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Determination of two-channel scattering amplitudes using unitarity
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A phase-shift analysis technique for two-channel scattering has been studied. The inputs to the study were
the experimental differential cross sections and the unitarity condition was then used to extract the phase of the
scattering amplitudes. A Newton iterative method based upon Frechet derivatives gave convergent results. The
method was tested by using both simulated data and theoretical calculations for electron-helium scattering.
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[. INTRODUCTION Although the Newton method cannot prove the uniqueness
of the solution, it works even when the fix-point theorem
The determination of scattering amplitudes from experi-method fails. This Newton method was applied to analyze
mental data is the first step in obtaining the interaction podata for neutronx particle scattering at low energies and
tentials using inverse-scattering methotls Usually, the ex-  electron-water scattering at 1000 eV. Later Hubeal. [7]
perimental data are the differential cross sectiats; /d(}, extended the method to scattering with spin-orbit interactions
wherei andf indicate the initial and final states of a multi- and tested the method with an optical model calculation for 1
channel scattering process, respectively. Hewg; /dQ) is  MeV neutronea particle scattering.

related to the corresponding scattering amplitdig€6) by In view of these successes, the next step is to treat multi-
the relationship channel scattering cases. In order to obtain the complete scat-
tering amplitude matrix for multichannel scattering, data for
doyi(0) ) all energy-accessible scattering procesémsen channe)s
fri(0)= g0 SXHid(0)]. (1) are needed. Many experimental measurements have been

made for multichannel scattering, but it is rare that a com-

The phase functionp;;(#) of a scattering amplitude is not plete set of data is available because of the difficulty in ob-
generally measured so it needs to be determined by theord@ining data when the excited states are the initial scattering
ical means. The process of extracting the phase functiogtate. Recently, with the advancement of experimental tech-
from differential cross-section data is referred to as phasedology, attempts are being considered to obtain such a com-
shift analysis and there are various such techniques. A conplete data set for electron-helium scattering at energies above
mon approach is to parametrize the Scattering amp”tudes éhe first excitation threshold. This motivates, in part, our de-
their equivalent—the phase shifts or the scattering matrix—velopment of a phase-shift analysis technique for multichan-
and to use a nonlinear fitting procedure to find the scatteringjel scattering. In this paper, we begin by studying unitarity
amplitudes that best fit the data. The advantage of this agor the simplest multichannel scattering process, namely the
proach is its wide applicability and that it does not requiretwo-channel scattering of two spinless particles. Further-
complete sets of angular datisom 0° to 180°). The disad- Mmore, the phase-shift analysis method developed here is also
vantage is that it is model-dependent and the question ofalid for electron-helium scattering at energies between the
existence and uniqueness of the solution cannot be adi.l’St and the second excitation thresholds when the differen-
dressed. A less common approach is to use a more g|0baﬁ| cross section is spin-resolved. The extension to more
means, namely the unitarity theorem. This theorem translatd§an two channels is straightforward in principle, but in-
into coupled nonlinear integral equations for the phase funcvolves a considerable increase in computational complexity.
tions. The advantage of this approach is that the search for

solutions is based on physical constraints and is model-

independent. The disadvantage is the difficulty in solving the Il. THEORY

unitarity equations. Newtof2], Martin [3], Gerber and Kar- The generalized unitarity theorem, valid for any scattering
plus [4], and Atkinsonet al. [5] have studied the unitarity process, is given by

equations in great detail. Their main interest was in the ex-

istence and the unigueness of solutions. By the use of fix-

point theorems, they obtained various domains for the differ-4« .

ential cross sections, within which a unique solution to thefi | Im f(Ky ,Ki)Z% J Ay Foni(Km Ko fmi(Kn, Kj),
unitarity equations was shown to exist and could be con- ?)
structed by a simple iterative procedure. However, most

physical circumstances lie outside these domains. In order to

make use of the unitarity condition in phase-shift analysiswhere Im denotes the imaginary part, tkés are the mo-
Lun et al. [6] recently used a Newton iterative method to menta of the initiali) and final(f) states, and the sum is over
solve the single unitarity equation for one-channel scatteringall open channels. We now consider the specific case of two-
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channel scattering where(b) and (c,d) are pairwise non-
identical, spinless particles giving rise to the following pro-
cesses:

a+b—a+b, 3
a+b—c+d, (4)
c+d—c+d, (5)
c+d—a+hb. (6)

If time-reversal invariance holds, then the second and fourtls\;
of these processes are equivalent and we can omit the latter,

We next define the dimensionless quantity as

_, [dog
A(x)=|Kj] gq Cosd,  x=coso,

where the subscrigt=1,2,3 refers to the three processes in
Egs.(3)—(5). After some transformations, the unitarity equa-
tions[Eq. (2)] can be written as the following three equations
for the phase functiong,:

()

A(X)Sing(X)= f f H(L,)cog ¢1(y) — ¢1(2)1dy dz

N f f H(2,2c08 ¢a(y) — ¢2(2)]dy dz
®

Ao(X)Sing(X)= f f H(2,1c08 ¢a(y) — ¢1(2)1dy dz

N f f H(2,9c0 ¢a(y) — ¢(2)]dy dz
©

Ag(X)sin3(X) = f f H(3.9c08 ¢5(y) — ¢5(2)1dy dz

+f f H(2,2)cod ¢,(y) — ¢2(2)]dy dz
(10

along with the supplementary condition
0=f f H(2,)sin ¢2(y) — ¢1(2)]dy dz

- f f H(2.3siMea(y) — e5(D)]dy dz (11

where
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S Ai(Y)A|(z)
H(I’J)_Zw(l—xz—y2—22+2xy

2 (12

Here the region of integration is over the boundary and inte-
rior of the ellipse given by *x?—y?—z%+2xyz=0.
Alvarez-Estradeet al. [8] have shown that if

1
%f 1dx[Al(x)+A3(x)]2< 1, (13
then the supplementary condition is already implied by Egs.
(8)—(10) and can be omitted. Equatiof®)—(10) are then, in
inciple, sufficient to obtain the three phase functighs

ith the inclusion of the supplementary condition, we have
ah overdetermined system, which in turn puts a stringent
constraint on the differential cross-section data. Although the
theory described below includes the supplementary condi-
tion, our test cases use only E¢8)—(10) as our simulated
data are always “perfect.” For real data, the supplementary
condition may be useful in obtaining a more accurate result;
however, this needs to be investigated in the future.

The solutions of Eq98)—(11) have two discrete ambigu-
ities [8]: (i) The trivial ambiguity where the transformation
d— 17— P, k=1,2,3 gives another solutioni(ii) if
(p1,¢2,03) is a solution, then ¢, 7+ ¢p,,¢3) is also a
solution.

In order to use Newton’'s method to solve these four
coupled, nonlinear equations, we first rearrange them into
operator form, i.e.,

F[®]=0, (14)
where® =[ ¢4, ¢$,,¢3] and 0 is a four-component null vec-
tor. This equation can now be solved iteratively as four
coupled, linear functional equations using Newton’s method,
i.e., given®", ®"*1 is determined according to

FIO"]+F o[ @ 1= D" =0. (15)

Here,F . is the Frechet derivative which can be expressed
as a 4x 3 linear matrix operator acting o, ¢, , ¢3:

Fi[h1]=2f fH(l,l)Sifi¢1(y)—¢1(Z)]dZ]hl(y)dy

+A1(x)cog ¢1(X) ]y (x), (16)

Fi[hz]ZZJ U H(2a2)5ir[¢2(y)_¢2(2)]d2]hz(Y)dy,
17

Filhs]=0, (18

Faihl- | [ | H<1,2>sir{¢1<y>—¢2<z>]dz]h1<y>dy,
19
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, ) solutions can only cross at/2, 3x/2, ... and theFrechet
Folha]= J J H(2,Dsin ¢2(y) — ¢1(2)] derivative is close to zero at those points. We also notice that
the iteration procedure fails to converge when the Frechet

. derivative,F', points in the direction of one solution on one
+H(2,3si d,(y) - ¢>3(z)]dz} ha(y)dy interval (say from 0 to#;) and toward the other solution on
the rest of the intervalfrom 6, onward. This particular
+Ax(X)cog do(X)Ta(X), (200  problem can be overcome by adding a terinto the Frechet

derivative, wherd is the identity matrix andv is an adjust-
able parameter.
Filhs]= f [ f H(3,2)sin ¢5(y) — ¢2(z)]dz] hs(y)dy, In general, in order to achieve convergence, we employed
21) three numerlca_ll technlql_Jes, each of_ which involved one pa-
rameter. The first technique used singular-valued decompo-
, sition (SVD) [9] to solve the linear system of equatiois).
Fa[h.]=0, (22) " The svD eigenvalues that were smaller than the parameter
were truncated to zero. We found that the use of SVD is vital
, _ in keeping the iteration stable. The second technique used
F3[h2]:2f [f H(2,2)S|r[¢2(y)—gb2(z)]dz]hz(y)dy, generalized cross validatiofGCV) smoothing[10] where
(23 the smoothness was controlled by a parameter. The third
technique was to add a teral to FC'I)n as mentioned above.
, ) This technique was only used when the initial guesses were
F3[h3]:2J { J H(3,3)sin $3(y) — ¢3(z)]dz] hs(y)dy far from the solution and the inclusion of the tewsh could
cause the iteration procedure to tend towards the solution.
+Ag(x)cod ¢3(x) hs(x), (24 Thus, we used three parameters to control the iteration pro-
cedure and the values of these parameters were reduced after
, each iteration. When theé!" were close to the exact solution,
F4[h1]:j U H(1,2)coi¢1(y)—¢2(z)]dz]hl(y)dy, the GCV smoothing and the tered were no longer needed
(25 and only the SVD technique was used. All three parameters
were initially chosen as small as possible but yet big enough
to prevent the iteration process from diverging.

Fi[hz]=f U —H(2,1)cog ¢,(y)— ¢1(2)]
Ill. RESULTS AND DISCUSSION

+H(2,3cod ¢,(y) - ¢3(z)]dz] ha(y)dy, As the first test of our iterative method, we used simulated
26 data generated from the parametriZthatrix,
_ ( Sll SZl)
Filhs]= f [ J —H(3,2)cog ¢3(y)— ¢2(z)]dz] hs(y)dy, S S»

27 7 ez.a( ) iJ1— 77I2ei(5|(1)+ 52
N n 2ai(5(+5(%) 77Iezifs,(z) ’

(28)

whereh,=¢"*1— . If the integrals overy are approxi-
mated by means of a quadrature formula, then &8§) re-
duces to a system of linear algebraic equations. In the pro-
cess of solution, it is useful to incorporate a set of limits and

(1) (2)
a transformation of variables for the two-dimensional inte- where tlhtihquantltu—f . |5 " dtenc3:ce tr:je phasl,e Sh'ﬂls a?:
grals in Eqs(8)—(11) [6]. are real; thep, are the “elasticities” and are also real wi

values ranging between 67 <1. =0 corresponds to

The iteration procedure starts with initial guessesdor
completely inelastic scattering, whilgj=1 corresponds to

¢,, and ¢3 By solving the system of linear equatiofikb),

although the solution may not be unique. Problems with con:
vergence may arise when any of tthe have values ofr/2,
3m/2,... atsome points. When this occurs, afs-0 in
some regions and some diagonal elementd=bfbecome 1 -
very small and the solution to Eq15) becomes unstable. = Iy
Thi)s/ problem is caused by the exigtence of multiple solutions F(6) 2iK; 2 (21 DISa(D) = 6 ]Pi(coso). (29
arising from either of the two discrete ambiguities mentioned

previously. In the case of the trivial ambiguity, &;, i In this test case, the parameters for tBamatrix had the
=1,2,3 is a solution, them— ¢; is also a solution. The two following values:

With the aboveS matrix, the scattering amplltude for scat-
tering from channei to channef is given by
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\ FIG. 2. The solutionsp,, ¢,, ¢35 of the unitarity equations

N based upon electron-helium data calculated using the CCC method.

R (@) ¢4 is for the elastic scattering from the ground stdt®. ¢, is

N | for inelastic (double} scattering from the ground state to thé2
S~ state.(c) ¢ is for elastic(double} scattering from the 3S state. In
s (@, (b), and(c), the horizontal lines are the initial guesses. The long
05 - e dashed lines are the solutions of the one-channel approximation
(see text The short dashed lines are the final solution while the
solid lines are the exact solutiof) ¢ is for the one-channel elastic
(quarte} scattering from the S state. The horizontal line is the
initial guess. The dotted, short-dashed, long-dashed, dot-dashed,
and solid lines are the 6th, 11th, 16th, 21st, and Zéiac} itera-
tion results, respectively.

¢, (rad)

figure, we can see that after the first iteration #he are
already close to the exact solution while after the second
iteration thegbi2 cannot be distinguished in the figure from
the exact solution.

Our second test was the more realistic case of electron-
helium scattering. The ground state of helium is the spin-
zero singlet state 5. The first excited state is the spin-one
triplet state 2S at 19.819 eV above the ground state while
the second excited state is the spin-zero stag&a 20.615
eV. The electron, of course, has spin-half. We note that elas-
based upon the simulated data set for two-channel scattefin.  tic scattering from the 25 state can give rise to either dou-
for scattering from channel 1 to channel ¢, for channel 1 to  pjet (S=1/2) or quartet $= 3/2) scattering. If the input data
channel 2, andp; for channel 2 to channel 2. The horizontal lines 5ra the spin-resolved differential cross secti@x(L/2), we
are the initial guesses while the dashed lines are the first iterateg;, still use the theory described above, which is for spinless
Th_e solid lines are the second iterates and the final converged S?)'article scattering. In this test case, the input DCS data were
lutions. calculated using the convergent close-couplitgCC)
method[11]. The incident electron energy was 20.5 eV and

0, (rad)

-1 -0.5 0 05 1
cos 0

FIG. 1. The solutionsp,, ¢,, ¢35 of the unitarity equations

1) __ ) 1) _po 1) _~o X .
sV=20° sM=6° sM=2 hence 0.682 eV above the first excited state but 0.115 eV
5 ) ) below the second excited state. The unitarity equations in
0P =15° §P=4° sP=1° this case are more difficult to solve than in the first test.

Thus, we made use of the fact that at this scattering energy,
the inelastic scattering is very weak compared to the elastic
scattering from both the ground state and the first excited
The initial phase functions were chosen to be constants hawstate. Consequently, as a first approximation, we could ob-
ing the valuesg;(0) = ¢;(6=0). The ¢;(6=0) can be de- tain good estimates fap, and ¢ by separately applying the

termined from the total cross sections and total elastic crossne-channel unitarity equation for elastic scattering from the
section. The procedure converged in two iterations withouground and the excited state. With initial guesses of con-
using any of the numerical techniques mentioned above. Thstants, it took 8 and 15 iterations, respectively, of the one-
results of each iteration are displayed in Fig. 1. From thechannel unitarity equation fos; and ¢ to converge. By
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using these two one-channel solutions together wifkequal  iterations while the GCV parameter was initially set to 100
to a constant as the starting point for the two-channel unitarbut was only used for the first few iterations. The results for
ity equations, we obtained the exact solution after 28 iterathe phase function are shown in Figd? where the results
tions. Since we had set all three initial guess¢®, to be  from the last iteration are indistinguishable from the exact
constants, na priori information about the solution was Phase function.

used apart from determining the constagtéd=0) by the

optical theorem, which is a special case of the generalized IV. CONCLUSIONS

unitarity theorem. In this test case, we applied all three nu-
merical techniques in order to achieve convergence. Thﬁ1
SVD parameter was initially set to 0.1 and then reduced tQ
0.001 in the last few iterations. Initially the GCV parameter
was set to 0.03 whilex was chosen to be-0.3 in the term
al. The GCV technique was not used in the last five itera
tions while the termal was only used in the first ten itera-

To conclude, we have developed a procedure to extract
e complete scattering amplitude matrix from a complete
ata set of spin-resolved differential cross sections for two-
channel scattering. The generalized unitarity theorem gives
rise to a coupled set of nonlinear integral equations for the
phase functions of the scattering amplitude elements. A

?”ngshd’l a?d s V(_T_rﬁ' close éo tthe exact SOIU“%? for (;hﬁ cessfully used to analyze the doublet differential cross sec-
two-c anned ca;e. edreyfro. UT lon agcuratC)ll obtaine Ti'if'on for electron-helium scattering between the first and
IS Very good and exceeds typical eéxperimental accuracy. 1Ngqaqqng excitation thresholds. It is hoped that experimental

solution ¢, overlaps with the exact one and the differencesdata for this case will be available in the near future.
cannot be seen from the figure.

_ For comp_leteness,_ we also performed a p_has_e-shlft analy- ACKNOWLEDGMENTS
sis for elastic scattering from the’3 state which is a one-
channel case for the quartet 3/2 differential cross section. A.P. wishes to thank the people of the Republic of Indo-

By starting with a constant value for the phase function, thenesia for financial support during his studies in Australia.
Newton iterative method converged after 21 iterations. InD.R.L. gratefully acknowledges the support of the Australian
this case, we used both the SVD and GCV smoothing techResearch Committee. We also wish to thank Dr. D. V. Fursa
nigues in order to achieve convergence. The SVD parametéor providing us with tabulated data for the electron-helium
was initially set to 0.2 and then reduced to 0.1 in the last fewcalculations.

[1] K. Chadan and P. Sabatielpverse Problems in Quantum [7] H. Huber, D.R. Lun, L.J. Allen, and K. Amos, Phys. Rev. A

Scattering Theory2nd ed.(Springer, Berlin, 198p 53, 2015(1997).
[2] R.G. Newton, J. Math. Phy®, 2050(1968. [8] R.F. Alvarez-Estrada, B. Carreras, and G. Mahaux, Nucl.
[3] A. Martin, Nuovo Cimento A59, 131 (1969. Phys. B88, 289(1975.
[4] R.B. Gerber and M. Karplus, Phys. Rev.1)998(1970. [9] Numerical Recipesedited by W.H. Press, B.P. Flannery, S.A.
[5] D. Atkinson, P.W. Johnson, and R.L. Warnock, Commun. Teukolsky, and W.T. VetterlingCambridge University Press,
Math. Phys.28, 133(1972. Cambridge, England, 1986p. 52.
[6] D.R. Lun, L.J. Allen, and K. Amos, Phys. Rev. 30, 4000 [10] P. Craven and G. Wahba, Numer. MaBi, 377 (1979.
(1994). [11] D.V. Fursa and I. Bray, J. Phys. B0, 757 (1997).

022703-5



