PHYSICAL REVIEW A, VOLUME 63, 022506
Differentiation of density functionals that conserves the normalization of the density
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The formula for differentiation of functionah[ p] with respect top(r) while keeping the normalization
Jp(r)dr of p(r) fixed is derived, and basic properties arising from it are concerned. The results are then
generalized for time-dependent theories. One of the essential consequences of normalization conservation for
functional differentiation, namely, that it ruins the symmetry iof multiple derivatives, is shown to give the
resolution of the causality paradox of response functions in time-dependent density-functional theory. The
formula for the differentiation of functional&[ p] that conserves the shape @ffr) is also presented.

DOI: 10.1103/PhysRevA.63.022506 PACS nunt®er31.15.Ew, 02.30.Sa, 02.30.Xx
. INTRODUCTION SE,[p]
= 6
o) M (6a)

Functional differentiation plays an essential role in
density-functional theonf1,2], where the particle density ¢
takes the place of the wave function of traditional quantum
mechanics as the basic variable. For determining the ground- oF[p]
state densityp(r) of an N-particle quantum system in an m*"’(r):# (6b)
external fieldv(r), density-functional theory has its own

variational principle, based on the second Hohenberg-Koh@rises, which, if knowind=[p], can be used formally to get

theorem[3], which says that the energy functional p(r;w); then, using Eq(2), u can be determined, thus ob-
taining the ground-state density of the systemM,u).
EV[P]=F[P]+J p(r)v(r)dr, (1)  Though having this procedure, embodied in E).with Eq.
(2), it is, of course, still an open question as to what extent

. . . . the direct use of Eq4) means an alternative. Apart from the
whereF[p] is a functional determined by the type of inter- Iproblem of getting the ground-state density for a givén),

ﬁftlg?ticlt:eetdvgiri]tietsh?orpaglCrleesl' dt:rlfses g? thnéml:rc])ldz] d-s?t\(/al ?eN conservation in density-functional theory is substantial in
P A Ity 9 . general, as density-functional theory concerns changes in the
system, from which it follows that variations & p] which

conserve the particle number distributio_n of a given numbgr of particles inducgd by
changes in the external potential acting on the partidies.
conservation also appears in the case of using a functional
N:f p(r)dr (2)  Anlp] which is an exact expression for a density functional
Al p] for a given particle numbel, that is,

must vanish for the ground-state density of the system
(No): J Y Y Alpn]=Anl ], @)

e.g., the Weizszker or the Thomas-Fermi expression for the

NE[p]=0, © noninteracting kinetic energy functional, where generally

that is,
OAlpn] | OANLpN] ®)
SE.lp] _ " sp(r) "~ op(r)
5 =
np(r) but

[8/ 5yp(r) denotes functional differentiation with respect to
p(r) while keepingN fixed]. However, no formula for car- OALpn] _ 9ANLn] 9)
rying out number-conserving functional differentiations onp(r) — Sup(r)

Sl dyp(r) explicitly is known. To bypass this problem, a ) )

Lagrange multiplierx is introduced to ensure the fulfilment iS the correct relationship. Recen_t attempts to resolve the

of Eq. (2), thereby resolving the constraint on the variationscontroversy about the homogeneity relatiph-7] for the

in Eq. (3), giving kinetic energy density functional by using number-
conserving functional differentiationd/ syp(r) instead of
unconstrained one&/ Sp(r) [5] have also drawn attention to

5{EV[P]_#( f p(r)dr—N)}zo, ®  the problem of not knowing how to carry out differentiation

with respect top(r) while keeping[p(r)dr fixed. In this

from which paper this question will be answered by deriving the formula
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of number-conserving functional differentiation. The essentjon betweensp(r')/Syp(r) and dp(r’')/dp(r)=358(r'—r)],

tial properties of this differentiation will be considered, andthe key for it being the recognition of the connection exhib-
the results will be generalized for time-dependent theoriesiged by Eq. (14). It is also worthy of note that, while
by which the causality paradox of time-dependent densityj[gp(rf)/5p(r)]dr':1, from Eq.(15),

functional theory[8,9] will also be resolved.

op(r') dr’ =
Il. DERIVATION OF THE FORMULA AND ESSENTIAL EVG =0, (18
CONSEQUENCES

o multiplying Eq.(17) by 8p(r)/Syp(r'), after integration,

oAl p] :f oALp] 6p(r)
g(r) onp(r') Onp(r) onp(r')

Jo(rdr’’ (19 : L .
arises, which is analogous to the relation
with the use of which the functional
oA[p] _f oALp] op(r)

(11) sp(r') ] &p(r) dp(r')

The basis for the derivation is the separation of the depens—'
dence orN=[p(r)dr in p(r) by [10]

dr (19
p(r)=N

Alg,N]=A

N —
J9
) ) ) of unconstrained functional differentiation. A verification of
results, given a functionah[p]. This A[g,N] can be con-  formula (17) (maybe the only obvious ohés given by ap-
sidered as a two-variable functional, the partial derivative ofyying it to the simple case of the function&(N), the de-
which with respect tay(r), providedA[p] is differentiable rjyative 5f(N)/Syp(r) of which is expected to be zero since

with respect tgp(r), can be written, applying the chain rule Ny depends om(r) only throughN:
of functional differentiation, as

ST(N Jf(N 1 Jf(N
(N)  af(N) f 1N

N N N

(12) s N N dr’=0.

(6A[g,N]) :f 5A[p](5p(r'>) o
59 |, J e\ ey )

Equation(17) is in agreement with an argument by Parr and

where Bartolotti [11], who concluded, decomposing(r) into N
Sp(r') 9(r") and a shape functiom(r), which is normalized to 1, that the
( 5 ) = nd ”(5“/_”_W) (13 difference of thed/ dyp(r) derivative and thed/ dp(r) de-
g(r) J Jo(r")dr Jg(r")dr rivative of a functional is independent of

Considering the generally acceptét0,11,14 view on
number-conserving functional differentiation in density-
functional theory—namely, that & 6y p derivative is deter-
mined only up to an arbitrary constant—it is important to
examine why, in fact, a unique formula could have been
derived. The above view comes from the following reason-
, (149 ing: a functional derivative being defined by

from Eg. (10). Hereg(r), of course, can be(r) itself, for
which N=[p(r)dr. Since A[g,N]|4-,=Al[p] and any
variations ofg(r) at p(r) conserve the normalizatioN of
p(r), for g=p, [6/69(r)]n IS &/ Syp(r), that is,

5ALp] _(5A[g,N])

aup(n) | 89(r) ||
ol SA[ ]=f OALPL ooy (20)
so Eq.(193) yields P Sp(r) P
op(r’) p(r’) - -
=5(r'—r)— 15 and forN-conserving variations
and Eq.(12) gives f Syp(r)dr=0, (21
oALp] chA[p] op(r’) , s ,
= ; dr’. 16 for N-conserving variations of a functional:
5up(n) | 3p(7) Bup(n) (10 .

From Egs.(15) and(16), finally, 5NA[P]=J ( S6A[p] | oyp(ryar, (22

onp(r)
oAlp] O6Alp] 1 J ,. 6Alp] dr’ 1
sup(r) — dp(r) N ) sp(r) 4" (A7) thus, SA[p]/ Syp(r) is defined only up to an arbitrary con-
stant.[Note that “constant” here means independence ,of
the formula searched, arises. It is worth pointing out that thdout not ofp(r): that is, an arbitrary, purely functional depen-
essence of solving the problem of differentiati6hdyp(r) dence orp(r) is allowed] The fault in this logic is that it
lies in finding expressionil5) for sp(r’)/Syp(r) [the rela- assumes that the definition EQO) becomes
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OA[p
SnALp]= f 5 [(‘r’]) Sup(r)dr (23 sAlp)= | 5 [(rg Sp(r)dr, (30
for defining SA[ p]/ dyp(r). However, from Eq(20), only oAlp] 1 .. 0A[p]
ALp] )~ 1) P Gy &0
onALp]= f Sp(r) Snp(r)dr (24) which is the formula of shape-conserving functional differ-

entiation. An unconstrained, or full, derivative can thus be
arises forN-conserving variations, which is in accordance written as the sum of two component derivatives:
with the rigorously derived Eq.16), and Eq.(23), which is

justified by Eq.(19), but not trivial, has to be considered oAlp] 6A[p] = SAlp]

qnly as a prqperty of number-conserving _fu_nctional o_Ii_fferen- Sp(r) — ,p(r) = Syp(r)’ (32)
tiation, that is, a necessary but not sufficient condition for

SA[ p]/ Syp(r). So one could ask the question, how can therFor p(r), Eqg. (31) gives

a 6/ yp derivative be defined? The answer is thad/@yp , ,

derivative is that part of an unconstrainétfp derivative Sp(r’) _ w (33)

which, for an arbitrary variationsp(r) of p(r), gives the S,p(r) N
variation of a functional that is due to th¥-conserving
variation part ofsp(r) [ yp(r)]. To see this, decompose the Equatlon(31) of course, can also be obtained from Ezp),

full variation of p(r) as

p(r)
sp(r=oN—30 590 25 8,p(r) ="~ SN, (34

Jo(rh)dr’ Jo(r/)dr”’

in accordance with Eq.10). The second part in Eq25) is
nothing else thardyp(r) for g=p,

It is worthy of mention, finally, that the two Euler equations
(4) and (6) are derivable from Eq927) and (24), respec-
tively.

For number-conserving differentiation of functionals

Snp(r)= Ngﬁ composed from two functionals there are rules analogous to
Jo(rydr'| the corresponding rules of unconstrained functional
p(1) differentiation—namely, for the sum of two functionals,
Hﬁ(r_r )~ ]5 () S(A+B) oA 5B .
Sup(n)  dup(1) | up(D) 39
op(r)
- [ 2 20 |
Sup(r') P for the product of two functionals,
and the first part gives that part @fp(r) where only the S(AB) oA 6B
normalization ofp(r) is varied, and its shape is conserved: oup(1) (1) B+A Bup() (36)
S,p(r). Inserting Eq.(26) into Eq.(24) yields, with the use
of Eq. (16), and the chain rule fob/ syp(r),
SA[p] SA[b(r')] SA  Sb(r’)
ONA =f Sp(r)dr, 2 :f 3
N PR @0 swo(n) ] 3B s (37

which is precisely what was stated aboffdote that, as ar- as can be seen with the use of Et6) or Eq.(17) itself.
bitrary variationsép(r) are allowed in Eq(27), the kind of From Eq.(17) a substantial property a¥/ yp derivatives
ambiguity, exhibited by Eq(22), that is involved in the use follows straightaway:

of Eq. (23) to determined/ Syp derivatives is not present

with Eq. (27).] Further, since J’ (1) oAlp]

N (r)dr 0 (38

OALp]=6,Alp]+ oNALp], (28)
for arbitrary functionalA[ p] 6/ 6yp differentiable inp(r).

1 , el | Equation(38), of course, gives a negative answer to whether

S.ALp]= f ﬁf p(r )Wdr Sp(r)dr the problem about the homogeneity relatiet for the ki-
netic energy functional, mentioned before, can be eliminated

_ans J’ o(H) A[P] (29 simply by replacings/ 8p(r) with &/ 5yp(r); though it has to

Sp(r’ ) be mentioned, this can be seen without Ebj7) as well,

simply by examining the case of one-electron densjiigs)
that is, as, analogously to E7), using
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STwlp] _
onp(r)

oTwlpl]
op(r)

and making use of E(9), since

fm() oTle 4 flu

On (r)
fpl( r

X f pa(r)dr

=Twlpiltclp]=Tlpi]+clps]

+c[p]

oTwlpil

Bup(r) dr

oTwlp1l
op(r)

dr+clpi]
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from which it shows that the second term ruins the symmetry
in r andr’. This asymmetry can be exhibited by the com-
mutator

5°Alp]

S s ooy e |, (42
r")op(r") ) “2

M TR TN
Snp(r) " dnp(r')] Nidp(r) dp(r’)

LL}__E( o
Sup(0) Bup(r) |~ N yp(r)

(44)

) )
onp(r'))’

(in the third equality the first-degree homogeneity of the

Weizsaker functional12] T [ p] is used. Now, having Eqg.
(17), c[p] is known:

oTwlp] _ 5TW[P]_ Twlp] .
Snp(r)  6p(r) N

(39

that is,—c[ p1] is Tyl p1] itself. Equation(39) is, of course,

valid for arbitrary differentiable functional homogeneous of

degree 1.

Another essential consequence of the formula &d) is
that the second derivativé?A[p]/Syp(r) Snp(r’) is not
symmetric inr andr’,
help of Eq.(38): while applying Eq.(38) to the functional
SA[ p]l Syp(r') gives

8°Alp] B
J o0 ey e @
differentiation &/ Syp(r’) of Eq. (38) yields
5°Alp] SA[p]
| 0 s sy @

[use of Eqs(37), (36), (15), and(38) itself can be made Of
course,82A[ p]/ Syp(r) Syp(r') can be expressed explicitly
by applying Eq.(17) successively:
8°Alp]
onp(r) onp(r’)
8°Alp]
op(r)dp(r’)

// ZA[p] n
U P S ap(ry "

. 8°Alp]
+f SRR TOETE)

f(,,) [p]

S (rn)

1 6A[p]
N p(r)

”

N2

that is, the difference between the second functional deriva-
tives atr, r’ andr’, r is determined by the difference be-
tween the first functional derivatives atandr’. For the
exchange-correlation part of the energy density functional,
the second functional derivative of which plays an essential
role in linear response theofg], e.g., Eq.(43) gives

52Exc[P]
onp(r") Snp(r)

52EXC[p]
Onp(r) Snp(r’)

)= 1)1,
(45

:_N[ch(r

which can be seen easily with the which means that the difference in the second derivative of

E,d p] due to the interchange of itsvariables is character-
ized by the difference in the exchange-correlation potential
v,(r) at the two points.

An important question is the case of continous functionals
Al p] which cannot be differentiated fqr(r) of a givenN,
pn(r), but have right and left functional derivatives

wi

that is, derivatives coming from differentiating[p], at
pn(r), only over the “half-space” ofp(r)’s for which
Jp(r)dr=N/fp(r)dr<N, e.g., the fractional particle num-
ber generalization of the energy functiongl[p] or the
exchange-correlation part of E,J p] [13,14]. For this case,
as can be seen easily, the formula ELl) becomes

oAl pn]
op(r)

oAl pn]
op(r)

N—

oAlp] 6Alp] oAlp] ,

anp(r) — op(n) ], j p(r ) (1) N+dr (4639
or

oAlp] SAlp] 5A[p] ,

Snp(r)  Sp(r) __f p(r’) N7dr : (46b)

If both SA[p]/Sp(r)|n. and SA[p]/Sp(r)|n- exist, from
Eqgs. (4639 and(46b),
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3| 2

~ 0Alp]

oAlp]
op(r’)

SAlp]l  SALp]|
sp(N ]y, (]

N-+

)dr'=C[p], (47)
N—

that is, independent af, e.g., giving Eq.(9) of [14] for the
above-mentioned generalization®f [ p]. It is a basic prop-
erty of 6/ 6yp(r) that forp(r) where thes/ 5p(r) derivatives
of different functionals differ by only functionals indepen-
dent of r,
mentioned here that E4L7) is applicable for arbitrary func-
tional A[ p] differentiable along a path defined y(r)dr

=N since A[py] can be extended from the domain of

pn(r)’s to an “unconstrained” set op(r)’s to get a func-
tional A'[ p] &/ 6p(r) differentiable forpy(r), a natural ex-
tension ofA[ py] being its constant shifting

A'[p]:=A N%

( A’[p] being constant fop(r)’s of the same shapg to
which Eq.(17) can be applied, givingA[ pn]/ Syp(r) on the
basis of Eq.(9):

(48)

oAl pn] _
Snp(r)

oA"[pn] _
Snp(r)

5A'[PN]_ i
op(r) N

, oA"[pn] ,
Jp(r )—5p(r,) dr’,

(49

this way justifying Eq.(17) as the formula for number-
conserving differentiation and not “just” the relation be-
tween 8/ Syp(r) and &/ Sp(r).

Having the formula foré/Syp(r), the connection be-
tween the methods behind Edqd) and(6) can be examined
closely. Writing Eq.(4) in the form

f()

shows that Eq(4) leads to the same method as ). with
Eq.(2)]: from Eq.(50), SE,[p]/Sp(r)=c, independent of
r,soc=(1/N)fp(r)cdr, thatis,[p(r)dr=N, the constraint
for c. Comparing Eq(50) with Eq. (6),

m= pr()

which, of course, can be obtained from E§) as well but
not uniquely. With Eq.(17), Eq. (4) is also derivable from
Eq. (6) as 8/ Syp(r) gives zero forr-independents/ 5p(r)
derivatives. With the separation of theindependent part in
Eq. (4), using

SE.[p] _
dp(r)

5Ey[p]
Sp(r’ )

(50

5Ey[p]
1) (r)

(51)

Nexd p]

_ Ved Pl
onp(r) '

N

(52

=V

with Vel p]=[p(r)v(r)dr, the equation

it gives the same derivative. It also has to be

PHYSICAL REVIEW A 63 022506

oF[p]
onp(r)

arises for determining(r) for givenN andv(r). Real use of
Eq. (53) could be made by getting expressions directly for
SF[p]/ 6np(r) [for which Eq. (38) is a conditiorj, not
through the formula(17). However, obtaining the energy,
Eq. (1), would still remain a problem, unless only the non-
interacting kinetic energy functiondl p], a major part in
F[p], is keptés/ Syp(r) differentiated in Eq(4):

1
+v(r)=pr(r’)v(r’)dr’ (53

5TS[P] . 1 , , ,
6Np(r)+yKS(r)_NJ p(r)vs(r)dr’, (59
since the relation
ST
Tdpl=—3 f p(r)r-V5Np[(F:3dr, (59

arising from the corresponding relati¢oh5] with &/ 5p(r),
makes it possible to gely p] from 6T p]/Syp(r). Also,
Eq. (55) gives a condition orST[ p]/ Syp(r), Sl Syp differ-
entiating it:

oTdp] _ EI“ 5TS[P]_ Tdp]
onp(r) 2 one(r) N
1 ’ ’ ! 2TS[p] ’
4 [ e e 6

[with Eq. (55)], which can be considered as the first equation
of a hierarchy obtainable by/yp differentiating Eq.(55)
successively, like in the case @ dp differentiation[16].
Equation(56) [with Eq. (55)] and

J' (I‘) STs[p]
P ()

can be used as constraints to get expressions for
ST p]/ 6yp(r), e.g., like described ifl17] for T p]. Note

that similar considerations hold for any partfffp] which
scales homogeneously in coordinates, such functionals being
obtainable fronthe gradients gftheir functional derivatives
[15].

In the Kohn-Sham formulation of density-functional
theory[18,19, the problem of not knowing the noninteract-
ing kinetic energy functionall [ p] is eliminated by mini-
mizing

dr=0 (57)

Ev[ul yeee 1uN] :Ts[ul yree 1UN]+ F[P]_TS[P]"'Vex{P]y
(58)
where
N
p(r)=2, uf(nui(r) (59)
and
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N 1
Ts[ul,...,uN]:f .21 ui*(r)(—zvz)ui(r)dr, (60)

to get the ground-state density, insteadegfp] itself, yield-
ing the so-called Kohn-Sham equations

—iV2u(r)+res(Dui(r)=g;ui(r), i=1,... N, (61
with
S(F[p]—T4 p]+ Vex
pee(F) = (F[p] 5{55]) t[p])’ 62

for the minimum{u;(r)}{", . In the derivation of Eq(61),
the condition(2) is ensured by the normalization of(r)
(i=1,...N), N being fixed; thus, the differentiation
in Eq. (62 is unconstrained; though adding
[(—=1/N)[p(r")vks(r')dr’Ju;(r) to both sides of Eq(61),

—iV2ui(n+ vRg(Nu(r)=¢Mui(r), i=1,..N, (63
arises, where

_ O(F[p]l=Tdpl+Vedpl)

()= onp(r)
= V(1) + 5 (r) + M), (64)
with
N,y OExd p]
VXC(r)_ 6Np(r) ’ (65)
N 0lpl o p(r) o 2][p]
R v I A A
(for particles with Coulomb interactionand
1
VN(r)=V(r)—NJ p(r)v(r')dr’, (67)
for which
| pnmsnar—o, (69
yielding
N
TS=21 el (69)

Of course, without Eq(17), Eqg. (63) with potentialuES(r)
giving Eq. (68), hence Eq(69), could also be constructed,
but having Eq.(17), vis(r) has obtained physical mean-
ing: Eq.(64).

I1l. GENERALIZATION FOR TIME-DEPENDENT CASES

PHYSICAL REVIEW A 63 022506

tant question how they can be generalized to functipns
which have variables which are not involved in the integra-
tion in the number-conserving constraint—that is, for which
that constraint holds pointwise—as time-dependent densities,
on which, of course, time-dependent density-functional
theory (TDDFT) [20,8,9 is based. TDDFT, for which the
time-dependent generalization of the Hohenberg-Kohn theo-
rems[20] forms the ground, concerns systems of given num-
ber of particles whose density distribution changes in time
due to a time-dependent external potentdt,t), giving

ol syp differentiation a substantial importance. In this sec-
tion, therefore, the results of the previous section will be
generalized to include time dependence. For more generality,
a time-dependent particle numbig(t) can also be allowed,
with which the number-conserving, more precisely,
N(t)-conserving, constraint:

f p(r,t)ydr=N(t), (70

which, of course, includes the cabét) =N=const.
The starting point, again, is the separation of the normal-
izationN in p:

rt
T O=NO T 7

Along the lines described in the previous section, with the
use of Eq(71), as the time-dependent generalization of Egs.
(15) and(16),

Sp(r't') p(r'.t)

m—&(r’—r)é(t’—t)—W&(t’—t) (72)

and

oALp] f oALp] op(r',t )dr’dt’ 73

Sup(r) ) Sp(r 1) Sup(r,b)

can be obtained, from which

dr’.
(74)

oAlp]  OoAlp] 1 f 'y oAl p]
et sp(r N ) P Y S0y

From Eq.(74), then, rules similar to Eqg35)—(37) (r,t in
the place ofr) follow for the number-conserving differentia-
tion of functionals composed from two functionals. Equation
(38) also holdst-wise,

oAlp]
f p(r,t)mdr—o, (75)

The formula and basic properties of humber-conserving

functional differentiation having been derived, it is an impor-

while for a secondS/ Syp derivative:
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5°Alp] _ &Alp] 1 6A[p] (i j s 8°Alp] ar
Sup(r, ) up(r',t) — dp(r,)dp(r' ') N(t') dp(r,t) TN P op(r",t)ép(r',t")
1 n ! 52A|:p:| n 1 n ! 5A[p:| 4 ’
“ | P ety O R | P )
f f n n ! 52A[p] d Hd " 76
+ p(r ’t)p(r ’t )5p(l'”,t)5p(l'm,t/) r r 1 ( )
|
from which (in the case of a Coulomb interaction between the pardicles
where the second term is the functional derivative of the
1) ) } 1 ( ) ) Hartree part of the action functionA[ p] [20], on which the
Sup(r. 1) onp(r' ' " NoDls rt) op(r' t’ variational principle of TDDFT for determining(r,t) is
np(.) " onpl ) (L1 op(rt) op( ) based, and the third term comes from the exchange-
X o(t—t'). (77 correlation part ofA[ p]. Differentiation of Eq.(80) leads to

a paradox8,9] if the fact that not the usual differentiation

The commutator, Eq77), shows how thé-conserving con- procedure applies unded conservation, which ruins the
straint ruins the symmetry of functional differentiationrirt, symmetry of unconstrained functional differentiation, is ig-
though, as can be expected, purely (n=r") the symmetry nored, since in the case of symmetric second functional de-
remains. This property gives the resolution of a long-rivatives, that is, practically neglecting conservation, the
standing paradox in TDDFT concerning the exchangecausality requirement on[p], and also orwgg[p], is in
correlation kernel, illustrating the physical relevance ofconflict with the symmetry of the second derivative of
number-conserving functional differentiation. A,d p]. This paradox, which has induced much effort to find

In TDDFT the density response function a resolution of if22,23, however, cancels out automatically
op(r',t")/ dv(r,t) determines the density variatiodp(r,t) by correctly takingN conservation into account as in the
of an N-particle system generated by first-order variations ofs/ dyp derivative of Eq.(80),
the external potential(r,t). Because of causality, for times

t later thant’,8p(r’,t")/dv(r,t) must vanish: ovgs(r',t')  ov(r',t’ ) 5('[ t') J p(r’,t)
St dwp(r0) | =1 N Jr=r]
) o sy (78) PA L p]
Sv(r,t ' ' "S(t—t’' xC
(r,t) xdr” 5(t t)+5Np(r,t)5p(l”,t’)’ (81)
Causality for the inverse gff v ], the existence of whicfR0] L
gives the basis of TDDFT, means that the second derivative
52AXC[p] 52Axc[p]
ov(r' t’) =
—F=0, t>t'. (79 Snp(r,t)dp(r',t')y  Sp(r,t)Sp(r',t")
5Np(r,t)
” 52AXC[p] ”
In Su(r’,t")/Syp(r,t), N conservation is essential as the _ﬁf p(r,t 5p(r",t)5p(r',t')dr
particle numbeN is fixed when defining[v ], so its deriva-
tive is also determined only for given N: (82)
Spn(r',t")/ Sv(r,t); thus, it has to be inverted with an . L . )
N-conserving constraint op(r,t). Of coursep[p] can be IS not symmetric in its space-time arguments:
extended to alp’s, but even in this case the physically rel- SALp] SAJp]
evant differentiation for which causality can be required is - 7
the N-conserving functional differentiation. The external po- onp(r,t)op(r',t")  Sup(r',t")op(r,t)
tentialv(r,t) acting on an interacting particle system is con- 1 A p]
nected with the effective potential of the corresponding non- =— f ( (r",t) S0t oot T
interacting system with the samsr,t) as the interacting p(r",)dp(r',t’)
one[20,21], the time-dependent correspondent of the Kohn- A p]
Sham potentialps(r,t), the concept of which is essential —p(r'"t") o |dr” (83

for the practical use of TDDFT, by p(r',t")op(r.)

(not even in time purely thus, requiring causality, E479),
sl 1) = rt)+f p(r’ t) A p] (80)  Yields no contradiction, and simply gives a condition for
|r— op(r,t) Axdpl:
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A p] S(t—t")y 1 [ p(r"t) distribution (mass, charge, or particle distribution, &.gf
TN e N Y conservation of the normalization of the distributitiotal
onp(r, 1) op(r,t') r=rl N =] mass, total charge, particle numpir needed. With Eq(27)
xdr"s(t—t’) for t>t’. (84)  a correct formal definition has been presented for a number-
conserving functional derivative, elucidating a long-standing
The second derivative ofA,[p], the exchange- false view in density-functional theory—namely, that these
correlation kernel, plays a key role in linear response theoryunctional derivatives are ambiguous by definition. Also, the
[8] and in calculating excitation energies via TDDEZ4].  formula of shape-conserving functional differentiation, Eq.
Equation(81) exhibits the fact that the physically relevant (31), where change in the normalization pfr) is allowed
second derivative is the mixed derivative, B§2), instead  only, has been obtained. Two substantial properties of
of a full unconstrained second derivative. Note that, thoughpnumber-conserving functional differentiation, which illus-
according to Eq(24), a variation of a functionah[p] due to  trate its essential difference from unconstrained differentia-
a number-conserving variation of its varialplés determined  tion well, are thats/ Syp(r) derivatives multiplied byp(r)
by its unconstrained derivative; in theoretical practice, thentegrate to zerpEq. (38)] and that second/ Syp(r) deriva-
arbitrariness of variationép is substantial, therefore, number tives are asymmetric in their arguments, Eq(43). After
conservation needs to be forced out by a number-conservingeneralizing the results to involve time dependence, Egs.

functional derivative, on the basis of EQ7). (72)—(77), the latter property, more precisely that ldrcon-
servation ruins the symmetry of multipf dp(r) derivatives
IV. SUMMARY in theirr arguments, has been shown to resolve the causality

paradox of time-dependent density-functional theory con-
cerning the exchange-correlation kernel, EG®)—(83), il-
lustrating the real presence of number-conserving functional
differentiation in density-functional theory.

The main result of the paper is EQ.7), which is a gen-
eral mathematical formula for differentiating a functional
Al p] with respect top(r) while keeping the normalization
Sp(r)dr of p(r) fixed, as such giving a case in functional
analysis when a constrained functional differentiation is
managed to be treated explicitly, showing how the usual dif-
ferentiation procedure of functionals alters due to this con- i
straint, and Eq.(17) is essential for the determination of = The author is grateful to gnes Nagy for much stimula-
changes in a quantity which is dependent on some densitjon. OTKA Grant No. T029469 is acknowledged.
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