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Differentiation of density functionals that conserves the normalization of the density
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The formula for differentiation of functionalA@r# with respect tor(r ) while keeping the normalization
*r(r )dr of r(r ) fixed is derived, and basic properties arising from it are concerned. The results are then
generalized for time-dependent theories. One of the essential consequences of normalization conservation for
functional differentiation, namely, that it ruins the symmetry inr of multiple derivatives, is shown to give the
resolution of the causality paradox of response functions in time-dependent density-functional theory. The
formula for the differentiation of functionalsA@r# that conserves the shape ofr(r ) is also presented.
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I. INTRODUCTION

Functional differentiation plays an essential role
density-functional theory@1,2#, where the particle density
takes the place of the wave function of traditional quant
mechanics as the basic variable. For determining the grou
state densityr(r ) of an N-particle quantum system in a
external fieldv(r ), density-functional theory has its ow
variational principle, based on the second Hohenberg-K
theorem@3#, which says that the energy functional

En@r#5F@r#1E r~r !n~r !dr , ~1!

whereF@r# is a functional determined by the type of inte
action between the particles, takes its minimum o
N-particle densities for the real density of the ground-st
system, from which it follows that variations ofEv@r# which
conserve the particle number

N5E r~r !dr ~2!

must vanish for the ground-state density of the syst
(N,v):

dNEn@r#50, ~3!

that is,

dEn@r#

dNr~r !
50 ~4!

@d/dNr(r ) denotes functional differentiation with respect
r(r ) while keepingN fixed#. However, no formula for car-
rying out number-conserving functional differentiatio
d/dNr(r ) explicitly is known. To bypass this problem,
Lagrange multiplierm is introduced to ensure the fulfilmen
of Eq. ~2!, thereby resolving the constraint on the variatio
in Eq. ~3!, giving

d HEn@r#2mS E r~r !dr2ND J 50, ~5!

from which
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dEn@r#

dr~r !
5m ~6a!

or

dF@r#

dr~r !
1n~r !5m ~6b!

arises, which, if knowingF@r#, can be used formally to ge
r(r ;m); then, using Eq.~2!, m can be determined, thus ob
taining the ground-state density of the system (N,v).
Though having this procedure, embodied in Eq.~6! with Eq.
~2!, it is, of course, still an open question as to what ext
the direct use of Eq.~4! means an alternative. Apart from th
problem of getting the ground-state density for a givenv(r ),
N conservation in density-functional theory is substantial
general, as density-functional theory concerns changes in
distribution of a given number of particles induced b
changes in the external potential acting on the particlesN
conservation also appears in the case of using a functi
AN@r# which is an exact expression for a density function
A@r# for a given particle numberN, that is,

A@rN#5AN@rN#, ~7!

e.g., the Weizsa¨cker or the Thomas-Fermi expression for t
noninteracting kinetic energy functional, where generally

dA@rN#

dr~r !
Þ

dAN@rN#

dr~r !
, ~8!

but

dA@rN#

dNr~r !
5

dAN@rN#

dNr~r !
~9!

is the correct relationship. Recent attempts to resolve
controversy about the homogeneity relation@4–7# for the
kinetic energy density functional by using numbe
conserving functional differentiationsd/dNr(r ) instead of
unconstrained onesd/dr(r ) @5# have also drawn attention t
the problem of not knowing how to carry out differentiatio
with respect tor(r ) while keeping*r(r )dr fixed. In this
paper this question will be answered by deriving the form
©2001 The American Physical Society06-1
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of number-conserving functional differentiation. The ess
tial properties of this differentiation will be considered, a
the results will be generalized for time-dependent theor
by which the causality paradox of time-dependent dens
functional theory@8,9# will also be resolved.

II. DERIVATION OF THE FORMULA AND ESSENTIAL
CONSEQUENCES

The basis for the derivation is the separation of the dep
dence onN5*r(r )dr in r(r ) by @10#

r~r !5N
g~r !

*g~r 8!dr 8
, ~10!

with the use of which the functional

A@g,N#5AFN
g

*gG ~11!

results, given a functionalA@r#. This A@g,N# can be con-
sidered as a two-variable functional, the partial derivative
which with respect tog(r ), providedA@r# is differentiable
with respect tor(r ), can be written, applying the chain ru
of functional differentiation, as

S dA@g,N#

dg~r ! D
N

5E dA@r#

dr~r 8! S dr~r 8!

dg~r ! D
N

dr 8, ~12!

where

S dr~r 8!

dg~r ! D
N

5
N

*g~r 9!dr 9 S d~r 82r !2
g~r 8!

*g~r 9!dr 9D ~13!

from Eq. ~10!. Hereg(r ), of course, can ber(r ) itself, for
which N5*r(r )dr . Since A@g,N#ug5r5A@r# and any
variations ofg(r ) at r(r ) conserve the normalizationN of
r(r ), for g5r, @d/dg(r )#N is d/dNr(r ), that is,

dA@r#

dNr~r !
5S dA@g,N#

dg~r ! D
N
U

g5r

, ~14!

so Eq.~13! yields

dr~r 8!

dNr~r !
5d~r 82r !2

r~r 8!

N
~15!

and Eq.~12! gives

dA@r#

dNr~r !
5E dA@r#

dr~r 8!

dr~r 8!

dNr~r !
dr 8. ~16!

From Eqs.~15! and ~16!, finally,

dA@r#

dNr~r !
5

dA@r#

dr~r !
2

1

N E r~r 8!
dA@r#

dr~r 8!
dr 8, ~17!

the formula searched, arises. It is worth pointing out that
essence of solving the problem of differentiationd/dNr(r )
lies in finding expression~15! for dr(r 8)/dNr(r ) @the rela-
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tion betweendr(r 8)/dNr(r ) anddr(r 8)/dr(r )5d(r 82r )#,
the key for it being the recognition of the connection exh
ited by Eq. ~14!. It is also worthy of note that, while
*@dr(r 8)/dr(r )#dr 851, from Eq.~15!,

E dr~r 8!

dNr~r !
dr 850, ~18!

so multiplying Eq.~17! by dr(r )/dNr(r 8), after integration,

dA@r#

dNr~r 8!
5E dA@r#

dNr~r !

dr~r !

dNr~r 8!
dr ~19!

arises, which is analogous to the relation

dA@r#

dr~r 8!
5E dA@r#

dr~r !

dr~r !

dr~r 8!
dr

of unconstrained functional differentiation. A verification o
formula ~17! ~maybe the only obvious one! is given by ap-
plying it to the simple case of the functionalf (N), the de-
rivative d f (N)/dNr(r ) of which is expected to be zero sinc
f (N) depends onr(r ) only throughN:

d f ~N!

dNr~r !
5

] f ~N!

]N
2

1

N E r~r 8!
] f ~N!

]N
dr 850.

Equation~17! is in agreement with an argument by Parr a
Bartolotti @11#, who concluded, decomposingr(r ) into N
and a shape functions(r ), which is normalized to 1, that the
difference of thed/dNr(r ) derivative and thed/dr(r ) de-
rivative of a functional is independent ofr .

Considering the generally accepted@10,11,14# view on
number-conserving functional differentiation in densit
functional theory—namely, that ad/dNr derivative is deter-
mined only up to an arbitrary constant—it is important
examine why, in fact, a unique formula could have be
derived. The above view comes from the following reaso
ing: a functional derivative being defined by

dA@r#5E dA@r#

dr~r !
dr~r !dr ~20!

and forN-conserving variations

E dNr~r !dr50, ~21!

for N-conserving variations of a functional:

dNA@r#5E S dA@r#

dNr~r !
1CD dNr~r !dr , ~22!

thus,dA@r#/dNr(r ) is defined only up to an arbitrary con
stant.@Note that ‘‘constant’’ here means independence ofr ,
but not ofr(r ): that is, an arbitrary, purely functional depe
dence onr(r ) is allowed.# The fault in this logic is that it
assumes that the definition Eq.~20! becomes
6-2
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DIFFERENTIATION OF DENSITY FUNCTIONALS THAT . . . PHYSICAL REVIEW A 63 022506
dNA@r#5E dA@r#

dNr~r !
dNr~r !dr ~23!

for definingdA@r#/dNr(r ). However, from Eq.~20!, only

dNA@r#5E dA@r#

dr~r !
dNr~r !dr ~24!

arises forN-conserving variations, which is in accordan
with the rigorously derived Eq.~16!, and Eq.~23!, which is
justified by Eq.~19!, but not trivial, has to be considere
only as a property of number-conserving functional differe
tiation, that is, a necessary but not sufficient condition
dA@r#/dNr(r ). So one could ask the question, how can th
a d/dNr derivative be defined? The answer is that ad/dNr
derivative is that part of an unconstrainedd/dr derivative
which, for an arbitrary variationdr(r ) of r(r ), gives the
variation of a functional that is due to theN-conserving
variation part ofdr(r ) @dNr(r )#. To see this, decompose th
full variation of r(r ) as

dr~r !5dN
g~r !

*g~r 8!dr 8
1Nd

g~r !

*g~r 8!dr 8
, ~25!

in accordance with Eq.~10!. The second part in Eq.~25! is
nothing else thandNr(r ) for g5r,

dNr~r !5Nd
g~r !

*g~r 8!dr 8U
g5r

5E H d~r2r 8!2
r~r !

N J dr~r 8!

5E dr~r !

dNr~r 8!
dr~r 8!, ~26!

and the first part gives that part ofdr(r ) where only the
normalization ofr(r ) is varied, and its shape is conserved:
dsr(r ). Inserting Eq.~26! into Eq. ~24! yields, with the use
of Eq. ~16!,

dNA@r#5E dA@r#

dNr~r !
dr~r !dr , ~27!

which is precisely what was stated above.@Note that, as ar-
bitrary variationsdr(r ) are allowed in Eq.~27!, the kind of
ambiguity, exhibited by Eq.~22!, that is involved in the use
of Eq. ~23! to determined/dNr derivatives is not presen
with Eq. ~27!.# Further, since

dA@r#5dsA@r#1dNA@r#, ~28!

dsA@r#5E 1

N E r~r 8!
dA@r#

dr~r 8!
dr 8dr~r !dr

5dN
1

N E r~r 8!
dA@r#

dr~r 8!
dr 8; ~29!

that is, as, analogously to Eq.~27!,
02250
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dsA@r#5E dA@r#

dsr~r !
dr~r !dr , ~30!

dA@r#

dsr~r !
5

1

N E r~r 8!
dA@r#

dr~r 8!
dr 8, ~31!

which is the formula of shape-conserving functional diffe
entiation. An unconstrained, or full, derivative can thus
written as the sum of two component derivatives:

dA@r#

dr~r !
5

dA@r#

dsr~r !
1

dA@r#

dNr~r !
. ~32!

For r(r ), Eq. ~31! gives

dr~r 8!

dsr~r !
5

r~r 8!

N
. ~33!

Equation~31!, of course, can also be obtained from Eq.~25!,
via

dsr~r !5
r~r !

N
dN. ~34!

It is worthy of mention, finally, that the two Euler equation
~4! and ~6! are derivable from Eqs.~27! and ~24!, respec-
tively.

For number-conserving differentiation of functiona
composed from two functionals there are rules analogou
the corresponding rules of unconstrained functio
differentiation—namely, for the sum of two functionals,

d~A1B!

dNr~r !
5

dA

dNr~r !
1

dB

dNr~r !
; ~35!

for the product of two functionals,

d~AB!

dNr~r !
5

dA

dNr~r !
B1A

dB

dNr~r !
; ~36!

and the chain rule ford/dNr(r ),

dA@b~r 8!#

dNr~r !
5E dA

db~r 8!

db~r 8!

dNr~r !
dr 8; ~37!

as can be seen with the use of Eq.~16! or Eq. ~17! itself.
From Eq.~17! a substantial property ofd/dNr derivatives

follows straightaway:

E r~r !
dA@r#

dNr~r !
dr50 ~38!

for arbitrary functionalA@r# d/dNr differentiable inr(r ).
Equation~38!, of course, gives a negative answer to wheth
the problem about the homogeneity relation@4# for the ki-
netic energy functional, mentioned before, can be elimina
simply by replacingd/dr(r ) with d/dNr(r ); though it has to
be mentioned, this can be seen without Eq.~17! as well,
simply by examining the case of one-electron densitiesr1(r )
using
6-3



he

o

e

y

try
-

iva-
-

al,
tial

of
-
tial

als

-
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dTW@r#

dNr~r !
5

dTW@r#

dr~r !
1c@r#

and making use of Eq.~9!, since

E r1~r !
dT@r1#

dNr~r !
dr5E r1~r !

dTW@r1#

dNr~r !
dr

5E r1~r !
dTW@r1#

dr~r !
dr1c@r1#

3E r1~r !dr

5TW@r1#1c@r1#5T@r1#1c@r1#

~in the third equality the first-degree homogeneity of t
Weizsäcker functional@12# TW@r# is used!. Now, having Eq.
~17!, c@r# is known:

dTW@r#

dNr~r !
5

dTW@r#

dr~r !
2

TW@r#

N
; ~39!

that is,2c@r1# is TW@r1# itself. Equation~39! is, of course,
valid for arbitrary differentiable functional homogeneous
degree 1.

Another essential consequence of the formula Eq.~17! is
that the second derivatived2A@r#/dNr(r )dNr(r 8) is not
symmetric inr and r 8, which can be seen easily with th
help of Eq.~38!: while applying Eq.~38! to the functional
dA@r#/dNr(r 8) gives

E r~r !
d2A@r#

dNr~r !dNr~r 8!
dr50, ~40!

differentiationd/dNr(r 8) of Eq. ~38! yields

E r~r !
d2A@r#

dNr~r 8!dNr~r !
dr52

dA@r#

dNr~r 8!
~41!

@use of Eqs.~37!, ~36!, ~15!, and~38! itself can be made#. Of
course,d2A@r#/dNr(r )dNr(r 8) can be expressed explicitl
by applying Eq.~17! successively:

d2A@r#

dNr~r !dNr~r 8!

5
d2A@r#

dr~r !dr~r 8!
2

1

N

dA@r#

dr~r !

2
1

N S E r~r 9!
d2A@r#

dr~r 9!dr~r 8!
dr 9

1E r~r 9!
d2A@r#

dr~r !dr~r 9!
dr 9D

1
1

N2 S E r~r 9!
dA@r#

dr~r 9!
dr 9
02250
f

1E E r~r 9!r~r-!
d2A@r#

dr~r 9!dr~r-!
dr 9dr-D , ~42!

from which it shows that the second term ruins the symme
in r and r 8. This asymmetry can be exhibited by the com
mutator

F d

dNr~r !
,

d

dNr~r 8!G52
1

N S d

dr~r !
2

d

dr~r 8! D ~43!

or

F d

dNr~r !
,

d

dNr~r 8!G52
1

N S d

dNr~r !
2

d

dNr~r 8! D ; ~44!

that is, the difference between the second functional der
tives at r , r 8 and r 8, r is determined by the difference be
tween the first functional derivatives atr and r 8. For the
exchange-correlation part of the energy density function
the second functional derivative of which plays an essen
role in linear response theory@8#, e.g., Eq.~43! gives

d2Exc@r#

dNr~r !dNr~r 8!
2

d2Exc@r#

dNr~r 8!dNr~r !
52

1

N
@nxc~r !2nxc~r 8!#,

~45!

which means that the difference in the second derivative
Exc@r# due to the interchange of itsr variables is character
ized by the difference in the exchange-correlation poten
nxc(r ) at the two points.

An important question is the case of continous function
A@r# which cannot be differentiated forr(r ) of a givenN,
rN(r ), but have right and left functional derivatives

dA@rN#

dr~r !
U

N1

Y dA@rN#

dr~r !
U

N2

,

that is, derivatives coming from differentiatingA@r#, at
rN(r ), only over the ‘‘half-space’’ ofr(r )’s for which
*r(r )dr>N/*r(r )dr<N, e.g., the fractional particle num
ber generalization of the energy functionalEn@r# or the
exchange-correlation part of it,Exc@r# @13,14#. For this case,
as can be seen easily, the formula Eq.~17! becomes

dA@r#

dNr~r !
5

dA@r#

dr~r !
U

N1

2
1

N E r~r 8!
dA@r#

dr~r 8!
U

N1

dr 8 ~46a!

or

dA@r#

dNr~r !
5

dA@r#

dr~r !
U

N2

2
1

N E r~r 8!
dA@r#

dr~r 8!
U

N2

dr 8. ~46b!

If both dA@r#/dr(r )uN1 and dA@r#/dr(r )uN2 exist, from
Eqs.~46a! and ~46b!,
6-4
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dA@r#

dr~r !
U

N1

2
dA@r#

dr~r !
U

N2

5
1

N E r~r 8!S dA@r#

dr~r 8!
U

N1

2
dA@r#

dr~r 8!
U

N2
D dr 85C@r#, ~47!

that is, independent ofr , e.g., giving Eq.~9! of @14# for the
above-mentioned generalization ofExc@r#. It is a basic prop-
erty of d/dNr(r ) that forr(r ) where thed/dr(r ) derivatives
of different functionals differ by only functionals indepen
dent of r , it gives the same derivative. It also has to
mentioned here that Eq.~17! is applicable for arbitrary func-
tional A@r# differentiable along a path defined by*r(r )dr
5N since A@rN# can be extended from the domain
rN(r )’s to an ‘‘unconstrained’’ set ofr(r )’s to get a func-
tional A8@r# d/dr(r ) differentiable forrN(r ), a natural ex-
tension ofA@rN# being its constant shifting

A8@r#ªAFN
r

*rG ~48!

„ A8@r# being constant forr(r )’s of the same shape…, to
which Eq.~17! can be applied, givingdA@rN#/dNr(r ) on the
basis of Eq.~9!:

dA@rN#

dNr~r !
5

dA8@rN#

dNr~r !
5

dA8@rN#

dr~r !
2

1

N E r~r 8!
dA8@rN#

dr~r 8!
dr 8,

~49!

this way justifying Eq. ~17! as the formula for number
conserving differentiation and not ‘‘just’’ the relation be
tweend/dNr(r ) andd/dr(r ).

Having the formula ford/dNr(r ), the connection be-
tween the methods behind Eqs.~4! and~6! can be examined
closely. Writing Eq.~4! in the form

dEn@r#

dr~r !
5

1

N E r~r 8!
dEn@r#

dr~r 8!
dr 8 ~50!

shows that Eq.~4! leads to the same method as Eq.~6! @with
Eq. ~2!#: from Eq. ~50!, dEn@r#/dr(r )5c, independent of
r , soc5(1/N)*r(r )cdr , that is,*r(r )dr5N, the constraint
for c. Comparing Eq.~50! with Eq. ~6!,

m5
1

N E r~r !
dEn@r#

dr~r !
dr , ~51!

which, of course, can be obtained from Eq.~6! as well but
not uniquely. With Eq.~17!, Eq. ~4! is also derivable from
Eq. ~6! as d/dNr(r ) gives zero forr -independentd/dr(r )
derivatives. With the separation of then-independent part in
Eq. ~4!, using

dVext@r#

dNr~r !
5n~r !2

Vext@r#

N
, ~52!

with Vext@r#5*r(r )n(r )dr , the equation
02250
dF@r#

dNr~r !
1n~r !5

1

N E r~r 8!n~r 8!dr 8 ~53!

arises for determiningr(r ) for givenN andv(r ). Real use of
Eq. ~53! could be made by getting expressions directly
dF@r#/dNr(r ) @for which Eq. ~38! is a condition#, not
through the formula~17!. However, obtaining the energy
Eq. ~1!, would still remain a problem, unless only the no
interacting kinetic energy functionalTs@r#, a major part in
F@r#, is keptd/dNr(r ) differentiated in Eq.~4!:

dTs@r#

dNr~r !
1nKS~r !5

1

N E r~r 8!nKS~r 8!dr 8, ~54!

since the relation

Ts@r#52 1
2 E r~r !r•¹

dTs@r#

dNr~r !
dr , ~55!

arising from the corresponding relation@15# with d/dr(r ),
makes it possible to getTs@r# from dTs@r#/dNr(r ). Also,
Eq. ~55! gives a condition ondTs@r#/dNr(r ),d/dNr differ-
entiating it:

dTs@r#

dNr~r !
52

1

2
r•¹

dTs@r#

dNr~r !
2

Ts@r#

N

2 1
2 E r~r 8!r 8•¹8

d2Ts@r#

dNr~r !dNr~r 8!
dr 8 ~56!

@with Eq. ~55!#, which can be considered as the first equat
of a hierarchy obtainable byd/dNr differentiating Eq.~55!
successively, like in the case ofd/dr differentiation @16#.
Equation~56! @with Eq. ~55!# and

E r~r !
dTs@r#

dNr~r !
dr50 ~57!

can be used as constraints to get expressions
dTs@r#/dNr(r ), e.g., like described in@17# for Ts@r#. Note
that similar considerations hold for any part ofF@r# which
scales homogeneously in coordinates, such functionals b
obtainable from~the gradients of! their functional derivatives
@15#.

In the Kohn-Sham formulation of density-function
theory @18,19#, the problem of not knowing the noninterac
ing kinetic energy functionalTs@r# is eliminated by mini-
mizing

En@u1 ,...,uN#5Ts@u1 ,...,uN#1F@r#2Ts@r#1Vext@r#,
~58!

where

r~r !5(
i 51

N

ui* ~r !ui~r ! ~59!

and
6-5
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Ts@u1 ,...,uN#5E (
i 51

N

ui* ~r !S 2
1

2
¹2Dui~r !dr , ~60!

to get the ground-state density, instead ofEv@r# itself, yield-
ing the so-called Kohn-Sham equations

2 1
2 ¹2ui~r !1nKS~r !ui~r !5« iui~r !, i 51, . . . ,N, ~61!

with

nKS~r !5
d~F@r#2Ts@r#1Vext@r#!

dr~r !
, ~62!

for the minimum$ui(r )% i 51
N . In the derivation of Eq.~61!,

the condition~2! is ensured by the normalization ofui(r )
( i 51, . . . ,N), N being fixed; thus, the differentiation
in Eq. ~62! is unconstrained; though addin
@(21/N)*r(r 8)vKS(r 8)dr 8#ui(r ) to both sides of Eq.~61!,

2 1
2 ¹2ui~r !1nKS

N ~r !ui~r !5« i
Nui~r !, i 51,...,N, ~63!

arises, where

nKS
N ~r !5

d~F@r#2Ts@r#1Vext@r#!

dNr~r !

5nxc
N ~r !1nJ

N~r !1nN~r !, ~64!

with

nxc
N ~r !5

dExc@r#

dNr~r !
, ~65!

nJ
N~r !5

dJ@r#

dNr~r !
5E r~r 8!

ur2r 8u
dr 82

2J@r#

N
~66!

~for particles with Coulomb interaction!, and

nN~r !5n~r !2
1

N E r~r 8!n~r 8!dr 8, ~67!

for which

E r~r !nKS
N ~r !dr50, ~68!

yielding

Ts5(
i 51

N

« i
N . ~69!

Of course, without Eq.~17!, Eq. ~63! with potentialvKS
N (r )

giving Eq. ~68!, hence Eq.~69!, could also be constructed
but having Eq.~17!, vKS

N (r ) has obtained physical mean
ing: Eq. ~64!.

III. GENERALIZATION FOR TIME-DEPENDENT CASES

The formula and basic properties of number-conserv
functional differentiation having been derived, it is an impo
02250
g
-

tant question how they can be generalized to functionr
which have variables which are not involved in the integ
tion in the number-conserving constraint—that is, for whi
that constraint holds pointwise—as time-dependent densi
on which, of course, time-dependent density-functio
theory ~TDDFT! @20,8,9# is based. TDDFT, for which the
time-dependent generalization of the Hohenberg-Kohn th
rems@20# forms the ground, concerns systems of given nu
ber of particles whose density distribution changes in ti
due to a time-dependent external potentialv(r ,t), giving
d/dNr differentiation a substantial importance. In this se
tion, therefore, the results of the previous section will
generalized to include time dependence. For more genera
a time-dependent particle numberN(t) can also be allowed
with which the number-conserving, more precise
N(t)-conserving, constraint:

E r~r ,t !dr5N~ t !, ~70!

which, of course, includes the caseN(t)5N5const.
The starting point, again, is the separation of the norm

ization N in r:

r~r ,t !5N~ t !
g~r ,t !

*g~r 8,t !dr 8
. ~71!

Along the lines described in the previous section, with t
use of Eq.~71!, as the time-dependent generalization of E
~15! and ~16!,

dr~r 8,t8!

dNr~r ,t !
5d~r 82r !d~ t82t !2

r~r 8,t8!

N~ t8!
d~ t82t ! ~72!

and

dA@r#

dNr~r ,t !
5E dA@r#

dr~r 8,t8!

dr~r 8,t8!

dNr~r ,t !
dr 8dt8 ~73!

can be obtained, from which

dA@r#

dNr~r ,t !
5

dA@r#

dr~r ,t !
2

1

N~ t ! E r~r 8,t !
dA@r#

dr~r 8,t !
dr 8.

~74!

From Eq.~74!, then, rules similar to Eqs.~35!–~37! (r ,t in
the place ofr ! follow for the number-conserving differentia
tion of functionals composed from two functionals. Equati
~38! also holdst-wise,

E r~r ,t !
dA@r#

dNr~r ,t !
dr50, ~75!

while for a secondd/dNr derivative:
6-6
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d2A@r#

dNr~r ,t !dNr~r 8,t8!
5

d2A@r#

dr~r ,t !dr~r 8,t8!
2

1

N~ t8!

dA@r#

dr~r ,t !
d~ t2t8!2

1

N~ t ! E r~r 9,t !
d2A@r#

dr~r 9,t !dr~r 8,t8!
dr 9

2
1

N~ t8!
E r~r 9,t8!

d2A@r#

dr~r ,t !dr~r 9,t8!
dr 91

1

N~ t !N~ t8! S E r~r 9,t8!
dA@r#

dr~r 9,t8!
dr 9d~ t2t8!

1E E r~r 9,t !r~r-,t8!
d2A@r#

dr~r 9,t !dr~r-,t8!
dr 9dr-D , ~76!
g
ge
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e

or
from which

F d

dNr~r ,t !
,

d

dNr~r 8,t8!G52
1

N~ t ! S d

dr~r ,t !
2

d

dr~r 8,t8! D
3d~ t2t8!. ~77!

The commutator, Eq.~77!, shows how theN-conserving con-
straint ruins the symmetry of functional differentiation inr , t,
though, as can be expected, purely int (r5r 8) the symmetry
remains. This property gives the resolution of a lon
standing paradox in TDDFT concerning the exchan
correlation kernel, illustrating the physical relevance
number-conserving functional differentiation.

In TDDFT the density response functio
dr(r 8,t8)/dv(r ,t) determines the density variationsdr(r ,t)
of anN-particle system generated by first-order variations
the external potentialv(r ,t). Because of causality, for time
t later thant8,dr(r 8,t8)/dv(r ,t) must vanish:

dr~r 8,t8!

dn~r ,t !
50, t.t8. ~78!

Causality for the inverse ofr@v#, the existence of which@20#
gives the basis of TDDFT, means that

dn~r 8,t8!

dNr~r ,t !
50, t.t8. ~79!

In dv(r 8,t8)/dNr(r ,t), N conservation is essential as th
particle numberN is fixed when definingr@v#, so its deriva-
tive is also determined only for given N:
drN(r 8,t8)/dv(r ,t); thus, it has to be inverted with a
N-conserving constraint onr(r ,t). Of course,v@r# can be
extended to allr’s, but even in this case the physically re
evant differentiation for which causality can be required
the N-conserving functional differentiation. The external p
tentialv(r ,t) acting on an interacting particle system is co
nected with the effective potential of the corresponding n
interacting system with the samer(r ,t) as the interacting
one @20,21#, the time-dependent correspondent of the Koh
Sham potential,vKS(r ,t), the concept of which is essentia
for the practical use of TDDFT, by

nKS~r ,t !5n~r ,t !1E r~r 8,t !

ur2r 8u
dr 81

dAxc@r#

dr~r ,t !
~80!
02250
-
-
f

f

-
-

-

~in the case of a Coulomb interaction between the particl!,
where the second term is the functional derivative of
Hartree part of the action functionalA@r# @20#, on which the
variational principle of TDDFT for determiningr(r ,t) is
based, and the third term comes from the exchan
correlation part ofA@r#. Differentiation of Eq.~80! leads to
a paradox@8,9# if the fact that not the usual differentiatio
procedure applies underN conservation, which ruins the
symmetry of unconstrained functional differentiation, is i
nored, since in the case of symmetric second functional
rivatives, that is, practically neglectingN conservation, the
causality requirement onv@r#, and also onvKS@r#, is in
conflict with the symmetry of the second derivative
Axc@r#. This paradox, which has induced much effort to fi
a resolution of it@22,23#, however, cancels out automatical
by correctly takingN conservation into account as in th
d/dNr derivative of Eq.~80!,

dnKS~r 8,t8!

dNr~r ,t !
5

dn~r 8,t8!

dNr~r ,t !
1

d~ t2t8!

ur2r 8u
2

1

N E r~r 9,t !

ur 92r 8u

3dr 9d~ t2t8!1
d2Axc@r#

dNr~r ,t !dr~r 8,t8!
, ~81!

the second derivative

d2Axc@r#

dNr~r ,t !dr~r 8,t8!
5

d2Axc@r#

dr~r ,t !dr~r 8,t8!

2
1

N E r~r 9,t !
d2Axc@r#

dr~r 9,t !dr~r 8,t8!
dr 9

~82!

is not symmetric in its space-time arguments:

d2Axc@r#

dNr~r ,t !dr~r 8,t8!
2

d2Axc@r#

dNr~r 8,t8!dr~r ,t !

52
1

N E S r~r 9,t !
d2Axc@r#

dr~r 9,t !dr~r 8,t8!

2r~r 9,t8!
d2Axc@r#

dr~r 9,t8!dr~r ,t ! Ddr 9 ~83!

~not even in time purely!; thus, requiring causality, Eq.~79!,
yields no contradiction, and simply gives a condition f
Axc@r#:
6-7
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d2Axc@r#

dNr~r ,t !dr~r 8,t8!
52

d~ t2t8!

ur2r 8u
1

1

N E r~r 9,t !

ur 92r 8u

3dr 9d~ t2t8! for t.t8. ~84!

The second derivative ofAxc@r#, the exchange-
correlation kernel, plays a key role in linear response the
@8# and in calculating excitation energies via TDDFT@24#.
Equation~81! exhibits the fact that the physically releva
second derivative is the mixed derivative, Eq.~82!, instead
of a full unconstrained second derivative. Note that, thou
according to Eq.~24!, a variation of a functionalA@r# due to
a number-conserving variation of its variabler is determined
by its unconstrained derivative; in theoretical practice,
arbitrariness of variationsdr is substantial, therefore, numbe
conservation needs to be forced out by a number-conser
functional derivative, on the basis of Eq.~27!.

IV. SUMMARY

The main result of the paper is Eq.~17!, which is a gen-
eral mathematical formula for differentiating a function
A@r# with respect tor(r ) while keeping the normalization
*r(r )dr of r(r ) fixed, as such giving a case in function
analysis when a constrained functional differentiation
managed to be treated explicitly, showing how the usual
ferentiation procedure of functionals alters due to this c
straint, and Eq.~17! is essential for the determination o
changes in a quantity which is dependent on some den
o

f

i-
.

-

s

n

02250
ry

,

e

ng

s
f-
-

ity

distribution ~mass, charge, or particle distribution, e.g.!, if
conservation of the normalization of the distribution~total
mass, total charge, particle number! is needed. With Eq.~27!
a correct formal definition has been presented for a num
conserving functional derivative, elucidating a long-stand
false view in density-functional theory—namely, that the
functional derivatives are ambiguous by definition. Also, t
formula of shape-conserving functional differentiation, E
~31!, where change in the normalization ofr(r ) is allowed
only, has been obtained. Two substantial properties
number-conserving functional differentiation, which illu
trate its essential difference from unconstrained differen
tion well, are thatd/dNr(r ) derivatives multiplied byr(r )
integrate to zero@Eq. ~38!# and that secondd/dNr(r ) deriva-
tives are asymmetric in theirr arguments, Eq.~43!. After
generalizing the results to involve time dependence, E
~72!–~77!, the latter property, more precisely that anN con-
servation ruins the symmetry of multipled/dr(r ) derivatives
in their r arguments, has been shown to resolve the caus
paradox of time-dependent density-functional theory c
cerning the exchange-correlation kernel, Eqs.~79!–~83!, il-
lustrating the real presence of number-conserving functio
differentiation in density-functional theory.
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