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Shannon entropies and logarithmic mean excitation energies
from cusp- and asymptotic-constrained model densities
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A model correctly describing the asymptotic behavior of the charge density is used to derive an expression
for the Shannon entropy in terms of the ionization potential of the system. A strong similarity is observed
between this model entropy and the entropy obtained from correlated wave functions providing evidence that
it is the asymptotic regions that are responsible for the behavior of the entropy. We also show via a model
entropy that the behavior of the momentum space Shannon entropy is due to a correct description of the cusp
behavior at the nucleus. The changes in the position and momentum space entropies as a function of a
parameter are shown to be linearly related for these models. The expression for the entropy, derived from a
density model that obeys the asymptotic behavior, is shown to be almost identical in nature to the general
expression for entropy emanating in the stopping power formalism.
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I. INTRODUCTION

Information entropies such as Shannon have enjoyed w
application in several disciplines@1#. These quantities are o
interest as measures of the extent, spread, orshapeof the
underlying distribution from which they are derived. Sha
non entropy@2# of the charge density may be defined as

Sr52E r~r !ln r~r !dr , ~1.1!

and of the momentum space densityp(p) as

Sp52E p~p!ln p~p!dp. ~1.2!

Shannon entropy measures the delocalization or the
of structure in the respective distribution. ThusSr is maxi-
mal for a uniform distribution, for example, that of an u
bound system, and is minimal when the uncertainty about
structure of the distribution is minimal, e.g., a delta-like d
tribution.Sp , on the other hand, is largest for systems wh
electrons are ofindeterminablespeed and is smaller whe
the system contains more relaxed electrons, i.e., low mom
tum.

Shannon entropies have been used as measures of
set quality@3–6#, and have been related to various propert
such as ionization potentials@7# and geometrical paramete
@8#. Recently, a similarity index based on Shannon entro
was introduced, together with the concept of local entro
based on the partitioning of the charge density over the
sins of atoms and functional groups@9#. Furthermore, it was
found that Shannon entropies in both spaces can serv
useful tools in interpreting the wave function, in particula
characteristics of different correlated methods@10#, and fol-
lowing a reaction path@11#. The Shannonprofiles in these
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cases yield insights into the chemistry of the systems that
not apparent from the energy profiles.

We have also reported that the Shannon entropy in p
tion space is accessible experimentally through the mean
citation energy@12#. Aside from lending a physical founda
tion to Sr , the kinetic stopping theory also promises a lin
between the momentum and position space density thro
experimental data@13#. In this paper, the behavior of th
position and momentum space Shannon entropies is anal
via the use of simple models which incorporate t
asymptotic and cusp constraints. An expression for the p
tion space Shannon entropy occurring in the stopping po
formalism is derived from the model density. All values
this paper are in Hartree atomic units.

II. RESULTS AND DISCUSSION

A. Shannon entropies of model densities

We first wish to examine the effects of the asympto
behavior of the density on the entropies, in particular
Shannon entropy. It is known that an upper bound to
asymptotic behavior of the charge density is@14–17#

r}r 2be22(2I 1)1/2r , ~2.1!

where I 1 is the first ionization potential of the system an
b5@Z2N11/(2I 1)1/2#21. For simplicity, let us adopt a
model where the charge density behaves as Eq.~2.1!
throughout the whole space and not just in the asympt
regions. We apply a more general asymptotic form of
charge density@18#, which does not include ther 2b prefac-
tor, thereby incorporating a hydrogenic model. We wish
compute unit normalized Shannon entropies by imposing
corresponding normalization condition onr,
©2001 The American Physical Society09-1



el
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FIG. 1. Unit normalized Shan-
non entropy ~solid circles! and
unit normalized asymptotically
constrained position space mod
entropy ~open circles! vs atomic
number for neutral atoms.
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4pCe22(2I 1)1/2r r 2dr51. ~2.2!

The above expression yields a value ofC52A2I 1
3/2/p for a

unit normalized density.
One may then substitute the form of the charge densit

Eq. ~2.1! into Eq. ~1.1!:

Sr
asym52E

0

`

4pCe22(2I 1)1/2r ln@Ce22(2I 1)1/2r #r 2dr

~2.3!

to yield the Shannon entropy as

Sr
asym532 lnF2A2I 1

3/2

p
G . ~2.4!

The above equation provides a link between the Shan
entropy of a simple model charge density and the ioniza
potential of a system. The relationship has physical se
within this context because a higher ionization potential i
plies that the electron-nuclear forces are larger and ther
less electronic shielding~i.e., less electronic repulsions!
which implies a situation of a more localized charge dens
and hence a lower entropy. We note that a higher value oI 1
~for atoms with I 1, unity which is obeyed for all atoms!
would yield a lower value ofSr

asym. Conversely, a lower
ionization potential would imply lesser electron-nucle
forces, more electronic repulsions hence a larger entrop
is indicated by the above equation.

We have plotted in Fig. 1 the value of this asympto
model Shannon entropy using the inonization potentials
ported in Ref.@19# as a function of atomic number alon
with the real values that were computed directly from E
~1.1! using a 6-311G Gaussian type basis set at the C
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~configuration interaction with single and double excitation!
level. The features obtained from the Shannon entropie
atomic number plot using Gaussians are virtually identica
those obtained using Slater-type orbitals@20#.

The similarity between the two curves and the ability
the simple model to correctly reproduce the gross featu
present in the Shannon entropy are remarkable. One obse
that the real entropy has a decreasing tendency as a fun
of Z, i.e., the influence of a higher nuclear charge through
potential (2Z/r ) initiates a contraction of the charge dens
leading to a lower entropy. For the model density, the gr
features~peaks, valleys! are the same as the correct on
however the values are different and the decreasing tend
is not present. This is due to the fact that the cusp is
modeled correctly, resulting in lesser contraction of the d
sity in the core region leading to a larger entropy. Corr
modeling of the cusp requires that the logarithmic derivat
of the spherically averaged density at the nucleus satis
Kato’s condition@21#

r8~0!522Zr~0!. ~2.5!

For all the cases studied,Z is larger than (2I 1)1/2, thus the
exponent of the exponential would be smaller than that
quired by the cusp condition, therefore the functional fo
would be more slowly decaying than that required by t
cusp condition. Upon substitution in Eq.~2.3!, a more slowly
decaying exponential would result in a larger value of t
integral, hence larger entropy, which explains the non
creasing tendency~as a whole! of the model entropy. Note
also that the model density correctly reproduces the posit
of the local minima in the Shannon entropy, which occur
the noble gases, and correspond to localized distribution

The relationship between entropy and ionization poten
should not be surprising as we obtained an empirical re
tionship between ionization potentials and the differences
9-2



n
te
r

le
r-
t

f
on
ul
th

ro
p-

q
l-
ld
p

is

ti
ce
he
io

th

de
e
c

ac

t o
ith
a,
ac

e
ely,
an
en-

so
imi-
ot
tion
ee
be-

p-
-
he
lear
um
sp
m
ple
ing
ing
ve

pe
fi
le

so-
n
.

SHANNON ENTROPIES AND LOGARITHMIC MEAN . . . PHYSICAL REVIEW A 63 022509
densities as measured from an entropy perspective@7#. Fur-
thermore, these results reinforce the idea that the Shan
entropy is a measure of the electron correlation in a sys
since the simple model used is exact in the asymptotic
gions, precisely where one would expect that relative e
tron correlation1 effects would be greatest, i.e., with a co
rect modeling of the asymptotic regions we are able
reproduce the gross features in the Shannon entropy o
oms. It is also interesting to note that establishing a relati
ship between the ionization potential and entropies wo
allow one to establish approximate relationships between
entropy and other chemical reactivity parameters such
hardness or its inverse, softness, which emanate f
density-functional formalisms. In the finite difference a
proximation, the hardness,h is @18#

h5
I 12A

2
, ~2.6!

where A is the electron affinity of the system. KeepingA
fixed, a higher hardness would mean a higherI 1, i.e., it is
more difficult to remove the outermost electron. From E
~2.4!, this would result from a lower entropy—a more loca
ized density—indicating a tendency of the system to ‘‘ho
on’’ to this electron. On the other hand, a large entro
~more delocalized system! would emanate from a smallerI 1
leading to a lower hardness of the system. Thus, there
physical validity to these approximate relationships.

Note that in the model presented, only the asympto
~large r ) behavior of the density is correctly modeled sin
the cusp condition is not treated explicitly here. Adding t
cusp constraint in the model would result in its satisfact
for only those atoms whereZ5(2I 1)1/2. Imposing the cusp
condition through the exponential parameter and relaxing
asymptotic behavior,

r}e22Zr ~2.7!

yields a model entropy

Sr
cusp532 ln@Z3/p#. ~2.8!

The similarity in behavior is remarkable between this mo
entropy as a function ofZ presented in Fig. 2 and that of th
true entropies of the beryllium atom isoelectronic sequen
which were computed from accurate configuration inter
tion wave functions.

From the above equation, one would expect that a plo
Sr

cusp vs lnZ for an isoelectronic series should be linear w
a slope of23 and an intercept of 4.14. Fits of our dat
which were computed from accurate configuration inter
tion wave functions, yielded slopes of24.65 for the Ne

1
The term relative electron correlation is defined here as the

centage difference between the correlated and self-consistent
results~SCF! densities weighted by the former. See, for examp
V. H. Smith, Jr., Phys. Scr.15, 147 ~1977!.
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isoelectronic series and23.80 for the Be series, while th
intercepts were found to be 11.87 and 8.76, respectiv
with both curves having correlation coefficients greater th
0.990. These results provide evidence that the Shannon
tropy is sensitive to the cusp effects within this model. Al
notable is that while the cusp modeled entropy behaves s
larly to the true entropy for isoelectronic series, this is n
the case for the entropies of the neutral atoms as a func
of atomic number~even though gross trends are similar; s
Fig. 1! hence stressing the importance of the asymptotic
havior to the entropy.

It is known that the momentum density behaves asym
totically with a leading term ofp28, whose expansion coef
ficient, B8, is the derivative of the charge density around t
nucleus, thus incorporating the effects of the electron-nuc
cusp condition in the asymptotic behavior of the moment
density@22–24#. Hence a system that exactly obeys the cu
condition will also yield an asymptotically exact momentu
density, at least in the leading term. We may find a sim
analytical expression for the momentum density by tak
the square root of the charge density of the model obey
the asymptotic form of the charge density to obtain a wa
function,

c~r !}e2(2I 1)1/2r . ~2.9!

Settinga5(2I 1)1/2, we Fourier transform Eq.~2.9!,

c̃~p!5S 2

p D 1/2E
0

`

e2ar
sin~pr !

pr
r 2dr5S 2

p D 1/2 2a

~a21p2!2 ,

~2.10!

which yields a unit normalized momentum density of

p~p!5
8

p2

a5

~a21p2!4 . ~2.11!

r-
eld
,

FIG. 2. Position space Shannon entropy for the beryllium i
electronic sequence~solid circles! and the cusp constrained positio
space model entropy~open circles! as a function of atomic number
9-3
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FIG. 3. Unit normalized as-
ymptotically constrained momen
tum space model entropy v
atomic number for neutral atoms
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Substitution of this form into the momentum space Shan
entropy@Eq. ~1.2!# and in a manner analogous to the positi
space Shannon entropy@Eq. ~2.3!#, we obtain, using perti-
nent integral identities,

Sp
asym52 lnF8a5

p2 G14F2 ln 22
5

6
1 ln~a2!G . ~2.12!

Substituting back fora, we obtain an expression in terms
the ionization potential

Sp
asym5 3

2 ln I 112 lnp2 20
6 1 13

2 ln 2. ~2.13!
02250
nOne can observe from Eqs.~2.13! and ~2.4! that while dif-
fering in their constant terms, the momentum space mo
entropy would display an inverse behavior (2 3

2 ln I1) to the
position space model entropy (1 3

2 ln I1) in accordance with
the fact that localization in one space represents deloca
tion in the other and vice versa. This information is presen
in Fig. 3 and on comparing with the position space mo
entropy~open circles! in Fig. 1 one can observe the invers
behaviors previously stated. On comparing the momen
space model behavior with the true values~Fig. 4! that were
computed from the same wave functions as the posi
space values in Fig. 1, we observe that there is no simila
between the two in contrast to what was presented for
y

FIG. 4. Unit normalized mo-

mentum space Shannon entrop
~solid circles! and unit normalized
cusp constrained momentum
space model entropy ~open
circles! vs atomic number for neu-
tral atoms.
9-4
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SHANNON ENTROPIES AND LOGARITHMIC MEAN . . . PHYSICAL REVIEW A 63 022509
position space case. While the trueSp is observed to be an
increasing function ofZ, this is not the case for the mode
entropy. This result is expected since the asymptotic reg
in the position space correspond to the origin in moment
space due to the inverse relationship between the two.

Thus, a reasonable question would be the effect of m
eling the position space core correctly in momentum spa
We proceed along this avenue by imposing the cusp co
tion on the model momentum density, which yields thata in
the above must be equal toZ, hence the entropy is

Sp
cusp53 lnZ12 lnp15 ln 22 20

6 . ~2.14!

Upon analysis of this equation one notes that the beha
would be similar to 3 lnZ, making this cusp imposed mode
entropy an increasing function ofZ, in agreement with the
true entropy. A comparison of the cusp imposed model
tropy with the true momentum space entropy is presente
Fig. 4. The similarity between the cusp imposed model a
the true entropy should be expected as a correct modelin
the asymptotic regions in momentum space would have
include the cusp condition in the expansion coefficient. O
observes that the true entropy has deviations from a loga
mic behavior, which presumably is due to the fact that
true entropy contains not only cusp effects, but also corr
tion effects.

Furthermore, upon probing the change in the model
tropies with respect to the change in nuclear charges,dS/dZ,
for the relationships in Eqs.~2.8! and ~2.14!, one obtains
2(3/Z) and 3/Z for the position and momentum spaces,
spectively. Thus,dS/dZ is inversely proportional to Z in
both spaces. Hence, we have the result that the functio
forms are equivalent in both spaces when one considers
changein the entropy and not the entropy itself. Moreove
we see that the values differ in their numerical values b
factor of21. Based on these results, we expect that a plo
the momentum space model entropy versus the pos
space one would be linear with a slope of21. This is an
interesting result as we have numerically obtained suc
linear relationship for realistic systems under the effects o
solvent field@25#.

One could think of generalizing the results above by
troducing a simple model similar to what we have propos
where the wave function would be an exponential with
parameter,2z, which could be varied to reflect external pe
turbations realized on the system. In a manner entirely an
gous to what we have presented, we could solve for
change in the entropies as a function of the parameterdS/dz,
to obtain23/z for position space and 3/z for position space,
which would yield the linear relationship with slope21. If
one associates uncertainty with entropies, we have the re
that the changes in uncertainty with respect to a param
are linearly related in the position and momentum spac
within these models used. Summing the two would yield t
the sum of the changes in both spaces is zero.

It is also relevant to inquire what would be the sum of t
Shannon entropies in both spacesSr1Sp , for the models
presented previously, since an uncertaintylike relations
involving these entropies,
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ST5Sr1Sp>3~11 ln p! ~2.15!

has been shown@3,26# to exist. This entropy sumST has
been proposed as abalancedmeasure as it takes into accou
the entropic boundary of the distribution in both spaces
has been asserted to be a good measure of basis set qua
the atomic@3# and polyatomic levels@5,6#. A study of entro-
pies in both position and momentum space for the wa
molecule at various correlation levels shows that a balan
density should have a maximal entropy sum. From the
tropic point of view, densities which maximize in one spac
often do so at the expense of the conjugate space ent
@10#.

Summing Eqs.~2.4! and ~2.13! yields

Sr
asym1Sp

asym53~11 ln p!15 ln 22 20
6 . ~2.16!

Comparing Eqs.~2.15! and ~2.16! we note that the bound
~2.15! will always be obeyed for the model entropies. Su
ming the entropies from the cusp constrained model dens
in Eq. ~2.8! and Eq.~2.14! also yields the result in Eq.~2.16!.
Interestingly, upon summing Eqs.~2.4! and~2.14! we obtain
that in order for the bound to be obeyed,

3S ln Z2
ln I 1

2 D.
20

6
2

7

2
ln~2!, ~2.17!

which is true for all atoms.

B. Model Shannon entropies and stopping power

Recently, we have shown how the Shannon entropy m
be experimentally determined within the context of stopp
power measurements@12#. The stopping power may be de
fined as the ability of a material to be penetrated by
charged particle. Now, within this context, the mean exci
tion energyI, which occurs in the Bethe-Bloch formulatio
@27# of the stopping power, may be expressed as

Z ln I 5(
l

f l ln \v l , ~2.18!

where the summation is over virtual oscillators of strengthf l
and frequencyv l and Z is the atomic number. As a firs
approximation, sincef l is closest to one for significant tran
sitions, one may consider\vs'I s, whereI s is the ionization
potential of thesth electron@28#, thus Eq.~2.18! may be
rearranged in terms of the mean ionization potentialĪ as

Z ln I 5Z ln Ī 5(
s

ln I s , ~2.19!

where the summation is over all electrons. This approxim
tion of equating the mean excitation energy with the me
ionization potential has been shown to be a good one
lighter elements@28#.

There is another approximation called the local plas
approximation@29,30#, where the mean excitation energ
may be expressed in terms of the charge density
9-5
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Z ln I 5E r~r !ln@g\vp~r !#dr , ~2.20!

whereg is a correction for the shift in the plasma frequen
vp(r ) due to the chemical environment, and the plasma
quency is defined as

vp~r !5@4pe2r~r !/m#1/2, ~2.21!

wheree andm are the electron charge and rest mass. It
been remarked by Inokutiet al. @31# that there might be an
analytical derivation to go from the mean excitation ene
in terms of oscillator strengths, Eqs.~2.18! to ~2.20! in terms
of the charge density.

Rearranging Eq.~2.20!, and spherically averaging,

Z ln I 5E
0

`

4pr 2r~r !ln@g\vp~r !#dr, ~2.22!

we are led to the expression@12#

Z ln I 5
2Sr

2
1

Z ln 4p

2
1Z ln g ~2.23!

yielding the Shannon entropy,

Sr5Z ln 4p12Z ln g22Z ln I ~2.24!

or in terms of the mean ionization potentialĪ ,

Sr5Z ln 4p12Z ln g22Z ln Ī . ~2.25!

Let us compare this expression for the entropy with the
pression obtained from our model density. In the treatm
of the Shannon entropy in terms of the mean excitation
ergy ~or mean ionization potential using the approximatio!,
the density is normalized toZ (Z5N for neutral species!.
Normalizing the model density toZ we obtain C
52A2ZI1

3/2/p, which upon substitution into Eq.~2.3! yields
an entropy

Sr
asym5ZS ln 4p132

7

2
ln 2D2Z ln Z2

3

2
Z ln I 1 ,

~2.26!

where the subscript is used to denote the first ionization
tential. Upon comparing Eqs.~2.25! and ~2.26! the similari-
ties between the two expressions are striking if one consi
the approximations involved, namely, the use of a mo
density and equating the mean excitation energy with
first ionization potential (I 5I 1) which implies a homoge-
neous environment, and thus one reverts to the local pla
approximation. The first terms in Eqs.~2.25! and ~2.26! dif-
fer by a factor of 0.57Z. The second terms in the equatio
are equal if one equatesg with Z21/2 while the third terms
differ by (2Z ln I)/2. Alternatively, one might think of re-
writing Eq. ~2.26! as a three term equation similar to E
~2.25!, yielding

Sr
asym5Z ln 4p12Z lnF e3/2

27/4AZ
G2

3

2
Z ln I 1 , ~2.27!
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which may be compared to Eq.~2.24! by equating the argu-
ment of the logarithm withg. It is interesting that the nu-
merical value of the constant in the argument is 1.33 wh
is close to theA2 value ofg that has been proposed@29# and
shown by recent numerical calculations@12#. Also, for
lighter elements, we see that the logarithmic argument wo
be approximately one in agreement with the empirical obs
vation that ag of one should be used in calculations invol
ing light elements@12#.

Physically, the similarity between the two relationshi
@Eqs. ~2.25! and ~2.26!# is understandable because in sto
ping power measurements, the incoming charged part
sees and interacts with the asymptotic part of the cha
density of the target, and is less affected by what is happ
ing in the core region. Thus, the use of a density w
asymptotic constraints is suitable. These two relationsh
provide evidence of Inokuti’s conjecture@31# about a pos-
sible analytical relationship between Eqs.~2.18! and ~2.20!.

The main difference between Eqs.~2.25! and~2.26! lies in
the constants~2 and 3

2 , respectively! that precede the
2Z ln I terms. One might speculate that use of a more g
eral asymptotic form such as that in Eq.~2.1! and including
the r 2b prefactor might be what is needed to make the t
approaches coincide. This, however is not the case.
finds that the expression for any model density of the form
Eq. ~2.1! will yield the factor of 2 3

2 Z ln I plus additional
terms containingI dependencies. Moreover, it may be show
that this factor is a consequence of the particular normal
tion used.

III. CONCLUSIONS

A model charge density correctly depicting th
asymptotic behavior is used to derive an expression for
entropy dependence on the ionization potential, and i
shown how this model entropy possesses the same chara
istics as the true entropy. This model provides a connec
for the entropy with other chemical reactivity paramete
such as hardness and softness. The changes in the po
and momentum space entropies as a function of a param
are shown to be linearly related for these models. We a
showed that use of the model density yields an expres
for the model entropy that is remarkably similar to the o
obtained for the entropy within the local plasma approxim
tion in the stopping power formalism. This result provid
evidence of the conjecture that there may be an analyt
derivation between the mean excitation energy in terms
oscillator strengths and that in terms of the charge den
~the local plasma approximation!. It is shown that the mo-
mentum space Shannon entropy behavior is largely du
the effects of the cusp region.
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@12# M. Hô, D. F. Weaver, V. H. Smith, Jr., R. P. Sagar, and R.
Esquivel, Phys. Rev. A57, 4512~1998!.

@13# V. H. Smith, Jr., Int. J. Quantum Chem., Symp.23, 553
~1989!.

@14# M. M. Morrell, R. G. Parr, and M. Levy, J. Chem. Phys.62,
549 ~1975!.
02250
le,

.

.

.

,

.

@15# M. Hoffmann-Ostenhoff and T. Hoffmann-Ostenhoff, Phy
Rev. A 16, 1782~1977!.

@16# R. Ahlrichs, M. Hoffmann-Ostenhoff, T. Hoffmann-Ostenhof
and J. D. Morgan III, Phys. Rev. A23, 2106~1981!.

@17# H. J. Silverstone, Phys. Rev. A23, 1030~1981!.
@18# R. G. Parr and W. Yang,Density Functional Theory of Atom

and Molecules~Oxford, New York, 1989!.
@19# W. C. Martin and W. L. Wiese, inAtomic, Molecular, and

Optical Physics Handbook, edited by G. W. F. Drake~AIP,
Woodbury, NY, 1996!, pp. 135–153.

@20# S. R. Gadre, Phys. Rev. A30, 620 ~1984!.
@21# T. Kato, Commun. Pure Appl. Math.10, 151 ~1957!; E. J.

Steiner, J. Chem. Phys.39, 2365~1963!.
@22# R. Benesch and V. H. Smith, Jr., inWave Mechanics—The

First Fifty Years, edited by W. C. Price, S. S. Chissick, and
Ravensdale~Butterworths, London, 1973!, pp. 357–377.

@23# A. J. Thakkar, J. Chem. Phys.86, 5060~1987!.
@24# A. J. Thakkar, A. L. Wonfor, and W. A. Pedersen, J. Che

Phys.87, 1212~1987!.
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