
ersity,

PHYSICAL REVIEW A, VOLUME 63, 022703
Determination of two-channel scattering amplitudes using unitarity
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Canberra, ACT 0200, Australia
~Received 3 May 2000; published 9 January 2001!

A phase-shift analysis technique for two-channel scattering has been studied. The inputs to the study were
the experimental differential cross sections and the unitarity condition was then used to extract the phase of the
scattering amplitudes. A Newton iterative method based upon Frechet derivatives gave convergent results. The
method was tested by using both simulated data and theoretical calculations for electron-helium scattering.
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I. INTRODUCTION

The determination of scattering amplitudes from expe
mental data is the first step in obtaining the interaction
tentials using inverse-scattering methods@1#. Usually, the ex-
perimental data are the differential cross sections,ds f i /dV,
where i and f indicate the initial and final states of a mult
channel scattering process, respectively. Hereds f i /dV is
related to the corresponding scattering amplitudef f i(u) by
the relationship

f f i~u!5Ads f i~u!

dV
exp@ if f i~u!#. ~1!

The phase functionf f i(u) of a scattering amplitude is no
generally measured so it needs to be determined by the
ical means. The process of extracting the phase func
from differential cross-section data is referred to as pha
shift analysis and there are various such techniques. A c
mon approach is to parametrize the scattering amplitude
their equivalent—the phase shifts or the scattering matri
and to use a nonlinear fitting procedure to find the scatte
amplitudes that best fit the data. The advantage of this
proach is its wide applicability and that it does not requ
complete sets of angular data~from 0° to 180°). The disad-
vantage is that it is model-dependent and the question
existence and uniqueness of the solution cannot be
dressed. A less common approach is to use a more gl
means, namely the unitarity theorem. This theorem transl
into coupled nonlinear integral equations for the phase fu
tions. The advantage of this approach is that the search
solutions is based on physical constraints and is mo
independent. The disadvantage is the difficulty in solving
unitarity equations. Newton@2#, Martin @3#, Gerber and Kar-
plus @4#, and Atkinsonet al. @5# have studied the unitarity
equations in great detail. Their main interest was in the
istence and the uniqueness of solutions. By the use of
point theorems, they obtained various domains for the dif
ential cross sections, within which a unique solution to
unitarity equations was shown to exist and could be c
structed by a simple iterative procedure. However, m
physical circumstances lie outside these domains. In orde
make use of the unitarity condition in phase-shift analys
Lun et al. @6# recently used a Newton iterative method
solve the single unitarity equation for one-channel scatter
1050-2947/2001/63~2!/022703~5!/$15.00 63 0227
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Although the Newton method cannot prove the uniquen
of the solution, it works even when the fix-point theore
method fails. This Newton method was applied to analy
data for neutron-a particle scattering at low energies an
electron-water scattering at 1000 eV. Later Huberet al. @7#
extended the method to scattering with spin-orbit interacti
and tested the method with an optical model calculation fo
MeV neutron-a particle scattering.

In view of these successes, the next step is to treat m
channel scattering cases. In order to obtain the complete s
tering amplitude matrix for multichannel scattering, data
all energy-accessible scattering processes~open channels!
are needed. Many experimental measurements have
made for multichannel scattering, but it is rare that a co
plete set of data is available because of the difficulty in o
taining data when the excited states are the initial scatte
state. Recently, with the advancement of experimental te
nology, attempts are being considered to obtain such a c
plete data set for electron-helium scattering at energies ab
the first excitation threshold. This motivates, in part, our d
velopment of a phase-shift analysis technique for multich
nel scattering. In this paper, we begin by studying unitar
for the simplest multichannel scattering process, namely
two-channel scattering of two spinless particles. Furth
more, the phase-shift analysis method developed here is
valid for electron-helium scattering at energies between
first and the second excitation thresholds when the differ
tial cross section is spin-resolved. The extension to m
than two channels is straightforward in principle, but i
volves a considerable increase in computational complex

II. THEORY

The generalized unitarity theorem, valid for any scatter
process, is given by

4p

uK i u
Im f f i~K f ,K i !5(

m
E dVKm

f m f* ~Km ,K f ! f mi~Km ,K i !,

~2!

where Im denotes the imaginary part, theK ’s are the mo-
menta of the initial~i! and final~f! states, and the sum is ove
all open channels. We now consider the specific case of t
©2001 The American Physical Society03-1
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channel scattering where (a,b) and (c,d) are pairwise non-
identical, spinless particles giving rise to the following pr
cesses:

a1b→a1b, ~3!

a1b→c1d, ~4!

c1d→c1d, ~5!

c1d→a1b. ~6!

If time-reversal invariance holds, then the second and fou
of these processes are equivalent and we can omit the la
We next define the dimensionless quantity as

Ak~x!5uK i u21Ads f i

dV
cosu, x5cosu, ~7!

where the subscriptk51,2,3 refers to the three processes
Eqs.~3!–~5!. After some transformations, the unitarity equ
tions@Eq. ~2!# can be written as the following three equatio
for the phase functionswk :

A1~x!sinw1~x!5E E H~1,1!cos@w1~y!2w1~z!#dy dz

1E E H~2,2!cos@w2~y!2w2~z!#dy dz,

~8!

A2~x!sinw2~x!5E E H~2,1!cos@w2~y!2w1~z!#dy dz

1E E H~2,3!cos@w2~y!2w3~z!#dy dz,

~9!

A3~x!sinw3~x!5E E H~3,3!cos@w3~y!2w3~z!#dy dz

1E E H~2,2!cos@w2~y!2w2~z!#dy dz,

~10!

along with the supplementary condition

05E E H~2,1!sin@w2~y!2w1~z!#dy dz

2E E H~2,3!sin@w2~y!2w3~z!#dy dz, ~11!

where
02270
th
er.

H~ i , j !5
Ai~y!Aj~z!

2p~12x22y22z212xyz!1/2. ~12!

Here the region of integration is over the boundary and in
rior of the ellipse given by 12x22y22z212xyz>0.
Alvarez-Estradaet al. @8# have shown that if

1

2E21

1

dx@A1~x!1A3~x!#2,1, ~13!

then the supplementary condition is already implied by E
~8!–~10! and can be omitted. Equations~8!–~10! are then, in
principle, sufficient to obtain the three phase functionsfk .
With the inclusion of the supplementary condition, we ha
an overdetermined system, which in turn puts a string
constraint on the differential cross-section data. Although
theory described below includes the supplementary co
tion, our test cases use only Eqs.~8!–~10! as our simulated
data are always ‘‘perfect.’’ For real data, the supplement
condition may be useful in obtaining a more accurate res
however, this needs to be investigated in the future.

The solutions of Eqs.~8!–~11! have two discrete ambigu
ities @8#: ~i! The trivial ambiguity where the transformatio
fk→p2fk , k51,2,3 gives another solution;~ii ! if
(f1 ,f2 ,f3) is a solution, then (f1 ,p1f2 ,f3) is also a
solution.

In order to use Newton’s method to solve these fo
coupled, nonlinear equations, we first rearrange them
operator form, i.e.,

F@F#50, ~14!

whereF5@f1 ,f2 ,f3# and 0 is a four-component null vec
tor. This equation can now be solved iteratively as fo
coupled, linear functional equations using Newton’s meth
i.e., givenFn, Fn11 is determined according to

F@Fn#1FFn8 @Fn112Fn#50. ~15!

Here,FFn8 is the Frechet derivative which can be express
as a 433 linear matrix operator acting onf1 ,f2 ,f3:

F18@h1#52E H E H~1,1!sin@f1~y!2f1~z!#dzJ h1~y!dy

1A1~x!cos@f1~x!#h1~x!, ~16!

F18@h2#52E H E H~2,2!sin@f2~y!2f2~z!#dzJ h2~y!dy,

~17!

F18@h3#50, ~18!

F28@h1#5E H E H~1,2!sin@f1~y!2f2~z!#dzJ h1~y!dy,

~19!
3-2
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F28@h2#5E H E H~2,1!sin@f2~y!2f1~z!#

1H~2,3!sin@f2~y!2f3~z!#dzJ h2~y!dy

1A2~x!cos@f2~x!#h2~x!, ~20!

F28@h3#5E H E H~3,2!sin@f3~y!2f2~z!#dzJ h3~y!dy,

~21!

F38@h1#50, ~22!

F38@h2#52E H E H~2,2!sin@f2~y!2f2~z!#dzJ h2~y!dy,

~23!

F38@h3#52E H E H~3,3!sin@f3~y!2f3~z!#dzJ h3~y!dy

1A3~x!cos@f3~x!#h3~x!, ~24!

F48@h1#5E H E H~1,2!cos@f1~y!2f2~z!#dzJ h1~y!dy,

~25!

F48@h2#5E H E 2H~2,1!cos@f2~y!2f1~z!#

1H~2,3!cos@f2~y!2f3~z!#dzJ h2~y!dy,

~26!

F48@h3#5E H E 2H~3,2!cos@f3~y!2f2~z!#dzJ h3~y!dy,

~27!

where hi5f i
n112f i

n . If the integrals overy are approxi-
mated by means of a quadrature formula, then Eq.~15! re-
duces to a system of linear algebraic equations. In the
cess of solution, it is useful to incorporate a set of limits a
a transformation of variables for the two-dimensional in
grals in Eqs.~8!–~11! @6#.

The iteration procedure starts with initial guesses forf1 ,
f2, andf3. By solving the system of linear equations~15!,
one obtains a new solution and the process is repeated. I
iteration procedure converges, one obtains an exact solu
although the solution may not be unique. Problems with c
vergence may arise when any of thefk have values ofp/2,
3p/2, . . . at some points. When this occurs, cosfi→0 in
some regions and some diagonal elements ofF8 become
very small and the solution to Eq.~15! becomes unstable
This problem is caused by the existence of multiple soluti
arising from either of the two discrete ambiguities mention
previously. In the case of the trivial ambiguity, iff i , i
51,2,3 is a solution, thenp2f i is also a solution. The two
02270
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solutions can only cross atp/2, 3p/2, . . . and theFrechet
derivative is close to zero at those points. We also notice
the iteration procedure fails to converge when the Frec
derivative,F8, points in the direction of one solution on on
interval ~say from 0 tou t) and toward the other solution o
the rest of the interval~from u t onward!. This particular
problem can be overcome by adding a termaI to the Frechet
derivative, whereI is the identity matrix anda is an adjust-
able parameter.

In general, in order to achieve convergence, we emplo
three numerical techniques, each of which involved one
rameter. The first technique used singular-valued decom
sition ~SVD! @9# to solve the linear system of equations~15!.
The SVD eigenvalues that were smaller than the param
were truncated to zero. We found that the use of SVD is v
in keeping the iteration stable. The second technique u
generalized cross validation~GCV! smoothing@10# where
the smoothness was controlled by a parameter. The t
technique was to add a termaI to FFn8 as mentioned above
This technique was only used when the initial guesses w
far from the solution and the inclusion of the termaI could
cause the iteration procedure to tend towards the solut
Thus, we used three parameters to control the iteration
cedure and the values of these parameters were reduced
each iteration. When thef i

n were close to the exact solution
the GCV smoothing and the termaI were no longer needed
and only the SVD technique was used. All three parame
were initially chosen as small as possible but yet big eno
to prevent the iteration process from diverging.

III. RESULTS AND DISCUSSION

As the first test of our iterative method, we used simula
data generated from the parametrizedS matrix,

Sl5S S11 S21

S12 S22
D

5S h le
2id l

(1)
iA12h l

2ei (d l
(1)

1d l
(2))

iA12h l
2ei (d l

(1)
1d l

(2)) h le
2id l

(2) D ,

~28!

where the quantitiesd l
(1) , d l

(2) denote the phase shifts an
are real; theh l are the ‘‘elasticities’’ and are also real wit
values ranging between 0<h l<1. h l50 corresponds to
completely inelastic scattering, whileh l51 corresponds to
the case of pure elastic scattering. The fact that theS matrix
is both unitary and symmetrical is a consequence of the c
servation of flux and time-reversal invariance, respective
With the aboveS matrix, the scattering amplitude for sca
tering from channeli to channelf is given by

f f i~u!5
1

2iK i
(
l 50

`

~2l 11!@Sf i~ l !2d f i #Pl~cosu!. ~29!

In this test case, the parameters for theS matrix had the
following values:
3-3
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d0
(1)520° d1

(1)56° d2
(1)52°

d0
(2)515° d1

(2)54° d2
(2)51°

h050.8 h150.99 h251.0

The initial phase functions were chosen to be constants
ing the valuesf i(u)5f i(u50). Thef i(u50) can be de-
termined from the total cross sections and total elastic c
section. The procedure converged in two iterations with
using any of the numerical techniques mentioned above.
results of each iteration are displayed in Fig. 1. From

FIG. 1. The solutionsf1 , f2 , f3 of the unitarity equations
based upon the simulated data set for two-channel scattering.f1 is
for scattering from channel 1 to channel 1,f2 for channel 1 to
channel 2, andf3 for channel 2 to channel 2. The horizontal line
are the initial guesses while the dashed lines are the first iter
The solid lines are the second iterates and the final converged
lutions.
02270
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figure, we can see that after the first iteration thef i
1 are

already close to the exact solution while after the seco
iteration thef i

2 cannot be distinguished in the figure fro
the exact solution.

Our second test was the more realistic case of elect
helium scattering. The ground state of helium is the sp
zero singlet state 11S. The first excited state is the spin-on
triplet state 23S at 19.819 eV above the ground state wh
the second excited state is the spin-zero state 21S at 20.615
eV. The electron, of course, has spin-half. We note that e
tic scattering from the 23S state can give rise to either dou
blet (S51/2) or quartet (S53/2) scattering. If the input data
are the spin-resolved differential cross section (S51/2), we
can still use the theory described above, which is for spinl
particle scattering. In this test case, the input DCS data w
calculated using the convergent close-coupling~CCC!
method@11#. The incident electron energy was 20.5 eV a
hence 0.682 eV above the first excited state but 0.115
below the second excited state. The unitarity equations
this case are more difficult to solve than in the first te
Thus, we made use of the fact that at this scattering ene
the inelastic scattering is very weak compared to the ela
scattering from both the ground state and the first exc
state. Consequently, as a first approximation, we could
tain good estimates forf1 andf3 by separately applying the
one-channel unitarity equation for elastic scattering from
ground and the excited state. With initial guesses of c
stants, it took 8 and 15 iterations, respectively, of the o
channel unitarity equation forf1 and f3 to converge. By

FIG. 2. The solutionsf1 , f2 , f3 of the unitarity equations
based upon electron-helium data calculated using the CCC met
~a! f1 is for the elastic scattering from the ground state.~b! f2 is
for inelastic~doublet! scattering from the ground state to the 23S
state.~c! f3 is for elastic~doublet! scattering from the 23S state. In
~a!, ~b!, and~c!, the horizontal lines are the initial guesses. The lo
dashed lines are the solutions of the one-channel approxima
~see text!. The short dashed lines are the final solution while t
solid lines are the exact solution.~d! f is for the one-channel elasti
~quartet! scattering from the 23S state. The horizontal line is the
initial guess. The dotted, short-dashed, long-dashed, dot-das
and solid lines are the 6th, 11th, 16th, 21st, and 26th~exact! itera-
tion results, respectively.
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using these two one-channel solutions together withf2
0 equal

to a constant as the starting point for the two-channel uni
ity equations, we obtained the exact solution after 28 ite
tions. Since we had set all three initial guesses,f i

0 , to be
constants, noa priori information about the solution wa
used apart from determining the constantsf i(u50) by the
optical theorem, which is a special case of the generali
unitarity theorem. In this test case, we applied all three
merical techniques in order to achieve convergence.
SVD parameter was initially set to 0.1 and then reduced
0.001 in the last few iterations. Initially the GCV parame
was set to 0.03 whilea was chosen to be20.3 in the term
aI . The GCV technique was not used in the last five ite
tions while the termaI was only used in the first ten itera
tions. The results for the phase functions are shown in F
2~a!–2~c!. We can see that the one-channel approximat
brings f1 and f3 very close to the exact solution for th
two-channel case. The reproduction accuracy obtained
is very good and exceeds typical experimental accuracy.
solutionf1 overlaps with the exact one and the differenc
cannot be seen from the figure.

For completeness, we also performed a phase-shift an
sis for elastic scattering from the 23S state which is a one
channel case for the quartetS53/2 differential cross section
By starting with a constant value for the phase function,
Newton iterative method converged after 21 iterations.
this case, we used both the SVD and GCV smoothing te
niques in order to achieve convergence. The SVD param
was initially set to 0.2 and then reduced to 0.1 in the last f
n
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iterations while the GCV parameter was initially set to 1
but was only used for the first few iterations. The results
the phase function are shown in Fig. 2~d!, where the results
from the last iteration are indistinguishable from the ex
phase function.

IV. CONCLUSIONS

To conclude, we have developed a procedure to ext
the complete scattering amplitude matrix from a compl
data set of spin-resolved differential cross sections for tw
channel scattering. The generalized unitarity theorem gi
rise to a coupled set of nonlinear integral equations for
phase functions of the scattering amplitude elements
Newton iterative method was used to solve these equati
although additional numerical techniques were needed in
der to achieve convergence. This procedure has been
cessfully used to analyze the doublet differential cross s
tion for electron-helium scattering between the first a
second excitation thresholds. It is hoped that experime
data for this case will be available in the near future.
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