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I. INTRODUCTION the context of Fig. 1, is that the spectroscopic NQM repre-

sents the anisotropy of nuclear charge in thelecular ref-
The most accurate route to nuclear quadrupole momenisrence framewhile nuclear deformations are related it
is by obtaining the nuclear quadrupole coupling constantsrinsic quadrupole moments in the body-fixed frame of a
from either atomic hyperfine or microwave spectroscpbly nucleus. In order to translate the measured NQM's to nuclear
of diatomic molecules and by accurate calculations of theshape deformations, the transformation from the molecular
electric field gradient using relativistic coupled cluster orframe to the intrinsic nuclear frame is necessary. As dis-
multireference configuration interaction methods. This hagussed below, in many cases this transformation is non-
recently been achieved for nuclides suct?&s [2], 3K [3], trivial. In particular, for weakly deformedtransitiona) nu-
*Ge[4], ®Rb[5], *zr [6], and **3Cs[7]. clei the concept of an intrinsic shape is not very useful. For
Values of nuclear quadrupole momenftdQM’s) for a  well-deformed systems, the result strongly depends on the
large number of isotopes can be found&h A recent update angular momentum of the nucleus. For instance, the NQM of
has been compiled by Pyykk®]; these data are displayed in a nucleus in thed =0 state is always zero, although this
Fig. 1 as a function of the atomic numb2&rThe trend seen nucleus can be very well deformed intrinsicdlj0]. By the
in Fig. 1 is well understood and described by nuclear theorysame token, the measured negatpesitive NQM does not
First, the overall increase of quadrupole moments Witind  have to be indicative of an oblatgrolate intrinsic shape.
the mass numbeh reflects the bulkvolume effect. (For a  The nucleus'?l discussed in this paper is a nice example of
given deformation, the intrinsic quadrupole moment is pro-such a situation.
portional to Z?A%3)) Second, the fluctuations of the NQM  While nuclear quadrupole deformations have been inten-
with Z andN (neutron numberare due to shell effects. That sively studied 11], much less data are available for hexade-
is, magic nuclei are spherical and the largest quadrupole deapole deformations. As discussed in Héfl], some infor-
formations occur in the middle of the shell. Another elemen-mation on hexadecapole deformations exists from Coulomb
tary but important point, which needs to be emphasized irexcitation studies, inelastic hadron scattering experiments,
electron scattering, lifetime measurements, and hyperfine ef-
fects in muonic atoms. From shell-model arguments, it fol-
*Email address: schwerd@ccul.auckland.ac.nz lows that for well-deformed nuclei the total intrinsic hexade-
"Email address: witek@utk.edu capole moment should be positive at the beginning of the
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7000 ppy— no clear evidence for nuclear hexadecapole cougty A
6000, NQM [mb] z=71 T decade later in 1983, Goutou measured &b hexadeca-
. pole coupling constant in SbCby NQR and derived 110
50001 ‘ ° . +61 kHz[21]. A single-crystal NMR experiment fot®'Ta
° e in KTaO; was performed by Doering and Waugh in 1986
40007 «® . with no observable hexadecapole coupling above 12 kHz
3000 . [22]. They also criticized Goutou’s analysis, pointing out
749 oo that the reported discrepancies in the fit procedure are rather
2000 ° due to experimental errors than due to a hexadecapole cou-
1000 o, .‘ . * pling. In 1991, Ni and Sears reported nuclear quadrupole
- . . 2 e ,.* resonance measurements 8fl in Kl claiming a hexadeca-
OM%*% %o %% 3 pole coupling constant of 2.8 H23]. Three years later, Liao
1000+ 00 © °© and Harbisor]24] found no evidence for nuclear hexadeca-
° pole coupling of the'?l nucleus in Cdl by NMR spectros-
2000 ° ° copy. Cederberg and co-work¢@5] recently chose the less-
deformed?/l nucleus in molecular beam electric resonance
-3000 ° measurements of Lil. They achieved a precision of a few
4000 : : R— hertz in the hyperfine spectrum. A careful analysis revealed

0 20 40 60 80 100 that the observed data fitted best a Hamiltonian that included

FIG. 1. Nuclear quadrupole moments for stable isotopes a%he hexadecapole coupling term, which resulted in a coupling

127,
functions of the nuclear charge Experimental data are taken from constant of 15.£3.0 Hz for *1. Howeve_r, they could .nOt
[9]. Positive (negative spectroscopic moments are indicated by 'U/€ Out @ pseudohexadecapole effect in analogy with the

filled (open dots. electron-coupled spin—self-spin effect that is known as the
pseudoquadrupole interactipa5—27.
shell, and it should change sign in the middle of the shell. In order to verify Cederbergt al’s analysis, in this study
(See Ref[12] for experimental systematics and discussion. we investigate the quadrupole and hexadecapole couplings in
Hexadecapole hyperfine interaction describes the couhe %7 isotope in Lil by relativistic Dirac-Hartree-Fock
pling between the nuclear hexadecapole monhtM) and  techniques for the electronic tensors and Skyrme Hartree-
the electronic electric field third derivativéEFT) and is  Fock and relativistic mean-field calculations for the nuclear
roughly (Ry/r¢)* smaller compared to the nuclear quadru-moments. The paper is organized as follows. Section Il re-
pole coupling, wher&y, andr denote the nuclear and elec- yjews the atomic and nuclear theory of hexadecapole hyper-
tronic radius, respectively. This puts the hexadecapole couine interactions and moments. The computational details are
pling constant into the millihertz to hertz range. Because ojiyen in Sec. I11. The results of our calculations are discussed

the smaliness of the hexadecapole hyperfine interaction, sec |v. Finally, Sec. V contains the main conclusions of
there is no unambiguous experimental evidence for the hexa:

; S ur work.
decapolar hyperfine splitting in atoms or molecules. Base
on nuclear data and theoretical calculations, the most likely
candidates for the detection of the hexadecapole coupling are

the elements with high quadrupole deformations such as Il. THEORY

™ u (deformation parameters according to REE3] 8, A. Cartesian multipole expansion of the interaction energy
=0.287, B,= —0.069), which form simple closed-shell di-

atomic compounds such as LuF. The interaction energy between two charge distributions

Early attempts to measure the nuclear hexadecapole coig(r) and g (r’') is
pling constant started in 1994.4,15. The first successful
claim came in 1955 by Wang using nuclear quadrupole reso-

nace spectroscopfNQR) at very low temperature (0.4 °C). on(Ne(r)
Ezf f drdr’

Wang obtained a nuclear hexadecapole coupling constant of
24+5 kHz for 2Sb in SbBg [16]. In 1963, Hewitt and
Williams measured NQR frequencies &Sb in antimony
metal at liquid helium temperature and obtained 13 =f df{QN(f)J' dr’
+30 kHz[17]. Later in 1970, Stephenson and co-workers

measured the radio-frequency spectrum of Tl using molecu-

lar beam electric resonance spectroscpp®]. They found

no evidence for nuclear hexadecapole coupling®fhabove  where the integral is over all space. In Ea) V(r) is the
500 Hz. The same conclusion was derived in 1973 by Hampotential arising from the charge distributior{r). The Car-
merle and Zorn for''3n in InF [19]. In 1978 Segel per- tesian multipole expansion is obtained by expandiifg) in
formed NQR measurements fo#>'8Re, 127, 299Bj, %Nb, a fourth-order Taylor series around the origin of the nucleus
and 1?12%5p in various solid oxo and halide compounds withr= 0 according to

r=r'

e(r’)
[r=r']

1=f dron(nV(r), @
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2 B. Spherical multipole expansion of the interaction energy
Vv 1/ oV
VnN=Vot dra)or“+ E( araar,g)Or“rﬁ It is common to rewrite Eq(1) using the standard multi-
pole expansion in spherical harmonics:
1 ( >V ) .
t ol | rafpr * N
6\ ar argor,| @By 1
oo RPN e peE VDY), )
LY r=rl Ao w=m
t |l | rulpl st 2 . .
24\ ar ar gor ,ars) S ET0 @ where r —=min(r,r') and r-=max(,r'). Assumingr<r’

(i.e., assuming a pointlike nucleuand taking only terms up
Here and in the following, greek indices run through theto fourth order, one can rewrite E€L) in the form

Cartesian coordinatdse.,r;=x, r,=Yy, r;=z) and the Ein- .

stein summation convention is uséat greek indices only <
Inserting Eq.(2) into Eq. (1), one obtains 2 2N+, J dron(n Yy ,(nr
Cp— 1 ' ' 21 M —A—1
E=qVo—taVa=5QupVap— GRaﬁyVaﬁy X[ [ drre(r)Y,,(r)r’) : (6)
—"H v ?) where the superscrif@ denotes the spherical multipole ex-
24 "aByoTaBys: pansion. To compare the Cartesian energy expansion, Eq.
(3), with the spherical expansion, E), it is useful to re-
where write Eg. (6) in Cartesian coordinatd28,29:
1
q:J dr QN(r)! (4a) SE:qVO_ﬂaVa_§®aﬁvaﬁ 159aﬂ,}, aBy
1
Ma:j dron(r,, (4b) ~ 705 PasysVapys: (73
where
QaB: f dr QN(r)rarﬁ! (4C)
O [ dr oy, 7
RaﬂyZJ dr QN(r)rar,Bryv (4d)
®xy:%J dr on(r)xy, (70
Hapys= f dr on(r)rafgryfs (4¢)
Qxxxzf erN(r)r3P3(;()l (7d)
V,= N Af
“ o)y “ 5 1
_ 2 2
Qxxy_ dr QN(r)(EX y— Exr )1 (76)
V, 3= PV 4
8=\ arars) (49
Qxyzzgf dr on(r)xyz, (7f)
\Y (—&SV ) (4h)
By~ "\ gr ar gor ~
«FTo q)xxxx:j dr QN(I’)I'4P4(X), (79
v ( 'V @)
wBys= | T i
pro I QN Il oI 5] (I)XXXyng' dr on(r)(4x%y—3xy®—3xyZ), (7h

g, ©, Q, R andH denote the nuclear monopole, dipole,

quadrupole, octupole, and hexadecapole moments, respec- ¢ :;f dr On(DIPA(2) =P, (X)— PA(V 7i
tively, andV,, Vg, V.g,, andV g, s are the electric field, ooy NP2 =Pa(0)=Pa(y)]. (7D
electric field gradient, electric field second derivative, and
electric field third derivative, respectively. The supersc@pt 5 2o 3o .
in CE denotes the Cartesian energy expansion. Dyey=35 | dron(r)(6x’yz—y3z—y7). (7)
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In the above expressiorfst,zra/r andP, are the Legendre ~
polynomials. The remaining Cartesian components in Eq. Vixyz=Vixyz™ 7Vy2aa
(7b) can be generated by permutation of indices. It is to be
noted that in the standard derivation of K@) it is assumed  (for the electric field third derivative EBT The remaining
thatV(r) fulfills the Laplace equation at the origin, Cartesian components can be generated by permutations of
indicesx, y, andz
Vaa=—4m0(0)=0, (®) It is easy to check that, unlike the original electric-field

and that all the derivatives af(r) vanish atr=0, tensors, the traceless tensors fulfill the condititB)s-(10):

A 0 fork=12 9 Ver=0 1
m = ork=14,..., ( ) ~
0 Va,B,B:O' (15)
which guarantees that -
VD(B‘}”}/: 0. (16)

Valaz- ‘- akaa: 0. (10)
Moreover, when inserted into E@3), the traceless tensors
yield an energy expression that is formally identical to that

C. Transformation of the Cartesian expansion of Eq. (7). That is,

to the spherical form

It is important to realize that while the Cartesian energy CE(V=V)=SE(V)=SE(V). (17
expansion Eq(3) is exact, the commonly used spherical
multipole expansion Eq(7) is not. In particular, conditions  As will be discussed below in Sec. Il A, the calculated val-
(8) and (10) cannot be met in the realistic case because th@es of the EFT tensodv are very large, while those obtained

relativistic electron functions for the,j, and py, states do it the traceless EFT tensSrare reasonably small, due to
not vanish at the origin. This implies that neith@(0) nor o gramatic renormalization.

its derivatives vanish at=0. Secondly, since the nucleus has . s=_c
finite size, the assumption okr’ that leads to Eq6) is not Of course, the energy expressiofi€ andE="E(V

justified. —V) differ. This is easy to show explicitly by writing the
In order to bring the Cartesian expansioE to the famil-  €xact Cartesian energy expansion in the following way:
iar spherical form, new traceless tensdts;, V,z,, and
V.0 have to be introduced. They are CE= SE+§Q AEM, (18
Vix=Vix— 3 Vaas whereAE™ is the correction to the term of multipolarity

in the spherical expansion due to the fact that the original

~ (11 potentialV is not traceless.
Vxy=Viy The quadrupole correction is the well-known Poisson
(for the electric field gradient EFG term 30
1
~ )= __ 2
Vo™ Vxx™ gvxaai AE 6 V(wf dr en(nr. (19)
5 Since this term has a monopole character, it does not con-
Vixy= Vixy™ gVyM, (120  tribute to the quadrupoléor hexadecapo)esplitting in first
order.
~ Although the electric octupole splitting must be zero
Viyz=Vxyz (nuclear states have a well-defined parity; the parity-
L o violating effects are negligible in this contgxive shall still,
(for the electric field second derivative EF&nd for the sake of completeness, derive the corresponding cor-
27 3 3 rection associated with the EFS:
vxxxx: Vxxxx_ _mea+ _Vyyaa+ _VZZaa ’
35 35 35 ARG _ 1 v . , 20
3 - 1_0 Baa rQN(r)rBr . ( )
Vxxxy: Vxxxy_ 7VXyaa ) (13

Of course, this correction vanishes since the nuclear dipole
moment is zero.

S For the electric field third derivative, the energy correc-
Vxxyy_ Vxxyy_ %mea_ 3_5Vyyaa+ 3_5V22aa- tion is
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(4) 1 1. 2 (4) 1 4
AE =—%wa dr on(r) rarﬁ—l—or Sap|r”- AE =—4—20(2vma+vxm) dron(nr® (269
(21)
—i(v ~Vyxaa) | dren(r)(3z22=r?)r?. (26b)
As we shall see in the followingA\E(*) can be written as a g4\ Vzzaa™ Vxxaa en(r)(3z :

sum of monopole and quadrupole terms.
The term (263 has a monopole character and it does not
D. Limit of axial symmetry contribute to the multipole splitting. On the other hand, the
_ _ ~ second contribution tAE®*), Eq. (26b), has the same tensor
For a linear molecule, assuming the molecular axis is th&trycture as the quadrupole term in the multipole expansion.

z axis, one gets Consequently, it produces a renormalization of the quadru-
ole splitting.
Vix=Vyy., (229 ~ PO® SPHNG
E. The nuclear hexadecapole coupling constant
Voo™ Vyyyya (22b N .
Traditionally, the nuclear hexadecapole coupling constant
=Y 29 eHh derived from the hyperfine splitting is defined as the
xxzZ— Tyyzz (229 product of the nuclear momemt=®,,,,and the electric-
field third derivativeh=h,,,~V,,,,
Vxxx= 3Vxxyy- (220

eHh=®,,,);772 (27)
Due to the fact that the proton density distribution is reflec-
tion symmetric in the molecular frame, the following unique The nuclear momentb,,,, is usually given in B (1 b
nuclear tensor components are zero: =1.0x10"% n?). As the EFT is given in a.u(atomic
units) and the nuclear hexadecapole coupling constant usu-

0,=0 (233 ally is given in hertz(Hz), a useful conversion formula is
eHh Hz]=®d,,,]b*]xV,,,fa.u]x 8.390 741 564.
Raﬁyz 0, (23b) 722 727 28)
Quy=Qu=Qy,=0, (239 More details can be found in Rdf25] and we shall not

repeat them here. Various conflicting definitionshodndH

exist in the literature. For instance, Cederbet@l. defineh
Haooxy™ Hioxz= Hxyz= Hxyyy= Hyyz as hc=h/24. Moreover, their value oH differs from the
(23d) commonly used definition of the nuclear hexadecapole mo-
ment by a factor of 4, i.eH-=4H (see Sec. Il F below
Consequently, in order to compare our results with experi-
mental number of Cederbegj al,, the following scaling has
to be performed:

= nyzz: o Hyyyz: Hyzzz: 0.

In addition, since the charge density distribution is axially
symmetric with respect to the moleculaaxis, the following
identities hold:

1
Qxx:ny1 (2439 (hH)nghH- (29

Hyxx=H (24b)

yyyy: F. Nuclear multipole moments

The nuclear quadrupolen&2) and hexadecapole (

Hzz0 Hazyy, (240 =4) moments that enter the expression for the hyperfine
splitting are thespectroscopignoments. Assuming the axial
H oo™ 3Hxxyy- (240 intrinsic density distribution, for the nuclear state character-
ized by angular momentuimand the projectioik of the total
Q(EN\) is given by[31]
1 o 1 N EX)=(IKXO[IK ){(IINO[11)Qq(EX 30
PE= Vo 5 OzVarm g Praadzest AEC AR, QEM={KADIOUINNQ(ED, (30
(25  where
/
whereAE®) is given by Eq.(19), andAE™, Eq. (21), can Qy(EN)=e 17 oY o(Q)dr (3D)
be simplified to 0 2 +1 N A0
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is the intrinsic multipole moment ang, is the single- N 9* 40
particle proton density. By evaluating explicitly the Clebsch- Vagye={ ¥ R v, 40
Gordan coefficients in Eq30), one arrives at anIa?Yad0n [T~ Rl
_ whereRy=(Xa,Ya,Za) IS the position of nucleué.

QUEM =1L K)Qo(EN), (32) The electronic and nuclear part of the hexadecapole tensor

where was computed using the all-electron relativistic four-
component program packagerRAc [32]. The integral pro-
3K?—1(1+1) gramHERMIT [33] was modified to produce fourth-derivative
fz(lyK):—“ T1)(2153)" (33 integrals for the electronic part, and the nuclear part was

calculated directly from EQ.(39). The atomic fourth-
(21+1)! derivative integrals were transformed to the traceless form
fa(l ,K)ZZW[—H}@MKZ— 1)+3(12+21 -5K?) [Eq. (13)] and then contracted with the density matrix.
' When constructing the traceless EFT tensor, one cannot
X(12=5K?-1)]. (34 avoid subtracting large, almost identical, integrals. As the
_ o tracelesseFT tensor transforms a6,,, all one-centes-s,

The above expressiori&qs. (32)—(34)] are valid in the  s-p, s-d, andp-d integrals can be set to zero. However, for
strict limit of strong coupling31]. In most cases, however, thed-d integrals, the numerical difficulty due to cancellation
K'is not a good quantum number and the nuclear wave funccannot easily be avoided. For our relativistic four-component
tion is a combination of several components having differengajculations, this is most evident in the small-component in-
K. The degree oK mixing strongly depends on nuclear de- tegrals, since the small-component basis set functions are
formation. In particularK is not a very useful quantum num- generated from the large components in order to fulfill the
ber for weakly deformed nuclei wher@) the intrinsic de-  kinetic balance condition. For example, a large-component
formed system cannot be well defined, aiidl the Coriolis  Gaussianp function generates a small-componenand d
coupli_ng is strong. In general, the nuclear wave function cafunction. Very compacthigh exponentp functions in the
be written as basis set are required to describe phg spinor which results

in a compact small-componeut function. To remedy this
[1Y=>" ck|IK). (35)  problem, we simply decided to neglect the small-component
K integrals when the EFT tensor is calculated. Hence only
Consequently, in the limit of the intrinsic axial shape, onei,frrge gglrgslzr:eeg’t Ievtvrrg]]eergg;np?ﬁgﬁm_s)mglrfgsgéolgéﬁiaslfna"_
obtains the following expression for the spectroscopic MO¢omponent(SS property integrals are neglected. Since the
ment: four-component operator
EN)=1,(I EN), 36 ~
Q(EN)=1f,(1)Qo(EN) (36) V... 1)
where A
wherel is the unity matrix, is diagonal, there are no large-
_ 2 component—small-componerLS) property integrals. Be-
= ; el *fA(LK). @37 low, we shall estimate the error introduced by neglecting the
SS property integrals.
Note that this definition agrees with that for the quadrupole For the Dirac-Hartree-FockDHF) calculations, the two-
momentQ of Cederberget al. but not with their definition of  electron integrals dominate the computational effort. These
the hexadecapole momeht. That is, Qc=Q(E2)/e and integrals come in three types: LLLL, LLSS, and SSSS,
He=4Q(E4)/e. where L and S denote large- and small-component basis set
functions, respectively. The DHF calculations were carried
Ill. COMPUTATIONAL DETAILS out using all two-electron integrals.

The basis set used for the calculations was a well-
tempered family basis set, i.e., the exponents for the basis set
Our interest is concerned with the electric-field third- functions were all taken from the same master list. The ex-

A. Electronic structure calculations

derivative tensor, ponents for iodin¢34] and lithium are shown in Table I. The
N Aol A nuc range of exponents used for eatlyuantum number was
Veapys=VapysT Vapys: (38)  1-28 (), 4-28 (p), 8-27 (), 18-27 () for iodine; 1-12

(s), 4-12 (p), 7-12 () for lithium. The experimental bond

which, for a given nucleus, can be expressed as a sum ofjgngh of 2.391 924 A35] was used in all calculations.
the nuclear contribution,

94 1 B. Nuclear structure calculations
Vﬁ;;lg: (39 T o7 i ;
BZA dapdBAdYAIOA |Ra— Rg| _ The equilibrium shapes of*l in several low lying qua-
siparticle states were calculated with the self-consistent
and the electronic contribution mean-field theory. In order to assess the uncertainties arising

022505-6
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TABLE I. Exponents for family basis sets for | and Li. The selected two typical samples of comparaligh) quality

exponents for iodine are taken from RE34]. from recent fits. The parametrization SL{88,39 gives a

good overall description of nuclear bulk properties of spheri-

No. | exponents Li exponents cal and deformed nuclei. The parametrization K] was
1 109066880 00000000 1950 00810000  fitted \{[\{ith a bias to a good description of single-particle
properties.

o oo s e RUEmoue) moeons e desered s ndepecen

g’ 1457%843;)76"27500%%%00000 265525%’31123488%0 vgctor, and isovector-vector mean fields usually associated
' : with o, w, andp mesons, respectivelisee Ref[41] and

6 161092.95000000 1.78119720 references therein As in the HF model, there exist many

7 59231.11900000 0.50891349 RMF parametrizations which differ in details. For the pur-

8 23530.84100000 0.15363426 pose of the present study, we chose two successful recent

o 9991.88790000 0.04916296 forces, NL-Z2[42] and NL3[43], which give a good de-

10 4487.66590000 0.01673633 scription of nuclear bulk and single-particle properties

11 2110.92280000 0.00608594 throughout the chart of nuclei.

12 1030.64160000 0.00237500 The energy functional of the effective nuclear interaction

13 518.19560000 in both models is, of course, complemented by the Coulomb

14 266.49834000 interaction for the protons. In the HF and RMF models, pair

15 139.40228000 correlations of the nucleons are treated within the BCS

16 73.83244900 scheme using énonrelativistig & pairing force(see[42] and

17 39.45256600 references therein for detgilaVe find that the soft potential

18 21.21128400 energy surface of the transitional nucletfd is sensitive to

19 11.45092200 small changes in the pairing strength. To minimize the un-

20 6.19812970 certainties from the pairing interaction, we have adjusted the

21 3.36036180 pairing strength(separately for proton¥, and neutron¥/,,)

22 1.82356800 to the odd-even staggering of nuclear masses for the

23 0.99010488 semimagic nuclei*?’Sn and **J. The values obtained are

24 0.53771463 Vn: _263 ande= _305 for SLyG,Vn: _212 andeZ

o5 0.29205998 —270 for SkX, V,=—-385 andV,=—440 for NL3., and

26 0.15863939 V= —3343 and V,=—-350 for NL-Z2, all in units of

27 0.08616991 MeVim. . .

o8 0.04680599 For both models, the mean-field equations are solved on

an axially symmetric grid assuming reflection symmetry.

Nuclei with odd mass number are calculated in a self-

from nuclear structure models, we have performed calculaconsistent blocking approximatidsee[44] for details, tak-

tions with two different successful mean-field models,iNg into account time-odd contributions to the single-particle

name|y’ the (nonre'ativistio Skyrme Hartree_Fock(HF) Hamiltonian as described [r45] for HF and[44] for RMF.

model and the relativistic mean_fie{&MF) model. In both This includes the core polarization effects induced by the

cases, the nucleons are described as pointlike particles moblocked particle in a self-consistent way.

ing independently in a common self-consistent field. Both In order to relate self-consistent results to other calcula-

models employ effective interactions specially designed fotions it is convenient to introduce the axial deformation pa-

the purpose of nuclear mean-field calculations. The totafameterss, , which, for small deformations, are proportional

binding energy is formulated in terms of an effective energyt0 the intrinsic electric moments1) [11]:

functional which depends on local densities and currents

only. This links the HF and RMF models to the effective B, = (27‘+1)7TQ (EN) (42)

energy functional theory in the Kohn-Sham appro&8f| A 3ZeR) 0 ’

which was originally developed for many-electron systems.

_ For both modgls t_here is.a large variety_of parametriza—whereRo: 1.2AY3 fm.

tions of the effective interaction to be found in the literature.

All of them are developed through fits to experimental

nuclear data, but with different bias. Of course, the basic

ground-state properties of spherical nudlenergy, radius

are always well reproduced. Small variations appear with

respect to further demands. The proton Fermi level of? lies in the vicinity of the
Our implementation of the HF model is based on the stands;, and g,, shells. The deformed Nilsson orbitals that ap-

dard ansatz37] for the effective interaction which employs pear aroundZ=53 are the lowK [420]1/2 and[422]3/2

a completely local energy functional. From the large pool of(prolate and highK [402]5/2 and[404]7/2 (oblate states.

Skyrme interactions that are available nowadays, we havAccording to the calculations of Reff46], all four of these

IV. RESULTS AND DISCUSSION

A. Equilibrium deformations of %
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- LI IIQMFI\IIL lel ool TABLE II. Factors[Eq. (33) and Eq.(34)] relating intrinsic
S 006 b * o 123 3 multipole moments to spectroscopic momentslfer5/2. Note that
._8 ’ : D,x“ o ] f, is negative forK=1/2 and 3/2 and, changes sign when going
g o HE+SLy6 from K=1/2 toK =3/2.
=) F O]
5] r 1310 ]
g oot o 123 K f,(5/2K) fo(5/2K)
2 a RMFNLS, @ E -
S . +. HE+SKX ] 1/2 0.29 0.048
% o0z o ] 3/2 —-0.07 —0.072
'é r ] 5/2 0.36 0.024
o131 1
T ) S A T S S I B,=—0.14, B,=0.014 in the HF+ SkX model andB,=
008 010 012 014 016 018 —0.14, 84,=0.009 in HF+ SLy6. In the RMF calculations,
quadrupole deformation f3, guadrupole deformations are lower0.09<3,<—0.05)

and hexadecapole deformations are close to zero.

FIG. 2. Quadrupole and hexadecapole proton equilibrium defor-  The predicted closeness of prolate and oblate structures
mations calculated fot?*12127:12913lin the HF + SkX and RMF  and fairly small equilibrium deformations suggest that triaxi-
+ NL-Z2 models. The deformations fd#l predicted in the HF+ ality could play a role in the ground state & and that
SLy6 and RMF+ NL3 models are also shown. dynamical correlations can influence the predicted multipole

moments. One should bear this in mind when estimating
one-quasiproton states appear very close in energy. Experiuclear quadrupole and hexadecapole moments in this
mentally, the ground state df'l is a 5/2" state, and there is nucleus using the static mean-field approach.
an excited 7/2 level at 58 keV. Built on both level&sso- According to Eq.(36), the measured spectroscopic mo-
ciated with protonds, and g, excitations, respectively —ment is proportional, but not equal, to the intrinsic moment.
there are decoupled quasirotational baj#ig. At higher ex-  The proportionality coefficient depends on the angular mo-
citation energy(around 1.2 MeYV, there appear rotational mentum of nuclear state and Ksdistribution. In the limit of
bands built upon theg, ((40419/2) andh,, intruder orbit-  goodK, one can use expressiofB2)—(34). For thel =5/2
als. state, the corresponding values fQ{(1,K) are displayed in

Having only three valence protons and eight valence neuTable Il. One can see théj is negative folK =1/2 and 3/2,
tron holes, 2l is a weakly deformed transitional nucleus. and thatf, changes sign betweeti=1/2 and 3/2. Conse-
Recently, *?7l received considerable interest because of itsquently, the actual sign of the spectroscopic moment not
applications in solar-neutrino detectd#s8]. In several theo- only depends on the nuclear shafpe., the sign of the in-
retical papers, the structure df’l was investigated, espe- trinsic momenk but can also depend rather strongly on the
cially in the context of3 decay, Gamow-Teller strength, and degree ofK mixing.
neutrino-nucleus scatteringt9—51. All these works em- Due to the relatively small deformation, one expects
ployed the shell-model framework in a limited configuration strong Coriolis coupling, which should give rise to rotation-
space. In particular, in Ref50] predictions were made for ally aligned configurations. Indeed, the fact that the ground
the ground-state quadrupole moment!8fi using the quad- state of **I has|7=5/2", that there appears a low lying
rupole effective charges appropriate to the- 130 mass re- I™=7/2" level, and that there are decoupled quasirotational
gion (i.e., e,= 1.5 ande,=0.5). Unfortunately, since the bands built upon them, all suggest that one is close to the
hexadecapole effective charges are not known, one is bourihit of rotational alignment. In this limit, the expansion co-
to use the no-core mean-field approach, and this is the stragfficientscy in Eq. (35) are given by the rotation matrices
egy that we adopted in the present study. d}K(TrIZ) with j=1I (see, e.g., the discussion in RE52)),

According to our configuration-constrained axial mean-and the resulting values &§(5/2) andf,(5/2) are —0.18 and
field calculations, the four Nilsson orbitdl420]1/2,[422]3/  0.009, respectively. This yields the nuclear quadrupole mo-
2,[402]5/2, and[404]7/2 appear close in energy. The quad- ment in the range- 0.44<Q(E2)<—0.29 b, assuming pro-
rupole and hexadecapole deformations for f#22]3/2 late deformations calculated with different mean-field mod-
Nilsson level, predicted to be the best deformed in our calels. According to recent work53], the nuclear quadrupole
culations, are shown in Fig. 2. It is seen that the quadrupolenoment of*?’l is —0.693) b, i.e., it is significantly larger in
deformation ranges fronB,=0.17 (HF + SLy6) to B,  magnitude. For the oblate shapes, employing the strong cou-
=0.11(RMF + NL3), and the hexadecapole deformatj@n pling expression, one obtains 0.74<Q(E2)<—0.47 b.
varies between 0.05THF + SLy6) and 0.026(RMF + Although this result is closer to the data, the absence of a
NL3). The shapes of the neighboring iodine isotopes aretrongly coupled ground-state band indicates that Ithe
fairly similar (see Fig. 2 The [420]1/2 one-quasiparticle =5/2" ground state of?’l does not have a higk character.
state is calculated to be slightly less deform@dg., B35 For the hexadecapole moments, in the limit of rotational
=0.14 in HF + SLy6) but its hexadecapole deformation is alignment, one obtains a dramatic reduction of the intrinsic
still positive. Both the [402]5/2 and [404]7/2 one- value due to a very smali,(5/2) factor. For the prolate
guasiparticle states are predicted to be oblate. For instancepnfigurations, the resulting values of the nuclear hexadeca-
the calculated proton deformations for f#92]5/2 state are pole moment lie in the range >610 *<Q(E4)<2
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TABLE lll. Calculated and observed quadrupole and magnetic momentB@a2) values for the low
lying states in'?/l. The measured magnetic moment for the 3&ate at 203 keV is 0.93.07 n.m.; the
calculated value for the lowest 3/Xtate at prolate deformations is 0.8 n.m. TBE2) rates are given in
Weisskopf units[1 W.u=(1.2)%/(4)(3/5°A*® e*im*]. (The experimental data are taken from Refs.

[47,53.)
Bo Ba Q,(5/2) n(5/2) Q,(7/2) wn(712) B(9/2—5/2) B(11/2—7/2)
(eb) (n.m) (eb) (n.m) (W.u,) (W.u.)
0.17 0.049 —0.60 3.3 —0.60 2.0 2.3 41
0.14 0.028 —0.40 3.5 —-0.51 2.1 29 2.7
-0.14 0.009 —-0.64 3.3 —-0.77 2.5 9.4 10.5
Expt. —0.69 2.8 -0.71 2.5 3.6) 40(8)

X102 b?, i.e., they are very small and positive. Assuming X103 b? at 8,=0.14. This is consistent with the simple
oblate shapes and the strong coupling approximation, onestimates shown above.

obtainsQ(E4)~0. It is interesting to note that the calculations performed for
the oblate shape also give reasonable results for the electro-
B. Particle-plus-rotor calculations and K mixing magnetic momentgsee Table Il. The hexadecapole mo-

. e _4 2
Since the Coriolis mixing plays such an important role forMent is positive and very small, 610"" b“. However,

the reliable prediction of nuclear moments 11 we de- since at oblate deformations tie=5/2 and 7/2 Nilsson or-

cided to perform particle-plus-rotor modéPRM) calcula-  bitals are rather pure higk states, calculations yield a clear
tions. In this mode[31], the total angular momentum of an Strong coupled band pattern built on these levels, and this
odd-mass nucleus is written as a sum of the single-particlgisagrees strongly with experimental data.
angular momentum of an odd nucleon and that of the de-
formed core. Since the PRM Hamiltonian is explicitly con- C. The hexadecapole coupling constant
structed in the intrinsi¢rotating reference frame, the Cori-
olis mixing is properly accounted for.

Our PRM calculations were performed using the formal-
ism of Ref.[54] but with the Woods-Saxon potential for the

The calculated electric field derivatives are given in Table
IV. These, combined with nuclear multipole moments, yield
the nuclear multipole coupling constants given in Table V.

deformed mean field55]. A number of calculations were O the quadrupole coupling, the calculated results agree
made with deformations motivated by the HF and RMF re_reasonably_ well with t_he experimentally obtained value. A
sults, and qualitatively similar features were found for all theMore precise calculation of the NQCC was not the main
prolate shapes considered. The proton Fermi level and paiRurpose of this work and would require the inclusion of elec-
ing gap were obtained from a standard BCS calculation. Th&0N correlation effects, a better basis set, and the inclusion of
moment of inertia was estimated from Grodzins’ r{is], zero-point vibrational effects. It is unlikely that these effects
and for 8,=0.17 this resulted in a core'2energy of 0.522 are larger than 10%-15%+25 MHz), which we give as
MeV, which is rather close to the averagé 2nergy of the the uncertainty. We note that the results listed in Table IV
neighboring even-even nucl&®Te and?®Xe (0.555 Me\j).  show that neglecting the SS part has only a very small effect
The sping factor for the odd proton was taken as 70% of the(approx. 2% on the property matrix.
free value, and the cormgg value was estimated aSA. The correction to the quadrupole constant originating
As in the self-consistent calculations, the Nilsson statesrom the hexadecapole term, E@6b), can easily be esti-
that are closest to the Fermi level@d~0.17 are th¢420]1/  mated by noting that in the liquid-drop model
2, [431]1/2, and[422]3/2 orbitals, although a sufficiently
Iarg_e number of Nilsson sta'_[es are _|n_cluded to ensure nu- TABLE IV. Electric-field derivatives along the molecular axis
merlcal_ convergence. Rotational mixing between 6w for iodine in Lil calculated at the DHF level. All values are given in
states is usually very strong, and consequently the low ensiomic units.
ergy states in‘?/l are expected to be significantly distorted

from the simple strong coupled band patterns. Integralé  Electronic Nuclear Total
The PRM calculations for prolate shape reproduce the contribution  contribution

general features of rotational bands observetfih Further-

more, some electromagnetic properties are compared iBFG (V,,) LL +SS 0.9801 0.0547 1.0450

Table I1l, and these are very well described, even though therg {¥,,) LL 0.9553 0.0547 1.0203

calculated states are rather mixed. The large admixture gf 00 LL 7.2358 0.0382 7.2740

components withK<| accounts for the negative observed
(spectroscopicquadrupole momeritf. Table Il and the dis- ®The integrals used in the calculation of the property integrals. The
cussion above The predicted hexadecapole moments areactual DHF calculations were all carried out using @lLLL,
small and positive, &10 2 b?> at 8,=0.17 and 2 LLSS, and SSSSntegrals.
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TABLE V. Calculated and experimental nuclear multipole cou- — 12 Hz. Hence the calculated and experimental nuclear
pling constants. The uncertainty given is in the units of the |a$‘hexadecapo|e coupling constants differ by three orders of

significant digit. magnitude and the sign.
Experimental25] Calculated V. CONCLUSIONS
NQCC (MHz) —194.35121217) —17# The main conclusions of our nuclear and electronic struc-
-169 ture calculations can be summarized as follows.
—147F (1) The low energy experimental data f&1 (band struc-
NHCC (Hz) —-15.1(30) +0.060 tures, electromagnetic transitions, and mompeats consis-
10.026 tent with a slightly deformed prolate shapg,60.17) and
small, but positive, hexadecapole deformation. The resulting
&Calculated using a nuclear quadrupole moment QfE2)= quadrupole moment is negative and the hexadecapole mo-
—0.71 b(Ref.[9]). ment is positive.
PCalculated using a nuclear quadrupole moment QfE2)= (2) The calculated quadrupole and hexadecapole moments
—0.69 b(Ref.[53)]). and their signs are sensitive to tkemixing resulting from
‘Calculated using a theoretical nuclear quadrupole moment ofhe Coriolis coupling. Moreover, sinc¥’l is a transitional
Q(E2)=-0.60 b. nu_cleus, trl_aX|aI degrees of freedom may play a role; the
dCalculated using a nuclear hexadecapole momenQ(E4)=  eliable estimate of the full hexadecapole ten€i{iE4.u)
+0.006 B (see Sec. Il | would require a theory that goes beyond the static mean-field

approximation. However, we do not expect the resulting cor-
rections to affect the calculated multipole moments signifi-
cantly.
(3) The calculated hexadecapole coupling constant for
J dr o (1) (322—r2)r2~Q(E2)R2. 43  'Nis in the range of tens of millihertz and about three
orders of magnitude smaller than the experimentally deter-
. mined value. In addition, it is of opposite sign from the ex-
By taking Q(E2)=—0.69 b,R=5 fm, and the calculated {5cteq experimental value. It is therefore likely that the ex-
value of Vy 0= Vyxao=1.45<10° a.u., the resulting cor- perimental splitting originates from part of the second-order

€Calculated using a nuclear hexadecapole momenQ(E4)=
+0.002 B (see Sec. Il k

rection becomes quadrupole(*‘pseudohexadecapolg”interaction[57] rather
1 5 than from the hexadecapole interactisee the discussion in
8(9Q) =~ 57 QEE2)R™(Vzzra~ Vixaa) = ~10.0 kHz, Ref.[25]). A rough estimate usinge(qQ %/ AE for Lil shows

(44) that for rotational transitions this term can easily be in the
hertz to kilohertz range.
i.e., its magnitude is about four orders smaller compared to (4) The transitional nucleus?’| is perhaps not the best
the experimental value of the NQCC-(194 MHz). This choice for an experimental search for a hexadecapole hyper-
term has been neglected so far in all electronic field gradierfine splitting. Much better candidates are the well-deformed
calculations and clearly limits the precision to which nuclearrare-earth nuclef13] or actinides[58] with predicted large
quadrupole moments can be determined from nuclear quadiexadecapole moments such dsL.u. Moreover, for these

rupole coupling constants. We also note that the calculatioRUclei the static description and strong coupling are expected
of (V10— Vias) TEQUIres all one-centerp, p-p, s-d, and  © work very well, thus minimizing the nuclear uncertainty.
ZZoa XXaa ] ] ]
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