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Exterior complex scaling enables one to solve the time-independentdiugeo equation for three charged
particles without explicitly imposing the asymptotic boundary condition for three-body breakup. We have used
this formalism to study electron-impact ionization of atomic hydrogen by directly solving for the radial
components of the scattered wave on a complex, exterior scaled numerical grid. Computational procedures,
presented briefly elsewhef&. N. Rescigno, M. Baertschy, W. A. Isaacs, and C. W. McCurdy, Sci@8ée
2474(1999], are discussed here in greater detail and additional results are presented. Our method is limited
only by the finite size of the grid and the number of partial-wave components retained in the expansion of the
wave function and, unlike other methods that have been used to study ionization, involves no uncontrolled
approximations. Our calculated triply differential cross sections at 17.6, 20, 25, and 30 eV are found to be in
excellent agreement with recent measurements.
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[. INTRODUCTION cent work[12] has shown that such spurious behavior is not
necessarily connected to the long-range Coulomb interac-
Electron-impact ionization of atomic hydrogen is the sim-tions between charged particles, but rather is connected to
plest example of an important class of problems in atomidche methods used to extract information about three-body
collision theory that have persistently resisted numerical sobreakup from a wave function that is matched to a sum of
lution. The formal theory has been known for some time,discretized two-body channels.
beginning with the work of Peterkofd] and of Rudge and In several previous papef$3,14], we outlined a strategy
Seaton[2] in the 1960s, who derived the form of the wave for computing ionization cross sections by a route that com-
function for three charged particles in the “far” asymptotic pletely avoids explicit specification of asymptotic boundary
region where all three particles are well separated, throughonditions. We use exterior complex scalifid] of all in-
the more recent work of Alt and Mukhamedzhari8y, who  terparticle distances to simplify the asymptotic boundary
derived a solution of the three-charged-particle Sdimger  conditions for scattering. With this mathematical transforma-
equation which is valid in all asymptotic regions. Following tion of the Schrdinger equation we can calculate the scat-
the pioneering work of Braunegt al. [4], there have been tered wave portion of the full wave function to arbitrary ac-
many “ansatz” studies over the past decade in which aspectsuracy on a finite region of space. Scattering information is
of the asymptotic wave function for three charged particlesxtracted by applying the quantum-mechanical flux operator
are incorporated into various types of distorted-wave formuio the computed wave function at several finite distances and
las for the ionization amplitude, with varying degrees of suc-numerically extrapolating to infinite distances in order to ob-
cess[5,6]. Much of this work is summarized in a recent tain differential cross sections for ionization.

review by Lucey, Rasch, and Whelfn. The formal theory, Previously, we demonstrated the viability of this proce-
however, has not to date provided a viable path to an “exdure with calculations of total and differential ionization
act” computational approach to the problem. cross sections for atomic hydrogen in thgave (Temkin-

Two-body, close-coupling expansions are being applied?oe} model of e -H scattering[16]. The Temkin-Poet
to electron-atom scattering above the ionization thresholdnodel[17,18 keeps only states of zero angular momentum
with renewed vigor, following the stunning demonstration offor each electron, leaving a simplified, two-dimensional
Bray and Stelbovics in 1998] that such expansions can be problem, but one with the same pathologies in the
made “convergent” for both excitation and total ionization asymptotic boundary conditions as the full problem. We
cross sections. More recent attempts to extend these methollgve since extended the method to a treatment of the full
to the calculation of differential cross sections for electron-electron-hydrogen ionization problem and recently an-
impact ionization have been only partially successful, yield-nounced the results of this treatmdd®], including triply
ing singly differential cross sections that oscillate about thedifferential cross sections at one enefdy.6 e\j for which
correct valueq9] and triple differential cross sections that absolute measurements are available for comparison. In this
display the correct relative angular behavior but require mulpaper we give a detailed description of the computational
tiplication by unforeseeable constani®,11] to be compat- procedures that were employed and report results at several
ible with experiment. The magnitude of these effects dimin-other energies.
ishes with increasing collision energy as the ionization cross Exterior complex scaling may solve the problem of intrac-
sections become better described by perturbation theory. Ré&able scattering boundary conditions, but calculating the scat-
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tered wave on a large enough region to obtain accurate ion- Il. THEORETICAL APPROACH
ization information still poses an enormous computational
challenge. We calculate the radial functions in a partial wave ) o
expansion of the scattered wave function directly onto a Our approach to the electron-impact ionization problem
large, two-dimensional grid. The coupled, two-dimensionalWas outlined in two previous papef43,14. The method
differential equations that must be solved to obtain the radiaf°"SiSts Of two distinct steps. The first entails a calculation of
functions lead to systems of as many as five million com-the outgoing wave portions of ‘h‘? wave fun(;thn without
plex, linear equations for the calculations reported here. wéecourse to any explicit asymptonc form. Th|s IS accom-
solved these coupled equations using a distributed memor?“Sh'EOI by app_lylng an exterior C_omplex scaling transforma-

. . . . ion to the radial electron coordinates. The second step re-
parallel supercomputer to implement an iterative algorithm

ith diti ificallv tailored to th bl tquires a procedure for extracting dynamical information
\r/]v;ndprecon ioners specincally taiored to the problem alg,, the scattered waves, again without explicit reference to

an asymptotic form. To accomplish the extraction, we apply

Technical reasons connected with the use of complex,antym-mechanical flux operators to the computed wave
scaling require us to truncate the interaction potentials on thg,nctions.

complex portions of the grid20]. The physically correct We begin by partitioning the total wave function into an
results are then recovered by extrapolating the computed vajpnropriately symmetrized unperturbed stittk, describing

ues to infinite box size. Because we cannot offer a strict free electron incident with momentukon a ground-state
ydrogen atom

mathematical proof that this extrapolation yields the exac
value, we have carried out a number of numerical tests to
show that the procedures employed are in fact producing the 1 _ _
correct result. For instance, we will show that the radial wave ‘lfﬁi(rl,rz)= —[®g(ry)ekiTe+(—1)5D (ry)eki 1]
functions we obtain by exterior complex scaling display the V2

three-body logarithmic phase distortion that must character- @)

ize an exact solution. In the course of our previous work withang 5 scattered wave tenby,. The symmetry of the total
the Temkin-Poet model, we studied the effects of finite boxyaye function is determined by the magnitude of the total
size on the accuracy of the extrapolated results and foungpin: it is either symmetric for total spiB=0 or antisym-
that within certain limitations the results are, indeed, correctmetric for S=1. The scattered wave functioh_. is defined

The fact that there have been new res{t§] reported re- 5g

cently on ionization cross sections in the Temkin-Poet

model, which were obtained by a completely different qf;c(rl,rz):G+(E)(|3|—E)\Iffk’i(rl,rz), (2)
method, that agree with our previously published results,

gives us added confidence in the soundness of our methodr, equivalently, by a purely outgoing solution of the inho-
Ultimately, however, the fundamental correctness of our promogeneous differential equation

cedure relies on the empirical observation that the computed . ~

results are in perfect agreement with absolute experimental (E—H)‘P;rc(rlyrz)Z(H—E)‘I’Ei(rl,fz), ()]
measurements that probe the most intimate details of the

collision dynamics at energies where long-range correlatiothat comes from rearrangement of the Sdimger equation
effects are very important. with HamiltonianH,

Our method consists of two steg$) computing the scat-
tered wave part of the total wave function without explicit
reference to any asymptotic form afi) extracting detailed
information for electron-impact ionization from the com-
puted wave function, again without explicit reference to an  Asymptotically, ¥, decomposes into a sum of discrete
asymptotic form. We describe our method for calculating theelastic and excitationtwo-body channels and a termfgn
scattered wave in Secs. Il A and II B. Simplification of the that describes the ionization continuum
scattering boundary conditions with exterior complex scaling
is outlined in the latter section. In Sec. lll we describe details
of the numerical and computational methods we used to ¥sdl1.M2) ~ |2 v
solve the Schidinger equation on a complex grid. In Sec. IV frpmee MO
we describe properties of the scattered wave through exami-
nation of its radial components and give a number of illus- +(—1)%(1-2)
trative examples. In Sec. V we describe the numerical pro-
cedures we used to extract dynamical information from theThe discrete channel components factor into products of
computed wave functions and to compute differential crosdound atomic states and one-electron continuum functions
sections. Our results for singly and triply differential crosswhile the ionization term is intrinsically nonseparalple?].
sections are presented in Sec. VI. Section VII contains conk the far asymptotic region where all interparticle distances
cluding remarks. are large, the ionization term behaved 28|

A. Scattered-wave formalism

Ararg=— vz tyz 11, 1
r{,fo)=—=Vi—=V5— —— — }
b 271 22, [ri—ryl

4

fam(f2)
R ENR

)

+WE(re,ro). (5
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. o i 2 ~ o 1d® 10+ 1
\Ifion(rl,rz)p:m—fi(rl,rz,a) ? H'(r):_iﬁJr?_F (11
. {(F1,75,0) and the radial coupling potentia{$,l,||/l11,), are obtained
xexp{l Kpt K InC2p) |1 by taking matrix elements of {t4 —r,| between two coupled
spherical harmonics
(6)
wheref; is the ionization amplitude and the hyperspherical (lalallt 1) =14l oL Of —— I - | |1115L0)

coordinates are defined y=(r2+r3)*2 and a=tan (r,/

r,) and is related to the total energy = «2/2. Note that

the coefficient/(?,,7,,«) depends on the energies and ejec- = E

tion angles of both electrons. Equati@®) is written only for

illustrative purposes and is not explicitly part of our compu-

tational procedures. wherer _ (r-) is the lessefgreatey of r; andr, and Dirac
Adopting a conventional partial-wave description, we ex-notation denotes integration over the angular coordinates of

pand both\If0 and W}, in coupled spherical harmonics both electrons. The coefficien@™ i are discussed by

(12

’
|1|2|1|2 >\+1'

| I I
Percival and Seatdr23]. The inhomogeneous terpgr’[llz that

WM (Frb2)= 2 (Lilomump[LM)Y, o (1) Y m,(F2) appears on the right-hand side of E@0) arises from the
MMz @ partial-wave expansion oH—E) Wy,

i L

which are eigenfunctions of total angular momenturand L
9 J X~ o V22l D)X

its projection M along thez axis (defined to be in the
direction ofk;). In Eq.(7) I;m,; andl,m, refer to the orbital
angular momenta of the individual electrons and « F (k)4 (—1)5(1es 2 } 13
(I11,m;m,|LM) is a Clebsch-Gordan coefficient. For elec- Sur)iL(kirz) +(=1X1=2)). (13
trons incident on hydrogen in an initialstate, we need only

the terms for whictM =0 in the expansions oIfO and¥,

1
(1oL, — allofslzL)

In a conventional approach, one would attempt to solve
the coupled equations represented in Ed) by applying
N e T b, the correct scattering boundary conditidis. (5)] to each
WO (ry,rpy)= > V22l +1) of the w:‘l|2. The fact that such a task has, to date, never been

' L=0 carried out testifies to the intractability of such an approach.

- .. Without a viable means for explicitly imposing the correct
LO
X[ém(roiikirz) Yo (F1.72) asymptotic boundary conditions for the ionization compo-
» I nents of they, , we need an alternative approach, one that
(= DF k) (1) VL] @) %, PP

addresses the outgoing wave character of the scattered wave
without explicitly imposing detailed asymptotic boundary
Wi(ry,ry)=— E ¢:-1|2(r1 rz)y:-l()’lz(fl,fz)_ 9) conditions._ Exterior complex s_calir_lg_of the radial_ coordi-
Ml LI, nates provides such a path, simplifying the outgoing wave
boundary conditions and allowing thﬁf, to be calculated

correctly over a finite region of space.

r1rok;

Since both total angular momentum and paf2g] are con-
served quantities, the sums can be limited to terms for which
L+1,+1, is even.

Substitution of the angular expansions defined in E8js. B. Exterior complex scaling
and(9) into the scattered wave equation, E8), gives a set The method of complex rotation or complex scaling, in
of COUD|90| two-dimensional equations for the radial func-which all interparticle coordinates are rotated by a fixed
tions ¢ .1, for each value ot andS angle into the complex plane, is well known in physics, both
as a formal mathematical device in nonrelativistic scattering
[E_ﬂll(rl)_ﬂl (1) 10k, (11,75) theory and as a powerful computational t¢a#]. Most ap-

plications of complex scaling in atomic and molecular phys-

. ics have centered on the calculation of resonance energies
=2 (a1 oy o (reir2) and lifetimes, which are related to the discrete eigenvalues of
11 v the Hamiltonian under complex rotation. An important early

extension of complex scaling was Simon’s exterior complex

_ L
_X'l'z(rl’rZ)' (10 scaling procedur€ECS [15], in which coordinates are only
R scaled outside ghypensphere of radiu®y. This extension
In Eq. (10), H(r) is the radial hydrogenic Hamiltonian, was motivated by the desire to treat Hamiltonian interactions
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that may have interior nonanalyticities, such as the Born-
Oppenheimer Hamiltonian viewed solely as a function of

electronic coordinateg25], or that are only known numeri- E

cally on a finite region of coordinate space. The ECS proce- E n

dure has made it possible to carry out direct resonance cal- .

culations on a variety of molecular problems. | R, Re(r)
Complex scaling techniques can also be used, with certain - o

caveats, to calculate scattering cross sections without explic- .y ) ////////%////

itly enforcing asymptotic boundary conditions. Apart from
applications to photoionizatiofi26,27], this area has re- /
cieved far less attention than complex scaling in connection /é/;é///
with resonances. A solution of the full scattering problem R, —
requires matrix elements of the resolvent between functions
of the form V(r)sinkr) and these diverge under complex
rotation unless the interaction potenti&(r), is exponen-
tially bounded[28]. This fact had, until recentl{20], posed
a major obstacle to using complex scaling to solve scattering
problems with long-range interactions. The key to applying P
the ECS procedure to long-range potential problems is to
truncate the interaction potential at the boundary of the hy-
persphere and to either carry out calculations ViRthlarge
enough that the truncation of the potential is of no physical
consequence or, if this is impractical, to carry out calcula- FIG. 1. On the top is an illustration of the ECS contour rotated
tions for different values oRR, and perform a numerical into the upper half of the complex plane beyondR,. On the
extrapolation ofRy,— to obtain the physically correct re- bottom is a depiction of exterior complex scaling for two radial
sults. coordinates.

We take the ECS transformation as a mapping,z(r),
of all radial coordinates to a contour

both real

and are thus excluded from any numerical solution by our
choice of boundary conditions.
r, r<Rg The coupled equation$Eq. (10)] are transformed by
i (14)  evaluating the derivatives, all potentials, and the inhomoge-
R0+(r_R0)e m, r>R0 L . .
neous termsy;,, on the complex contours. This requires

some care to ensure the derivatives are taken along the com-

that is real forr <R, but rotated into the upper half of the plex contour, particularly at the poimt= R, where the con-
complex plane beyon®,. In two dimensions the contour tour has a discontinuous first derivative. Transforming the
defined in Eq(14) defines an interior box of lengtR, (see  one-electron potentials is simply a matter of evaluating the
Fig. D in which both radial coordinates are real. Outside ofCoulomb potentials for complex values. We handle the two-
that box one or both coordinates are complex. electron potentials by applying the ECS transformation sepa-

The transformation has the desirable property that anyately to the regions;<r, andr,;>r,. As previously stated,
outgoing wave evaluated on the contour Eiy) dies expo- we cannot apply the ECS transformation to the inhomoge-
nentially as the coordinates get large. Thus, the ECS procareous terms on the right-hand side of E0) because the
dure transforms any outgoing wave into a function that fallspotential terms do not fall off rapidly enough to overcome
off exponentially outsidé&r, but is equal to the infinite range the exponential increase of the free functions along the com-
wave over the finite region of space where the coordinateplex part of the contour, making it necessary to truncate the
are real. If we apply this transformation to both radial coor-long-range Coulomb potentials Rf in the inhomogeneous
dinates in the coupled equatiofq. (10)] and require the termsy;:, [20]. This is the only source of systematic error in

solutions to vanish for values of the radial coordinates WeIIOur scheme for calculating the scattered wave with exterior

beyondR, (in practice, we discretize the coordinates onto 8,5 mnjex scaling. The numerical procedures we employed to
finite grid and require the solutions to vanish at the gridminimize this source of error will be addressed below.
boundaries we will obtain complex-scaleqlrl"llz that are ex- Solving the coupled equations transformed in this way
ponentially decaying functions outside of the interior regiongives the ¢|L| evaluated along the complex contours. In
shown in Fig. 1. The fact that these are the physical solution ractice, it i;;zsimpler to think of the/", calculated under

1'2

we seek can be seen as follows. A general solution of th . )
inhomogeneous scattered wave equatign. (3)] can be ECS as functions of the real coordinatesandr,. Thus, we

written as a linear combination of the particular solution de-tréat the CaICUI"Jlt“»“l“'f|Ll|2 as nonanalytic functions of; and
fined by Eq.(2), which is purely outgoing, plus any solution r, (with an enforced discontinuity of the first derivatives
of the corresponding homogeneous equation. Solutions afith respect to the radial coordinates at the turning point
the latter, however, which are regular at the origin, wouldrather than as analytic functions evaluated along the contour.
contain plane-wave terms that diverge under complex scalingor the remainder of this paper we shall u&gz(rl,rz) to

z(r)=

022712-4



ELECTRON-IMPACT IONIZATION OF ATOMIC HYDROGEN PHYSICAL REVIEW A63 022712

o o curate to fifth orderto span the interfaces between regions
3\ ] | Yoo X0,0 of different grid spacings. An advantage of using higher-
5 & order finite difference is that it allows the grid to be parti-
’ i Xi1 tioned into regions of different grid spacing without a sig-
&\ | s 0 nificant increase in numerical error. Further details about the
i 22 high-order finite difference along with the explicit formulas
we used are given in the Appendix.
Complex-scaled radial functionﬂ-llz(z(rl),z(rz)) evalu-

ated on the contour defined in Ed.4) are continuous func-
tions of r; andr, whose first derivatives are discontinuous
acrossR,. Finite difference is one of the few numerical
FIG. 2. Block matrix structure of the coupled equations usingmethods that can be made compatible with this conft2a.
L=0 as an example. Formulas for the derivatives are generalized to ECS by mul-
) )  tiplying grid spacings bye'7 beyondR,. This produces ex-
refer to the complex-scaled radial functions. In the regiony ey the required nonanalyticity in the calculat$h| pro-
r{,r,<Rg the calculated,bl"1I2 are the same as the unscaled t2

0 0
¢3,3 X33

L . o . vided thatR, is one of the grid point§29]. The specialized
iy, aside from the effects of contributions from high- finjte difference formulas we used to span the interface be-
bound states of hydrogen caused by truncating the Coulomtween regions of different grid spacing must also be used to

potentials in theyh,z. spanR,, even for uniformly spaced grids.
Ill. COMPUTATIONAL PROCEDURES B. Numerical methods for large, sparse linear systems
A. High-order finite difference methods A typical radial grid withRy=110a, consists of 498 grid

. . . . . L
We solve for theyt;, directly on a two-dimensional ra- points in-one d|mens.|on with e"’?cb"l'z represented .by
dial grid using finite difference approximations for the de- 248004 values. Keeping 16 partial wave channels in the

rivatives. The coupled equations are represented by a matrBP“laled edquatlfofns for _Gill_partg:ullh_rleadsl_ to a linear sys;err?
with the block structure illustrated in Fig. 2 where the dimen-O" the order of four million. Solving a linear system of this

sion of each block is the total number of two-dimensionalSiZ€ Py Gaussian elimination is impractical, so we must use
(2D) grid points, which we denote d¢, and the number of an iterative algorithm to solve the coupled equations. The

blocks is the number of partial wave channels retained in th§'9€nvalue spectrum of a complex-scaled Hamiltonian is
coupled equations. Diagonal blocks, | such that no known iterative algorithm will converge to so-
Yl 21

lution without preconditioning. Therefore, finding a suitable
preconditioner for the coupled equations is a necessity. A
preconditioner should be a simplified linear system that has
an eigenvalue spectrum similar to the original system. The
are matrix representations of two-dimensional, uncoupled raset of uncoupled radial equations, defined by setting
dial equations while the off-diagonal blocks are the coupling<|1|2|“i|é>L=0 for all (17,15)#(11,1,) in Eq. (10), have nu-
potentials(l 11 [[1115) with (17,15) #(11,15). merical properties similar to the coupled equations, but re-

Producing meaningful ionization information at energiesquire solving linear systems only as big as the total number
several eV above the ionization threshold requires knowingf radial grid points. We have found solutions of the un-
W, at a distance of at least 189. The grid must extend coupled equations to be a suitable preconditioner for solving
beyondR, far enough to allow the complex-scaled radial the coupled equations. Previously, we treated the Temkin-
functions to decay effectively to zero at the edge of the gridPoet model problenj17,18 (equivalent to theL=1,=I,

We used grids that extend an additionabg®eyondR,. =0 uncoupled radial equatipron very large radial grids

With seven-point finite difference approximations to the[16]. Using the uncoupled equations as a pre-conditioner
second derivativegaccurate to sixth-order in the grid spac- means solving several independent problems similar to the
ing), four grid points per, are sufficient to represent oscil- Temkin-Poet model, and we repeatedly employ the same nu-
latory functions with energiess40 eV. However, a more merical methods we used for the Temkin-Poet model to ac-
densely spaced grid is needed to represent the Coulomb peemplish the preconditioning step. Convergence of the con-
tential at small distances. We used a spacing ofd@,2iver  jugate gradient squard@GS iterative algorithn|30], using
most of the grid with a spacing of 0.85 for r; andr,  solutions to the uncoupled equations as a block-diagonal pre-
values less than 2a3. BeyondR, it is possible to use larger conditioner, is shown in Fig. 3 for several different values of
grid spacings without affecting the accuracy of the wavel. Each CGS iteration required two solutions of the un-
function where the coordinates are real. coupled equations, but with different right-hand sides.

Finite difference formulas that sample regions of two dif- The block matrix structurdsee Fig. 2 of the coupled
ferent grid spacings are less accurate by one order of magquations suggests a natural level of parallelism for the itera-
nitude than their uniformly spaced grid counterparts. Wetive algorithm that make it well suited for distributed
used specialized seven-point finite difference formykes  memory, parallel computers. Each partial wave channel is

AL, =E=H (r)—=H(r) =l I (19
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grid, are themselves diagonal matrices so adding each cou-
pling term is a relatively inexpensive operation. Therefore,
the bulk of the computations are local to each processor

e group.
S o e A single uncoupled, two-dimensional, radial equation pre-
W% 5 7 9 11 13 15 sents a linear system of250000 equations. In a recent

study[16] using the Temkin-Poet model to test our formal-
ism we solved linear systems of this type that were as large
as 750 000. Even the uncoupled equations present very large
linear systems and we found that iterative methods fail to
converge if we used standard preconditioning techniques but
could be made to work if we start with a trial solution that is

10 5 7 9 11 13 15 a reasonable approximation to the true solution. To produce
number of CGS iterations such a trial vector, we need a direct method of solution that
L=5 exploits the structure of the linear equations.

Gaussian eliminatiofLU factorization, followed by for-
ward and back substitutiorigiangular solution is a classic
method of solving a linear systetaX=b. One key advan-

. ' ¢ ’ = tage of this “direct” method over the iterative methods is its
L S wETEET + 5 robustnessin the sense that it involves a fixed number of
number of CGS iterations floating-point operationgdependent only on the matrix di-

mension even if the linear system is ill conditioned. For
example, for a dense matrix of sikex N, LU factorization
requires2N® operations, and the subsequent solution step
requires N? operations. An advantage of using the finite
P P R B 9 difference is that the resulting matrices are very sparse and
B S S S SN S S S the LU factorizations can be carried out in far fewer opera-
b3 unberof CGSiteratons - tions than would be possible with dense matrices. The un-
coupled radial equations have the structure of a two-
FIG. 3. Convergence of the CGS algorithm for the coupleddimensional, finite difference Laplacian matrix. With-
equations with singlet spin symmetry for various total angular mo-point finite difference formulas these matrices have, at most,
mentaL. Error in the calculated scattered wave is plotted for inci-2m—1 nonzero elements per row and the total number of
dent energies of 17.6 elsquaresand 25 eV(diamonds. nonzeros scales linearly with the number of grid points.
Since m-point finite difference applied to the uncoupled
assigned an independent group of processors. Solving thadial equations produces matrices that have ar(lj) non-
uncoupled equations, which is the most computationally inzeros on 20— 1 diagonals, as opposed & nonzeros in the
tensive part of the iterative algorithm, is local to each groupdense case, significant savings in both time and memory can
of processors. Matrix-vector products for the coupled equabe achieved if we can exploit the sparsity structure of the
tions involve calculating matrix-vector products for each di-matrix. One way to exploit sparsity is to usebandsolver,
agonal block, which is local to each processor group, and fosuch as that implemented irmPACK [31], a widely used
every off-diagonal block, which requires communication be-linear algebra package. Our matrix has bandwidfN
tween different processor groups. The off-diagonal blocksaround the main diagonal. The band solver does not perform
which are merely the coupling potentials evaluated on theperations on the zeros outside the band, but it fills the non-

TABLE I. The order in which partial wave channels were chosen for each valleimfconvergence
studies.

0,0, (1.2, (2,2, (3,3, (44, (59
0,9, (1.2, (23, (34, (49, (5.6
(1,9, (0.2, (2,2, (1,3, (3,3, (2,4, (4.4, (3,9, (5,5, (4.6
(1,2, (0.3, (23, (1,4, (3.4, (2,9, (4.9, (3,6), (5.6), (4,7
(2,2, (1,3, (3.3, (0,4, (24, (4.4, (1,9, (3,9, (5,5, (2.6), (4,6, (6.6), (3,7), (7.,7), (4.8
(2.3, (1,4, (34, (0,9, (2.5, (49, (1,6, (3,6), (5.6, (2,7), (4,7, (6,7, 3,8), (5,8, (7,8), (4,9
(0.6, (1,5, (2,4, (3,3, (1,7), (2,6), (3,9, (4,4), (2,8), (3,7), (4,6), (5.9, (3,9), (4.9
0.7, (1,6, (2,5, (3.4, (1,8, (2,7, (3,6, (4,5, (2,9, (3,8), (4,7), (5.6, (3,10
0,8, (1,7, (2,6, (35, (4.4, (1,9, (2,8, (3,7), (4,6), (5,9
0,9, (1.8, (2,7), (3,6), (4,9, (1,10, (2,9, (3,8), (4,7), (5,6

| ppu ot i i
I
© O ~NO U~ WNERO
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zeros completely within the band in tlheand U factor ma-  solutions as a preconditioner. Thus, the complete solution of

trices. For theLU factorization, the number of operations is the coupled equations used the CGS algorithm at two levels,

O(NZ) and the number of nonzeros to be Stored)($\|3/2)_ first in SOlVing the UnCOUpled equations with different order
We can achieve even greater computational savings anite difference schemes_and then again in an iterative solu-

employing a more general sparse solver, which does not refjon of the coupled equations.

on the band structure and allows for arbitrary patterns of

sparseness. For example, if the equations and variables are V. PROPERTIES OF THE SCATTERED WAVE

reordered usingested dissectiof82], the number of opera-  tpe ragial functions can be classified into three groups

H 3/
tions and the number of nonzeros are reduced(ty ?) and _according to their symmetry properties. Singlet radial func-
O(NlogN). Sparse solvers are thus asymptotically superior

to band solvers, but, in practice, are much more difficult to
develop. There are issues concerned with storing the nonzero
matrix elements so that one colunfor row) of the matrix
can be rapidly extracted during the computatj@0]. Sec-
ond, and more problematic, there are usually more nonzeros
in the L and U factors than in the original matriA. These
new nonzeros are called filléThis is not an issue with itera-
tive solvers where the matriX is used only in matrix-vector
multiplication and is not modifieg. The amount of fill is
influenced by the order of the equations and variables and
there has been a considerable research effort in developing
good ordering algorithms to minimize the fiB2,33. There
are also issues associated with designing efficient algorithms
to detect the positions of the fills and set up the sparse matrix
storage forL and U [34]. This involves manipulating a se-
guence of elimination graphs associated with each Gaussian
elimination step. The calculations reported here were carried
out with a state-of-the-art sparse solver cabegERLU[35],
which has been optimized to run on both sequential and par- o
allel computer platforms. SequentiaUPERLU offers great
performance compared to band solvers, but was incapable of
solving the largest systems we considered withon the
order of hundreds of thousands or millions. The parallel ver-
sion of suPERLUWe used was designed to enhance scalability
and minimize interprocessor communication and load imbal-
ance by using a two-dimensional block cyclic partitioning
scheme to partition the andU matrices on multiple proces- Ty 0 o r. (units of a )
sors[36]. ! ¢
With a linear solver that takes advantage of the sparsity of
the matrix, there is considerable savings in computer time
and memory that comes from using lower-order finite differ-
ence formulas. The strategy that ultimately proved successful
for our problem was to carry out a direct solve, using
SUPERLY of the linear systems produced by a three-point
finite difference approximation to the uncoupled equations.
These low-order results had unacceptable numerical errors,
but they did provide a good preconditioner for the iterative
solution of linear systems based on a higher-order finite dif-
ference. We then solved the uncoupled, two-dimensional ra- 120
dial equations based on a seven-point finite difference with
the CGS iterative algorithm using the three-point finite dif- ~3%0
ference matrices as the preconditioner. As an example, direct r, v B r, (units of a)
(by LU factorization solution of an uncoupled radial equa-

tion approximated by a seven-point finite difference on [, 4. Real parts of three representative radial functions for
114244 grid points took 1477 s using a 332 Mhz PowerZs|ectron-hydrogen scattering at 17.6-eV incident energy. The upper
CPU. The CGS algorithm using the lowest-order finite dif-picture shows the singlet,=2 andl,=1,=1 radial function. The
ference matrix as a preconditioner converged in seven iteraniddle picture shows the triplet,=2 andl,=1,=2 radial func-
tions and took only 464 s. Finally, the fully coupled set of tion. The lower picture shows the singlét=3, 1,=0, andl,=3
linear equations was iteratively solved using the uncoupledadial function.

120

04

, 120
' 20
60

022712-7



BAERTSCHY, RESCIGNO, ISAACS, LI, AND McCURDY PHYSICAL REVIEW /3 022712

with logarithmic phase

ro)}

2
'S Re{‘lﬁ 4 (r1

» Refyd (r,=r.)

hyperradius in units of a,

FIG. 5. Calculatedzpfl|2 (solid line) at an incident energy of 30 eV fob=2 andl,;=1,=1 compared, along,;=r,, to

(A/\Jp)ellxr+BInGn)+4l (dashed ling In the upper paneld, B, and & were chosen to best fit the radial function at large distances. At smaller
distances this same choice of parameters still gives a good fit to the phase. In the lower panels a similar functional fit was attempted without
a logarithmic phaséi.e., settingB=0). This functional form is able to match in phase only over short distances.

tions withl; =1, are symmetric about; =r, while their trip- In order to ensure convergence of our truncated partial
let counterparts are antisymmetric. All radial functions with wave expansion we initially solved the coupled equations for
[,#1, are asymmetric. These symmetry properties can beach value of with fewer terms than what is listed in Table
summed up with the relation I. We then incrementaly increased the number of partial
waves included until doing so no longer had noticeable ef-
lﬂ:'zul(rz'rl):(—1)S¢:'l,|2(r1rz) (16)  fects on the partial waves originally included. The lists in
Table | indicate the number of terms needed to converge the

. _ _ partial wave expansions for the first ten valuesLoih our
which follows directly from the required symmetry of the cgjculations.

partial wave expansion in Eq9). Note that for every A representative radial function for each of the three sym-
¥r,(r1.r2) with ;%1 that is included in the expansion we metry classeésymmetric, antisymmetric, and asymmetii
must also be sure to include its counterp@}t, (rq,rp) in shown in Fig. 4. All three examples are for 17.6-eV incident
order to maintain the symmetry of the overall scatterecenergy. Each radial function was computed on a grid that is
wave. In our calculations we take advantage of the symmetrjeal out to 13@,. These pictures provide a striking visual-
properties of the radial functions by explicitly storing only ization of the very different characteristics of the discrete
thosey- 1, for which I <I,. The | .1, With 1,>1, are then channel and the ionization components of the scattered wave.

lncluded |mpIICItIy, using the relat|on in Eq16), when it- The discrete channels all describe states with one electron
eratively solving the coupled equations.

Since we can include only a limited number of terms in 20
the partial wave expansion it is important to choose which ~ —~
terms to keep according to their relative importance in the =
overall expansion. It is not possible to knaavpriori the 5\5
optimal ordering for choosing partial waves but, for the most é
part, partial wave terms should be added to the expansion in FCD
the order of increasingl{,l,). Applying this simplistic S
“rule-of-thumb” is more complicated for largé where|l, ®
—1,| can be large. The partial wave terms included in our

calculations are listed in Table I. Note that only terms with 0 % NI L 125 150
[,=<I, are listed since all terms with,>1, are included

when solving the coupled equations. This particular choice FIG. 6. Development of the logarithmic term in the phase of
of partial waves is better suited for singlet rather than triplet«phlz. Results are shown at 17.6 and 30 eV for2 andl;=1,
calculations because the antisymmetry requirements of the 1, alongr,=r,, along wih a a best fi{dashed lines using the

triplet wave function require that partial waves with=1,  asymptotic form A//p)e'l<?*Bn)*+3 where A, B and & are real
will have much less importance. numbers.
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p =30a p=70a p =130a,

0.5 = N

(9]
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——
/

0 10 20 30 0 10 20 30 0 10 20 30
0.5[ ™\ e 0.5 L \}' 0.5
0 0 0
0 15 30 45 60 75 90 0 15 30 45 60 75 90 0 15 30 45 60 75 90
hyperangle (degrees) hyperangle (degrees) hyperangle (degrees)

FIG. 7. Flux, as a function of the hyperangle, calculated for various values of the hypemddiughe L=0, | ,=1,=1 radial function
with an incident energy of 17.6 eV. The flux is symmetric about 45°. The upper figures detail the discrete channel contributions that
dominate the smalx regions while the lower figures show the smaller ionization component.

remaining bound to the nucleus. Therefore, these channetsf whether or not this component correctly describes the
are characterized by outgoing waves localized along eitheoreakup in a system of three charged particles, particularly
ther, or ther, axis. Exactly which discrete channels are given that our formalism requires truncating the Coulomb
present in a particular radial fgnction is_ governed by thepotentials in the inhomogeneous terfi < E)\pgi of Eq. (3).
q“?”‘“m ”‘.’mbe”i andl,. I_:o_r '“Star.‘ce’ i1,=0 the_n the The ultimate test of the accuracy of our calculated wave
raQ|aI funchon along the; axis IS d(_)mmate(_j by elastic scat- function will be its ability to yield correct differential cross
tering with components for excna}tlon to highestates also sections for ionization. Before discussing the details of our
present. Wheiy =1 then the dominate component along themethod for extracting ionization cross sections, which is the

Mo AXIS IS t_he excitation of the;ﬂstqtg. subject of the following section, we can give a preliminary
. The ionization continuum, describing .bmh electrons MOV-indication of the correctness, over a finite region, of our cal-
Ing away from the nucleus, is cha_lractenzed by the outgoing ated wave function by showing that its asymptotic behav-
circular waves that span the region betweenth@ndr, o is consistent with the Rudge asymptotic form in ).

axes. An important characteristic of each radial function is e
- We expect the ionization component of e to have
that as the wave fronts propagate away from the origin the P P aAqul\z

discrete channel components remain confined to a certai® functional form
distance from each edge. That means that if we examine the

radial functions along arcs of increasing hyperradius the . Ala) oo s
range of the hyperangle occupied by the discrete channel P, (F1.r2) ~ ——e/wrBlainte) =@l (17)
components decreases and the amount of the ionization com- p—= NP

ponent that is “uncovered” increases. This spatial separation

of the ionization component from the discrete channels i©f an outgoing circular wave with a logarithmic phase. Since

vital to our method for extracting ionization information Eg.(6) is valid only when all three particles are widely sepa-

from the scattered wave. rated, the radial functions will follow Eq17) best along the
Examination of the plots of the radial functions in Fig. 4 line r;=r,. Comparisons between a calculated radial func-

reveals that the scattered wave calculated with exterior contion and the functional form in Eq17) both with and with-

plex scaling does indeed contain a component with botlout a logarithmic phase term are shown in Fig. 5. In both

electrons in the continuum. However, there is still a questiorcases the parameters were chosen to best fit the radial func-

hyperangle = 15° hyperangle = 20° hyperangle = 45°
1 g 1.1 e : :
N\ AN 19}-AN
L AN 1 AN CAN
0.9 S : : A 1 " S
§ : AN : -] AT R SR - SR : : : :
50 60 70 8 90, 100 110 50 60 70 80 .90 100 110 " 50 60 70 . 8) .90. 100 110
hyperradius(zunits of ao) hyperradius (units of aOSJ hyperradius (units of ao?

FIG. 8. Comparison of calculated flux to gpJéxtrapolation curve from the=2, |,=1,=1 singlet radial function for 25-eV incident
energy. The comparison is done for three different values of the hyperangle. The solid line jsldesttsquares fit and the markers are the
values of the flux from the wave function. The values of the flux that were used to produce the least-squares fit are circled.
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FIG. 9. Extrapolation irp of ionization flux for coplanar geometries with fixég, at 20-eV incident energy. In each panel flux calculated
at p=100, 105, 110, 115, and 12p are shown along with the extrapolated flux. The line for the extrapolated flux always lies below the
others.

tion nearr,=r,=1508,. Without the logarithmic phase the limit py—o. To this end, we define a generalized, di-
term (i.e., settingB=0) the functional form is able to match mensionless quX("’”)

the radlal function only over a very small distance. However,

with the inclusion of a logarithmic phase term we can fit the Qomr e e N .

phase of the radial function quite well over a very large foo (T 1, F2)=IM Kip(riroWioy(ri,r2))

range. Figure 6 shows how quickly the logarithmic term in

the phase develops as the hyperradius increases for two dif- N

ferent incident energies. The presence of a logarithmic phase Xﬁ(rlr 2Wion(r1,r2)) (18
term in the ionization component of the scattered wave sug- P=Po

gests that truncating the Coulomb potentials has not seri-

ously damaged the wave function in the interior region. In-evaluated at a hyperradius,. Since the hyperspherical
spection of Fig. 5 also shows that the amplitude of theanglea parametrizes the momentum distribution between the
ionization component of the scattered wave is not constantyo electrons agpo—, we can express the total ionization
but rather falls ap increases. Indeed,@ Y dependence in  cross section as an |ntegralf(§‘f’”) in the limit pg—o°, over
the amplitude, along with a logarithmic phase term, are the, and the angular coordinates of both electrons,

two key characteristics of E@17). In the following section,

we will show how the heurestic observations made here can 1

be d_evel_op(_ad into a numerl_cal procedure for calculating Uion:_f f f fliom( o ¢ #,)dP,dP,dar

physical ionization cross sections. k2 a7 ) azm PO

p0—>OC
(19
V. EXTRACTING DETAILED INFORMATION Thus, thepg—ce limit of the flux leads directly to a differ-
ABOUT IONIZATION ential cross section for ionization. However, since we can

calculate the wave function only over a finite region we need
a means of obtaining thg,— o limit from flux calculated at
A complete theoretical treatment of electron-impact ion-finite pg.
ization must include a prescription for calculating differential
cross sections that give detailed information about the ener

A. Flux operator formalism

L7
etean

gies and angles of ejection of both electrons. Our approach i

to obtain such information directly from the radial compo-

nents of the scattered wave by computing the outgoing flux

through the surface of a hypersphere that lies within the vol-

ume of coordinate space where both coordinates are rea

This is a straightforward extension of the procedure we first k;

applied to the Temkin-Poet model probl¢d¥,16. ~ ——F———— 7 ‘ """"""" S
Assume, for the moment, that we can isoldtg , th \L

component of¥ . [Eq. (5)] describing the ionization con- I

tinuum. Equat|or(6) describesV' ;| as an outgoing wave in

the hyperradiug. The continuum of ionization final states is  FIG. 10. Diagram of coplanar geometry. Two electron detectors

then described by flux through a hypersphere of ragdijim and the incident electron beam all lie within a plane.
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g 1) S O e FIG. 11. Equal-energy sharing,
@ s Man : g : coplanar TDCS for 17.6-eV inci-
g 0o 30 6 90 120 50 180 dent energy withd,, fixed. Data

from Ref. [38] normalized by
comparison with data from Ref.
0.8 _ : y ; . [39] for 6,,=180°. Solid curves:

: : : : present results. Broken curves:
CCC results from Ref[11]. The
internormalized data(from Ref.
[38]) for different 6., values
(open circleg are all set on an ab-
solute scale with a single normal-
ization factor of 0.23, which is
chosen on the basis of the data in
360 Ref. [39] for 6,,=180°. The full
circles are taken from the fixe@
data (see Fig. 12 to check the
consistency of our normalization
of the latter.
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By inserting the asymptotic form fow; from Eq.(6)  subtended by the flux due to a discrete channel is
into Eq. (18) we find that the ionization flux approaches its sin {(A/py), where A is the distance over which the target

asymptotic limit as 14, i.e., for largepg state is appreciably different from zero. Thuspgsncreases,
1 contamination of the ionization flux from discrete channels is

fliom (g 7. P) =IO (@ P, F,)+O _)_ (20) confined to smaller regions of, as illustrated in Fig. 7. With
p Po the largest grids we employed, we could directly calculate

) o o the ionization flux for values ofr down to~8° and then use
We can, therefore, obtain thg—c limit of the ionization  |inear extrapolation tax=0. In the truepo—o limit the

flux by fitting Eq. (20) to values off}™ calculated at large, discrete channels’ contributions to the flux becominc-

but finite, p. This method requires that tH§°” must be  tions ata=0 and #=90° and equality in Eq(20) holds
calculated ap, large enough so that it is behaving accordingexcept for infinitesimally small regions near the eqlges. We
to Eq. (20), which is easy to test numerically. In addition to a0 only calculateothe flux where both radial coordinates are
ionization channels, the scattered wave also contains comp&&- Fora near 45° thef , | can be evaluated fqr, values as
nents that correspond to discrégastic and excitationtwo-  large as/2R, (see Fig. 1, while for small values ofr we are
body processes which leave one electron in a bound Rydbetignited to po<R,. Figure 8 shows the behavior of the cal-
state. There is interference between these discrete channéiglated flux for a single partial-wave component of the scat-
and the ionization wave at any finite value @f. Thus the tered wave as a function @f, for several values of. Typi-
notion of a well-defined ionization wave only makes sense ircally, we choose five values @f; near the end of the real
the limit pp— where there is no spatial overlap betweenportion of the grid at which to calculati;,0 and obtain the
discrete channel components a}ﬁ@;n. The practical conse- p,— limit by a least-squares fit of Eq20). The quality of
guence of this fact is that there are always regions nearjthe the extrapolation is, of course, best farvalues near 45°
andr, axis, i.e., neaw=0 and «=90°, where the calcu- since these regions are the first to show the “uncovering” of

lated flux will not behave according to E€R0) due to con- the ionization wave by the discrete channel components as
tamination from discrete channels. The angular range in increases.
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B. Calculation of the ionization flux

T 0.3
Calculating the scattered flux requires the assembly of 2
W from all of its partial waves. BotW . and @/dp) ¥ . in 025
Eqg. (18) involve sums ovelL and (4,l,) pairs so the flux L 02
definition in terms of partial waves Ty -
P L'\« d L Eg 0.1
fpo(a,rl,l’z):|m kip 2/ ) (l/f|i|é) @(lﬂwz) B ’ : : :
I S o005k Y s
L.l @ K> el : . :
e 0 " " " e =
L0 o G 0 60 120 180 240 30 360
XYy )" W, (21)
172

P=Po

involves cross terms between different partial waves. Be-
cause of these cross terms, the flux must first be “as-
sembled” according to Eq21) and then extrapolated when
we are calculating angular distributions. Three examples of
calculated and extrapolated flux, for both singlet and triplet
spin symmetries withw=45°, are shown in Fig. 9. These
examples are for coplanar geometries with a fixed adgje : : oy
between the outgoing electrofeee Fig. 10 Relative differ- 120 180 24
ences between the calculated and extrapolated flux are larg- 0, (degrees)
est when the angle between the outgoing electrons is small- !

est. When constructmgpo as in Eq.(21) it is important to FIG. 12. Equal-energy sharing, coplanar TDCS for 17.6-eV in-
remember to include bott?ir|L1|2 and 1//|L2,1 whenl#1,. cident energy withd, fixed. Internormalized measurements from

The number of partial waves required to converge the flusRRef. [38], reported in arbitrary units, were scaled by 1.15 to the

depends not only on the total energy but also on the direcest-fit calculated cross section. Solid curves: present results. Bro-
tions of the two outgoing electrons. In the present calculaken curves: CCC results from Ref.1].

tions, we kept partial waves throudgh=9, which was suffi-

cross section (10 Bem2ev '1)

cient for the geometries considered here. Convergenkeésn doigy(e,f1,F2)
most rapid when the angle between the ejected electrons is T dedt.dt.
180° and becomes increasingly slower as this angle is de- 2 le=gsia
creased. The number of,(l,) pairs for eachL that were
, ) . ) _ 1
kept in the calculations was determined when solving the = | f 2 o (24)
. . . . ; Im 2 . po(alrllrz)'
coupled equations, as discussed in the preceding section. po—= KE Sina cosa

lonization cross sections can be readily expressed in terms
of the scattered flux. The triply differential cross section
(TDCS) is defined as the quantity that gives the total ioniza-The jonization flux cannot be extrapolated for hyperangles
tion cross section when integrated over the directions of bothagrn=0 anda=90° so this procedure cannot produce the
electrons and the energyof one of the outgoing electrons Tpcs for highly asymmetric energy sharing, i.e., for cases
where one electron carries most of the total energy.
E/2 doon(e,f1,F2) The singly differential cross sectio(SDCS describes

Uion:f J J ~dedi.ar,dfdfode. (220 only energy sharing between the two electrons and is ob-
0 Jamlam e tained by integrating the TDCS over the directions of both
electrons:
Since the electrons are indistinguishable, it is customary to
normalize the TDCS so that it gives,,, when integrated

over half the energy range. The individual electron energies doion(e) doion(e,f1,F2)
are parametrized by the hyperanglé22] e L J; Wdfldfz- (25
e,=Ecofa and e,=Esirfa (23

Orthonormality of the:)/,Ll'\”'|2 simplifies the summation in Eq.

and thus a simple change of variables converts the flux,21) to a single sum over the three angular momentum quan-
which is differential ina, to the TDCS, which is differential tum numbers. The SDCS is then a simple sum of contribu-
in g, tions from each partial wave:
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0.08f
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> FIG. 13. Equal-energy sharing,
e coplanar TDCS for 20-eV incident
o energy with 6,, fixed. Internor-
° malized measurements from Ref.
g [38], reported in arbitrary units,
3 were scaled by 0.20 to the best-fit
2 calculated cross section. Solid
3 curves: present results. Broken
© curves: CCC results from Ref.
[172].
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doion(e) p and the spin asymmetry which is identically equal to
de |, _Lq2. KESsinacosa R s
ost3o7’ (28)

d
XL%'z |m{[¢:'1|2(|’1,r2)] %

where the singlet and triplet total cross sectiomg,and o1
(defined here without inclusion of spin statistical weights

(26) are obtained by integrating the corresponding SDCS values
P overe.

X[¢:'1|2(|'1'r2)]]

Since there are no cross terms in the SDCS expression, we

flux components. In general, significantly fewer partial-wave 114 availability of absoluteexperimental values of the

terms are needed to converge the SDCS than are needed4{§cg at |ow impact energies offers the most stringent test

converge the TDCS. For the incident energies we report her]%r judging the fundamental correctness of any method that

there was no need to include contributions for6. The 5 on0ses to correctly treat the three-body Coulomb problem
SDCS is symmetric abol/2, in accordance with the “Sym-  ¢rom first principles. There are many examples of approxi-

metrization postulate” of the formal theof87]. This prop-  5te methods that give excellent results only for specific exit
erty follows naturally from our treatment since the cross SeCyeometries and energy asymmetr[@§ or that give very

tions are extracted directly from radial wave functions whichg,qq rejative differential cross sections, yet fail to predict the

themselves display the proper symmetry with respect to inggrect magnitudes of those quantit|d®,11. Absolute ex-
terchange of electrons. erimental data are fortunately available for the case of equal

Other q_uantmes of interest that we report are the tOtaCnergy sharing €, =¢,=E/2) at a specific set of coplanar

cross section, geometries. Most experimental data have been taken for ge-
1 ometries where the two detectors are rotated together while

T keeping the angular separati®h, between then(see Fig.

Tion 4 (O.S+ SUT)i (27) 10) ﬁxed.
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FIG. 14. As in Fig. 13 for
25-eV incident energy. Scale fac-
tor used to normalize experimen-
tal data is 0.16.
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In 1996, Raler et al. [38] published a set of TDCS data data, so for these two panels, we chose a single scale factor
for e-H ionization for coplanar geometries. These data werdhat gives the best fit to our calculated cross section. As a
not absolute, but were “internormalized.” For each energy,consistency check, we extracted those data points from the
a single, geometry-independent scaling factor is needed tiixed 6, measurements that had corresponding points in the
normalize the data, but that factor depends on energgeRo fixed 6,, data and plotted them along with the latter in Fig.
et al. [39] later presented a small set of absolute measuretl. Where comparison is possible, the agreement is good.
ments in Ref[39] at 15.6- and 17.6-eV incident energy, for ~ We have also plotted in Figs. 11 and 12 the recent con-
the case wheré;, was fixed at 180°. We have used the datavergent close-couplingCCC) results of Bray{11] for com-
from Ref.[39] at 17.6 eV to put their earlier data on an parison. The agreement between our calculations and CCC is
absolute scale. These TDCS values are shown in Fig. 14omewhat mixed and decidedly geometry dependent. For the
along with our calculated values. The top panel shows botlthree largest;, data sets shown in Fig. 11, the CCC results
the absolute data from Ref39] and the normalized data are roughly a factor of two smaller than our results, but agree
from Ref.[38], which are mutually consistent and in good reasonably well in shape. At the two other angles, the mag-
agreement with our calculated values. The cross section initude of the CCC cross sections near the peaks is roughly
this case is strongly peaked at angles of 0° and 180°, where same as our results, but there are noticeable differences
one electron is scattered forward and the other recoils in thim the shapes, with the CCC showing narrower peaks that are
backward direction. The next four panels in Fig. 11 withslightly shifted relative to experiment with more significant
fixed #,, values compare the normalized values from Ref.discrepancies near the troughs. For the figgddata in Fig.

[38] with our calculations. Overall, there is excellent agree-12, there are also noticeable differences, with CCC showing
ment. The largest discrepancy is at the minimum #gs  peak values that are roughly half of what we find and slightly
=90°. The cross-section set is smallest for this geometrghifted relative to experiment. er et al. [39] have also

and converging the TDCS in partial waves becomes increagpresented distorted partial wave results of Pan and Starace
ingly difficult as 6,, decreases. [5], which is only available fop,,=180°. These resuliot

Figure 12 also shows 17.6-eV data from the measureshowr) are in good agreement with our calculations.
ments of Ref[38], but for these cases one detector was held Comparison between the calculated equal-energy sharing
fixed and the other was rotated independently. These datoplanar TDCS with fixed,, and values measured by &er
have a normalization which is different from the fix#g, etal. [38] for 20-, 25-, and 30-eV incident energies are

022712-14



ELECTRON-IMPACT IONIZATION OF ATOMIC HYDROGEN PHYSICAL REVIEW A63 022712

0.5 5\ 0.2

: 0.15F &4

0.05] e e e S -

-1

FIG. 15. As in Fig. 13 for
30-eV incident energy. Scale fac-
tor used to normalize experimen-
tal data is 0.16.

. 1
cross section (10 '8cm2 eV
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shown in Figs. 13—-15. At these energies, the experimental —~ 02F —— ARSI R T
values are unfortunately known only in the originally re- ' ’ '
ported arbitrary units. We chose a single scaling factor for

}‘
\

: . 50.15
each energy that normalizes the experimental values to =
known units. Agreement between theory and experiment is =)
excellent over this range of geometries with the largest dis- @ el
crepencies generally occurring for smaller values 6% 2
where the effects from truncating the partial wave expansion 3 0.05
of ¥, are most significant. Recent CCC calculatigad] s

included results for these energies as well and are shown for 0
comparison. The situation is basically the same as with the
17.6-eV data. At the largest;, values, the CCC results are
consistently smaller than ours, while at the smaéley val-
ues, there is less discrepancy in magnitude, but more pro-
nounced differences in the peak positions and shapes. It is
entirely possible that these latter differences may be related
to difficulties associated with partial wave convergence
which is most difficult at small values df,,. Overall, there
is no single scaling that suffices to bring the CCC results at a
particular energy into uniform agreement with our results.
Distorted partial wave resuli@ot shown are also available
at these energies, but only fék,=180° [39]. Once again, 6
the agreement with our results was found to be quite good. anergy of one electron (6V)

The SDCS reduces to an incoherent sum of partial wave FiG. 16. Components of the SDG®ith spin factors included
components according to E¢6). For values ofa away  for electron-hydrogen scattering at 25-eV incident energy corre-

from 0° and 45°, the individudl components were extrapo- sponding to particular total spin and angular-momentum quantum
lated to infinitepy from calculated values. The inability to numbers.

triplet SDCS (1 0417cm2eV‘1)
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distinguish, at finite distances, between ionization and exciwhich there is the least uncertainty associated with our ex-
tation of highn Rydberg states prevented us from directly trapolation. We hasten to point out, however, that Shyn’s
calculating the SDCS within 5-10° af=0 and 90°, de- values were determined by integrating measured values of
pending on the energy arndvalue considered. To extend the the doubly differential cross section and the latter had to be
SDCS into these ranges, we used a linear extrapolation of thextrapolated through small and large angular regions where
SDCS as a function of to e=0 ande =E. measurements could not be made.

We show individual contributions to the 25 eV incident  Finally, we list values of the integrated ionization cross
energy SDCS for different values bfandSin Fig. 16. Each  sections and spin asymmetries in Table Il. These provide a
of these components is symmetric abeut E/2, reflecting rather coarse measure of the ionization dynamics and are
the indistinguishability of the electrons. The triplet=0  quantities that are adequately described by other theoretical
must vanish at=E/2 since it is extracted only from anti- methods as well.
symmetric radial functions and it contributes negligibly to
the total SDCS. We found this to be the case at the other
energies we studied as well. We found that the SDCS gen- VII. DISCUSSION

eraII_y converged_ faster as a functionLofhalj did the TDCS. The complexity of the asymptotic form of the wave func-
Singlet and triplet components, along with the total, of theyo, for three charged particles and the fact that it is only

SDCS for 17.6-, 20-, 25, and 30-eV incident energy argon in the “far” asymptotic region has been a major
shown in Fig. 17. There IS a marked b.OW'.ng O.f the SDC_SbottIeneck in the development of practia initio compu-
that occurs as the energy increases, which is evidently attriziona) approaches to electron-impact ionization. We have

utable to the triplet componentl, while the singlet contribution ide stepped the problem by using a mathematical transfor-
shows less dependence on ejected electron energy over ffgyion of the Schrdinger equation that effectively turns the

whole range of incident energies considered. For 25-eV iNgcattered wave into a bound state. Exterior complex scaling

cident energy, we have plotted the data reported by Shypq,ides us with a method for computing the physically cor-
[40]. Our calculated SDCS for this energy is in good agreeyec waye function over a finite region of space without ex-
ment with Shyn’s data except for the one valu&f where  icit specification of asymptotic boundary conditions. The
our calculated value falls outside the reported error bars. 'néccuracy of the computed wave function is limited only by
terestingly, this value corresponds to=45, the point at  ihe finite size of the grid and the number of partial waves
retained. The errors in the wave function can, in principle, be
made arbitrarily small given sufficient computing power.

It is also worth noting that grid-based wave-packet meth-
%ds, based on solving the time-dependent Sdihger equa-
tion, are also being developed to study electron-impact ion-

TABLE 1. Singlet, triplet, and total ionization cross sections
and the spin asymmetry. Cross sections are in unia%,oasymme-
try is dimensionless. Spin factors are not included in the singlet an
triplet cross sections.

Incident energy 176 eV 20 eV 25 eV 30 eV ization [41,42. These .approaches alsc_). avoid explicit
enforcement of asymptotic boundary conditions for breakup,
Singlet 2.027 2.741 3.807 4.036 so it will be interesting to see if they will be able to provide
Triplet 0.389 0.538 0.885 1.047 the kind of detailed differential cross-section information of
Total 0.798 1.089 1616  1.794 the type presented here.
Asymmetry 0.513 0.506 0.452 0.416 The principle sources of uncertainty in the computed ion-

ization cross sections are related more to the particular meth-
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TABLE lll. Seven-point finite difference formulas for the “interface” between two regions with grid spagjregslh. Special formulas
are needed for the second derivative at the interface pgirds well as two points on either side. The columns of the table give the
coefficients needed to approximdtg for n=p=2, n=p=1, andn=p. Whenn>p the spacingg andh must be permuted.

n=p¥2 n=p*1 n=p
faza 1 3g?+3gh—2h? 2(11g—9h)h?
159(5g+h) 24g2(2g+h)(4g+h) 9g2(g+h)(3g+h)(3g+2h)
fas2 —(8g+h) — (5g2+6gh—2h?) —3(11g—8h)h?
129%(4g+h) 3g%(3g+h)(3g+2h) 2g%(g+h)(2g+h)(2g+3h)
frsa 2(7g+2h) 1392+ 21gh+ 2h? 6(11g—5h)h?
39°(3g+h) 4g%(g+h)(2g+h) g%(g+h)(g+2h)(g+3h)
fn —(34g+15h) —(9g%+30gh+ 10h?) 36g2—121gh+ 36h?
69%(2g+h) 3g%(g+h)(g+2h) 18g2h?
fres 5g-+4h 22h%+15hg—g? 6g2(11h—5g)
3¢%g+h) 24g°h? h2(g+h)(2g+h)(3g+h)
o2 —(4g+5h) —2¢%(10h—g) —39%(11h—8g)
60g°h h2(g+h)(2g+h)(3g+h)(4g+h) 2h?(g+h)(g+2h)(3g+2h)
fo=s 8y* ¢’(5h—g) 2¢°(11h—9g)
h(g-+h)(2g+h)(3g+h)(4g+h)(5g+h) 4n(g+h)(2g+h)(g+2h)(3g+2h) 9h?(g+h)(g+3h)(2g+3h)
Error —

__lg4(g_h)fvii
630 n

-3 il
55509 (79+100)(g—h)fy

1 y
2h2( ~ _ vii
2209 M (g—Mfy

ods we have used to extract dynamical information than theynatching scheme is a viable alternative to the approach we
are to any errors in the underlying wave functions. The fluxhave used here, once an accurate wave function is in hand.
operator approach we employed requires us to calculate thEhese are clearly areas ripe for future investigation.

wave function at large distances, since it relies on an uncov- Note added in proofWe were recently made aware of
ering of the ionization wave by discrete two-body compo-earlier work by Brauneet al. [44] in which internormalized
nents that only occurs at large distances. This observatioRDCS for fixed 6,, and fixedé, at 17.6 eV were reported.
puts practical limitations on our ability to compute singly However, as Bray has recently pointed qatl], thre are

and triply differential cross sections for highly asymmetricinternal inconsistencies in the 17.6 eV data that cast doubt on
energy-sharing cases which sample regions of space wheretltis internormalization. In view of these inconsistencies in
is impossible to disentangle the discrete and breakup charthe experimental data, we feel that our independent normal-
nels. Going to even larger grids will be possible as computization of the fixedd,, 17.6 eV data(shown in Fig. 12 is
ers improve, but will never allow arbitrarily small energy for reasonable.
one electron.

There is much evidence to suggest that the techniques
used to extract cross sections from a computed wave func-
tion can dramatically affect the accuracy of the results in &

X ; epartment of Energy by the University of California
way that |s.not necessarily connected to the accuracy of thanrence Berkeley National Laboratory and Lawrence Liv-
wave function. For example, we recently showed that we

. ermore National Laboratory under Contract Nos. DE-ACO03-
could take an accurate wave function, computed by ECS, andlsg 55498 ang W-7405-Eng-48, respectively. The calcula-
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clear that the flux approach we have used here is in any sen
the only way, or the optimum way, to extract the ionization
cross sections. Our recent wdd3] on integral expressions
for breakup cross sectiongwith short-range potentials
shows them to be far more economical, a_nd reliable_z, thana  AppENDIX: FINITE DIFFERENCE FORMULAS

direct evaluation of the flux. More work will be required to i

see if these techniques can be used in the case of Coulomb Finite difference formulas approximatg, , the second
interactions. It is also possible that some sort of asymptoticlerivative off(x) evaluated at the grid point,, in terms of
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straddles the complex turning poiR% (or an interface be-

function’s values at each nearby grid point are expressed aween two regions with different grid spacingther formu-

Taylor-series expansions about x,,. Finite difference for-

las must be used.

mulas are arrived at by taking appropriate linear combina- Let x,, be either the complex turning poiR, or an inter-
tions of these expansions so that the first derivative and asce point between two regions with different grid spacing.
many higher derivative terms as possible vanish. The numbe3pecial formulas are needed to approximate the second de-
of higher derivative terms that can be made to vanish, andvative at the poink, and at the two points on either side of
the accuracy of the finite difference approximation, depends,. In general, a seven-point finite difference formula has

upon the number of grid points used in the formulas.

In our calculations we used seven-point, central difference

formulas that usef .3, fhp, fhq [f(X) evaluated atx
=Xp+3, Xnx2, Xn+1] @andf,, to approximate |, . If the grid is
evenly spaced, . ;=X,+ jh, then the seven-point finite dif-
ference formula

i1 3 3 49 3

f h2 gofn 37 Zofn—2+§fn—l_1_8fn+§fn+l
——f +if ﬂhﬁfmn (Al)
20 "*27 90 "*3] " 25200

is accurate to sixth order in the grid spacimgrhe last term
in Eq. (Al) is the leading error term and is given only to
indicate the accuracy of the approximation.

When using complex coordinates the paramétén the

the form

3

<23 ajfnyj,

==

fh (A2)
where the coefficients; are given by Eq(Al) if x, is more
than two grid points from an interface point. The coefficients
needed for the cases=p, p*=1, orp=2 are listed in Table
Ill. Let g andh be the “grid spacings”(possibly complex
on the left and right side ok, so thatx, ;=x,—jg and
Xptj=Xpt+jh, wherej is posmve The coefficientsa,
needed in Eq(A2) to approximatef! whenn=p-2, p
—1 or p are found by reading down the appropriate column
in Table Ill. Forn=p+1 or p+2 the coefficientsa; are
found by readingup the appropriate columand permutingg
andh.

The leading error terms are listed at the bottom of Table

Taylor-series expansions may be complex. For instancell. These seven-point formulas are accurate to fifth order in
Taylor-series expansions relating function values at two gridhe grid spacing. In general, finite difference formulas that

points on the complex part of the contour defined in @4)
will be in terms of powers oh=|h|e'”. Equation(Al) can

straddle two regions of different grid spacings will be less
accurate by one order than their uniform grid counterparts.

be used to approximate second derivatives at most points dfor this reason high-order finite difference formulas, such as
both the real and complex portions of the grid. However,those presented here, are essential when different grid spac-

when the seven-point “stencil” defined by EqQA1)

ings and/or exterior complex scaling are used.
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