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Time-dependent treatment of electron-hydrogen scattering for higher angular momenta„LÌ0…
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The time-dependent approach to electron-atom scattering is emerging as an alternative to more conventional
methods of treating atomic collisions. Solving the time-dependent Schro¨dinger equation directly has several
very attractive features including a completely nonperturbative solution, dense representation of the nonphysi-
cal positive energy states, circumvention of the need to explicitly impose boundary conditions for ionization,
and the convenience of being able to ‘‘watch’’ the electronic probability density evolve though the collision.
Two principal approaches have so far been applied to treat electron-atom scattering, namely, the time-
dependent close couping~TDCC! method and what we refer to as the time-dependent Hylleraas~TDH!
method. The TDCC method solves coupled equations with two variables within a truncated infinite sum over
individual angular momenta for each total angular momentumL of the system. In contrast, the TDH method
avoids an infinite summation over the angular momenta of the individual electrons at the expense of solving a
coupled equation with three variables for eachL. The TDH method has previously been used forL50 only.
An important question, therefore, concerns whether the TDH method would represent a numerical advantage
over the TDCC method for higherL values. This issue is investigated in this paper.

DOI: 10.1103/PhysRevA.63.022708 PACS number~s!: 34.80.Dp
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I. INTRODUCTION

In a theoretical treatment of an atomic collision proble
one can adopt either the time-dependent or time-indepen
approach. However, a particle colliding with an atom, ion
a molecule is inherently a time-dependent process in whic
free particle travels towards the target and the sys
evolves with time under the influence of the interpartic
Coulomb interactions. Such a process can be treated dire
by propagating the system wave function in time accord
to the time-dependent Schro¨dinger equation. Consequentl
the time-dependent approach is more closely connecte
reality and it has many distinct advantages over the tra
tional time-independent methods. For example, it allows
rect visualization of the collision process where one c
‘‘watch’’ the atom and electron wave packet evolving
time as a result of the collision. It is free of approximatio
~other than numerical! which means that it is inherently non
perturbative, incorporates electronic continuum states, r
nances, and the postcollision interaction in the most nat
way, and it circumvents the difficulty of the boundary co
ditions for ionization due to the long-range Coulomb inte
actions, which arises when using time-independent scatte
theory @1#. In short, it is flexible and versatile in treating
large variety of quantum collision processes.

In addition, use of methods that solve the underlyi
equation of motion for electron-atom scattering, as direc
as possible, are motivated by the need to try to resolve lo
standing disagreements between theory and experimen
various observables that provide strenuous tests. The go
such work is to remove uncertainties such as those ari
from the use of perturbation theories when the interactio
indeed strong and the use of close-coupling theories tha
not densely represent the continuum.

The general time-dependent theory of wave-packet s
tering has been known for a long time@2#. However, its
1050-2947/2001/63~2!/022708~9!/$15.00 63 0227
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applications have been slow to develop due to computatio
~algorithmic and machine capacity! limitations. The idea be-
hind this method is to use the time-evolution operator
evolve a known initial state into the final state. The form
solution @C(r1 ,r2 ,t1Dt)5e2ıHDtC(r1 ,r2 ,t)# of the time-
dependent Schro¨dinger equation requires the representat
and evaluation of the exponential time operator (e2ıHDt) and
also the formation of the initial wave function@C(r1 ,r2 ,
t50)# of the system. There are several formulations of
time-dependent approach for solving scattering proble
@3–10# and studying the autoionization of atoms@11#.

Aside from the details of the various numerical metho
adopted, the most important difference between the vari
time-dependent approaches that have been reported s
lies in the expression for the system wave function. Perh
the most straightforward method@6,7# is to express the sys
tem wave function as a sum over total angular momen
where each term in this sum is a product of a coupled sph
cal harmonic times a function that depends on the ra
coordinates for the two electrons. This approach has b
termed the time-dependent close-coupling~TDCC! method
@6,7#. This approach produces the usual set of coupled eq
tions to solve, but has the disadvantage of being an infi
sum over individual angular momenta (l 1 ,l 2) for each total
angular momentumL. Establishing that this sum is con
verged, when it is of necessity truncated, for each total
gular momentum, represents a fundamental and nume
challenge. So far, the largest total angular momentum
ported for electron-hydrogen scattering has beenL54. In
particular, Pindzola and Robicheaux@7# calculated the
partial-wave ionization cross sections for electron scatter
from hydrogen using the TDCC method. In that calculatio
the infinite sum was truncated after 3 terms for totalL50, 6
terms forL51 andL52, and 8 terms forL53 and 4.

The alternative approach, which has been developed
Bottcheret al. @11–15#, is to express the wave function for
©2001 The American Physical Society08-1
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given total angular momentum as a product of a coup
spherical harmonic times a function that depends on the
dial coordinates for the two electrons as well as the ang
separation between the two electrons. The basis for
method has been attributed to Hylleraas@16# and is therefore
called the time-dependent Hylleraas~TDH! method, and has
the distinct advantage of being afinite sum for each total
angular momentumL with eitherL or (L11) terms depend-
ing on the parity of the initial state. The disadvantage of t
method lies in the fact that there are now three dynam
variables for the system and, as a result, the matrices re
senting the various operators are three-dimensional, w
severely limits the possible size for each dimension. Con
quently, the TDH method poses a potentially much grea
numerical challenge than the TDCC method. Thus, the
presently developed options for treating electron-atom s
tering by direct solution of the Schro¨dinger equation are~1!
choose an easier computational problem but perform a t
cated ‘‘infinite’’ summation over the individual (l 1 ,l 2) for
each total angular momentum, or~2! solve a more difficult
computational problem but with a small finite sum over t
individual (l 1 , l 2) for each total angular momentum. Th
TDH method has previously been applied to electro
hydrogen scattering for totalL50 only @3#. The purpose of
this paper is to use the TDH method to calculate hig
L-value results for electron-hydrogen scattering to determ
which option is the more viable and/or practical. In the c
rent approach, the basis-spline collocation method@17–19# is
used to represent the operators and to discretize the w
functions on the grid and the time-evolution operator
evaluated using a Taylor series method as described in B
ington et al. @3#

II. THEORY OF ELECTRON-HYDROGEN ATOM
COLLISION

The theory has previously been presented in Buffing
et al. @3# and Schultzet al. @11# so only the essential point
will be given here. The time-dependent Schro¨dinger equation
for the wave functionC(r1 ,r2 ,t) describing the electron
hydrogen atom system has the general form

HC~r1 ,r2 ,t !5ı
]

]t
C~r1 ,r2 ,t !. ~1!

Atomic units are used unless stated otherwise. The Ha
tonianH for a system containing a nucleus and two electro
can be expressed in atomic units~a.u.! as

H52
1

2
~¹1

21¹2
2!2

q

r 1
2

q

r 2
1

1

ur12r2u
, ~2!

whereq is the charge of the nucleus and the vectorsr1 andr2
locate the electrons with respect to the assumed infini
massive nucleus, which is fixed at the origin.

For a fixed total angular momentumL, projectionM, and
parity Ã, the wave function in Eq.~1! can be written in
terms of an expansion attributed to Hylleraas@3,11,16# as
02270
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LM~r1 ,r2 ,t !

5
1

r 1r 2
(

l 15Ã

L

c l 1
~r 1 ,r 2 ,q,t !Y l 1 ,L1Ã2 l 1

LM ~ r̂ 1 , r̂ 2!.

~3!

The expansion coefficientc l 1
is referred to as the dynamica

wave function andq is the angle betweenr1 and r2. The
parity Ã50 or 1 depending on whether the wave functi
exhibits even~natural! or odd~unnatural! parity @15#. For the
collision system considered here, the wave function exhi
even parity, soÃ50. Consequently, for a given total angu
lar momentumL, there are (L11) dynamical wave func-
tions.

The dynamical wave functionsc l 1
satisfy the coupled

@3,15,11# equations

S h11h21hq1
1

r 12
2EDc l 1

1 (
l 185Ã

L

@U l l 8
(1)

~q!1U l l 8
(2)

~q!#c l
18

50, ~4!

where, for convenience, the shorthand notationl 5( l 1 ,l 2)
5( l 1 ,L1Ã2 l 1) and l 85( l 18 ,l 28)5( l 18 ,L1Ã2 l 18) is used,

h152
1

2

]2

]r 1
2

2
q

r 1
1

l 1~ l 111!

2r 1
2

,

h252
1

2

]2

]r 2
2

2
q

r 2
1

l 2~ l 211!

2r 2
2

, ~5!

hq52
1

2 S 1

r 1
2

1
1

r 2
2DDq@sin2 qDq#

and the coupling terms are given by

U l l 8
(p)[2

Z l l 8
(p)

Z l l 8
(0)

1

r p
2
Dq, p51,2,

~6!

Dq5
1

sinq

]

]q
.

The Z matrices are composed of Legendre polynomia
Clebsch-Gordan coefficients, and Racah coefficients.
plicit expressions for theZ matrices are given in Ref.@15#.
They give rise to the mixing of the dynamical wave fun
tions.

Initially the electron-electron interaction can be ignor
since the electrons are far apart. The initial wave function
Eq. ~1! consists of the initial atomic state and incident ele
tron, which is represented by an incoming spherical wa
The initial angular-independent dynamical wave functio
become angularly dependent as the time-propaga
progresses. For a state with zero total angular momen
(L50), the initial singlet or triplet (S50 or 1! wave func-
tion would be given by
8-2
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c l 15L50~r 1 ,r 2 ,q,t50!

5
1

A2
@f l 150~r 1!x l 25Ã~r 2!

1~21!S1Ãf l 150~r 2!x l 25Ã~r 1!#, ~7!

where, in general,l 25L1Ã2 l 1. As noted previouslyÃ
50 for this collision system. Here,f would represent the
ground state of hydrogen andx the incoming projectile elec
tron wave packet.

For states with total angular momentum greater than z
the initial dynamical wave functions are given by

c l 150~r 1 ,r 2 ,q,t50!5
1

A2
f l 150~r 1!x l 25L~r 2!,

c l 15L~r 1 ,r 2 ,q,t50!5
1

A2
~21!S1Ãf l 15L~r 2!x l 25Ã~r 1!,

~8!

c l 1
~r 1 ,r 2 ,q,t50!50, l 1Þ0, and l 1ÞL.

The incoming projectile wave packet is given by

x l 2
~r !5

2 ikr

~pb2!1/4
hl 2

(2)~kr !expF2
1

2 S r 2a

b D 2G , ~9!

wherehl 2
(2)(kr) is an incoming spherical Hankel function,k

is the momentum of the projectile electron,a is the initial
center of the Gaussian wave packet, whileb defines its
width. Although it would appear that the singlet and trip
wave functions would both need to be propagated indep
dently, the indistinguishability of the two electrons makes
possible to propagate only a single wave function that can
used to get both the singlet and triplet results.

The propagation proceeds according to the equation

CLM~r1 ,r2 ,t1Dt !5e2ıHDtCLM~r1 ,r2 ,t !. ~10!

The time evolution operator (e2ıHDt) is evaluated using the
Taylor series expansion

e2ıHDt5(
N

~2ıHDt !N

N!
. ~11!

The time-dependent probability of finding one electron
the bound statenlm of hydrogen and the other electron in th
continuum, i.e. the excitation probability, is given by@3,5#

Pnlm
LM ~ t !52F`nlm

LM ~ t !2 (
n8 l 8m8

`nlm,n8 l 8m8
LM

~ t !G . ~12!

Here`nlm is the probability that one electron is in the bou
statenlm, while the other electron is in any bound or co
tinuum state and̀ nlm,n8 l 8m8 is the probability that one elec
tron is in the bound statenlm while the other electron is in
02270
o,

t
n-
t
e

the bound staten8l 8m8. The factor of two accounts for the
indistinguishability of the electrons.

The one-electron probabilitỳ nlm
LM may be obtained by

projecting the single-particle state onto the full wave fun
tion

`nlm
LM ~ t !5E u^^fnlm~r1!uCLM~r1 ,r2 ,t !&&u2 dr2 , ~13!

wheref(r1) describes a possible one-electron bound stat
the atom, CLM(r1 ,r2 ,t) is the fully correlated time-
dependent wave function for the two-electron system, a
the double brackets indicate integration overr1. Equation
~13! represents the probability that one electron is in thenlm
state while the other could be in any possible state. T
two-electron probabilitỳ nlm,n8 l 8m8

LM is defined by the projec-
tion

`nlm,n8 l 8m8
LM

~ t !5u^fnlm~r1!fn8 l 8m8~r2!uCLM~r1 ,r2 ,t !&u2,
~14!

where now the integration is over bothr1 andr2. Expression
~14! represents the probability that one electron is in thenlm
state and the other electron is in then8l 8m8 state. The prob-
abilities are monitored as the time evolution continues
large times until the probabilities reach their asymptotic v
ues. The inelastic excitation cross sections can be obta
from @5,6#

snl
LM5

p

4k2 (
m

~2S11!~2L11!Pnlm
LM , ~15!

wherek is the momentum of the incident electron.
The excitation probabilities are extracted at a final tim

such that the outgoing wave packet is far from the scatte
atom and the grid boundaries. To verify the numerical p
cedures adopted, the normalization of the wave function
the total energy of the system were monitored as a func
of time. These did not change with time either in the pre
ence or absence of the scattering potential.

III. RESULTS

A. Numerical parameters

The only approximations which are made in this paper
numerical and we have used the basis-spline colloca
method to represent our dynamical wave functions.
implement this method, one must choose a spline orde
numerical grid forr 1 , r 2, andq, the time stepDt, the initial
location for the incoming wave packet, and the width of t
wave packet. We have used splines of order 3. The ch
for Dt represents a trade off between propagation time
the number of terms required for convergence of the Tay
series of Eq.~11!. A large time step will reduce the numbe
of terms required to reach the asymptotic limit but for ea
time step, the series of Eq.~11! will converge slower and
thus require more terms. We performed a systematic stud
these competing factors and found thatDt50.005 a.u. rep-
resented an optimum compromise for our chosen grids.

The parameters for the wave packet were chosen to
isfy certain criteria. The wave packet should be narrow a
8-3



in

e
-
s

O
in
te
a
la
d

th

a
to
n
pr
-
ot
fin
se
f

e
fo
m

ts
.

In

30
-e

ip-
In
ed
x
no-

ve

ob-
lar
the
lts

box
for
ce
3
3

ec-
cal
ter-

b-

ted

ust
tain

2
12

us
ed

ODERO, PEACHER, SCHULTZ, AND MADISON PHYSICAL REVIEW A63 022708
yet at the same time have a minimum amount of spread
For the energies considered here a width ofb53 a.u. satis-
fied this criterion and was also consistent with previous tim
dependent calculations@3,6#. For the location of the incom
ing wave packet, the criterion is to start far enough out
that there is little interaction between the two electrons.
the other hand, one does not want to start too far out s
propagating with no interaction would consume compu
time and have no effect other than the spreading of the w
packet. We tested various starting points and found that p
ing the center of the wave packet at 10 a.u. represente
good compromise.

The last choice that must be made is the spacing of
basis spline points of support~or of collocation! on the nu-
merical grids for the radial and angular coordinates. The
gular coordinate must necessarily span the range of zerop
and we found that 12 angular grid points were sufficie
Probably the most important choice to be made is the re
sentation of ther 1 andr 2 grids. Due to the indistinguishabil
ity of the two electrons, the same grids were used for b
electrons. In principle, these grids extend from zero to in
ity. In practice one must chose a maximum value. Con
quently, the necessary choices are the maximum value
the radial grid~box size! and the number of points inside th
box ~which corresponds to the number of basis splines
each coordinate, and therefore, the subrank of the Ha
tonian matrix!. Below we designate a box with maximum
sizeM a.u. withN points inside the box as ‘‘M /N.’’

To determine the optimum box size and number of poin
we performed a series of calculations for different choices
is desirable to perform the tests for the smallestL value since
the run time increases dramatically withL value~and, there-
fore, number of coupled equations to be solved!. Conse-
quently, the tests were performed forL51 since this is the
smallestL value for which the coupling terms contribute.
Figs. 1 and 2, the probability for exciting then52 and 3
levels are shown as a function of time for boxes 25/60,
60, and 30/80. This comparison was performed for a 100

FIG. 1. Time-dependent probabilities for exciting then52 sin-
glet states forL51 at 100-eV electron impact energy. The vario
curves are for different box size and number of points: dott
25/60, solid, 30/60, and dot dashed, 30/80.
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incident electronic wave packet and a total spin of zero. Tr
let results are very similar and not shown for brevity.
general, we found that when the different grids produc
significantly different results, the two calculations for bo
size 30 a.u. tended to be very similar to each other and
ticeably different from the box size of 25 a.u.~even when the
same number of points are used!. The explanation for this
observation can be found by looking at the atomic wa
functions. The 2s wave function as well as the 2p wave
function are well within the 25 a.u. box while then53 wave
functions extend beyond 25 a.u. These results reflect the
vious fact that accurate results for exciting a particu
atomic wave function requires a box at least as large as
state of interest. The similarity of the 30/60 and 30/80 resu
indicates that the density-of-states is less important than
size. Consequently, 30/60 was chosen as the radial grid
this study. From Fig. 2 it is seen that the largest differen
between the 30/60 and 30/80 results was found for thed
state. The fact that the 25/60 and 30/60 results for thed
state are very similar is undoubtedly fortuitous. Cross s
tions for this state will therefore have the largest numeri
errors. Convergence of the excitation cross sections is de
mined by continuation of the time evolution until the pro
abilities have reached their asymptotic values~somewhat
larger times than those shown in Figs. 1 and 2!.

B. Inelastic excitation probabilities

The time-dependent excitation probabilities are calcula
from the time-dependent wave functions using Eq.~12!. As
mentioned in the previous section, these probabilities m
have reached their asymptotic values before one can ob
meaningful cross sections. Figure 3 shows the 30/60,n52
probabilities for times up to 15 a.u. It is seen that both thes
and 2p probabilities are at their asymptotic values after

,

FIG. 2. The same as Fig. 1 except for excitation to then53
singlet state.
8-4
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TIME-DEPENDENT TREATMENT OF ELECTRON- . . . PHYSICAL REVIEW A 63 022708
a.u. The probabilities for then53 states are not displaye
since all then bound states as well as all theL values con-
sidered here exhibited very similar behavior. The purpose
Fig. 3 is to demonstrate that the probabilities reach th
asymptotic values with increasing time and this happens
all the states we examined. Also shown in Fig. 3 are
exact second-order distorted wave-Born~DWB2! approxi-
mation of Madisonet al. @20# and the convergent close
coupling ~CCC! results of Bray and Stelbovics@21,22#.
These are time-independent calculations and are placed
large time value since they should represent the asymp
value for a time-dependent calculation. It is seen that
CCC results are closer to the present TDH results than to
DWB2 results for this case.

C. Excitation cross sections

Cross sections for exciting the 2s, 2p, 3s, 3p, and 3d
states of hydrogen by electron impact at seven energies
tween 30 and 122.5 eV have been calculated for total ang
momenta,L between 0 and 3. The results are displayed
Figs. 4 through 8. All calculations have been carried out
small or midlevel workstations such as the HP 9000/715
SGI Power Challenge. Typical run times for total angu
momentumL50 ranged between 1 week for the highe
incident energy considered here~122.5 eV! to two weeks for
30 eV for the 30/60 box. The run time increases dramatic
with higher angular momentum~and thus more coupled
equations! and means to parallelize the algorithms to ta
advantage of contemporary multicomputers is prudent if f
ther work, utilizing the TDH method, is to be performed.

For comparison the analogous DWB2@20# and CCC
@21,22# cross sections have been computed. It would,
course, also be instructive to compare the TDH results
excitation directly with the TDCC results but only ionizatio
cross sections were reported in Ref.@7#. Fortunately, the
CCC and DWB2 results are generally expected to be re
sentative of the present state of the art for nonperturba

FIG. 3. Time-dependent probabilities for exciting then52 sin-
glet states forL51 at 100-eV electron impact energy. Solid lin
30/60 TDH results; circles, DWB2 results~Ref. @20#!, and stars,
CCC results~Ref. @21#!.
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treatments for total excitation cross sections. TheL50 sin-
glet and triplet results were presented elsewhere@3# but the
total results are presented here for completeness. The pre
TDH results forL50 agree very nicely with the CCC resul
for all the excited states and energies considered. ForL50,
the DWB2 approximation, on the other hand, tends to
above the other theories at low energy fors- and p-state
excitation and below the other theories ford-state excitation.
All the theories converge at higher energies for allL values.

For 2s excitation~Fig. 4!, all three theoretical approache
predict very similar results for energies of 100 eV and abo
For L50, there is good agreement between the present
sults and the CCC at all energies considered. For higheL
values and lower energies, the present TDH results are la
than either the CCC or DWB2 results while the latter tw
theories are in reasonable agreement with each other ex
at the lowest energies. For 2p excitation ~Fig. 5!, on the
other hand, the situation is quite different in that the pres
TDH results are in good agreement with the CCC results
all energies forL values of 0, 1, and 2 and in fair agreeme
for L53. In this case, the DWB2 results tend to be larg
than the other two theories at low energies which can
explained by the fact that the DWB2 calculation is expec
to be valid for higher energies. With decreasing energy,
DWB2 calculation is expected to become less reliable
third- and higher-order terms become more important. C
sequently, the 2p results are consistent with what one wou

FIG. 4. Cross sections for electron-impact excitation of thes
state of atomic hydrogen for total angular momenta between 0
3 as a function of the incident electron energy. The cross sect
have been summed over the individual singlet and triplet contri
tions. The theoretical results are as follows: solid curve, pres
30/60 TDH results, stars, CCC results~Ref. @21#!, and dashed
curve, DWB2 results~Ref. @20#!.
8-5
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ODERO, PEACHER, SCHULTZ, AND MADISON PHYSICAL REVIEW A63 022708
naively expect to find while the 2s results are not. It is then
logical to question the validity of the 2s results. The first
thing that comes to mind is numerical accuracy, particula
since the radial grid is relatively sparse~60 points!. If the 2s
cross sections were significantly smaller than the 2p cross
sections, for example, one could argue that the cross sec
were too small to be accurately calculated using this ra
grid. Unfortunately, this argument does not explain t
present results since the TDHL51 cross section is larger fo
2s than for 2p excitation and forL52, the 2s and 2p cross
sections are comparable in size. Further, the theories
verge for the higher energies for allL values, where the cros
sections tend to be the smallest. Consequently, the u
pected behavior of the 2s results cannot be explained b
arguing that the cross sections are too small to be accura
predicted by the present numerical grid.

Figures 6 and 7 present results for excitation of the 3s and
3p states. The 3s results are very similar to the 2s result
The only striking difference between the 2s and 3s results
lies in the fact that the TDH and DWB2 results are nea
identical at the lowest energy forL53. This is undoubtedly
coincidental since the DWB2 calculation is not expected
be valid for low energies. The 2p and 3p results are also
very similar. The present TDH results are in reasonably g
agreement with the CCC results for 3p excitation in spite of
the fact that the 3p cross sections are about a factor of
smaller than the corresponding 2p cross sections. The onl
exception lies in the fact that the agreement is not good
L53 at smaller energies and this disagreement is worse
3p than for 2p.

Finally, the results for 3d excitation are shown in Fig. 8
As mentioned above, we expect the 3d results to be the leas
reliable for the chosen numerical grid. Here we again

FIG. 5. Same as Fig. 4 except for the 2p state.
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very good agreement between the TDH and CCC results
L50 and all theories are converging at the higher energ
For the lower energies, the DWB2 and CCC results are
reasonable agreement while the TDH results are smaller
the other theories forL.0.

In summary, the present TDH results are difficult to u
derstand. Both the TDH and CCC calculations are nonp

FIG. 6. Same as Fig. 4 except for the 3s state.

FIG. 7. Same as Fig. 4 except for the 3p state.
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turbative and one would expect that they should yield id
tical ~and accurate! results if there is proper numerica
convergence. The CCC results are in good agreement
absolute experimental data for differential cross sections
total cross sections in this energy range~i.e., present results
summed over allL values! so there is no reason to suspec
problem with the CCC calculation. The CCC and TDH r
sults agree well forL50 over the entire energy range. How
ever with increasingL values, good agreement is found on
for p states and even in this best case the agreement beg
break down for the highestL value of 3 considered here. Th
primary question thus concerns the source of this seemi
paradoxical situation.

The most obvious possibility is an inadequate radial g
in the TDH calculation. The grid tests were performed
L51 ~these runs take about 3 weeks for 60 grid poin!.
Since the disagreement with the CCC calculation gets wo
with increasingL value, it is possible that sensitivity to th
grid increases with increasingL value. Consequently, we
performed a 30/60, 30/80, and 40/80 grid test calculation
L53. These calculations took several months to compl
The results of these calculations forn52 and 3 are shown in
Figs. 9 and 10, respectively, and indicate that the problem
not in the box size nor grid density.

Since all the theoretical results are in good agreement
L50, one might speculate that the difference in the TD
results for higherL values might be due to the couplin
matrices, which do not contribute forL50. From Eq.~6!, it
is seen that the coupling terms involve inversion of t
Z l 8 l

(0)(q) matrices and the stability of this procedure cou
play an important role. TheZ l 8 l

(0)(q) of Eq. ~6! are expanded
in terms of Legendre polynomials as

FIG. 8. Same as Fig. 4 except for the 3d state.
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Zl 8 l
(0)

~q!5(
k

Z kLl8 l
(0) Pk~cosq!. ~16!

The expansion coefficients for Eq.~16! can be written as
follows @3#

ZkLl8 l
(0)

5
1

2
~21!k1LA~2l 111!~2l 1811!~2l 211!~2l 2811!

3C~ l 1l 18k;0,0,0!C~ l 2l 28k;0,0,0!W~ l 1l 18l 2l 28 ;kL!,

~17!

whereC is a Clebsch–Gordan coefficient andW is a Racah
coefficient.

FIG. 9. Time-dependent probabilities for exciting then52 sin-
glet states forL53 at 54.4-eV electron impact energy. The vario
curves are for different box size and number of points: solid, 30/
dotted, 30/80, and dashed, 40/80.

FIG. 10. Same as Fig. 9 except for excitation to then53 singlet
states.
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To check the stability of the inversion of this matrix, th
condition number was computed for theZ l l 8

(0)(q) matrix for
differentL values as a function of angle. The condition nu
ber is the ratio of the largest eigenvalue to the smallest
genvalue for the matrix. The larger the ratio the more nea
singular is the matrix and the less stable~or reliable! is the
inversion of the matrix. Figure 11 shows the condition nu
ber as a function of the angle between the two particles.
solid line represents the condition number forL51, dotted
L52, while the dashed line is forL53. It is observed that
the condition number is very large for angles near 0° a
180° and that the region of stability decreases with incre
ing L value. The matrix inversion is most stable near 90° a
the condition number is symmetric about 90°. From Fig.
it can be seen that for differentL values, there are characte
istic angular ranges for which the inverses of theZ l l 8

(0)(q)
matrices are stable and these ranges decrease with incre
L values. This implies that the solution of the coupled eq
tions will potentially have stability problems near 0° an
180°, which become more severe with increasingL. The
stability problems associated with theZ l l 8

(0)(q) matrix near
0o and 180o means that one must be very careful with t
numerical method used to take the inverse, particularly
increasingL. For this paper, the direct methods@23# ~Gauss-
ian elimination, Gaussian elimination with partial pivotin
Gaussian elimination with full pivoting, and Gauss-Jorda!
were tested. The first important issue concerns how one
evaluate the reliability and accuracy of different methods
taking inverses. In principle, it would seem that the accur
of an inverse could easily be tested by checking the mu
plication of the original matrix by its inverse. However, fo
nearly singular matrices, this test is highly sensitive to
number of significant digits used and changing the least
nificant digit by one can produce dramatic changes.

One important check of the inverse lies in the fundam
tal physics. The inverse of theZ l l 8

(0)(q) matrix determines

FIG. 11. Condition number for theZ l l 8
(0)(u) coupling matrices as

a function of the angle between the two electrons. The curves
for different total angular momenta: solid,L51, dotted,L52, and
dashed,L53.
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the coupling between the individual angular momenta in
total wave function. With time propagation, the norm a
energy of the total wave function must be constant. As
result, any procedure for taking the inverse that does
conserve the norm and the energy is clearly unreliable. O
the methods we tested for taking the inverse, only the Ga
Jordan method conserved both the energy and norm. Co
quently, this is the method we have used in the present w
Admittedly, this test is necessary but may not be sufficie
Although the norm and energy were conserved for all
results shown here, we believe that the instability in inve
ing this matrix is the most likely source for the differenc
between the TDH and CCC calculations for increasingL
values.

IV. CONCLUSION

We have calculated TDH results for electron impact e
citation of hydrogen for total angular momenta 0 to 3. T
present TDH approach has the distinct advantage over o
time-dependent approaches such as the TDCC metho
Pindzola and Robicheaux@7# in that the sum over the indi
vidual (l 1 , l 2) is finite and can be performed exactly, whi
in the TDCC method this sum is infinite and must be tru
cated. Consequently, a primary motivation for this paper
been to test the feasibility and practicality of the TD
method for higherL values. Our main conclusion is tha
while the TDH does appear to provide a straightforwa
pathway to a direct, fully-correlated treatment of electro
atom scattering, it is not presently implemented in a man
that makes it a practical alternative to the lower-dimension
parallelizable TDCC method. Aside from the very long ru
times, the coupling terms in the TDH method involve taki
the inverse of a matrix, which is nearly singular for sm
and large angular separations and the instability for this m
trix inversion increases with increasingL values. The fact
that the present results do not agree with the CCC res
strongly suggests that this instability has caused inaccura
in the present results, particularly for excitation of nonp
states~and evenp states for higher angular momenta!. There-
fore, the future applicability, utility, and feasibility of the
TDH approach forL greater than zero critically depends o
its reformulation in such a way as to avoid taking the inve
of the Z l l 8

(0)(u) matrix or development of a stable inversio
procedure and the speeding up of computational turn-aro
time through development of a parallelization scheme for
method.
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