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Electron-impact ionization of atomic hydrogen
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Exterior complex scaling enables one to solve the time-independent Schro¨dinger equation for three charged
particles without explicitly imposing the asymptotic boundary condition for three-body breakup. We have used
this formalism to study electron-impact ionization of atomic hydrogen by directly solving for the radial
components of the scattered wave on a complex, exterior scaled numerical grid. Computational procedures,
presented briefly elsewhere@T. N. Rescigno, M. Baertschy, W. A. Isaacs, and C. W. McCurdy, Science286,
2474 ~1999!#, are discussed here in greater detail and additional results are presented. Our method is limited
only by the finite size of the grid and the number of partial-wave components retained in the expansion of the
wave function and, unlike other methods that have been used to study ionization, involves no uncontrolled
approximations. Our calculated triply differential cross sections at 17.6, 20, 25, and 30 eV are found to be in
excellent agreement with recent measurements.
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I. INTRODUCTION

Electron-impact ionization of atomic hydrogen is the si
plest example of an important class of problems in atom
collision theory that have persistently resisted numerical
lution. The formal theory has been known for some tim
beginning with the work of Peterkop@1# and of Rudge and
Seaton@2# in the 1960s, who derived the form of the wav
function for three charged particles in the ‘‘far’’ asymptot
region where all three particles are well separated, thro
the more recent work of Alt and Mukhamedzhanov@3#, who
derived a solution of the three-charged-particle Schro¨dinger
equation which is valid in all asymptotic regions. Followin
the pioneering work of Brauneret al. @4#, there have been
many ‘‘ansatz’’ studies over the past decade in which asp
of the asymptotic wave function for three charged partic
are incorporated into various types of distorted-wave form
las for the ionization amplitude, with varying degrees of su
cess@5,6#. Much of this work is summarized in a rece
review by Lucey, Rasch, and Whelan@7#. The formal theory,
however, has not to date provided a viable path to an ‘‘
act’’ computational approach to the problem.

Two-body, close-coupling expansions are being app
to electron-atom scattering above the ionization thresh
with renewed vigor, following the stunning demonstration
Bray and Stelbovics in 1993@8# that such expansions can b
made ‘‘convergent’’ for both excitation and total ionizatio
cross sections. More recent attempts to extend these met
to the calculation of differential cross sections for electro
impact ionization have been only partially successful, yie
ing singly differential cross sections that oscillate about
correct values@9# and triple differential cross sections th
display the correct relative angular behavior but require m
tiplication by unforeseeable constants@10,11# to be compat-
ible with experiment. The magnitude of these effects dim
ishes with increasing collision energy as the ionization cr
sections become better described by perturbation theory.
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cent work@12# has shown that such spurious behavior is n
necessarily connected to the long-range Coulomb inte
tions between charged particles, but rather is connecte
the methods used to extract information about three-b
breakup from a wave function that is matched to a sum
discretized two-body channels.

In several previous papers@13,14#, we outlined a strategy
for computing ionization cross sections by a route that co
pletely avoids explicit specification of asymptotic bounda
conditions. We use exterior complex scaling@15# of all in-
terparticle distances to simplify the asymptotic bounda
conditions for scattering. With this mathematical transform
tion of the Schro¨dinger equation we can calculate the sc
tered wave portion of the full wave function to arbitrary a
curacy on a finite region of space. Scattering information
extracted by applying the quantum-mechanical flux opera
to the computed wave function at several finite distances
numerically extrapolating to infinite distances in order to o
tain differential cross sections for ionization.

Previously, we demonstrated the viability of this proc
dure with calculations of total and differential ionizatio
cross sections for atomic hydrogen in thes-wave ~Temkin-
Poet! model of e2-H scattering @16#. The Temkin-Poet
model @17,18# keeps only states of zero angular momentu
for each electron, leaving a simplified, two-dimension
problem, but one with the same pathologies in t
asymptotic boundary conditions as the full problem. W
have since extended the method to a treatment of the
electron-hydrogen ionization problem and recently a
nounced the results of this treatment@19#, including triply
differential cross sections at one energy~17.6 eV! for which
absolute measurements are available for comparison. In
paper we give a detailed description of the computatio
procedures that were employed and report results at sev
other energies.

Exterior complex scaling may solve the problem of intra
table scattering boundary conditions, but calculating the s
©2001 The American Physical Society12-1
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tered wave on a large enough region to obtain accurate
ization information still poses an enormous computatio
challenge. We calculate the radial functions in a partial wa
expansion of the scattered wave function directly onto
large, two-dimensional grid. The coupled, two-dimensio
differential equations that must be solved to obtain the ra
functions lead to systems of as many as five million co
plex, linear equations for the calculations reported here.
solved these coupled equations using a distributed mem
parallel supercomputer to implement an iterative algorit
with preconditioners specifically tailored to the problem
hand.

Technical reasons connected with the use of comp
scaling require us to truncate the interaction potentials on
complex portions of the grid@20#. The physically correct
results are then recovered by extrapolating the computed
ues to infinite box size. Because we cannot offer a st
mathematical proof that this extrapolation yields the ex
value, we have carried out a number of numerical tests
show that the procedures employed are in fact producing
correct result. For instance, we will show that the radial wa
functions we obtain by exterior complex scaling display t
three-body logarithmic phase distortion that must charac
ize an exact solution. In the course of our previous work w
the Temkin-Poet model, we studied the effects of finite b
size on the accuracy of the extrapolated results and fo
that within certain limitations the results are, indeed, corre
The fact that there have been new results@21# reported re-
cently on ionization cross sections in the Temkin-P
model, which were obtained by a completely differe
method, that agree with our previously published resu
gives us added confidence in the soundness of our met
Ultimately, however, the fundamental correctness of our p
cedure relies on the empirical observation that the compu
results are in perfect agreement with absolute experime
measurements that probe the most intimate details of
collision dynamics at energies where long-range correla
effects are very important.

Our method consists of two steps:~i! computing the scat-
tered wave part of the total wave function without expli
reference to any asymptotic form and~ii ! extracting detailed
information for electron-impact ionization from the com
puted wave function, again without explicit reference to
asymptotic form. We describe our method for calculating
scattered wave in Secs. II A and II B. Simplification of th
scattering boundary conditions with exterior complex scal
is outlined in the latter section. In Sec. III we describe deta
of the numerical and computational methods we used
solve the Schro¨dinger equation on a complex grid. In Sec. I
we describe properties of the scattered wave through ex
nation of its radial components and give a number of illu
trative examples. In Sec. V we describe the numerical p
cedures we used to extract dynamical information from
computed wave functions and to compute differential cr
sections. Our results for singly and triply differential cro
sections are presented in Sec. VI. Section VII contains c
cluding remarks.
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II. THEORETICAL APPROACH

A. Scattered-wave formalism

Our approach to the electron-impact ionization proble
was outlined in two previous papers@13,14#. The method
consists of two distinct steps. The first entails a calculation
the outgoing wave portions of the wave function witho
recourse to any explicit asymptotic form. This is acco
plished by applying an exterior complex scaling transform
tion to the radial electron coordinates. The second step
quires a procedure for extracting dynamical informati
from the scattered waves, again without explicit reference
an asymptotic form. To accomplish the extraction, we ap
quantum-mechanical flux operators to the computed w
functions.

We begin by partitioning the total wave function into a
appropriately symmetrized unperturbed stateCki

0 , describing

a free electron incident with momentumk i on a ground-state
hydrogen atom

Cki

0 ~r1 ,r2!5
1

&
@F1s~r1!eiki•r21~21!sF1s~r2!eiki•r1#

~1!

and a scattered wave termCsc
1 . The symmetry of the tota

wave function is determined by the magnitude of the to
spin: it is either symmetric for total spinS50 or antisym-
metric for S51. The scattered wave functionCsc

1 is defined
as

Csc
1~r1 ,r2!5G1~E!~Ĥ2E!Cki

0 ~r1 ,r2!, ~2!

or, equivalently, by a purely outgoing solution of the inh
mogeneous differential equation

~E2Ĥ !Csc
1~r1 ,r2!5~Ĥ2E!Cki

0 ~r1 ,r2!, ~3!

that comes from rearrangement of the Schro¨dinger equation
with HamiltonianĤ,

Ĥ~r1 ,r2!52
1

2
¹1

22
1

2
¹2

22
1

r 1
2

1

r 2
1

1

ur12r2u
. ~4!

Asymptotically, Csc
1 decomposes into a sum of discre

~elastic and excitation! two-body channels and a termC ion
1

that describes the ionization continuum

Csc
1~r1 ,r2! ;

r 1 ,r 2→`
(

n,l ,m

1

&
FFnlm~r1!

f nlm~ r̂ 2!

r 2
eiknr 2

1~21!s~1↔2!G1C ion
1 ~r1 ,r2!. ~5!

The discrete channel components factor into products
bound atomic states and one-electron continuum functi
while the ionization term is intrinsically nonseparable@12#.
In the far asymptotic region where all interparticle distanc
are large, the ionization term behaves as@22#
2-2
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ELECTRON-IMPACT IONIZATION OF ATOMIC HYDROGEN PHYSICAL REVIEW A63 022712
C ion
1 ~r1 ,r2! ;

r→`

2 f i~ r̂ 1 , r̂ 2 ,a!Aik3

r5

3expH i Fkr1
z~ r̂ 1 , r̂ 2 ,a!

k
ln~2kr!G J ,

~6!

where f i is the ionization amplitude and the hyperspheri
coordinates are defined byr5(r 1

21r 2
2)1/2 and a5tan21(r1 /

r2) andk is related to the total energy byE5k2/2. Note that
the coefficientz( r̂ 1 , r̂ 2 ,a) depends on the energies and eje
tion angles of both electrons. Equation~6! is written only for
illustrative purposes and is not explicitly part of our comp
tational procedures.

Adopting a conventional partial-wave description, we e
pand bothCki

0 andCsc
1 in coupled spherical harmonics

Yl 1 ,l 2
LM ~ r̂ 1 , r̂ 2!5 (

m1 ,m2

^ l 1l 2m1m2uLM &Yl 1m1
~ r̂ 1!Yl 2m2

~ r̂ 2!

~7!

which are eigenfunctions of total angular momentumL and
its projection M along the z axis ~defined to be in the
direction ofk i!. In Eq. ~7! l 1m1 and l 2m2 refer to the orbital
angular momenta of the individual electrons a
^ l 1l 2m1m2uLM & is a Clebsch-Gordan coefficient. For ele
trons incident on hydrogen in an initials state, we need only
the terms for whichM50 in the expansions ofCki

0 andCsc
1 ,

Cki

0 ~r1 ,r2!5 (
L50

`
i LA2p~2L11!

r 1r 2ki

3@fnl~r 1! ĵ L~kir 2!Y 0,L
L0 ~ r̂ 1 , r̂ 2!

1~21!sĵ L~kir 1!fnl~r 2!Y L,0
L0 ~ r̂ 1 , r̂ 2!#, ~8!

Csc
1~r1 ,r2!5

1

r 1r 2
(

L,l 1 ,l 2
c l 1l 2

L ~r 1 ,r 2!Y l 1 ,l 2
L0 ~ r̂ 1 , r̂ 2!. ~9!

Since both total angular momentum and parity@23# are con-
served quantities, the sums can be limited to terms for wh
L1 l 11 l 2 is even.

Substitution of the angular expansions defined in Eqs.~8!
and~9! into the scattered wave equation, Eq.~3!, gives a set
of coupled, two-dimensional equations for the radial fun
tions c l 1l 2

L for each value ofL andS,

@E2Ĥ l 1
~r 1!2Ĥ l 2

~r 2!#c l 1l 2
L ~r 1 ,r 2!

2 (
l 18 ,l 28

^ l 1l 2i l 18l 28&Lc l
18 ,l

28
L

~r 1 ,r 2!

5x l 1l 2
L ~r 1 ,r 2!. ~10!

In Eq. ~10!, Ĥ l(r ) is the radial hydrogenic Hamiltonian,
02271
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Ĥ l~r ![2
1

2

d2

dr2
1

l ~ l 11!

2r 2
2

1

r
~11!

and the radial coupling potentials^ l 1l 2i l 18l 28&L are obtained
by taking matrix elements of 1/ur12r2u between two coupled
spherical harmonics

^ l 1l 2i l 18l 28&L[^ l 1l 2L0u
1

ur12r2u
u l 18l 28L0&

5(
l

Cl 1l 2l
18 l

28
L,l r ,

l

r .
l11

, ~12!

wherer , (r .) is the lesser~greater! of r 1 andr 2 and Dirac
notation denotes integration over the angular coordinate
both electrons. The coefficientsCl 1l 2l

18 l
28

L,l
are discussed by

Percival and Seaton@23#. The inhomogeneous termx l 1l 2
L that

appears on the right-hand side of Eq.~10! arises from the
partial-wave expansion of (Ĥ2E)Cki

0 ,

x l 1l 2
L 5

i L

ki
A2p~2L11!3F S ^ l 1l 2i0L&L2

1

r 2
d l 10d l 2LD

3fnl~r 1! ĵ L~kir 2!1~21!s~1↔2!G . ~13!

In a conventional approach, one would attempt to so
the coupled equations represented in Eq.~10! by applying
the correct scattering boundary conditions@Eq. ~5!# to each
of thec l 1l 2

L . The fact that such a task has, to date, never b

carried out testifies to the intractability of such an approa
Without a viable means for explicitly imposing the corre
asymptotic boundary conditions for the ionization comp
nents of thec l 1l 2

L , we need an alternative approach, one t

addresses the outgoing wave character of the scattered
without explicitly imposing detailed asymptotic bounda
conditions. Exterior complex scaling of the radial coord
nates provides such a path, simplifying the outgoing wa
boundary conditions and allowing thec l 1l 2

L to be calculated

correctly over a finite region of space.

B. Exterior complex scaling

The method of complex rotation or complex scaling,
which all interparticle coordinates are rotated by a fix
angle into the complex plane, is well known in physics, bo
as a formal mathematical device in nonrelativistic scatter
theory and as a powerful computational tool@24#. Most ap-
plications of complex scaling in atomic and molecular phy
ics have centered on the calculation of resonance ener
and lifetimes, which are related to the discrete eigenvalue
the Hamiltonian under complex rotation. An important ea
extension of complex scaling was Simon’s exterior comp
scaling procedure~ECS! @15#, in which coordinates are only
scaled outside a~hyper!sphere of radiusR0 . This extension
was motivated by the desire to treat Hamiltonian interactio
2-3
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BAERTSCHY, RESCIGNO, ISAACS, LI, AND McCURDY PHYSICAL REVIEW A63 022712
that may have interior nonanalyticities, such as the Bo
Oppenheimer Hamiltonian viewed solely as a function
electronic coordinates@25#, or that are only known numeri
cally on a finite region of coordinate space. The ECS pro
dure has made it possible to carry out direct resonance
culations on a variety of molecular problems.

Complex scaling techniques can also be used, with cer
caveats, to calculate scattering cross sections without ex
itly enforcing asymptotic boundary conditions. Apart fro
applications to photoionization@26,27#, this area has re
cieved far less attention than complex scaling in connec
with resonances. A solution of the full scattering proble
requires matrix elements of the resolvent between functi
of the form V(r )sin(kr) and these diverge under comple
rotation unless the interaction potential,V(r ), is exponen-
tially bounded@28#. This fact had, until recently@20#, posed
a major obstacle to using complex scaling to solve scatte
problems with long-range interactions. The key to apply
the ECS procedure to long-range potential problems is
truncate the interaction potential at the boundary of the
persphere and to either carry out calculations withR0 large
enough that the truncation of the potential is of no physi
consequence or, if this is impractical, to carry out calcu
tions for different values ofR0 and perform a numerica
extrapolation ofR0→` to obtain the physically correct re
sults.

We take the ECS transformation as a mapping,r→z(r ),
of all radial coordinates to a contour

z~r ![H r , r ,R0

R01~r 2R0!eih, r>R0
~14!

that is real forr ,R0 , but rotated into the upper half of th
complex plane beyondR0 . In two dimensions the contou
defined in Eq.~14! defines an interior box of lengthR0 ~see
Fig. 1! in which both radial coordinates are real. Outside
that box one or both coordinates are complex.

The transformation has the desirable property that
outgoing wave evaluated on the contour Eq.~14! dies expo-
nentially as the coordinates get large. Thus, the ECS pr
dure transforms any outgoing wave into a function that fa
off exponentially outsideR0 but is equal to the infinite rang
wave over the finite region of space where the coordina
are real. If we apply this transformation to both radial co
dinates in the coupled equations@Eq. ~10!# and require the
solutions to vanish for values of the radial coordinates w
beyondR0 ~in practice, we discretize the coordinates onto
finite grid and require the solutions to vanish at the g
boundaries!, we will obtain complex-scaledc l 1l 2

L that are ex-

ponentially decaying functions outside of the interior regi
shown in Fig. 1. The fact that these are the physical soluti
we seek can be seen as follows. A general solution of
inhomogeneous scattered wave equation@Eq. ~3!# can be
written as a linear combination of the particular solution d
fined by Eq.~2!, which is purely outgoing, plus any solutio
of the corresponding homogeneous equation. Solutions
the latter, however, which are regular at the origin, wou
contain plane-wave terms that diverge under complex sca
02271
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and are thus excluded from any numerical solution by
choice of boundary conditions.

The coupled equations@Eq. ~10!# are transformed by
evaluating the derivatives, all potentials, and the inhomo
neous termsx l 1l 2

L on the complex contours. This require

some care to ensure the derivatives are taken along the c
plex contour, particularly at the pointr 5R0 where the con-
tour has a discontinuous first derivative. Transforming
one-electron potentials is simply a matter of evaluating
Coulomb potentials for complex values. We handle the tw
electron potentials by applying the ECS transformation se
rately to the regionsr 1,r 2 andr 1.r 2 . As previously stated,
we cannot apply the ECS transformation to the inhomo
neous terms on the right-hand side of Eq.~10! because the
potential terms do not fall off rapidly enough to overcom
the exponential increase of the free functions along the c
plex part of the contour, making it necessary to truncate
long-range Coulomb potentials atR0 in the inhomogeneous
termsx l 1l 2

L @20#. This is the only source of systematic error

our scheme for calculating the scattered wave with exte
complex scaling. The numerical procedures we employe
minimize this source of error will be addressed below.

Solving the coupled equations transformed in this w
gives thec l 1l 2

L evaluated along the complex contours.

practice, it is simpler to think of thec l 1l 2
L calculated under

ECS as functions of the real coordinatesr 1 andr 2 . Thus, we
treat the calculatedc l 1l 2

L as nonanalytic functions ofr 1 and

r 2 ~with an enforced discontinuity of the first derivative
with respect to the radial coordinates at the turning po!
rather than as analytic functions evaluated along the cont
For the remainder of this paper we shall usec l 1l 2

L (r 1 ,r 2) to

FIG. 1. On the top is an illustration of the ECS contour rotat
into the upper half of the complexr plane beyondR0 . On the
bottom is a depiction of exterior complex scaling for two rad
coordinates.
2-4
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ELECTRON-IMPACT IONIZATION OF ATOMIC HYDROGEN PHYSICAL REVIEW A63 022712
refer to the complex-scaled radial functions. In the reg
r 1 ,r 2,R0 the calculatedc l 1l 2

L are the same as the unscal

c l 1l 2
L aside from the effects of contributions from highn

bound states of hydrogen caused by truncating the Coul
potentials in thex l 1l 2

L .

III. COMPUTATIONAL PROCEDURES

A. High-order finite difference methods

We solve for thec l 1l 2
L directly on a two-dimensional ra

dial grid using finite difference approximations for the d
rivatives. The coupled equations are represented by a m
with the block structure illustrated in Fig. 2 where the dime
sion of each block is the total number of two-dimension
~2D! grid points, which we denote asN, and the number of
blocks is the number of partial wave channels retained in
coupled equations. Diagonal blocks,A l 1l 2

,

A l 1 ,l 2
[E2Ĥ l 1

~r 1!2Ĥ l 2
~r 2!2^ l 1l 2i l 1 ,l 2&L ~15!

are matrix representations of two-dimensional, uncoupled
dial equations while the off-diagonal blocks are the coupl
potentials^ l 1l 2i l 18l 28&L with ( l 18 ,l 28)Þ( l 1 ,l 2).

Producing meaningful ionization information at energ
several eV above the ionization threshold requires know
Csc

1 at a distance of at least 100a0 . The grid must extend
beyondR0 far enough to allow the complex-scaled rad
functions to decay effectively to zero at the edge of the g
We used grids that extend an additional 25a0 beyondR0 .

With seven-point finite difference approximations to t
second derivatives~accurate to sixth-order in the grid spa
ing!, four grid points pera0 are sufficient to represent osci
latory functions with energies<40 eV. However, a more
densely spaced grid is needed to represent the Coulomb
tential at small distances. We used a spacing of 0.25a0 over
most of the grid with a spacing of 0.05a0 for r 1 and r 2
values less than 2.0a0 . BeyondR0 it is possible to use large
grid spacings without affecting the accuracy of the wa
function where the coordinates are real.

Finite difference formulas that sample regions of two d
ferent grid spacings are less accurate by one order of m
nitude than their uniformly spaced grid counterparts. W
used specialized seven-point finite difference formulas~ac-

FIG. 2. Block matrix structure of the coupled equations us
L50 as an example.
02271
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curate to fifth order! to span the interfaces between regio
of different grid spacings. An advantage of using high
order finite difference is that it allows the grid to be par
tioned into regions of different grid spacing without a si
nificant increase in numerical error. Further details about
high-order finite difference along with the explicit formula
we used are given in the Appendix.

Complex-scaled radial functionsc l 1l 2
L

„z(r 1),z(r 2)… evalu-

ated on the contour defined in Eq.~14! are continuous func-
tions of r 1 and r 2 whose first derivatives are discontinuou
acrossR0 . Finite difference is one of the few numerica
methods that can be made compatible with this contour@20#.
Formulas for the derivatives are generalized to ECS by m
tiplying grid spacings byeih beyondR0 . This produces ex-
actly the required nonanalyticity in the calculatedc l 1l 2

L pro-

vided thatR0 is one of the grid points@29#. The specialized
finite difference formulas we used to span the interface
tween regions of different grid spacing must also be used
spanR0 , even for uniformly spaced grids.

B. Numerical methods for large, sparse linear systems

A typical radial grid withR05110a0 consists of 498 grid
points in one dimension with eachc l 1l 2

L represented by

248 004 values. Keeping 16 partial wave channels in
coupled equations for a particularL leads to a linear system
on the order of four million. Solving a linear system of th
size by Gaussian elimination is impractical, so we must
an iterative algorithm to solve the coupled equations. T
eigenvalue spectrum of a complex-scaled Hamiltonian
such that no known iterative algorithm will converge to s
lution without preconditioning. Therefore, finding a suitab
preconditioner for the coupled equations is a necessity
preconditioner should be a simplified linear system that
an eigenvalue spectrum similar to the original system. T
set of uncoupled radial equations, defined by settin
^ l 1l 2i l 18l 28&L50 for all (l 18 ,l 28)Þ( l 1 ,l 2) in Eq. ~10!, have nu-
merical properties similar to the coupled equations, but
quire solving linear systems only as big as the total num
of radial grid points. We have found solutions of the u
coupled equations to be a suitable preconditioner for solv
the coupled equations. Previously, we treated the Tem
Poet model problem@17,18# ~equivalent to theL5 l 15 l 2
50 uncoupled radial equation! on very large radial grids
@16#. Using the uncoupled equations as a pre-conditio
means solving several independent problems similar to
Temkin-Poet model, and we repeatedly employ the same
merical methods we used for the Temkin-Poet model to
complish the preconditioning step. Convergence of the c
jugate gradient squared~CGS! iterative algorithm@30#, using
solutions to the uncoupled equations as a block-diagonal
conditioner, is shown in Fig. 3 for several different values
L. Each CGS iteration required two solutions of the u
coupled equations, but with different right-hand sides.

The block matrix structure~see Fig. 2! of the coupled
equations suggests a natural level of parallelism for the ite
tive algorithm that make it well suited for distribute
memory, parallel computers. Each partial wave channe
2-5
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BAERTSCHY, RESCIGNO, ISAACS, LI, AND McCURDY PHYSICAL REVIEW A63 022712
assigned an independent group of processors. Solving
uncoupled equations, which is the most computationally
tensive part of the iterative algorithm, is local to each gro
of processors. Matrix-vector products for the coupled eq
tions involve calculating matrix-vector products for each
agonal block, which is local to each processor group, and
every off-diagonal block, which requires communication b
tween different processor groups. The off-diagonal bloc
which are merely the coupling potentials evaluated on

FIG. 3. Convergence of the CGS algorithm for the coup
equations with singlet spin symmetry for various total angular m
mentaL. Error in the calculated scattered wave is plotted for in
dent energies of 17.6 eV~squares! and 25 eV~diamonds!.
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grid, are themselves diagonal matrices so adding each
pling term is a relatively inexpensive operation. Therefo
the bulk of the computations are local to each proces
group.

A single uncoupled, two-dimensional, radial equation p
sents a linear system of;250 000 equations. In a recen
study @16# using the Temkin-Poet model to test our forma
ism we solved linear systems of this type that were as la
as 750 000. Even the uncoupled equations present very l
linear systems and we found that iterative methods fail
converge if we used standard preconditioning techniques
could be made to work if we start with a trial solution that
a reasonable approximation to the true solution. To prod
such a trial vector, we need a direct method of solution t
exploits the structure of the linear equations.

Gaussian elimination~LU factorization!, followed by for-
ward and back substitutions~triangular solutions!, is a classic
method of solving a linear systemAX5b. One key advan-
tage of this ‘‘direct’’ method over the iterative methods is
robustness, in the sense that it involves a fixed number
floating-point operations~dependent only on the matrix di
mension! even if the linear system is ill conditioned. Fo
example, for a dense matrix of sizeN3N, LU factorization
requires 2

3 N3 operations, and the subsequent solution s
requires 2N2 operations. An advantage of using the fini
difference is that the resulting matrices are very sparse
the LU factorizations can be carried out in far fewer ope
tions than would be possible with dense matrices. The
coupled radial equations have the structure of a tw
dimensional, finite difference Laplacian matrix. Withm-
point finite difference formulas these matrices have, at m
2m21 nonzero elements per row and the total number
nonzeros scales linearly with the number of grid points.

Sincem-point finite difference applied to the uncouple
radial equations produces matrices that have onlyO(N) non-
zeros on 2m21 diagonals, as opposed toN2 nonzeros in the
dense case, significant savings in both time and memory
be achieved if we can exploit the sparsity structure of
matrix. One way to exploit sparsity is to use abandsolver,
such as that implemented inLAPACK @31#, a widely used
linear algebra package. Our matrix has bandwidthAN
around the main diagonal. The band solver does not perf
operations on the zeros outside the band, but it fills the n

-
-

TABLE I. The order in which partial wave channels were chosen for each value ofL in convergence
studies.

L50 ~0,0!, ~1,1!, ~2,2!, ~3,3!, ~4,4!, ~5,5!
L51 ~0,1!, ~1,2!, ~2,3!, ~3,4!, ~4,5!, ~5,6!
L52 ~1,1!, ~0,2!, ~2,2!, ~1,3!, ~3,3!, ~2,4!, ~4,4!, ~3,5!, ~5,5!, ~4,6!
L53 ~1,2!, ~0,3!, ~2,3!, ~1,4!, ~3,4!, ~2,5!, ~4,5!, ~3,6!, ~5,6!, ~4,7!
L54 ~2,2!, ~1,3!, ~3,3!, ~0,4!, ~2,4!, ~4,4!, ~1,5!, ~3,5!, ~5,5!, ~2,6!, ~4,6!, ~6,6!, ~3,7!, ~7,7!, ~4,8!
L55 ~2,3!, ~1,4!, ~3,4!, ~0,5!, ~2,5!, ~4,5!, ~1,6!, ~3,6!, ~5,6!, ~2,7!, ~4,7!, ~6,7!, ~3,8!, ~5,8!, ~7,8!, ~4,9!
L56 ~0,6!, ~1,5!, ~2,4!, ~3,3!, ~1,7!, ~2,6!, ~3,5!, ~4,4!, ~2,8!, ~3,7!, ~4,6!, ~5,5!, ~3,9!, ~4,8!
L57 ~0,7!, ~1,6!, ~2,5!, ~3,4!, ~1,8!, ~2,7!, ~3,6!, ~4,5!, ~2,9!, ~3,8!, ~4,7!, ~5,6!, ~3,10!
L58 ~0,8!, ~1,7!, ~2,6!, ~3,5!, ~4,4!, ~1,9!, ~2,8!, ~3,7!, ~4,6!, ~5,5!
L59 ~0,9!, ~1,8!, ~2,7!, ~3,6!, ~4,5!, ~1,10!, ~2,9!, ~3,8!, ~4,7!, ~5,6!
2-6
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ELECTRON-IMPACT IONIZATION OF ATOMIC HYDROGEN PHYSICAL REVIEW A63 022712
zeros completely within the band in theL andU factor ma-
trices. For theLU factorization, the number of operations
O(N2) and the number of nonzeros to be stored isO(N3/2).

We can achieve even greater computational savings
employing a more general sparse solver, which does not
on the band structure and allows for arbitrary patterns
sparseness. For example, if the equations and variable
reordered usingnested dissection@32#, the number of opera
tions and the number of nonzeros are reduced toO(N3/2) and
O(N logN). Sparse solvers are thus asymptotically supe
to band solvers, but, in practice, are much more difficult
develop. There are issues concerned with storing the non
matrix elements so that one column~or row! of the matrix
can be rapidly extracted during the computation@30#. Sec-
ond, and more problematic, there are usually more nonz
in the L and U factors than in the original matrixA. These
new nonzeros are called fills.~This is not an issue with itera
tive solvers where the matrixA is used only in matrix-vector
multiplication and is not modified.! The amount of fill is
influenced by the order of the equations and variables
there has been a considerable research effort in develo
good ordering algorithms to minimize the fill@32,33#. There
are also issues associated with designing efficient algorit
to detect the positions of the fills and set up the sparse ma
storage forL and U @34#. This involves manipulating a se
quence of elimination graphs associated with each Gaus
elimination step. The calculations reported here were car
out with a state-of-the-art sparse solver calledSUPERLU@35#,
which has been optimized to run on both sequential and
allel computer platforms. SequentialSUPERLU offers great
performance compared to band solvers, but was incapab
solving the largest systems we considered withN on the
order of hundreds of thousands or millions. The parallel v
sion ofSUPERLUwe used was designed to enhance scalab
and minimize interprocessor communication and load imb
ance by using a two-dimensional block cyclic partitioni
scheme to partition theL andU matrices on multiple proces
sors@36#.

With a linear solver that takes advantage of the sparsit
the matrix, there is considerable savings in computer t
and memory that comes from using lower-order finite diff
ence formulas. The strategy that ultimately proved succes
for our problem was to carry out a direct solve, usi
SUPERLU, of the linear systems produced by a three-po
finite difference approximation to the uncoupled equatio
These low-order results had unacceptable numerical er
but they did provide a good preconditioner for the iterat
solution of linear systems based on a higher-order finite
ference. We then solved the uncoupled, two-dimensiona
dial equations based on a seven-point finite difference w
the CGS iterative algorithm using the three-point finite d
ference matrices as the preconditioner. As an example, d
~by LU factorization! solution of an uncoupled radial equa
tion approximated by a seven-point finite difference
114 244 grid points took 1477 s using a 332 Mhz Pow
CPU. The CGS algorithm using the lowest-order finite d
ference matrix as a preconditioner converged in seven it
tions and took only 464 s. Finally, the fully coupled set
linear equations was iteratively solved using the uncoup
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solutions as a preconditioner. Thus, the complete solution
the coupled equations used the CGS algorithm at two lev
first in solving the uncoupled equations with different ord
finite difference schemes and then again in an iterative s
tion of the coupled equations.

IV. PROPERTIES OF THE SCATTERED WAVE

The radial functions can be classified into three grou
according to their symmetry properties. Singlet radial fun

FIG. 4. Real parts of three representative radial functions
electron-hydrogen scattering at 17.6-eV incident energy. The up
picture shows the singlet,L52 andl 15 l 251 radial function. The
middle picture shows the triplet,L52 and l 15 l 252 radial func-
tion. The lower picture shows the singlet,L53, l 150, and l 253
radial function.
2-7
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FIG. 5. Calculatedc l 1l 2
L ~solid line! at an incident energy of 30 eV forL52 and l 15 l 251 compared, alongr 15r 2 , to

(A/Ar)ei @kr1B ln(kr)1d# ~dashed line!. In the upper panelsA, B, andd were chosen to best fit the radial function at large distances. At sm
distances this same choice of parameters still gives a good fit to the phase. In the lower panels a similar functional fit was attempte
a logarithmic phase~i.e., settingB50!. This functional form is able to match in phase only over short distances.
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tions with l 15 l 2 are symmetric aboutr 15r 2 while their trip-
let counterparts are antisymmetric. All radial functions w
l 1Þ l 2 are asymmetric. These symmetry properties can
summed up with the relation

c l 2l 1
L ~r 2 ,r 1!5~21!sc l 1 ,l 2

L ~r 1r 2! ~16!

which follows directly from the required symmetry of th
partial wave expansion in Eq.~9!. Note that for every
c l 1l 2

L (r 1 ,r 2) with l 1Þ l 2 that is included in the expansion w

must also be sure to include its counterpartc l 2l 1
L (r 1 ,r 2) in

order to maintain the symmetry of the overall scatte
wave. In our calculations we take advantage of the symm
properties of the radial functions by explicitly storing on
thosec l 1l 2

L for which l 1< l 2 . Thec l 1l 2
L with l 2. l 1 are then

included implicitly, using the relation in Eq.~16!, when it-
eratively solving the coupled equations.

Since we can include only a limited number of terms
the partial wave expansion it is important to choose wh
terms to keep according to their relative importance in
overall expansion. It is not possible to knowa priori the
optimal ordering for choosing partial waves but, for the m
part, partial wave terms should be added to the expansio
the order of increasing (l 1 ,l 2). Applying this simplistic
‘‘rule-of-thumb’’ is more complicated for largeL whereu l 1
2 l 2u can be large. The partial wave terms included in o
calculations are listed in Table I. Note that only terms w
l 1< l 2 are listed since all terms withl 2. l 1 are included
when solving the coupled equations. This particular cho
of partial waves is better suited for singlet rather than trip
calculations because the antisymmetry requirements of
triplet wave function require that partial waves withl 15 l 2
will have much less importance.
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In order to ensure convergence of our truncated par
wave expansion we initially solved the coupled equations
each value ofL with fewer terms than what is listed in Tabl
I. We then incrementaly increased the number of par
waves included until doing so no longer had noticeable
fects on the partial waves originally included. The lists
Table I indicate the number of terms needed to converge
partial wave expansions for the first ten values ofL in our
calculations.

A representative radial function for each of the three sy
metry classes~symmetric, antisymmetric, and asymmetric! is
shown in Fig. 4. All three examples are for 17.6-eV incide
energy. Each radial function was computed on a grid tha
real out to 130a0 . These pictures provide a striking visua
ization of the very different characteristics of the discre
channel and the ionization components of the scattered w

The discrete channels all describe states with one elec

FIG. 6. Development of the logarithmic term in the phase
c l 1l 2

L . Results are shown at 17.6 and 30 eV forL52 and l 15 l 2

51, alongr 15r 2 , along with a a best fit~dashed lines!, using the
asymptotic form (A/Ar)ei @kr1B ln(kr)1d# whereA, B andd are real
numbers.
2-8
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FIG. 7. Flux, as a function of the hyperangle, calculated for various values of the hyperradiusr for the L50, l 15 l 251 radial function
with an incident energy of 17.6 eV. The flux is symmetric about 45°. The upper figures detail the discrete channel contributi
dominate the smalla regions while the lower figures show the smaller ionization component.
ne
th
re
th

t-

he

v
in

i
th
rta

t
th
nn
o

tio

n

4
om
ot
io

the
arly

b

ve
s
ur

the
ry
al-
av-

ce
a-

c-

th
unc-
remaining bound to the nucleus. Therefore, these chan
are characterized by outgoing waves localized along ei
the r 1 or the r 2 axis. Exactly which discrete channels a
present in a particular radial function is governed by
quantum numbersl 1 and l 2 . For instance, ifl 150 then the
radial function along ther 2 axis is dominated by elastic sca
tering with components for excitation to highers states also
present. Whenl 151 then the dominate component along t
r 2 axis is the excitation of the 2p state.

The ionization continuum, describing both electrons mo
ing away from the nucleus, is characterized by the outgo
circular waves that span the region between ther 1 and r 2
axes. An important characteristic of each radial function
that as the wave fronts propagate away from the origin
discrete channel components remain confined to a ce
distance from each edge. That means that if we examine
radial functions along arcs of increasing hyperradius
range of the hyperangle occupied by the discrete cha
components decreases and the amount of the ionization c
ponent that is ‘‘uncovered’’ increases. This spatial separa
of the ionization component from the discrete channels
vital to our method for extracting ionization informatio
from the scattered wave.

Examination of the plots of the radial functions in Fig.
reveals that the scattered wave calculated with exterior c
plex scaling does indeed contain a component with b
electrons in the continuum. However, there is still a quest
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of whether or not this component correctly describes
breakup in a system of three charged particles, particul
given that our formalism requires truncating the Coulom
potentials in the inhomogeneous term (Ĥ2E)Cki

0 of Eq. ~3!.

The ultimate test of the accuracy of our calculated wa
function will be its ability to yield correct differential cros
sections for ionization. Before discussing the details of o
method for extracting ionization cross sections, which is
subject of the following section, we can give a prelimina
indication of the correctness, over a finite region, of our c
culated wave function by showing that its asymptotic beh
ior is consistent with the Rudge asymptotic form in Eq.~6!.

We expect the ionization component of eachc l 1l 2
L to have

the functional form

c l 1l 2
L ~r 1 ,r 2! ;

r→`

A~a!

Ar
ei @lr1B~a!ln~kr!1d~a!# ~17!

of an outgoing circular wave with a logarithmic phase. Sin
Eq. ~6! is valid only when all three particles are widely sep
rated, the radial functions will follow Eq.~17! best along the
line r 15r 2 . Comparisons between a calculated radial fun
tion and the functional form in Eq.~17! both with and with-
out a logarithmic phase term are shown in Fig. 5. In bo
cases the parameters were chosen to best fit the radial f
t
he
FIG. 8. Comparison of calculated flux to a 1/r extrapolation curve from theL52, l 15 l 251 singlet radial function for 25-eV inciden
energy. The comparison is done for three different values of the hyperangle. The solid line is the 1/r least-squares fit and the markers are t
values of the flux from the wave function. The values of the flux that were used to produce the least-squares fit are circled.
2-9
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FIG. 9. Extrapolation inr of ionization flux for coplanar geometries with fixedu12 at 20-eV incident energy. In each panel flux calculat
at r5100, 105, 110, 115, and 120a0 are shown along with the extrapolated flux. The line for the extrapolated flux always lies belo
others.
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tion near r 15r 25150a0 . Without the logarithmic phase
term ~i.e., settingB50! the functional form is able to matc
the radial function only over a very small distance. Howev
with the inclusion of a logarithmic phase term we can fit t
phase of the radial function quite well over a very lar
range. Figure 6 shows how quickly the logarithmic term
the phase develops as the hyperradius increases for two
ferent incident energies. The presence of a logarithmic ph
term in the ionization component of the scattered wave s
gests that truncating the Coulomb potentials has not s
ously damaged the wave function in the interior region.
spection of Fig. 5 also shows that the amplitude of
ionization component of the scattered wave is not const
but rather falls asr increases. Indeed, ar21/2 dependence in
the amplitude, along with a logarithmic phase term, are
two key characteristics of Eq.~17!. In the following section,
we will show how the heurestic observations made here
be developed into a numerical procedure for calculat
physical ionization cross sections.

V. EXTRACTING DETAILED INFORMATION
ABOUT IONIZATION

A. Flux operator formalism

A complete theoretical treatment of electron-impact io
ization must include a prescription for calculating different
cross sections that give detailed information about the e
gies and angles of ejection of both electrons. Our approac
to obtain such information directly from the radial comp
nents of the scattered wave by computing the outgoing
through the surface of a hypersphere that lies within the v
ume of coordinate space where both coordinates are
This is a straightforward extension of the procedure we fi
applied to the Temkin-Poet model problem@14,16#.

Assume, for the moment, that we can isolateC ion
1 , the

component ofCsc
1 @Eq. ~5!# describing the ionization con

tinuum. Equation~6! describesC ion
1 as an outgoing wave in

the hyperradiusr. The continuum of ionization final states
then described by flux through a hypersphere of radiusr0 in
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the limit r0→`. To this end, we define a generalized, d
mensionless fluxfr0

(ion)

fr0

~ ion!~a, r̂ 1 , r̂ 2![ImFkir„r 1r 2C ion
1 ~r1 ,r2!…!

3
d

dr
„r 1r 2C ion

1 ~r1 ,r2!…G
r5r0

~18!

evaluated at a hyperradiusr0 . Since the hyperspherica
anglea parametrizes the momentum distribution between
two electrons asr0→`, we can express the total ionizatio
cross section as an integral offr0

(ion) , in the limit r0→`, over

a and the angular coordinates of both electrons,

s ion5
1

ki
2 E0

p/2E
4p
E

4p
fr0

~ ion!~a, r̂ 1 , r̂ 2!dr̂1dr̂2daU
r0→`

.

~19!

Thus, ther0→` limit of the flux leads directly to a differ-
ential cross section for ionization. However, since we c
calculate the wave function only over a finite region we ne
a means of obtaining ther0→` limit from flux calculated at
finite r0 .

FIG. 10. Diagram of coplanar geometry. Two electron detect
and the incident electron beam all lie within a plane.
2-10
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FIG. 11. Equal-energy sharing
coplanar TDCS for 17.6-eV inci-
dent energy withu12 fixed. Data
from Ref. @38# normalized by
comparison with data from Ref
@39# for u125180°. Solid curves:
present results. Broken curves
CCC results from Ref.@11#. The
internormalized data~from Ref.
@38#! for different u12 values
~open circles! are all set on an ab-
solute scale with a single norma
ization factor of 0.23, which is
chosen on the basis of the data
Ref. @39# for u125180°. The full
circles are taken from the fixedu2

data ~see Fig. 12! to check the
consistency of our normalization
of the latter.
its

,

ng
to

p

be
nn

i
en
-
e

n

is
et

is

ate

e
are

l-
at-

l

of
as
By inserting the asymptotic form forC ion
1 from Eq. ~6!

into Eq. ~18! we find that the ionization flux approaches
asymptotic limit as 1/r, i.e., for larger0

fr
~ ion!~a, r̂ 1 , r̂ 2!5f`

~ ion!~a, r̂ 1 , r̂ 2!1OS 1

r0
D . ~20!

We can, therefore, obtain ther0→` limit of the ionization
flux by fitting Eq. ~20! to values offr0

(ion) calculated at large

but finite, r0 . This method requires that thefr0

(ion) must be

calculated atr0 large enough so that it is behaving accordi
to Eq. ~20!, which is easy to test numerically. In addition
ionization channels, the scattered wave also contains com
nents that correspond to discrete~elastic and excitation! two-
body processes which leave one electron in a bound Ryd
state. There is interference between these discrete cha
and the ionization wave at any finite value ofr0 . Thus the
notion of a well-defined ionization wave only makes sense
the limit r0→` where there is no spatial overlap betwe
discrete channel components andC ion

1 . The practical conse
quence of this fact is that there are always regions near thr 1
and r 2 axis, i.e., neara50 anda590°, where the calcu-
lated flux will not behave according to Eq.~20! due to con-
tamination from discrete channels. The angular range ia
02271
o-
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els

n

subtended by the flux due to a discrete channel
sin21(D/r0), whereD is the distance over which the targ
state is appreciably different from zero. Thus asr0 increases,
contamination of the ionization flux from discrete channels
confined to smaller regions ofa, as illustrated in Fig. 7. With
the largest grids we employed, we could directly calcul
the ionization flux for values ofa down to;8° and then use
linear extrapolation toa50. In the truer0→` limit the
discrete channels’ contributions to the flux becomed func-
tions at a50 and a590° and equality in Eq.~20! holds
except for infinitesimally small regions near the edges. W
can only calculate the flux where both radial coordinates
real. Fora near 45° thef r0

can be evaluated forr0 values as

large as&R0 ~see Fig. 1!, while for small values ofa we are
limited to r0<R0 . Figure 8 shows the behavior of the ca
culated flux for a single partial-wave component of the sc
tered wave as a function ofr0 for several values ofa. Typi-
cally, we choose five values ofr0 near the end of the rea
portion of the grid at which to calculatefr0

and obtain the

r0→` limit by a least-squares fit of Eq.~20!. The quality of
the extrapolation is, of course, best fora values near 45°
since these regions are the first to show the ‘‘uncovering’’
the ionization wave by the discrete channel componentsr
increases.
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B. Calculation of the ionization flux

Calculating the scattered flux requires the assembly
Csc

1 from all of its partial waves. BothCsc
1 and (d/dr)Csc

1 in
Eq. ~18! involve sums overL and (l 1 ,l 2) pairs so the flux
definition in terms of partial waves

fr0
~a, r̂ 1 , r̂ 2!5ImH kir (

L8,l 18 ,l 28
L,l 1 ,l 2

~c l
18 l

28
L8 !!

d

dr
~c l 1l 2

L !

3~Y l
18 ,l

28
L80

!!Yl 1 ,l 2
L0 J U

r5r0

~21!

involves cross terms between different partial waves.
cause of these cross terms, the flux must first be ‘‘
sembled’’ according to Eq.~21! and then extrapolated whe
we are calculating angular distributions. Three examples
calculated and extrapolated flux, for both singlet and trip
spin symmetries witha545°, are shown in Fig. 9. Thes
examples are for coplanar geometries with a fixed angleu12
between the outgoing electrons~see Fig. 10!. Relative differ-
ences between the calculated and extrapolated flux are
est when the angle between the outgoing electrons is sm
est. When constructingfr0

as in Eq.~21! it is important to

remember to include bothc l 1l 2
L andc l 2l 1

L when l 1Þ l 2 .

The number of partial waves required to converge the fl
depends not only on the total energy but also on the di
tions of the two outgoing electrons. In the present calcu
tions, we kept partial waves throughL59, which was suffi-
cient for the geometries considered here. Convergence inL is
most rapid when the angle between the ejected electron
180° and becomes increasingly slower as this angle is
creased. The number of (l 1 ,l 2) pairs for eachL that were
kept in the calculations was determined when solving
coupled equations, as discussed in the preceding sectio

Ionization cross sections can be readily expressed in te
of the scattered flux. The triply differential cross secti
~TDCS! is defined as the quantity that gives the total ioniz
tion cross section when integrated over the directions of b
electrons and the energy« of one of the outgoing electrons

s ion5E
0

E/2E
4p
E

4p

ds ion~«, r̂ 1 , r̂ 2!

d«dr̂1dr̂2
dr̂1dr̂2d«. ~22!

Since the electrons are indistinguishable, it is customary
normalize the TDCS so that it givess ion when integrated
over half the energy range. The individual electron energ
are parametrized by the hyperanglea @22#

«15E cos2 a and «25E sin2 a ~23!

and thus a simple change of variables converts the fl
which is differential ina, to the TDCS, which is differentia
in «,
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ds ion~«, r̂ 1 , r̂ 2!

d«dr̂1dr̂2
U

«5E sin2 a

5 lim
r0→`

1

ki
2E sina cosa

fr0
~a, r̂ 1 , r̂ 2!. ~24!

The ionization flux cannot be extrapolated for hyperang
neara50 anda590° so this procedure cannot produce t
TDCS for highly asymmetric energy sharing, i.e., for cas
where one electron carries most of the total energy.

The singly differential cross section~SDCS! describes
only energy sharing between the two electrons and is
tained by integrating the TDCS over the directions of bo
electrons:

ds ion~«!

d«
5E

4p
E

4p

ds ion~«, r̂ 1 , r̂ 2!

d«dr̂1dr̂2
dr̂1dr̂2 . ~25!

Orthonormality of theYl 1 ,l 2
LM simplifies the summation in Eq

~21! to a single sum over the three angular momentum qu
tum numbers. The SDCS is then a simple sum of contri
tions from each partial wave:

FIG. 12. Equal-energy sharing, coplanar TDCS for 17.6-eV
cident energy withu2 fixed. Internormalized measurements fro
Ref. @38#, reported in arbitrary units, were scaled by 1.15 to t
best-fit calculated cross section. Solid curves: present results.
ken curves: CCC results from Ref.@11#.
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FIG. 13. Equal-energy sharing
coplanar TDCS for 20-eV inciden
energy with u12 fixed. Internor-
malized measurements from Re
@38#, reported in arbitrary units,
were scaled by 0.20 to the best-fi
calculated cross section. Soli
curves: present results. Broke
curves: CCC results from Ref
@11#.
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ds ion~«!

d« U
«5E sin2 a

5
r

kiE sina cosa

3 (
L,l 1 ,l 2

ImH @c l 1l 2
L ~r 1 ,r 2!#!

d

dr

3@c l 1l 2
L ~r 1 ,r 2!#J U

r→`

. ~26!

Since there are no cross terms in the SDCS expression
can sum the individually extrapolated (r0→`) partial-wave
flux components. In general, significantly fewer partial-wa
terms are needed to converge the SDCS than are need
converge the TDCS. For the incident energies we report h
there was no need to include contributions forL.6. The
SDCS is symmetric aboutE/2, in accordance with the ‘‘sym
metrization postulate’’ of the formal theory@37#. This prop-
erty follows naturally from our treatment since the cross s
tions are extracted directly from radial wave functions wh
themselves display the proper symmetry with respect to
terchange of electrons.

Other quantities of interest that we report are the to
cross section,

s ion5
1

4
~sS13sT!, ~27!
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and the spin asymmetry which is identically equal to

sS2sT

sS13sT
, ~28!

where the singlet and triplet total cross sections,sS andsT
~defined here without inclusion of spin statistical weight!,
are obtained by integrating the corresponding SDCS va
over «.

VI. DIFFERENTIAL CROSS SECTIONS FOR IONIZATION

The availability of absoluteexperimental values of the
TDCS at low impact energies offers the most stringent t
for judging the fundamental correctness of any method t
proposes to correctly treat the three-body Coulomb prob
from first principles. There are many examples of appro
mate methods that give excellent results only for specific e
geometries and energy asymmetries@7# or that give very
good relative differential cross sections, yet fail to predict t
correct magnitudes of those quantities@10,11#. Absolute ex-
perimental data are fortunately available for the case of eq
energy sharing («15«25E/2) at a specific set of coplana
geometries. Most experimental data have been taken for
ometries where the two detectors are rotated together w
keeping the angular separationu12 between them~see Fig.
10! fixed.
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FIG. 14. As in Fig. 13 for
25-eV incident energy. Scale fac
tor used to normalize experimen
tal data is 0.16.
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In 1996, Röder et al. @38# published a set of TDCS dat
for e-H ionization for coplanar geometries. These data w
not absolute, but were ‘‘internormalized.’’ For each energ
a single, geometry-independent scaling factor is neede
normalize the data, but that factor depends on energy. R¨der
et al. @39# later presented a small set of absolute meas
ments in Ref.@39# at 15.6- and 17.6-eV incident energy, fo
the case whereu12 was fixed at 180°. We have used the da
from Ref. @39# at 17.6 eV to put their earlier data on a
absolute scale. These TDCS values are shown in Fig
along with our calculated values. The top panel shows b
the absolute data from Ref.@39# and the normalized dat
from Ref. @38#, which are mutually consistent and in goo
agreement with our calculated values. The cross sectio
this case is strongly peaked at angles of 0° and 180°, wh
one electron is scattered forward and the other recoils in
backward direction. The next four panels in Fig. 11 w
fixed u12 values compare the normalized values from R
@38# with our calculations. Overall, there is excellent agre
ment. The largest discrepancy is at the minimum foru12
590°. The cross-section set is smallest for this geome
and converging the TDCS in partial waves becomes incre
ingly difficult as u12 decreases.

Figure 12 also shows 17.6-eV data from the measu
ments of Ref.@38#, but for these cases one detector was h
fixed and the other was rotated independently. These
have a normalization which is different from the fixedu12
02271
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data, so for these two panels, we chose a single scale fa
that gives the best fit to our calculated cross section. A
consistency check, we extracted those data points from
fixed u2 measurements that had corresponding points in
fixed u12 data and plotted them along with the latter in Fi
11. Where comparison is possible, the agreement is goo

We have also plotted in Figs. 11 and 12 the recent c
vergent close-coupling~CCC! results of Bray@11# for com-
parison. The agreement between our calculations and CC
somewhat mixed and decidedly geometry dependent. For
three largestu12 data sets shown in Fig. 11, the CCC resu
are roughly a factor of two smaller than our results, but ag
reasonably well in shape. At the two other angles, the m
nitude of the CCC cross sections near the peaks is rou
the same as our results, but there are noticeable differe
in the shapes, with the CCC showing narrower peaks that
slightly shifted relative to experiment with more significa
discrepancies near the troughs. For the fixedu2 data in Fig.
12, there are also noticeable differences, with CCC show
peak values that are roughly half of what we find and sligh
shifted relative to experiment. Ro¨der et al. @39# have also
presented distorted partial wave results of Pan and Sta
@5#, which is only available foru125180°. These results~not
shown! are in good agreement with our calculations.

Comparison between the calculated equal-energy sha
coplanar TDCS with fixedu12 and values measured by Ro¨der
et al. @38# for 20-, 25-, and 30-eV incident energies a
2-14
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FIG. 15. As in Fig. 13 for
30-eV incident energy. Scale fac
tor used to normalize experimen
tal data is 0.16.
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shown in Figs. 13–15. At these energies, the experime
values are unfortunately known only in the originally r
ported arbitrary units. We chose a single scaling factor
each energy that normalizes the experimental values
known units. Agreement between theory and experimen
excellent over this range of geometries with the largest
crepencies generally occurring for smaller values ofu12
where the effects from truncating the partial wave expans
of Csc

1 are most significant. Recent CCC calculations@11#
included results for these energies as well and are shown
comparison. The situation is basically the same as with
17.6-eV data. At the largestu12 values, the CCC results ar
consistently smaller than ours, while at the smalleru12 val-
ues, there is less discrepancy in magnitude, but more
nounced differences in the peak positions and shapes.
entirely possible that these latter differences may be rela
to difficulties associated with partial wave convergen
which is most difficult at small values ofu12. Overall, there
is no single scaling that suffices to bring the CCC results
particular energy into uniform agreement with our resu
Distorted partial wave results~not shown! are also available
at these energies, but only foru125180° @39#. Once again,
the agreement with our results was found to be quite go

The SDCS reduces to an incoherent sum of partial w
components according to Eq.~26!. For values ofa away
from 0° and 45°, the individualL components were extrapo
lated to infiniter0 from calculated values. The inability t
02271
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.
e FIG. 16. Components of the SDCS~with spin factors included!
for electron-hydrogen scattering at 25-eV incident energy co
sponding to particular total spin and angular-momentum quan
numbers.
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FIG. 17. Single differential
cross sections for electron
hydrogen scattering at 17.6-eV
~top left!, 20-eV~top right!, 25-eV
~bottom left!, and 30-eV~bottom
right! incident energies. The cros
sections for singlet and triplet spin
symmetries~with spin factors in-
cluded! are shown along with the
total. The 25-eV data are com
pared to the experiment of Shy
@40#.
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distinguish, at finite distances, between ionization and e
tation of high-n Rydberg states prevented us from direc
calculating the SDCS within 5–10° ofa50 and 90°, de-
pending on the energy andL value considered. To extend th
SDCS into these ranges, we used a linear extrapolation o
SDCS as a function of« to «50 and«5E.

We show individual contributions to the 25 eV incide
energy SDCS for different values ofL andS in Fig. 16. Each
of these components is symmetric about«5E/2, reflecting
the indistinguishability of the electrons. The tripletL50
must vanish at«5E/2 since it is extracted only from anti
symmetric radial functions and it contributes negligibly
the total SDCS. We found this to be the case at the o
energies we studied as well. We found that the SDCS g
erally converged faster as a function ofL than did the TDCS.

Singlet and triplet components, along with the total, of t
SDCS for 17.6-, 20-, 25-, and 30-eV incident energy
shown in Fig. 17. There is a marked bowing of the SD
that occurs as the energy increases, which is evidently at
utable to the triplet component, while the singlet contributi
shows less dependence on ejected electron energy ove
whole range of incident energies considered. For 25-eV
cident energy, we have plotted the data reported by S
@40#. Our calculated SDCS for this energy is in good agr
ment with Shyn’s data except for the one value atE/2 where
our calculated value falls outside the reported error bars.
terestingly, this value corresponds toa545, the point at

TABLE II. Singlet, triplet, and total ionization cross section
and the spin asymmetry. Cross sections are in units ofa0

2, asymme-
try is dimensionless. Spin factors are not included in the singlet
triplet cross sections.

Incident energy 17.6 eV 20 eV 25 eV 30 eV

Singlet 2.027 2.741 3.807 4.036
Triplet 0.389 0.538 0.885 1.047
Total 0.798 1.089 1.616 1.794

Asymmetry 0.513 0.506 0.452 0.416
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which there is the least uncertainty associated with our
trapolation. We hasten to point out, however, that Shy
values were determined by integrating measured value
the doubly differential cross section and the latter had to
extrapolated through small and large angular regions wh
measurements could not be made.

Finally, we list values of the integrated ionization cro
sections and spin asymmetries in Table II. These provid
rather coarse measure of the ionization dynamics and
quantities that are adequately described by other theore
methods as well.

VII. DISCUSSION

The complexity of the asymptotic form of the wave fun
tion for three charged particles and the fact that it is o
known in the ‘‘far’’ asymptotic region has been a maj
bottleneck in the development of practicalab initio compu-
tational approaches to electron-impact ionization. We h
side stepped the problem by using a mathematical trans
mation of the Schro¨dinger equation that effectively turns th
scattered wave into a bound state. Exterior complex sca
provides us with a method for computing the physically c
rect wave function over a finite region of space without e
plicit specification of asymptotic boundary conditions. T
accuracy of the computed wave function is limited only
the finite size of the grid and the number of partial wav
retained. The errors in the wave function can, in principle,
made arbitrarily small given sufficient computing power.

It is also worth noting that grid-based wave-packet me
ods, based on solving the time-dependent Schro¨dinger equa-
tion, are also being developed to study electron-impact i
ization @41,42#. These approaches also avoid expli
enforcement of asymptotic boundary conditions for break
so it will be interesting to see if they will be able to provid
the kind of detailed differential cross-section information
the type presented here.

The principle sources of uncertainty in the computed io
ization cross sections are related more to the particular m

d

2-16
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TABLE III. Seven-point finite difference formulas for the ‘‘interface’’ between two regions with grid spacingsg andh. Special formulas
are needed for the second derivative at the interface pointxp as well as two points on either side. The columns of the table give
coefficients needed to approximatef n

ii for n5p62, n5p61, andn5p. Whenn.p the spacingsg andh must be permuted.

n5p72 n5p71 n5p

f n73 1

15g~5g1h!
3g213gh22h2

24g2~2g1h!~4g1h!

2~11g29h!h2

9g2~g1h!~3g1h!~3g12h!

f n72 2~8g1h!

12g2~4g1h!

2~5g216gh22h2!

3g2~3g1h!~3g12h!

23~11g28h!h2

2g2~g1h!~2g1h!~2g13h!

f n71 2~7g12h!

3g2~3g1h!

13g2121gh12h2

4g2~g1h!~2g1h!

6~11g25h!h2

g2~g1h!~g12h!~g13h!

f n 2~34g115h!

6g2~2g1h!

2~9g2130gh110h2!

3g2~g1h!~g12h!

36g22121gh136h2

18g2h2

f n61 5g14h

3g2~g1h!

22h2115hg2g2

24g2h2

6g2~11h25g!

h2~g1h!~2g1h!~3g1h!

f n62 2~4g15h!

60g2h

22g3~10h2g!

h2~g1h!~2g1h!~3g1h!~4g1h!

23g2~11h28g!

2h2~g1h!~g12h!~3g12h!

f n63 8g4

h~g1h!~2g1h!~3g1h!~4g1h!~5g1h!

g3~5h2g!

4h2~g1h!~2g1h!~g12h!~3g12h!

2g2~11h29g!

9h2~g1h!~g13h!~2g13h!

Error 21

630
g4~g2h! f n

v i i
21

2520
g3~7g110h!~g2h! f n

v i i
211

420
g2h2~g2h! f n

v i i
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ods we have used to extract dynamical information than t
are to any errors in the underlying wave functions. The fl
operator approach we employed requires us to calculate
wave function at large distances, since it relies on an unc
ering of the ionization wave by discrete two-body comp
nents that only occurs at large distances. This observa
puts practical limitations on our ability to compute sing
and triply differential cross sections for highly asymmet
energy-sharing cases which sample regions of space whe
is impossible to disentangle the discrete and breakup c
nels. Going to even larger grids will be possible as comp
ers improve, but will never allow arbitrarily small energy fo
one electron.

There is much evidence to suggest that the techniq
used to extract cross sections from a computed wave fu
tion can dramatically affect the accuracy of the results i
way that is not necessarily connected to the accuracy of
wave function. For example, we recently showed that
could take an accurate wave function, computed by ECS,
produce an unphysical SDCS by matching it to an expans
in discrete two-body pseudostates@12#. It is by no means
clear that the flux approach we have used here is in any s
the only way, or the optimum way, to extract the ionizati
cross sections. Our recent work@43# on integral expression
for breakup cross sections~with short-range potentials!
shows them to be far more economical, and reliable, tha
direct evaluation of the flux. More work will be required t
see if these techniques can be used in the case of Cou
interactions. It is also possible that some sort of asympt
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matching scheme is a viable alternative to the approach
have used here, once an accurate wave function is in h
These are clearly areas ripe for future investigation.

Note added in proof.We were recently made aware o
earlier work by Brauneret al. @44# in which internormalized
TDCS for fixedu12 and fixedu2 at 17.6 eV were reported
However, as Bray has recently pointed out@11#, thre are
internal inconsistencies in the 17.6 eV data that cast doub
this internormalization. In view of these inconsistencies
the experimental data, we feel that our independent norm
ization of the fixedu12 17.6 eV data~shown in Fig. 12! is
reasonable.
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APPENDIX: FINITE DIFFERENCE FORMULAS

Finite difference formulas approximatef n
ii , the second

derivative off (x) evaluated at the grid pointxn , in terms of
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f (x) evaluated atxn and two or more nearby grid points. Th
function’s values at each nearby grid point are expresse
Taylor-series expansions aboutx5xn . Finite difference for-
mulas are arrived at by taking appropriate linear combi
tions of these expansions so that the first derivative and
many higher derivative terms as possible vanish. The num
of higher derivative terms that can be made to vanish,
the accuracy of the finite difference approximation, depe
upon the number of grid points used in the formulas.

In our calculations we used seven-point, central differe
formulas that usef n63 , f n62 , f n61 @f (x) evaluated atx
5xn63 , xn62 , xn61# and f n to approximatef n

ii . If the grid is
evenly spaced,xn1 j[xn1 jh, then the seven-point finite dif
ference formula

f n
ii '

1

h2 S 1

90
f n232

3

20
f n221

3

2
f n212

49

18
f n1

3

2
f n11

2
3

20
f n121

1

90
f n13D1

69

25200
h6f n

v i i i ~A1!

is accurate to sixth order in the grid spacingh. The last term
in Eq. ~A1! is the leading error term and is given only
indicate the accuracy of the approximation.

When using complex coordinates the parameterh in the
Taylor-series expansions may be complex. For instan
Taylor-series expansions relating function values at two g
points on the complex part of the contour defined in Eq.~14!
will be in terms of powers ofh5uhueih. Equation~A1! can
be used to approximate second derivatives at most point
both the real and complex portions of the grid. Howev
when the seven-point ‘‘stencil’’ defined by Eq.~A1!
e

. A

on

.

v.
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straddles the complex turning pointR0 ~or an interface be-
tween two regions with different grid spacing! other formu-
las must be used.

Let xp be either the complex turning pointR0 or an inter-
face point between two regions with different grid spacin
Special formulas are needed to approximate the second
rivative at the pointxp and at the two points on either side o
xp . In general, a seven-point finite difference formula h
the form

f n
ii ' (

j 523

3

aj f n1 j , ~A2!

where the coefficientsaj are given by Eq.~A1! if xn is more
than two grid points from an interface point. The coefficien
needed for the casesn5p, p61, or p62 are listed in Table
III. Let g andh be the ‘‘grid spacings’’~possibly complex!
on the left and right side ofxp so thatxp2 j5xp2 jg and
xp1 j5xp1 jh, where j is positive. The coefficientsaj

needed in Eq.~A2! to approximatef n
ii when n5p22, p

21 or p are found by reading down the appropriate colum
in Table III. For n5p11 or p12 the coefficientsaj are
found by readingup the appropriate columnandpermutingg
andh.

The leading error terms are listed at the bottom of Ta
III. These seven-point formulas are accurate to fifth orde
the grid spacing. In general, finite difference formulas th
straddle two regions of different grid spacings will be le
accurate by one order than their uniform grid counterpa
For this reason high-order finite difference formulas, such
those presented here, are essential when different grid s
ings and/or exterior complex scaling are used.
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