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Shannon entropies and logarithmic mean excitation energies
from cusp- and asymptotic-constrained model densities
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A model correctly describing the asymptotic behavior of the charge density is used to derive an expression
for the Shannon entropy in terms of the ionization potential of the system. A strong similarity is observed
between this model entropy and the entropy obtained from correlated wave functions providing evidence that
it is the asymptotic regions that are responsible for the behavior of the entropy. We also show via a model
entropy that the behavior of the momentum space Shannon entropy is due to a correct description of the cusp
behavior at the nucleus. The changes in the position and momentum space entropies as a function of a
parameter are shown to be linearly related for these models. The expression for the entropy, derived from a
density model that obeys the asymptotic behavior, is shown to be almost identical in nature to the general
expression for entropy emanating in the stopping power formalism.
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[. INTRODUCTION cases yield insights into the chemistry of the systems that are
not apparent from the energy profiles.

Information entropies such as Shannon have enjoyed wide We have also reported that the Shannon entropy in posi-
application in several disciplind4]. These quantities are of tion space is accessible experimentally through the mean ex-
interest as measures of the extent, spreacshapeof the  citation energy[12]. Aside from lending a physical founda-
underlying distribution from which they are derived. Shan-tion to S,, the kinetic stopping theory also promises a link
non entropy| 2] of the charge density may be defined as  between the momentum and position space density through

experimental datd13]. In this paper, the behavior of the

position and momentum space Shannon entropies is analyzed
Sp= _J p()In p(r)dr, @D Via the use of simple models which incorporate the
asymptotic and cusp constraints. An expression for the posi-
and of the momentum space densit{p) as tion space Shannon entropy occurring in the stopping power

formalism is derived from the model density. All values in

this paper are in Hartree atomic units.
swz—f w(p)In =(p)dp. (1.2 pap

Shannon entropy measures the delocalization or the lack Il. RESULTS AND DISCUSSION
of structure in the respective distribution. Th8s is maxi-
mal for a uniform distribution, for example, that of an un-
bound system, and is minimal when the uncertainty about the We first wish to examine the effects of the asymptotic
structure of the distribution is minimal, e.g., a delta-like dis-behavior of the density on the entropies, in particular the
tribution. S, on the other hand, is largest for systems whereéShannon entropy. It is known that an upper bound to the
electrons are ofndeterminablespeed and is smaller when asymptotic behavior of the charge densityig—17
the system contains more relaxed electrons, i.e., low momen- y
tum. pocr2he=2) " (2.2

Shannon entropies have been used as measures of basis
set quality{3—6], and have been related to various properties
such as ionization potentialg] and geometrical parameters wherel, is the first ionization potential of the system and
[8]. Recently, a similarity index based on Shannon entropy8=[Z—N+1/(21,)¥2]—1. For simplicity, let us adopt a
was introduced, together with the concept of local entropynodel where the charge density behaves as €ql)
based on the partitioning of the charge density over the bahroughout the whole space and not just in the asymptotic
sins of atoms and functional grouf#]. Furthermore, it was regions. We apply a more general asymptotic form of the
found that Shannon entropies in both spaces can serve abarge density18], which does not include the?? prefac-
useful tools in interpreting the wave function, in particular, tor, thereby incorporating a hydrogenic model. We wish to
characteristics of different correlated meth¢d6], and fol-  compute unit normalized Shannon entropies by imposing the
lowing a reaction pathil1l]. The Shannorprofilesin these corresponding normalization condition n

A. Shannon entropies of model densities
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o IPYPRT (configuration interaction with single and double excitat)_ons
fo 4mCe =90 Tredr=1. (2.2 level. The features obtained from the Shannon entropies vs
atomic number plot using Gaussians are virtually identical to
those obtained using Slater-type orbitg2)].

The similarity between the two curves and the ability of
r;he simple model to correctly reproduce the gross features
present in the Shannon entropy are remarkable. One observes
that the real entropy has a decreasing tendency as a function

oo B 12 - s of Z, i.e., the influence of a higher nuclear charge through the
S5 M= —f 47Ce 27T In[Ce 2D T ]r2dr potential (—Z/r) initiates a contraction of the charge density
0 leading to a lower entropy. For the model density, the gross

The above expression yields a value@f 2213 = for a
unit normalized density.

One may then substitute the form of the charge density i
Eq. (2.1) into Eq.(1.1):

23 features(peaks, valleys are the same as the correct one,
to yield the Shannon entropy as however the values are different and the decreasing tendency
is not present. This is due to the fact that the cusp is not
2421 2/2 modeled correctly, resulting in lesser contraction of the den-
S¥™=3—1In - } (2.4 sity in the core region leading to a larger entropy. Correct

modeling of the cusp requires that the logarithmic derivative

The above equation provides a link between the shannoff th’e spherically averaged density at the nucleus satisfies
entropy of a simple model charge density and the ionizatiorf@0’s condition[21]
potential of a system. The relationship has physical sense O —
within this context because a higher ionization potential im- p'(0) 22p(0). @9
plies that the electron-nuclear forces are larger and there isor all the cases studied, is larger than (2,)Y2 thus the
less electronic shieldindi.e., less electronic repulsions exponent of the exponential would be smaller than that re-
which implies a situation of a more localized charge densityquired by the cusp condition, therefore the functional form
and hence a lower entropy. We note that a higher valug of would be more slowly decaying than that required by the
(for atoms withl,< unity which is obeyed for all atoms  cusp condition. Upon substitution in EQ.3), a more slowly
would yield a lower value ofS}**™. Conversely, a lower decaying exponential would result in a larger value of the
ionization potential would imply lesser electron-nuclearintegral, hence larger entropy, which explains the nonde-
forces, more electronic repulsions hence a larger entropy aseasing tendencfas a wholg of the model entropy. Note
is indicated by the above equation. also that the model density correctly reproduces the positions
We have plotted in Fig. 1 the value of this asymptotic of the local minima in the Shannon entropy, which occur at
model Shannon entropy using the inonization potentials rethe noble gases, and correspond to localized distributions.
ported in Ref.[19] as a function of atomic number along  The relationship between entropy and ionization potential
with the real values that were computed directly from Eq.should not be surprising as we obtained an empirical rela-
(1.2) using a 6-311G Gaussian type basis set at the CISHionship between ionization potentials and the differences in
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densities as measured from an entropy perspetfije-ur- 05 - T T T T T - 4
thermore, these results reinforce the idea that the Shanno
entropy is a measure of the electron correlation in a systen
since the simple model used is exact in the asymptotic re- 05
gions, precisely where one would expect that relative elec-
tron correlatiort effects would be greatest, i.e., with a cor-
rect modeling of the asymptotic regions we are able toﬁa 15|
reproduce the gross features in the Shannon entropy of al®
oms. It is also interesting to note that establishing a relation-
ship between the ionization potential and entropies would 25}
allow one to establish approximate relationships between the
entropy and other chemical reactivity parameters such a:
hardness or its inverse, softness, which emanate fronm 35 . . . . . .
density-functional formalisms. In the finite difference ap- 3 4 5 6 7 % 9 10 1N
proximation, the hardness; is [18] Atomic Number

FIG. 2. Position space Shannon entropy for the beryllium iso-
_ li—A (2.6) electronic sequenagaolid circles and the cusp constrained position
7 2’ ' space model entropyppen circlesas a function of atomic number.

where A is the electron affinity of the system. Keepi#g  jsoelectronic series anet 3.80 for the Be series, while the
fixed, a higher hardness would mean a highgri.e., it IS intercepts were found to be 11.87 and 8.76, respectively,
more difficult to remove the outermost electron. From Eq.yith hoth curves having correlation coefficients greater than
(2.4), this would result from a lower entropy—a more local- g 990, These results provide evidence that the Shannon en-
ized density—indicating a tendency of the system to “holdyqpy s sensitive to the cusp effects within this model. Also
on” to this electron. On the other hand, a large entropynotaple is that while the cusp modeled entropy behaves simi-
(more delocalized systgmvould emanate from a smallef |11y to the true entropy for isoelectronic series, this is not
leading to a lower hardness of the system. Thus, there is @he case for the entropies of the neutral atoms as a function
physical validity to these approximate relationships. _of atomic numbexeven though gross trends are similar; see
Note that in the model presented, only the asymptotiq=jg 1) hence stressing the importance of the asymptotic be-
(larger) behavior of the density is correctly modeled sincepnayior to the entropy.
the cusp condition is not treated explicitly here. Adding the |t is known that the momentum density behaves asymp-
cusp constraint in the model would result in its satisfactiontotica”y with a leading term op~¢, whose expansion coef-
for only those atoms wherg= (2l 1)"2 Imposing the CUSP ficient, B, is the derivative of the charge density around the
condition through the exponential parameter and relaxing thgcleus, thus incorporating the effects of the electron-nuclear
asymptotic behavior, cusp condition in the asymptotic behavior of the momentum
density[22—24). Hence a system that exactly obeys the cusp

poe 2 2.7 e : :
condition will also yield an asymptotically exact momentum
ield del ent density, at least in the leading term. We may find a simple
ylelds a model entropy analytical expression for the momentum density by taking
the square root of the charge density of the model obeying
usp_ o __ 3
Sf’ 3=In[Z%m]. 28 the asymptotic form of the charge density to obtain a wave

The similarity in behavior is remarkable between this modeIfunCt'on'

entropy as a function o presented in Fig. 2 and that of the
true entropies of the beryllium atom isoeleptroni(_: sequence, (/,(r)oce*(le)l’zr_ 2.9
which were computed from accurate configuration interac-
tion wave functions.

From the above equation, one would expect that a plot oBettinga = (21,)Y? we Fourier transform E¢2.9),
S, '*Pvs InZ for an isoelectronic series should be linear with
a slope of—3 and an intercept of 4.14. Fits of our data,
which were computed from accurate configuration interac- “(p):(
tion wave functions, yielded slopes of4.65 for the Ne

2\Y2 = sin(pr) 2\¥2 2a

P f e ———r¥dr=|—| s,

a 0 pr m (a®+p9)
(2.10

which yields a unit normalized momentum density of
1 . . . .
The term relative electron correlation is defined here as the per-
centage difference between the correlated and self-consistent field 5
results(SCPH densities weighted by the former. See, for example, _ E o 21
) m(P)= 2 237 (211
V. H. Smith, Jr., Phys. Sci5, 147 (1977. 7 (a“+p°)
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Substitution of this form into the momentum space Shannoi®©ne can observe from Eq&.13 and (2.4) that while dif-
entropy[Eq. (1.2)] and in a manner analogous to the positionfering in their constant terms, the momentum space model
space Shannon entropfqg. (2.3)], we obtain, using perti- entropy would display an inverse behavior  Inl,) to the
nent integral identities, position space model entropy-€ In1,) in accordance with

the fact that localization in one space represents delocaliza-

tion in the other and vice versa. This information is presented
. (212 in Fig. 3 and on comparing with the position space model

entropy(open circles in Fig. 1 one can observe the inverse
L ) L behaviors previously stated. On comparing the momentum
Substituting back for, we obtain an expression in terms of space model behavior with the true valuggg. 4) that were

8a® S)
SEYM= —In| —5 | +4[ 2 In2——=+In(a?)
T 6

the ionization potential computed from the same wave functions as the position
asym_ 3 o 13 space values in Fig. 1, we observe that there is no similarity
S =2 Inli+2InT—F+5 In2. (213 petween the two in contrast to what was presented for the
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position space case. While the trBg is observed to be an S$r=S,+S,=3(1+Inm) (2.15

increasing function of, this is not the case for the model

entropy. This result is expected since the asymptotic regionsas been showh3,26] to exist. This entropy sun®; has

in the position space correspond to the origin in momentunibeen proposed askalancedmeasure as it takes into account

space due to the inverse relationship between the two. the entropic boundary of the distribution in both spaces. It
Thus, a reasonable question would be the effect of modhas been asserted to be a good measure of basis set quality at

eling the position space core correctly in momentum spacehe atomid 3] and polyatomic level§5,6]. A study of entro-

We proceed along this avenue by imposing the cusp condpies in both position and momentum space for the water

tion on the model momentum density, which yields thah molecule at various correlation levels shows that a balanced

the above must be equal B hence the entropy is density should have a maximal entropy sum. From the en-
tropic point of view, densities which maximize in one space,
SUSP=31InZ+2In7+5In2— 2. (2.14  often do so at the expense of the conjugate space entropy
[10].

Upon analysis of this equation one notes that the behavior Summing Eqs(2.4) and(2.13 yields
would be similar to 3 IrZ, making this cusp imposed model
entropy an increasing function &, in agreement with the SY™ SV M=3(1+In7)+5In2-%. (2.1
true entropy. A comparison of the cusp imposed model en-
tropy with the true momentum space entropy is presented iffomparing Eqs(2.15 and (2.16 we note that the bound
Fig. 4. The similarity between the cusp imposed model and2.19 will always be obeyed for the model entropies. Sum-
the true entropy should be expected as a correct modeling &fing the entropies from the cusp constrained model densities
the asymptotic regions in momentum space would have t#1 Ed.(2.8) and Eq.(2.14) also yields the result in E¢2.16).
include the cusp condition in the expansion coefficient. Ondnterestingly, upon summing Eq&2.4) and(2.14 we obtain
observes that the true entropy has deviations from a logaritifhat in order for the bound to be obeyed,
mic behavior, which presumably is due to the fact that the
true entropy contains not only cusp effects, but also correla- 3< nz— m) 20 zln(2), 2.17)
tion effects. 2 6

Furthermore, upon probing the change in the model en-
tropies with respect to the change in nuclear chargg&1z,  which is true for all atoms.
for the relationships in Eqg2.8) and (2.14), one obtains
—(3/2) and 3z for the position and momentum spaces, re- B. Model Shannon entropies and stopping power

spectively. ThusdS/dZ is inversely proportional to Z in | Recently, we have shown how the Shannon entropy may

both spaces. Hence, we have the result that the function e experimentally determined within the context of stoppin
forms are equivalent in both spaces when one considers the P y ppIng

changein the entropy and not the entropy itself. Moreover, power measuremen{d.2]. The stopping power may be de-

we see that the values differ in their numerical values by a{med as the ability of a material to be penetrated by a

factor of — 1. Based on these results, we expect that a plot Oglarged particle. Now, within this context, the mean excita-

the momentum space model entropy versus the positio 07n ePer:gyI, Wh'.Ch oceurs in thebBethe-Blocg formulation
space one would be linear with a slope ofL. This is an ] of the stopping pawer, may be expressed as
interesting result as we have numerically obtained such a

linear relationship for realistic systems under the effects of a ZInl= 2 filnfw,, (2.18
solvent field[25]. !

One could think of generalizing the results above by in-

troducing a simple model similar to what we have proposea'\’here the summation is over virtual oscillators of strenfgth

where the wave function would be an exponential with aand frequencyw and Z is the atomic number. As a first

parameter;- £, which could be varied to reflect external per- a_p_proximation, sincé, _is closest to one fo_r signi_fic:_;mt f[ran-

turbations realized on the system. In a manner entirely analos-'t'ons.’ one may considérms~|, wherels is the ionization

gous to what we have presented, we could solve for th@otential of thesth electron[28], thus Eq.(2.18 may be

change in the entropies as a function of the parante®él 7, rearranged in terms of the mean ionization poteritiak

to obtain— 3/{ for position space and for position space,

which wou_ld yield the Ii.near (elationsh!p with slopel. If Zlnl=7 |n|—:z Inl, (2.19

one associates uncertainty with entropies, we have the result S

that the changes in uncertainty with respect to a parameter

are linearly related in the position and momentum spacesyhere the summation is over all electrons. This approxima-

within these models used. Summing the two would yield thation of equating the mean excitation energy with the mean

the sum of the changes in both spaces is zero. ionization potential has been shown to be a good one for
It is also relevant to inquire what would be the sum of thelighter element$28].

Shannon entropies in both spacgs+S,, for the models There is another approximation called the local plasma

presented previously, since an uncertaintylike relationshimpproximation[29,30, where the mean excitation energy

involving these entropies, may be expressed in terms of the charge density
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which may be compared to E(R.24) by equating the argu-
ment of the logarithm withy. It is interesting that the nu-
merical value of the constant in the argument is 1.33 which

wherey is a correction_for the ;hift in the plasma frequencyis close to they2 value ofy that has been proposg29] and
wp(r) due to the chemical environment, and the plasma freshown by recent numerical calculatio42]. Also, for

quency is defined as

wp(r) =[4me?p(r)/m] "2

(2.21

lighter elements, we see that the logarithmic argument would
be approximately one in agreement with the empirical obser-
vation that ay of one should be used in calculations involv-

wheree andm are the electron charge and rest mass. It ha#ng light elementg12].

been remarked by Inokuét al. [31] that there might be an

Physically, the similarity between the two relationships

analytical derivation to go from the mean excitation energylEgs. (2.25 and (2.26)] is understandable because in stop-

in terms of oscillator strengths, Eq2.18 to (2.20 in terms
of the charge density.
Rearranging Eq(2.20, and spherically averaging,

ZInl =f Amr?p(r)In[ yhwy(r)]dr, (2.22
0
we are led to the expressi¢h2]
-S, Zln4mw
ZInl= + +ZIny (2.23
2 2
yielding the Shannon entropy,
S,=ZIn47+2ZIny—2ZInl (2.249
or in terms of the mean ionization potentl_al
S,=ZIn47+2ZIny—2ZInl. (2.29

ping power measurements, the incoming charged particle
sees and interacts with the asymptotic part of the charge
density of the target, and is less affected by what is happen-
ing in the core region. Thus, the use of a density with
asymptotic constraints is suitable. These two relationships
provide evidence of Inokuti’'s conjectuf@1] about a pos-
sible analytical relationship between E@2.18 and(2.20.

The main difference between E¢&.25 and(2.26) lies in
the constants(2 and 2, respectively that precede the
—ZInl terms. One might speculate that use of a more gen-
eral asymptotic form such as that in E§.1) and including
the r2# prefactor might be what is needed to make the two
approaches coincide. This, however is not the case. One
finds that the expression for any model density of the form of
Eq. (2.1) will yield the factor of —2ZIn| plus additional
terms containind dependencies. Moreover, it may be shown
that this factor is a consequence of the particular normaliza-
tion used.

Let us compare this expression for the entropy with the ex-

pression obtained from our model density. In the treatment

Ill. CONCLUSIONS

of the Shannon entropy in terms of the mean excitation en-

ergy (or mean ionization potential using the approximatjon

the density is normalized tZ (Z=N for neutral specigs
Normalizing the model density toZ we obtain C
=22213”/ 7, which upon substitution into Eq2.3) yields
an entropy

7 3
stym:z(ln4ﬂ-+3—zln 2) —ZInZ- §Z|n|1,
(2.26

A model charge density correctly depicting the
asymptotic behavior is used to derive an expression for the
entropy dependence on the ionization potential, and it is
shown how this model entropy possesses the same character-
istics as the true entropy. This model provides a connection
for the entropy with other chemical reactivity parameters
such as hardness and softness. The changes in the position
and momentum space entropies as a function of a parameter
are shown to be linearly related for these models. We also
showed that use of the model density yields an expression

where the subscript is used to denote the first ionization pofor the model entropy that is remarkably similar to the one
tential. Upon comparing Eq$2.25 and(2.26 the similari-  obtained for the entropy within the local plasma approxima-
ties between the two expressions are striking if one considerén in the stopping power formalism. This result provides
the approximations involved, namely, the use of a modepvidence of the conjecture that there may be an analytical
density and equating the mean excitation energy with thélerivation between the mean excitation energy in terms of
first ionization potential (=1,) which implies a homoge- oscillator strengths and that in terms of the charge density
neous environment, and thus one reverts to the local plasniéhe local plasma approximatipnit is shown that the mo-
approximation. The first terms in Eq.25 and(2.26) dif- ~ mentum space Shannon entropy behavior is largely due to
fer by a factor of 0.5Z. The second terms in the equations the effects of the cusp region.

are equal if one equateg with Z~ 2 while the third terms
differ by (—ZIn1)/2. Alternatively, one might think of re-
writing Eq. (2.26 as a three term equation similar to Eq.
(2.2H, yielding
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