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Time-dependent treatment of electron-hydrogen scattering for higher angular momentdL >0)
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The time-dependent approach to electron-atom scattering is emerging as an alternative to more conventional
methods of treating atomic collisions. Solving the time-dependent 8iciyer equation directly has several
very attractive features including a completely nonperturbative solution, dense representation of the nonphysi-
cal positive energy states, circumvention of the need to explicitly impose boundary conditions for ionization,
and the convenience of being able to “watch” the electronic probability density evolve though the collision.
Two principal approaches have so far been applied to treat electron-atom scattering, namely, the time-
dependent close coupindDCC) method and what we refer to as the time-dependent Hyllef@B4)
method. The TDCC method solves coupled equations with two variables within a truncated infinite sum over
individual angular momenta for each total angular momeniuaf the system. In contrast, the TDH method
avoids an infinite summation over the angular momenta of the individual electrons at the expense of solving a
coupled equation with three variables for eachirhe TDH method has previously been usedlferO only.
An important question, therefore, concerns whether the TDH method would represent a numerical advantage
over the TDCC method for highér values. This issue is investigated in this paper.
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[. INTRODUCTION applications have been slow to develop due to computational
(algorithmic and machine capacitymitations. The idea be-

In a theoretical treatment of an atomic collision problem,hind this method is to use the time-evolution operator to
one can adopt either the time-dependent or time-independefvolve a known initial state into the final state. The formal
approach. However, a particle colliding with an atom, ion orsolution[ W (ry,r,,t+At)=e™ "4 (r,,r,,t)] of the time-

a molecule is inherently a time-dependent process in which dependent Schdinger equation requires the representation
free particle travels towards the target and the systerand evaluation of the exponential time opera®r'{**") and
evolves with time under the influence of the interparticlealso the formation of the initial wave function¥ (rq,r,,
Coulomb interactions. Such a process can be treated directty=0)] of the system. There are several formulations of the
by propagating the system wave function in time accordingime-dependent approach for solving scattering problems
to the time-dependent Scliimger equation. Consequently, [3—10] and studying the autoionization of atorrsl].

the time-dependent approach is more closely connected to Aside from the details of the various numerical methods
reality and it has many distinct advantages over the tradiadopted, the most important difference between the various
tional time-independent methods. For example, it allows ditime-dependent approaches that have been reported so far
rect visualization of the collision process where one carlies in the expression for the system wave function. Perhaps
“watch” the atom and electron wave packet evolving in the most straightforward methdé,7] is to express the sys-
time as a result of the collision. It is free of approximationstem wave function as a sum over total angular momenta,
(other than numericawhich means that it is inherently non- where each term in this sum is a product of a coupled spheri-
perturbative, incorporates electronic continuum states, res@al harmonic times a function that depends on the radial
nances, and the postcollision interaction in the most naturatoordinates for the two electrons. This approach has been
way, and it circumvents the difficulty of the boundary con-termed the time-dependent close-coupliid>CC) method
ditions for ionization due to the long-range Coulomb inter-[6,7]. This approach produces the usual set of coupled equa-
actions, which arises when using time-independent scatterinigons to solve, but has the disadvantage of being an infinite
theory[1]. In short, it is flexible and versatile in treating a sum over individual angular moment (1) for each total
large variety of quantum collision processes. angular momentunL. Establishing that this sum is con-

In addition, use of methods that solve the underlyingverged, when it is of necessity truncated, for each total an-
equation of motion for electron-atom scattering, as directlygular momentum, represents a fundamental and numerical
as possible, are motivated by the need to try to resolve longshallenge. So far, the largest total angular momentum re-
standing disagreements between theory and experiment fgorted for electron-hydrogen scattering has beend. In
various observables that provide strenuous tests. The goal phrticular, Pindzola and Robicheau¥] calculated the
such work is to remove uncertainties such as those arisingartial-wave ionization cross sections for electron scattering
from the use of perturbation theories when the interaction i§rom hydrogen using the TDCC method. In that calculation,
indeed strong and the use of close-coupling theories that diine infinite sum was truncated after 3 terms for t&taiO, 6
not densely represent the continuum. terms forL=1 andL=2, and 8 terms foL =3 and 4.

The general time-dependent theory of wave-packet scat- The alternative approach, which has been developed by
tering has been known for a long tinj@]. However, its  Bottcheret al.[11-15, is to express the wave function for a
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given total angular momentum as a product of a coupled ‘I’ILI,M(flyfz,t)

spherical harmonic times a function that depends on the ra- .

dial coordinates for the two electrons as well as the angular 1 LM " -
separation between the two electrons. The basis for this :Elzm P, (rro, 00V g1, (T2 o).
method has been attributed to Hyllerqa6] and is therefore !

called the time-dependent Hyllera@&DH) method, and has 3

the distinct advantagg of .be|ngfm|te sum for each total The expansion coefficient;_ is referred to as the dynamical
angular momenturh with eitherL or (L+ 1) terms depend- . . 1

ing on the parity of the initial state. The disadvantage of thisVave function and¥ is th.e angle betweeny andr,. The.
method lies in the fact that there are now three dynamicaP@/ity @ =0 or 1 depending on whether the wave function
variables for the system and, as a result, the matrices repréXhibits even(natura) or odd (unnatural parity[15]. For the
senting the various operators are three-dimensional, Whicﬁolllsmn _system considered here, the wave function exhibits
severely limits the possible size for each dimension. ConseEVen parity, saw =0. Consequently, for a given total angu-
quently, the TDH method poses a potentially much greateld’ momentumL, there are i +1) dynamical wave func-
numerical challenge than the TDCC method. Thus, the twd!OnS: , , _

presently developed options for treating electron-atom scat- 1€ dynamical wave functiong; satisfy the coupled
tering by direct solution of the Schdinger equation arél)  [3,15,11 equations

choose an easier computational problem but perform a trun- 1 L

cated “infinite” summation over the individuall {,l,) for i (1) (2) ,

each total angular momentum, () solve a more difficult hythothy+ (P B+ 2 [y () + U D) T
computational problem but with a small finite sum over the
individual (11, I,) for each total angular momentum. The =0, (4)
TDH method has previously been applied to electron- i

hydrogen scattering for totdl=0 only [3]. The purpose of Where, for convenience, the shorthand notatie(l,l,)
this paper is to use the TDH method to calculate higher= (I1,.L+@—11) andl"=(l1,15)=(I;,L+w—1}) is used,
L-value results for electron-hydrogen scattering to determine

1=

2
which option is the more viable and/or practical. In the cur- hy=— E (?__ E+M,
rent approach, the basis-spline collocation mefHad-19 is 2 92 14 2r?
used to represent the operators and to discretize the wave
functions on the grid and the time-evolution operator is 10> q ly(l,+1)
evaluated using a Taylor series method as described in Buff- hyp=— 2 ? - E +—2r2 ; ®)
ington et al. [3] 2 2
1/1 1 .
IIl. THEORY OF ELECTRON-HYDROGEN ATOM hy=— 2 r_2 + r_z Dﬁ[smz 9Dy]
COLLISION 102
The theory has previously been presented in Buffingtoﬁ'jlnd the coupling terms are given by
et al. [3] and Schultzet al. [11] so only the essential points z®
will be given here. The time-dependent Safinger equation (P _ I = =172
' e Uy © 2Py P=12,
for the wave function¥(r,,r,,t) describing the electron- Z0 T
hydrogen atom system has the general form ©
HY(r 1) = W (ryrat) (1) p_t 7
R "75ing 79

Atomic units are used unless stated otherwise. The Hamillneé Z matrices are composed of Legendre polynomials,

tonianH for a system containing a nucleus and two electronlebsch-Gordan coefficients, and Racah coefficients. Ex-
can be expressed in atomic unitsu) as plicit expressions for theZ matrices are given in Refl15].
They give rise to the mixing of the dynamical wave func-

1 q q 1 tions... _ . .
H=—(V34V3)— —— —+ —, 2) Initially the electron-electron interaction can be ignored
2 i rp |ra—ry since the electrons are far apart. The initial wave function in
Eq. (1) consists of the initial atomic state and incident elec-
whereq is the charge of the nucleus and the vectgrandr,  tron, which is represented by an incoming spherical wave.
locate the electrons with respect to the assumed infinitelrhe initial angular-independent dynamical wave functions
massive nucleus, which is fixed at the origin. become angularly dependent as the time-propagation
For a fixed total angular momentulm projectionM, and  progresses. For a state with zero total angular momentum
parity @, the wave function in Eq(1) can be written in  (L=0), the initial singlet or triplet =0 or 1) wave func-
terms of an expansion attributed to Hyllerd&sl1,1q as tion would be given by
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D~ —o(r1,r5,9,t=0) the bound state’l’m’. The factor of two accounts for the
' indistinguishability of the electrons.
1 The one-electron probabilitp:M may be obtained by
= E[@l:o(rl)mz:ﬁ,(rz) ?rOJectlng the single-particle state onto the full wave func-
ion

+H(=D% "¢ —o(r)Xi=u(r)], ()
( P-ollz, p;mt):f [((Baim(r )W (ry,ro,0))[% dry, (13)
where, in generall,=L+w—1,. As noted previouslyw
=0 for this collision system. Herep would represent the Wwhere¢(r;) describes a possible one-electron bound state of
ground state of hydrogen andthe incoming projectile elec- the atom, ¥"M(r;,r,,t) is the fully correlated time-

tron wave packet. dependent wave function for the two-electron system, and
For states with total angular momentum greater than zerghe double brackets indicate integration over Equation
the initial dynamical wave functions are given by (13) represents the probability that one electron is inrtha

state while the other could be in any possible state. The

1 two-electron probabilityoﬁ,Mm’n,l,m, is defined by the projec-
‘//I1=0(r1:r2173:t=0)zﬁ¢|1=O(rl)XI2=L(r2)= tion
Faimnntrm (0= Goim(r0) b (r2) WM (r v, )

1 (14)
P =L (r1,12,9,t=0)=—=(—1)>""¢ _(r2)x1,-o(r1), .

\/E where now the integration is over bathandr,. Expression
®) (14) represents the probability that one electron is inrtha

state and the other electron is in thd'm’ state. The prob-

U (1,10, 9,t=0)=0, 1,#0, andl,#L. abilities are monitored as the time evolution continues to
e ’ ’ large times until the probabilities reach their asymptotic val-
The incoming projectile wave packet is given by ues. The inelastic excitation cross sections can be obtained
from [5,6]
()= — b (k) p[ S L m
rN=———--— nexg—=—| |,
X™ p2ytia 2l7b oht'= g 2 (25T DL+ DR, (15

whereh,(z_)(kr) is an incoming spherical Hankel functiok,  \yherek is the momentum of the incident electron.

is the momentum of the projectile electram,is the initial The excitation probabilities are extracted at a final time
center of the Gaussian wave packet, whiledefines its such that the outgoing wave packet is far from the scattering
width. Although it would appear that the singlet and tripletatom and the grid boundaries. To verify the numerical pro-
wave functions would both need to be propagated indepereedures adopted, the normalization of the wave function and
dently, the indistinguishability of the two electrons makes itthe total energy of the system were monitored as a function
possible to propagate only a single wave function that can bef time. These did not change with time either in the pres-
used to get both the singlet and triplet results. ence or absence of the scattering potential.
The propagation proceeds according to the equation
" CHAeLM IIl. RESULTS
Yy tray=e T(rra,0. (10 A. Numerical parameters
The time evolution operatore('"*') is evaluated using the  The only approximations which are made in this paper are
Taylor series expansion numerical and we have used the basis-spline collocation
HADON method to represent our dynamical wave functions. To
g HAZN (—1HAY ' (12) implement this method, one must choose a spline order, a
N N! numerical grid forr {, r,, andd, the time stepAt, the initial
location for the incoming wave packet, and the width of the
The time-dependent probability of finding one electron inyave packet. We have used splines of order 3. The choice
the bound statalm of hydrogen and the other electron in the for At represents a trade off between propagation time and
continuum, i.e. the excitation probability, is given ;5] the number of terms required for convergence of the Taylor
series of Eq(11). A large time step will reduce the number
LM 4y — LM 4y LM of terms required to reach the asymptotic limit but for each
Paim(t)=2| nin(t) nlz Fnimnra (V) (12 time step, the series of Eq11) will converge slower and
thus require more terms. We performed a systematic study of
Herep,m is the probability that one electron is in the bound these competing factors and found tist=0.005 a.u. rep-
statenlm, while the other electron is in any bound or con- resented an optimum compromise for our chosen grids.
tinuum state ang ., o ms is the probability that one elec- The parameters for the wave packet were chosen to sat-
tron is in the bound statelm while the other electron is in isfy certain criteria. The wave packet should be narrow and
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FIG. 1. Time-dependent probabilities for exciting the 2 sin-
glet states fot.=1 at 100-eV electron impact energy. The various
curves are for different box size and number of points: dotted, 0
25/60, solid, 30/60, and dot dashed, 30/80. 0

Time (a.u.)
yet at the same time have a minimum amount of spreading.
For the energies considered here a widtthef3 a.u. satis-
fied this criterion and was also consistent with previous time

erendent calculat|or{§,§]. _For_the location of the incom- incident electronic wave packet and a total spin of zero. Trip-
INg wave pac'ket, .the crltgrlon is to start far enough out SQet results are very similar and not shown for brevity. In
that there is little interaction between the two electrons. Orgeneral we found that when the different grids produced
the other_ hand_, one o!oes not want to start too far out sinc ignificantly different results, the two calculations for box
propagating with no interaction would consume Computely;, o 31 5 . tended to be very similar to each other and no-
time and have no effept other than th? spreading of the way iceably different from the box size of 25 a(even when the
packet. We tested various starting points and found that pla(*s-ame number of points are ugedhe explanation for this
ing the center .Of the wave packet at 10 a.u. represented Sbservation can be found by looking at the atomic wave
good compromise. . . functions. The 2 wave function as well as thep2wave

The Ia;t cho_lce that must be made Is Fhe spacing of th?unction are well within the 25 a.u. box while time=3 wave
EnaesrliiaslplIrri]((jespfglrntt;eOIasdl:ng;ﬁr?dr 2:] C&g?(:c&ggziggt;ze 'Prl:e a functions extend beyond 25 a.u. These results reflect the ob-

| 9 dinat i i 9 h f' tnvious fact that accurate results for exciting a particular
gﬁdar cgof; '23 ethn;?izn(;%esﬁg:l yfgano.ntesrane%ios foe'f:(')er(l)t atomic wave function requires a box at least as large as the
P bWbI t# ti ¢ gltJ h gn tpl:; Wd . tlli IClI€NLstate of interest. The similarity of the 30/60 and 30/80 results

robably the most important choice 1o bé made 1S e repre, i qia5 that the density-of-states is less important than box
sentation of the; andr grids. Due to _the indistinguishabil- size. Consequently, 30/60 was chosen as the radial grid for
ity of the wo e_lec_trons, the same grids were used for_ I:’f)trfhis study. From Fig. 2 it is seen that the largest difference
electrons. In principle, these grids extend from zero to 'nf'n'betvveen the 30/60 and 30/80 results was found for the 3

ity. In practice one must chose a maximum value. Conseétate. The fact that the 25/60 and 30/60 results for tthe 3

quently, the necessary choices are the maximum value fg L . i
the radial grid(box sizé and the number of points inside the dtate are very similar is undoubtedly fortuitous. Cross sec

tions for this state will therefore have the largest numerical

box (which corresponds to the number of basis splines forerrors. Convergence of the excitation cross sections is deter-

eaqh coord!nate, and therefo_re, the subranlg of the. HamllFnined by continuation of the time evolution until the prob-
tonian matriy. Below we designate a box with maximum

sizeM a.u. withN points inside the box asM/N.” abilities have reached their asymptotic valusemewhat

To determine the optimum box size and number of points!arger times than those shown in Figs. 1 and 2

we performed a series of calculations for different choices. It
is desirable to perform the tests for the smallestlue since
the run time increases dramatically withvalue (and, there- The time-dependent excitation probabilities are calculated
fore, number of coupled equations to be solve@onse- from the time-dependent wave functions using Ei®). As
quently, the tests were performed for 1 since this is the mentioned in the previous section, these probabilities must
smallestL value for which the coupling terms contribute. In have reached their asymptotic values before one can obtain
Figs. 1 and 2, the probability for exciting the=2 and 3  meaningful cross sections. Figure 3 shows the 30662
levels are shown as a function of time for boxes 25/60, 30probabilities for times up to 15 a.u. It is seen that both the 2
60, and 30/80. This comparison was performed for a 100-e\and 2o probabilities are at their asymptotic values after 12

FIG. 2. The same as Fig. 1 except for excitation to te3
singlet state.

B. Inelastic excitation probabilities
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FIG. 3. Time-dependent probabilities for exciting the 2 sin-
glet states fol.=1 at 100-eV electron impact energy. Solid line,
30/60 TDH results; circles, DWB2 result®ef. [20]), and stars, 3t
CCC resultgRef. [21]).

a.u. The probabilities for the=3 states are not displayed 25 75 125
since all then bound states as well as all thevalues con-
sidered here exhibited very similar behavior. The purpose of
Fig. 3 is to demonstrate that the probabilities reach their FIG. 4. Cross sections for electron-impact excitation of tise 2
asymptotic values with increasing time and this happens fogtate of atomic hydrogen for total angular momenta between 0 and
all the states we examined. Also shown in Fig. 3 are thes as a function of the incident electron energy. The cross sections
exact second-order distorted wave-BdiDWB2) approxi-  have been summed over the individual singlet and triplet contribu-
mation of Madisonet al. [20] and the convergent close- tions. The theoretical results are as follows: solid curve, present
coupling (CCC) results of Bray and Stelbovicf21,22. 30/60 TDH results, stars, CCC resultRef. [21]), and dashed
These are time-independent calculations and are placed atcarve, DWB2 resultsRef. [20]).

large time value since they should represent the asymptotic

value for a time-dependent calculation. It is seen that théreatments. for total excitation cross sections. The0 sin-
let and triplet results were presented elsewh8tebut the

CCC results are closer to the present TDH results than to the
DWB?2 results for this case. total results are presented here fer completeness. The present
TDH results forL =0 agree very nicely with the CCC results
for all the excited states and energies consideredFo0,
the DWB2 approximation, on the other hand, tends to be
Cross sections for exciting thes22p, 3s, 3p, and 31  above the other theories at low energy ferand p-state
states of hydrogen by electron impact at seven energies bexcitation and below the other theories tbstate excitation.
tween 30 and 122.5 eV have been calculated for total angulakll the theories converge at higher energies forlallalues.
momenta,L between 0 and 3. The results are displayed in For 2s excitation(Fig. 4), all three theoretical approaches
Figs. 4 through 8. All calculations have been carried out orpredict very similar results for energies of 100 eV and above.
small or midlevel workstations such as the HP 9000/715 oFor L=0, there is good agreement between the present re-
SGI Power Challenge. Typical run times for total angularsults and the CCC at all energies considered. For higher
momentumL=0 ranged between 1 week for the highestvalues and lower energies, the present TDH results are larger
incident energy considered hgE22.5 eV to two weeks for  than either the CCC or DWB2 results while the latter two
30 eV for the 30/60 box. The run time increases dramaticallytheories are in reasonable agreement with each other except
with higher angular momentunfand thus more coupled at the lowest energies. Forp2excitation (Fig. 5), on the
equationy and means to parallelize the algorithms to takeother hand, the situation is quite different in that the present
advantage of contemporary multicomputers is prudent if fur-TDH results are in good agreement with the CCC results at
ther work, utilizing the TDH method, is to be performed. all energies follL values of 0, 1, and 2 and in fair agreement
For comparison the analogous DWH20] and CCC for L=3. In this case, the DWB2 results tend to be larger
[21,22) cross sections have been computed. It would, othan the other two theories at low energies which can be
course, also be instructive to compare the TDH results foexplained by the fact that the DWB2 calculation is expected
excitation directly with the TDCC results but only ionization to be valid for higher energies. With decreasing energy, the
cross sections were reported in RET]. Fortunately, the DWB2 calculation is expected to become less reliable as
CCC and DWB2 results are generally expected to be reprehird- and higher-order terms become more important. Con-
sentative of the present state of the art for nonperturbativeequently, the @ results are consistent with what one would

Energy (eV)

C. Excitation cross sections
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Cross Section (107% ma ?)
Cross Section (107 ma ?)

Energy (eV) Energy (eV)
FIG. 5. Same as Fig. 4 except for the 2tate. FIG. 6. Same as Fig. 4 except for the State.

naively expect to find while the2results are not. It is then very good agreement between the TDH and CCC results for
logical to question the validity of the<2results. The first L=0 and all theories are converging at the higher energies.
thing that comes to mind is numerical accuracy, particularlyFor the lower energies, the DWB2 and CCC results are in
since the radial grid is relatively spar&0 points. If the 2s  reasonable agreement while the TDH results are smaller than
cross sections were significantly smaller than thee @oss  the other theories fok>0.
sections, for example, one could argue that the cross sections In summary, the present TDH results are difficult to un-
were too small to be accurately calculated using this radiatierstand. Both the TDH and CCC calculations are nonper-
grid. Unfortunately, this argument does not explain the
present results since the TOH=1 cross section is larger for 6
2s than for 2o excitation and folL =2, the X and 2 cross
sections are comparable in size. Further, the theories con-
verge for the higher energies for &livalues, where the cross
sections tend to be the smallest. Consequently, the unex-
pected behavior of the 2results cannot be explained by 4
arguing that the cross sections are too small to be accurately
predicted by the present numerical grid.

Figures 6 and 7 present results for excitation of teed
3p states. The 8 results are very similar to the 2s results.
The only striking difference between thes 2and 3 results

lies in the fact that the TDH and DWB2 results are nearly *
identical at the lowest energy far=3. This is undoubtedly
coincidental since the DWB2 calculation is not expected to ol

Cross Section (1073 ma ?)

be valid for low energies. The@®and 3 results are also
very similar. The present TDH results are in reasonably good
agreement with the CCC results fop &xcitation in spite of 4
the fact that the B cross sections are about a factor of 5
smaller than the corresponding Zross sections. The only

exception lies in the fact that the agreement is not good for 2
L=3 at smaller energies and this disagreement is worse for
3p than for 2.
Finally, the results for @ excitation are shown in Fig. 8. 25 7 125
As mentioned above, we expect the Bsults to be the least Energy (eV)
reliable for the chosen numerical grid. Here we again see FIG. 7. Same as Fig. 4 except for the 3tate.
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4 ——t — . e u FIG. 9. Time-dependent probabilities for exciting the 2 sin-

‘\\ L=3 glet states fot. =3 at 54.4-eV electron impact energy. The various
| curves are for different box size and number of points: solid, 30/60,
2r . T dotted, 30/80, and dashed, 40/80.
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25 75 125 Zf’l)(ﬂ):; Zi1)Pi(cos). (16)
Energy (eV)
FIG. 8. Same as Fig. 4 except for the State. The expansion coefficients for EQL6) can be written as

follows [3]

turbative and one would expect that they should yield iden- 1 ’
tical (and accurate results if there is proper numerical Zﬁm:E(—l) HJ@21+1)(211+1)(21,+1)(215+1)
convergence. The CCC results are in good agreement with

absolute experimental data for differential cross sections and X C(1411k;0,0,0C(1,15k;0,0,00W(11111,15;kL),
total cross sections in this energy rar(@ge., present results
summed over alL values so there is no reason to suspect a (17

problem with the CCC calculation. The CCC and TDH re-
sults agree well fot. =0 over the entire energy range. How-
ever with increasind. values, good agreement is found only
for p states and even in this best case the agreement begins to 40
break down for the highestvalue of 3 considered here. The
primary question thus concerns the source of this seemingly
paradoxical situation. 20
The most obvious possibility is an inadequate radial grid
in the TDH calculation. The grid tests were performed for -
L=1 (these runs take about 3 weeks for 60 grid pogints 60
Since the disagreement with the CCC calculation gets worse
with increasingL value, it is possible that sensitivity to the
grid increases with increasing value. Consequently, we
performed a 30/60, 30/80, and 40/80 grid test calculation for
L=3. These calculations took several months to complete.
The results of these calculations for=2 and 3 are shown in
Figs. 9 and 10, respectively, and indicate that the problem is
not in the box size nor grid density. L 3d i
Since all the theoretical results are in good agreement for
L=0, one might speculate that the difference in the TDH 1r
results for higherL values might be due to the coupling
matrices, which do not contribute far=0. From Eq.(6), it
is seen that the coupling terms involve inversion of the
Z l(f’l)(ﬂ) matrices and the stability of this procedure could Time (a.u.)
play an important role. Th€|(9|)(ﬁ) of Eq. (6) are expanded FIG. 10. Same as Fig. 9 except for excitation tohe3 singlet
in terms of Legendre polynomials as states.

whereC is a Clebsch—Gordan coefficient aidis a Racah
coefficient.

30

1073 Probability
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500

the coupling between the individual angular momenta in the
total wave function. With time propagation, the norm and
energy of the total wave function must be constant. As a
result, any procedure for taking the inverse that does not
conserve the norm and the energy is clearly unreliable. Of all
the methods we tested for taking the inverse, only the Gauss-
Jordan method conserved both the energy and norm. Conse-
quently, this is the method we have used in the present work.
Admittedly, this test is necessary but may not be sufficient.
Although the norm and energy were conserved for all the
results shown here, we believe that the instability in invert-
Angle (deg) ing this matrix is the most likely source for th(_a difference
between the TDH and CCC calculations for increasing
FIG. 11. Condition number for thE,(lo,)(e) coupling matrices as ~ values.
a function of the angle between the two electrons. The curves are
for different total angular momenta: solid=1, dottedL=2, and IV. CONCLUSION
dashed =3.

250

Condition Number

We have calculated TDH results for electron impact ex-
citation of hydrogen for total angular momenta 0 to 3. The
To check the stability of the inversion of this matrix, the present TDH approach has the distinct advantage over other
condition number was computed for tlﬁlo,)(ﬁ) matrix for  time-dependent approaches such as the TDCC method of
differentL values as a function of angle. The condition num-Pindzola and Robicheayx] in that the sum over the indi-
ber is the ratio of the largest eigenvalue to the smallest eividual (I, I,) is finite and can be performed exactly, while
genvalue for the matrix. The larger the ratio the more nearlyn the TDCC method this sum is infinite and must be trun-
singular is the matrix and the less stakde reliable is the  cated. Consequently, a primary motivation for this paper has
inversion of the matrix. Figure 11 shows the condition num-been to test the feasibility and practicality of the TDH
ber as a function of the angle between the two particles. Thenethod for higherL values. Our main conclusion is that
solid line represents the condition number for 1, dotted while the TDH does appear to provide a straightforward
L=2, while the dashed line is fdr=3. It is observed that pathway to a direct, fully-correlated treatment of electron-
the condition number is very large for angles near 0° anditom scattering, it is not presently implemented in a manner
180° and that the region of stability decreases with increasthat makes it a practical alternative to the lower-dimensional,
ing L value. The matrix inversion is most stable near 90° andparallelizable TDCC method. Aside from the very long run
the condition number is symmetric about 90°. From Fig. 11fimes, the coupling terms in the TDH method involve taking
it can be seen that for differehtvalues, there are character- the inverse of a matrix, which is nearly singular for small
istic angular ranges for which the inverses of tA&)(9)  and large angular separations and the instability for this ma-
matrices are stable and these ranges decrease with increas g inversion increases with increasingvalues. The fact
L values. This implies that the solution of the coupled equalh@t the present results do not agree with the CCC results
tions will potentially have stability problems near 0° and strongly suggests that this instability has caused inaccuracies

180°, which become more severe with increasingThe in the present results, particularly for excitation of non-
’ (0) stategand everp states for higher angular momeht&here-

gf)ab"';y ggb'ems a‘:’ﬁof'ate" ""'tht gﬁ“’ (9) ma;”’l‘ e fore, the future applicabilty, uilty, and feasibility of the
an means thal oné must be very caretul wi €TDH approach forlL greater than zero critically depends on

{L%?:;gﬁé_mle:?rotiigszd r:[:(r) ttalée d??jﬁ"}q‘q’g[ﬁggﬁr(tggba;g fofts reformulation in such a way as to avoid taking the inverse
' Paper, of the Z,‘lo,)(a) matrix or development of a stable inversion

ian elimination, Gaussian elimination with partial pivoting, . .
Gaussian elimination with full pivoting, and Gauss-Jopdan Procedure and the speeding up of computational turn-around

were tested. The first important issue concerns how one cdfi through development of a parallelization scheme for the
evaluate the reliability and accuracy of different methods formethod.
taking inverses. In principle, it would seem that the accuracy
of an inverse could easily be tested by checking the multi-

plication of the original matrix by its inverse. However, for ~ D.0.0., D.H.M., and J.L.P. gratefully acknowledge sup-
nearly singular matrices, this test is hlgh'y sensitive to th%ort from the NSF. Work by D.R.S. was Supported through
number of significant digits used and changing the least siggrants to the Oak Ridge National Laboratory, managed by
nificant digit by one can produce dramatic changes. UT-Battelle, LLC under Contract No. DE-ACO05-

One important check of the inverse lies in the fundamen9oOR22725 from the U.S. DOE Office of Fusion Energy
tal physics. The inverse of thEl(lo,)(ﬁ) matrix determines Sciences and Office of Basic Energy Sciences.
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