVITY

Let us first consider the case of a Bose-Einstein cond
sate interacting with a single standing-wave mode. The c
ity mode is assumed for all times to be in a coherent s
ua(t)& and the condensate is described by a single w
function uc(t)& for all N particles, which is a good approxi
mation at zero temperature. This means that we factorize
quantum state of the system and thus neglect any entan
ment between the condensate and the cavity field wh
might build up in the course of the time evolution. Th
©2001 The American Physical Society03-1
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PETER HORAK AND HELMUT RITSCH PHYSICAL REVIEW A63 023603
simplification is only justified in the limit of a large photo
numberuau2. To avoid spontaneous emission, we assum
very large detuning of the light field from the atomic res
nance. More precisely, we assume that the cavity decay is
dominant incoherent process in the system and we thus
quire thatk@NGs, wherek is the cavity decay rate,N the
number of atoms in the condensate,G the spontaneous deca
rate of the atoms, ands the atomic saturation paramete
After adiabatic elimination of the atomic excited states
obtain the following equations of motion,

d

dt
a~ t !5@ iDc2 iN^U~ x̂!&2k#a~ t !1h, ~1a!

i
d

dt
c~x,t !5H p̂2

2m
1ua~ t !u2U~x!1Ngcolluc~x,t !u2J c~x,t !.

~1b!

Here Dc is the detuning of the pump field from the cavi
mode,U(x)5U0 cos2(kx) is the optical potential formed by
a single cavity photon (U05\g0

2/Da with the single-photon
Rabi frequencyg0 and the atom-pump detuningDa), andh
describes the action of the driving laser. The expecta
value^U( x̂)& has to be taken with respect to the moment
wave function uc(t)&. Equation ~1b! is the well known
Gross-Pitaevskii equation~GPE! for a condensate in an ex
ternal field, which in our case depends on the momen
field intensityua(t)u2. The last term in the GPE models th
interaction of atoms within the condensate, wheregcoll is
related to the s-wave scattering lengtha by gcoll
54p\2a/(mw2), wherew denotes the transverse size of t
condensate.

Note that we are using a simplified one-dimensional v
sion of the GPE here. For this approximation to hold
require that the transverse extensionw of the condensate is
smaller than the waist of the cavity field and approximat
constant during the observation time of the system. T
could be achieved, at least in principle, by a transverse c
fining potential such as a magnetic field or a condens
trapped in the center of a donut mode laser beam. Alte
tively, in the case of red detuning of the pumping laser w
respect to the atomic resonance, one could envisage th
dimensional~3D! trapping of the condensate at the antinod
of the cavity field itself. For blue detuning one could think
a condensate that is freely expanding in the transverse d
tions while falling through the cavity. Then the on
dimensional model only holds for a restricted period of tim
until the above condition on the transverse confinement is
longer fulfilled. However, in these cases without addition
transverse trapping mechanism, the electric-field gradien
the cavity mode is about two orders of magnitude lar
along the cavity axis than in the transverse directions,
thus the dipole forces on the condensate in the longitud
direction are much stronger too. For instance, for the ca
parameters of the single-atom experiments by Rempe
co-workers@16# we find a ratio of 150 between the longitu
dinal and the transverse trapping frequencies. Hence the
fects discussed in this paper and any transverse effects o
02360
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on completely different time scales and could thus be ea
separated. We hence chose a simplified one-dimensi
model, which does not correspond to a specific experime
setup but demonstrates the main physical effects of
condensate-cavity interaction more clearly.

Equations~1! are two coupled nonlinear equations d
scribing the dynamics of the compound system formed
the condensate and the cavity field@23#. The most interesting
effects occur for parameters where the coupling betw
these equations significantly changes the system beha
We thus impose the conditionNU0>k, which guarantees
that the presence of the condensate shifts the cavity
quency efficiently into or out of resonance with the drivin
field. At the same time the optical potential depthuau2U0
should be large enough to provide at least a few bound st
for the atoms. Limitations and the interesting parameter
gimes for this model have been discussed in Ref.@23#.

A. Ground state

In order to obtain the ground state of the compou
condensate-cavity system, we have to find the stationary
lution of the system of coupled nonlinear equations~1!. This
can be done by elimination ofua(t)u2 in Eq. ~1b! using Eq.
~1a!, and a subsequent numerical solution of the result
nonlinear equation for the ground-state wave function w
the method of steepest descent. This consists of a nume
propagation of the GPE in imaginary timet5 i t until the
wave function converges to a stationary state.

In this paper we will concentrate on the case ofU0.0
where the potential minima coincide with the nodes of t
field ~low-field seeking atoms!. The ground-state wave func
tion will thus be localized at the field nodes, thereby min
mizing the coupling of the condensate to the light field. Fo
cavity resonant with the driving field, this means that t
photon number is maximum for the stationary ground sta
Any excitation of the condensate will then lead to a sma
cavity field.

As expected we find that the ground-state wave funct
becomes better localized for stronger driving fieldsh and
larger optical potentialsU0. On the other hand, a stron
atom-atom repulsion~large positive values ofgcoll) in-
creases the width of the BEC wave function and thus co
teracts the confining effect of the potential. This, in d
course, leads to an increased coupling of the BEC to
cavity field and hence a smaller field intensity. A more d
tailed analysis of the ground-state wave functionc0(x), its
energym, and the stationary field intensityua0u2 has been
given in Ref.@23#.

B. Collective excitations

Let us now turn to weak excitations of the condens
from the ground state. First, we will calculate the spectr
of collective excitations of the condensate. In contrast
fixed external fields, the trapping potential in the cavity d
pends on the BEC wave function. Hence, excitations inclu
small deviations of the wave functionand the cavity fielda
from their respective stationary state. We may thus w
c(x,t)5exp(2imt)@c0(x)1dc(x,t)# and a(t)5a01da(t).
3-2
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DISSIPATIVE DYNAMICS OF BOSE CONDENSATES IN . . . PHYSICAL REVIEW A63 023603
For convenience we have already included the ground-s
time evolution into the ansatz for the wave function he
Inserting this into Eqs.~1! and linearizing indc andda we
obtain

i
d

dt
da5@2Dc1N^c0uU~ x̂!uc0&2 ik#da

1Na0^dcuU~ x̂!uc0&1Na0^c0uU~ x̂!udc&,

~2a!

i
d

dt
dc5H p̂2

2m
1ua0u2U12Ngcolluc0u22mJ dc

1Ngcollc0
2dc* 1a0Uc0da* 1a0* Uc0da.

~2b!

For largek ~more precisely, for 1/k much smaller than the
time scale of the condensate motion!, the cavity field follows
adiabatically the changes of the wave function and thusda
can be adiabatically eliminated. In this case one recovers
limit of Ref. @23#.

In general the linearized time evolution couples the dev
tionsdc andda also to their complex conjugates. In order
obtain excitation eigenstates, i.e., periodic solutions, we t
have to use the simultaneous ansatz

dc5e2gt@e2 intdc1~x!1eintdc2~x!* #,
~3!

da5e2gt@e2 intda11eintda2* #.

The collective excitations are thus defined as the solution
the eigenvalue problem

vS da1

da2

dc1~x!

dc2~x!

D 5MS da1

da2

dc1~x!

dc2~x!

D , ~4!

whereM is easily obtained from Eqs.~2! as a non-Hermitian
matrix. The complex eigenvalues have the formvn5nn
2 ign , wherenn is the oscillation frequency of thenth col-
lective excitation andgn the corresponding damping rat
Note that, depending on the parameters, negative dam
rates are possible, leading to an exponential growth of
collective excitations. In this case the assumption of sm
deviations from the ground state imposed above only ho
for very short times. Hence by changing some cavity para
eters we can switch between stable and unstable cases
generate controlled excitations of the condensate and s
their decay. In the following we will, however, concentra
on the case of positivegn and therefore damped excitation

Physically this damping arises from a kind of Sisyph
mechanism. For cavity damping ratesk of the order of the
oscillation frequenciesnn , the cavity field follows with a
certain delay the changes of the condensate wave func
By properly choosing the system parameters, having
wave function climb up the potential hills at higher cavi
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field intensities and run down at lower intensities can
achieved on average. The condensate thus loses potentia
ergy, which is carried away by the cavity output field witho
an intrinsic decoherence of the condensate.

Furthermore it should be emphasized that the appeara
of a damping rate in the linearized equations~2! is a purely
quantum feature related to the width of the atomic wa
function. In the semiclassical limit of a pointlike particle, th
self-consistent ground state yields a particle exactly loca
at a node of the cavity and hence all expectation value
Eq. ~2a! vanish. Thus the cavity field decouples from th
atomic degrees of freedom and no damping of the ato
motion occurs to lowest order in the elongationx. This is in
contrast to the case of a ring cavity as will be shown in
following section.

In Fig. 1 we show the oscillation frequencies and damp
rates of the lowest collective excitations obtained nume
cally by calculating the eigenvalues of Eq.~4! on a spatial
grid. The eigenvalues are plotted as a function of the ca
decay ratek. Note that in order to keep the optical potenti
constant, we also have to scale the driving fieldh2 and the
optical potential per photonU0 proportional tok. For clarity,
atomic collisions are neglected here and their effects will
discussed separately in Sec. IV.

We see that there exists one single eigenvaluev f5n f

2 ig f that scales approximately proportional tok in contrast
to all of the other eigenvalues. This specific excitation of t
system corresponds to an eigenmode where mainly the
ity field oscillates and the condensate wave function is o
weakly perturbed. In fact, Eq.~2a! shows that in the case
where the atoms are well localized at the nodes of the fi

FIG. 1. Collective condensate excitations:~a! frequenciesnn

and ~b! decay ratesgn vs cavity decay ratek. The parameters are
gcoll5Dc50, NU0510k, and h2520kNvR , where vR

5\k2/(2m).
3-3
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PETER HORAK AND HELMUT RITSCH PHYSICAL REVIEW A63 023603
~semiclassical limit!, the cavity mode decouples from th
matter wave function and the eigenvalue is given byv f
52Dc2 ik.

Second, we notice that out of the other modesnn , n
51,2, . . . , theones with odd indices are independent ofk
and their damping rates vanish. This effect is due to
spatial symmetry of the problem considered here. For
parameters we find that the ground-state wave functionc0 is
symmetric in the positionx. Thus for allantisymmetricex-
citations the expectation values in Eq.~2a! vanish and the
light field decouples. Therefore these odd (n51,3, . . . )exci-
tations are the same as for a trap of constant light inten
and hence there is no Sisyphus damping mechanism at w
Consequently only the lowestsymmetriccollective excita-
tions are significantly altered by the interaction with t
damped cavity mode. We will discuss the parameter dep
dence of the excitationn52 by using an approximate ana
lytic solution in the next section.

Let us finally emphasize that the oscillation frequency a
the damping rate of the symmetric collective excitations c
be monitored nondestructively via the cavity output inte
sity.

C. Harmonic-oscillator approximation

In order to gain more insight into the parameter dep
dence of this damping mechanism, we will now analytica
solve an approximate model of our system. To this end
expand the optical potentialU(x)5U0 cos2(kx) with U0.0
up to second order around the nodes of the field, i.e., we
U(x)5U0(kx)2 and assumegcoll50, i.e., no atom-atom in-
teraction. For simplicity we will also assumeDc50.

The ground state of the Schro¨dinger equation~1b! is thus
the well-known harmonic oscillator ground state that d
pends on the cavity fielduau2 in a parametric way. After
inserting this wave function in the expectation value in E
~1a! we obtain an equation for the self-consistent cavity fi
with the solution

ua0u25
h2

k2
2

N2U0vR

4k2
, ~5!

where vR5\k2/(2m) is the recoil frequency. The corre
sponding harmonic-oscillator frequency is then

v052vRAua0u2U0 /vR ~6!

and the ground-state energy ism5v0/2.
For the collective excitations we now have to solve E

~2! with the harmonic potential. The last expectation value
Eq. ~2a! thus reads

^c0uU~ x̂!udc&5U0^c0u~kx̂!2udc&

52U0

vR

v0
^c0u~a2a†!2udc&, ~7!

where we have used the standard relation between the
tion operatorx̂ and the ladder operatorsa and a† of the
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harmonic oscillator. From this we see that the cavity fie
only couples to wave-function deviationsdc containing the
ground-statec0 and/or the second excited statec2 of the
harmonic oscillator. Most of the harmonic-oscillator excit
states are thus unperturbed and we find the collective ex
tions of the formdc1(x)5cn , da15da25dc2(x)50
with the positive eigenvaluesv5nv0 for n51 andn>3.
Analogously there exist excitations with negative eigenv
ues v52nv0 of the form dc2(x)5cn , da15da2

5dc1(x)50. Hence, in addition to the antisymmetric stat
already found to decouple previously, also the higher ly
symmetric states decouple in the harmonic approximat
Therefore these symmetric excitations are only damped
to the anharmonicity of the potential and due to atomic c
lisions in the full model.

The remaining~and most interesting! collective excita-
tions are finally found by restricting the wave functionsdc6

in Eq. ~4! to the two-dimensional Hilbert space spanned
c0 and c2. The resulting 636 matrix has two zero eigen
values and the other four eigenvalues have to be found
solving the fourth-order polynomial equation

„2 ik1NU0~vR /v0!2v…„2 ik2NU0~vR /v0!2v…

3~v224v0
2!24~NU0vR!250. ~8!

This gives us the~complex! eigenvaluesv f andv2 and their
counterparts of negative frequency. Although an analytic
lution of Eq.~8! is possible in principle, the resulting expre
sions are rather long and do not provide much insight.
stead, we calculate the eigenvaluev2 in the limit of largek
as in Fig. 1, i.e., by keepingU0 /k andh2/k constant. The
zeroth order in this expansion inv/k yields the leading order
of the frequency

n252v0A12
N2U0vR

4h2
~9!

and the first order gives the leading order of the decay r

g25
4N2U0

2vR
2

k3 S 12
N2U0vR

4h2 D 2

. ~10!

Equation ~9! gives a quantitative explanation for the fre
quency shift ofn2 according to the coupling of the BEC an
the cavity mode as compared to the value 2v0 for the case of
a harmonic-oscillator potential of fixed photon number. W
also see that the small variation ofn2 in Fig. 1~a! for small
values ofk are in fact of the order 1/k2. Equation~10! leads
to the asymptotic behavior like 1/k for the decay rateg2 in
Fig. 1~b!. In the limit of a strong driving field the frequenc
n2 of the second collective excitation approaches
harmonic-oscillator value. Simultaneously the damping r
g2 tends towards a constant nonvanishing value, which
proportional to the square of the atom numberN. A higher
condensate density thus significantly increases the dam
of the collective excitation.
3-4
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DISSIPATIVE DYNAMICS OF BOSE CONDENSATES IN . . . PHYSICAL REVIEW A63 023603
III. BEC IN A RING CAVITY

In this section we will now discuss the case of a BEC in
ring cavity. In this case the condensate is coupled to the
independent travelling wave modesa6 . For simplicity we
will assume in the following that both modes of the cav
are driven with the same pumping rateh @28#. Therefore the
equations of motion read

d

dt
a6~ t !5@ iDc2 iNU02k#a6~ t !2 iNU0^e

72ikx̂&a71h,

~11a!

i
d

dt
c~x,t !5H p̂2

2m
1U0ua1~ t !eikx1a2~ t !e2 ikxu2

1Ngcolluc~x,t !u2J c~x,t !. ~11b!

Hence, in general, the condensate will scatter light betw
the left and right running waves and induce a strong c
pling. This gives additional degrees of freedom to the sys
compared to the standing-wave case. For example, in a
tion to intensity shifts the condensate can also induce a r
tive phase shift between the two modes, which changes
position of the potential wells. Analogously, the minima c
also be controlled externally by the relative phase of the
driving fields, which allows to selectively excite antisymme
ric excitations.

Considering the important role that the spatial symme
plays for the standing-wave cavity, we will now change t
description of the cavity modes byas5a11a2 and aa
5a12a2 , which have symmetric and antisymmetric mo
functions, respectively. In this new basis Eqs.~11! read

d

dt
as~ t !5@ iDc2 iNU02 iNU0^cos~2kx̂!&2k#as~ t !

1NU0^sin~2kx̂!&aa~ t !12h, ~12a!

d

dt
aa~ t !5@ iDc2 iNU01 iNU0^cos~2kx̂!&2k#aa~ t !

2NU0^sin~2kx̂!&as~ t !, ~12b!

i
d

dt
c~x,t !5H p̂2

2m
1U0uas~ t !cos~kx!1 iaa~ t !sin~kx!u2

1Ngcolluc~x,t !u2J c~x,t !. ~12c!

Note that because of the assumption of a single pumping
h for a1 anda2 , in the new basis only the symmetric mod
as is pumped. The antisymmetric modeaa only contains
photons that have been scattered by the condensate o
as .
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A. Ground state

For the calculation of the ground state of the compou
system formed by the BEC and the cavity modes we w
again assume the caseU0.0. We then find that the ground
state wave function is localized at the nodes of the driv
modeas and is symmetric inx. Thus the expectation value
of sin(2kx) in Eqs.~12! vanish and Eq.~12b! decouples. The
stationary state of the antisymmetric mode is therefore gi
by aa,050. Equations~12a! and ~12c! then reduce to the
Eqs. ~1! for the standing-wave cavity if one identifies th
parameters

2U0
r 5U0

s ,

uas
r u2/25uasu2, ~13!

A2h r5hs,

for the ring cavity and the standing-wave cavity, respe
tively. The ground state of the system can thus be obtai
by using our previous results for the standing-wave cav
and all of the discussions there equally apply to the grou
state in the ring cavity.

B. Collective excitations

The collective excitations are calculated with the sa
method as in the preceding section by linearization of
equations of motion~12! in small deviations ofuc&, as, and
aa from their stationary statesuc0&, as,0 , and 0. Choosing
the ground-state wave function to be real and taking its sy
metry into account we obtain

i
d

dt
das5@2Dc12NU0^c0ucos2~kx̂!uc0&2 ik#das

12NU0as,0@^dcucos2~kx̂!uc0&1c.c.#, ~14a!

i
d

dt
daa5@2Dc12NU0^c0usin2~kx̂!uc0&2 ik#daa

2NU0as,0@^dcusin~2kx̂!uc0&1c.c.#, ~14b!

i
d

dt
dc5H p̂2

2m
1uas,0u2U0cos2~kx̂!12Ngcolluc0u22mJ dc

1Ngcollc0
2dc* 1U0 cos2~kx̂!c0~as,0das* 1c.c.!

2
i

2
U0 sin~2kx̂!c0~as,0daa* 2c.c.!. ~14c!

From these equations we see that the behavior of the ex
tion eigenstates strongly depends on their spatial symme

For symmetric excitations dc(x) the last expectation
value in Eq. ~14b! vanishes and the antisymmetric cavi
mode decouples from the wave function. Hence in this c
we find daa50. The equations of motion fordc and das
then reduce to their standing-wave counterpart discusse
the previous section if one rescales the parameters as in
3-5
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PETER HORAK AND HELMUT RITSCH PHYSICAL REVIEW A63 023603
~13!. The symmetric collective excitations are thus the sa
as those in a standing-wave cavity.

Analogously, for antisymmetricexcitations dc(x) the
symmetric cavity mode decouples and thereforedas50. We
then find a new set of coupled equations fordc and daa .
Thus, in contrast to the case of a standing-wave cavity,
the antisymmetric excitations are damped in a ring cav
However, the damping mechanism is of completely differ
physical origin. Instead of the Sisyphus mechanism d
cussed above, here the coherent scattering of photons
the as cavity mode into theaa mode is responsible for th
damping. This leads to less severe requirements for the
ity parameters as we will see in the following subsection

Figure 2 shows the spectrum of collective excitations o
Bose condensate in a ring cavity that is obtained from
numerical solution of Eqs.~14!. First, we note that in con
trast to the case of the standing-wave cavity we now findtwo
modes with eigenvalues that scale proportional to the ca
decay ratek. In the semiclassical limit~atoms well local-
ized!, these correspond to pure oscillations of the symme
and antisymmetric field mode, respectively, and are thus
beledvs5ns2 igs andva5na2 iga . The semiclassical lim-
its of these eigenfrequencies are obtained from Eqs.~14! as
vs52Dc2 ik and va52Dc12NU02 ik. Although the
damping rates of these modes are equal, we see tha
different spatially dependent coupling to the atoms leads
large difference in the oscillation frequencies.

For the parameters chosen in Fig. 2 the other oscilla
frequenciesnn , n>1, are mainly independent ofk. How-
ever, whereas all frequencies withn>2 are equally spaced
and hence very well described by harmonic-oscillator sta
the lowest frequencyn1 is significantly shifted downwards
For the damping rates we find that only the two lowest

FIG. 2. Collective condensate excitations in a ring cavity:~a!
frequenciesnn and ~b! decay ratesgn vs cavity decay ratek. The
parameters aregcoll5Dc50, NU055k, andh2570kNvR .
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citations exhibit relevant damping. However, the depende
of these damping rates on the system parameters is qua
tively different according to the different damping mech
nisms. We will return to the discussion of these features
the following subsection where we derive analytic appro
mations for the eigenvalues. Notice finally that due to t
relatively small damping rates for some parameter regim
these effects might be difficult to observe in a full thre
dimensional~3D! experiment depending on the actual tran
verse dynamics.

C. Harmonic-oscillator approximation

Let us now calculate analytic estimates for the lowest
cillation frequencies and damping rates along the lines
Sec. II C. We will thus again assumeDc5gcoll50.

As we have already seen, the calculation of the grou
state and of the symmetric collective excitations can be
duced to the problem of the standing wave if the appropr
identification of the system parameters~13! is made. We can
therefore use our previous results to obtain the s
consistent cavity field

uas,0u25
4h2

k2
2

N2U0vR

k2
~15!

and the corresponding harmonic-oscillator frequency

v052vRAuas,0u2U0 /vR. ~16!

For the lowest symmetric excitation, the expansion for la
values ofk yields

n252v0A12
N2U0vR

4h2
~17!

and

g25
16N2U0

2vR
2

k3 S 12
N2U0vR

4h2 D 2

. ~18!

Analogously, we can calculate the lowest antisymme
excitation by expanding the expectation values in Eqs.~14b!
and ~14c! to lowest order inkx̂. To this order onlydc and
dc* proportional to the first harmonic-oscillator wave fun
tion c1 couple to the cavity fielddaa anddaa* and we thus
have to find the eigenvalues of a 434 matrix, that is, we
must solve the characteristic polynomial

@2 ik12NU0~12vR /v0!2v#

3@2 ik22NU0~12vR /v0!2v#~v22v0
2!

24~NU0v0!2~12 vR/v0!50. ~19!

In the limit of k→` ~with constantU0 /k and h2/k) this
yields the oscillation frequency
3-6



f

en
e

m
y
-

he

d
q
l-

b
m
is
b

th

t

e
th
lly
he
o
v

ss

-

n
s

rm
ly,
he

m
-

of

tive
yti-
pen-

ns
ns
the
ns

n

the
o
he
olli-
ore
r, as
the
s
the

en-
ger
t of
bly

alyti-

DISSIPATIVE DYNAMICS OF BOSE CONDENSATES IN . . . PHYSICAL REVIEW A63 023603
n15v0A12
4N2U0

2~12vR /v0!

k214N2U0
2~12vR /v0!2

. ~20!

The first-order correction in 1/k gives the dominant term o
the corresponding damping rate

g15v0
2k

4N2U0
2~12vR /v0!

@k214N2U0
2~12vR /v0!2#2

. ~21!

We can now compare the behavior of the two lowest eig
values as a function of the system parameters. As an
ample, let us consider the case of a relatively strong pu
h2@N2U0vR . In this limit, the second excitation frequenc
n2 is only weakly shifted from the harmonic-oscillator fre
quency 2v0. On the other hand, the frequency shift of t
lowest excitationn1 mainly depends on the ratioNU0 /k.
Since this ratio has to be larger than one in order to yiel
significant frequency shift of the cavity by the atoms, E
~20! implies thatn1 is strongly shifted towards zero. Simu
taneously we find for the damping rates thatg2 becomes
independent ofh in this limit, in contrast tog1, which is
proportional tov0 and thus proportional toh2. Therefore the
damping rate of the first antisymmetric excitation can
increased arbitrarily by increasing the intensity of the pu
field. The damping rate of the first symmetric excitation
much harder to manipulate because it is mainly governed
the optical potential per photon and thus by the quality of
cavity. On the other hand, we note thatg2 scales propor-
tional toN2, whereasg1 is inversely proportional toN2. The
number of atoms thus provides another handle to change
relative size of the damping ratesg1 andg2.

Another point is worth a comment here. We emphasiz
in the previous section that the damping mechanism for
collective excitations in a standing-wave cavity is crucia
related to the width of the matter wave function and vanis
in the semiclassical limit where the atoms are treated as p
particles. In contrast to this we find that in the traveling-wa
cavity the damping mechanism still exists in the semicla
cal limit. In fact, our results for the oscillation frequency~20!
and the damping rate~21! agree with the semiclassical re
sults @29# if one takes formally the limitvR /v0→0.

In Fig. 3 we show the excitation frequenciesn1,2 and the
damping ratesg1,2 as a function of the pump strengthh2 for
both the numerical solution and the analytic approximatio
We see that for the chosen parameters the approximation
quite well apart from the values ofg2. This comes from the
fact that we obtained the complex eigenvaluesvn from an
expansion of Eqs.~8! and ~19! for small values ofuvnu/k
!1. As we see from Fig. 3~a! this is well fulfilled for v1 for
the chosen parameters, butuv2u/k is of the order of one.
However, in the limit of a strong pump the lowest-order te
for the frequencyn2 already gives the correct value, name
twice the harmonic-oscillator frequency. Thus, only t
imaginary part~the damping rateg2) of the analytic approxi-
mation deviates from the exact solution in Fig. 3. In para
eter regions, whereuv2u/k!1, we find a much better agree
ment of the two solutions.
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IV. INTERACTING BOSE GAS

In the discussion so far we have omitted the effects
atomic interactions, as described by the collision rategcoll in
the GPE, on the energies and damping rates of the collec
excitations. Neglecting this has allowed us to obtain anal
cal expressions and therefore to discuss the parameter de
dence of our results explicitly. However, atomic collisio
are known to play a crucial role in experimental realizatio
of Bose-Einstein condensates. We will now discuss
changes of the collective excitations according to collisio
in a numerical example of a condensate in a ring cavity.

We show in Fig. 4 the excitation frequenciesnn and the
corresponding damping ratesgn as a function of the collision
rategcoll with all other parameters fixed. The main effect o
the stationary ground-state wave function@23# of a repulsive
interaction between the condensed atoms is to increase
width of the wave function. Since this larger width als
changes the coupling to the cavity field, we find that t
steady-state photon number decreases with increasing c
sion rate. Consequently, the optical potential becomes m
shallow and the excitation frequencies decrease. Howeve
we can see from Fig. 4, this argument does not hold for
lowest~antisymmetric! excitation. Here the atomic collision
counteract the strong frequency shift that we found in
previous section andn1 slightly increases withgcoll . Above
a certain threshold value forgcoll , the atom-atom repulsion
gets stronger than the confining effect of the optical pot
tial. In this case the ground-state wave function is no lon
localized and the spectrum of excitations changes into tha
unbound particles where each excitation frequency is dou
degenerate.

FIG. 3. Collective condensate excitations in a ring cavity:~a!
frequenciesnn and ~b! decay ratesgn vs pump strengthh2. The
parameters aregcoll5Dc50, NU055k, andk5400vR . The solid
curves are obtained numerically, the dashed curves are the an
cal solutions obtained in the harmonic-oscillator approximation.
3-7
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Figure 4~b! shows that collisional effects have an ev
more important influence on the damping rates of the col
tive excitations. We see that the effect differs for the dam
ing ratesg1 andg2. While g1 weakly decreases with increa
ing gcoll , g2 increases significantly over a broad range
values ofgcoll . This is related to the fact that the damping
the symmetric excitationg2 depends crucially on the width
of the ground-state wave function whereas the damp
mechanism of the antisymmetric excitation does not, as
ready emphasized before. Since the major effect of a
collisions is to broaden the wave function, the resulti
changes of the damping rates occur predominantly for
symmetric excitations. Note also that the atomic collisio
and the stronger anharmonicity of the potential according
the lower field intensity enhance the damping of higher c
lective excitations, as can be seen from the damping rateg3
andg4 in Fig. 4~b!.

V. CONCLUSIONS

In summary we have studied in detail the interaction o
Bose-Einstein condensate with one or two single modes
high-finesse optical cavity in a 1D model. This relies on
small transverse extension of the condensate compared t
waist of the cavity mode. In an actual experiment this co
be realized, for instance, by additional transverse trapping

FIG. 4. ~a! Frequenciesnn and~b! decay ratesgn of the collec-
tive excitations vs atomic collision rategcoll . The parameters are
Dc50, NU052k, k5400vR , andh25200NkvR .
an

.

02360
-
-

f

g
l-
m

e
s
o
l-

a
a

the
d
y

magnetic or optical means, or by a freely falling condensa
in which case our model only holds for a time scale of t
order of the expansion time scale of the condensate. We h
solved the coupled set of nonlinear equations of motion
the joint dynamics of the condensate and the light field
merically and compared it analytically with a simplifie
model based on the Lamb-Dicke expansion. We find th
even without atom-atom interaction, the oscillation freque
cies are shifted with respect to their values in a fixed exter
potential.

For a finite cavity response time the collective excitatio
are damped or amplified depending on the cavity detun
which can be easily controlled externally. We identify tw
distinct mechanisms depending on the spatial symmetry
the excitations. The damping mechanism in standing-w
cavities and for spatially symmetric excitations in ring ca
ties is due to a Sisyphus type effect, which leads to lar
cavity fields at times when the condensate runs up poten
hills than at times when the condensate runs down. On a
age this effect extracts kinetic energy from the condens
which is carried away by the cavity field. On the other han
the damping mechanism for the spatially antisymmetric
citations is only present in a ring cavity due to the scatter
of cavity photons between the two counterpropagat
waves. This creates an intensity imbalance, which is co
teracted by the cavity damping and hence leads to mom
tum dissipation.

The two damping mechanisms exhibit very distinct p
rameter dependences. Our analytical approximations s
that in the limit of strong cavity pumping the damping rate
the spatially symmetric excitations becomes independen
the pump but scales proportional to the square of the a
number N2, while the damping rate of the antisymmetr
excitations is proportional to the pump field intensity a
inversely proportional toN2, which implies less stringen
requirements to cavity technology.

The difference between the damping-amplification ra
of excitations with different spatial symmetry could be us
to manipulate a Bose-Einstein condensate in a contro
fashion. In addition, in a ring cavity setup, we can also exc
oscillations by external phase and amplitude shifts of
pump light. All the effects could of course be enhanced
tailored feedback of the measured transmitted intensity o
the pump. This might give rise to useful applications of su
a system in the context of quantum information and quant
computation in analogy to other recently proposed syste
making use of particles in optical lattices@30–32#.
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