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I. INTRODUCTION

The most accurate route to nuclear quadrupole mom
is by obtaining the nuclear quadrupole coupling consta
from either atomic hyperfine or microwave spectroscopy@1#
of diatomic molecules and by accurate calculations of
electric field gradient using relativistic coupled cluster
multireference configuration interaction methods. This h
recently been achieved for nuclides such as27Al @2#, 39K @3#,
73Ge @4#, 85Rb @5#, 91Zr @6#, and 133Cs @7#.

Values of nuclear quadrupole moments~NQM’s! for a
large number of isotopes can be found in@8#. A recent update
has been compiled by Pyykko¨ @9#; these data are displayed
Fig. 1 as a function of the atomic numberZ. The trend seen
in Fig. 1 is well understood and described by nuclear theo
First, the overall increase of quadrupole moments withZ and
the mass numberA reflects the bulk~volume! effect. ~For a
given deformation, the intrinsic quadrupole moment is p
portional to Z2A2/3.! Second, the fluctuations of the NQM
with Z andN ~neutron number! are due to shell effects. Tha
is, magic nuclei are spherical and the largest quadrupole
formations occur in the middle of the shell. Another eleme
tary but important point, which needs to be emphasized
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the context of Fig. 1, is that the spectroscopic NQM rep
sents the anisotropy of nuclear charge in themolecular ref-
erence framewhile nuclear deformations are related toin-
trinsic quadrupole moments in the body-fixed frame of
nucleus. In order to translate the measured NQM’s to nuc
shape deformations, the transformation from the molecu
frame to the intrinsic nuclear frame is necessary. As d
cussed below, in many cases this transformation is n
trivial. In particular, for weakly deformed~transitional! nu-
clei the concept of an intrinsic shape is not very useful. F
well-deformed systems, the result strongly depends on
angular momentum of the nucleus. For instance, the NQM
a nucleus in theI 50 state is always zero, although th
nucleus can be very well deformed intrinsically@10#. By the
same token, the measured negative~positive! NQM does not
have to be indicative of an oblate~prolate! intrinsic shape.
The nucleus127I discussed in this paper is a nice example
such a situation.

While nuclear quadrupole deformations have been int
sively studied@11#, much less data are available for hexad
capole deformations. As discussed in Ref.@11#, some infor-
mation on hexadecapole deformations exists from Coulo
excitation studies, inelastic hadron scattering experime
electron scattering, lifetime measurements, and hyperfine
fects in muonic atoms. From shell-model arguments, it f
lows that for well-deformed nuclei the total intrinsic hexad
capole moment should be positive at the beginning of
©2001 The American Physical Society05-1
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shell, and it should change sign in the middle of the sh
~See Ref.@12# for experimental systematics and discussio!

Hexadecapole hyperfine interaction describes the c
pling between the nuclear hexadecapole moment~NHM! and
the electronic electric field third derivative~EFT! and is
roughly (RN /r e)

2 smaller compared to the nuclear quadr
pole coupling, whereRN andr e denote the nuclear and ele
tronic radius, respectively. This puts the hexadecapole c
pling constant into the millihertz to hertz range. Because
the smallness of the hexadecapole hyperfine interact
there is no unambiguous experimental evidence for the h
decapolar hyperfine splitting in atoms or molecules. Ba
on nuclear data and theoretical calculations, the most lik
candidates for the detection of the hexadecapole coupling
the elements with high quadrupole deformations such
175Lu ~deformation parameters according to Ref.@13# b2
50.287, b4520.069), which form simple closed-shell d
atomic compounds such as LuF.

Early attempts to measure the nuclear hexadecapole
pling constant started in 1954@14,15#. The first successfu
claim came in 1955 by Wang using nuclear quadrupole re
nace spectroscopy~NQR! at very low temperature (0.4 °C)
Wang obtained a nuclear hexadecapole coupling consta
2465 kHz for 123Sb in SbBr3 @16#. In 1963, Hewitt and
Williams measured NQR frequencies of123Sb in antimony
metal at liquid helium temperature and obtained
630 kHz @17#. Later in 1970, Stephenson and co-worke
measured the radio-frequency spectrum of TlI using mole
lar beam electric resonance spectroscopy@18#. They found
no evidence for nuclear hexadecapole coupling in127I above
500 Hz. The same conclusion was derived in 1973 by Ha
merle and Zorn for115In in InF @19#. In 1978 Segel per-
formed NQR measurements for185,187Re, 127I, 209Bi, 93Nb,
and 121,123Sb in various solid oxo and halide compounds w

FIG. 1. Nuclear quadrupole moments for stable isotopes
functions of the nuclear chargeZ. Experimental data are taken from
@9#. Positive ~negative! spectroscopic moments are indicated
filled ~open! dots.
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no clear evidence for nuclear hexadecapole coupling@20#. A
decade later in 1983, Goutou measured the123Sb hexadeca-
pole coupling constant in SbCl3 by NQR and derived 110
661 kHz @21#. A single-crystal NMR experiment for181Ta
in KTaO3 was performed by Doering and Waugh in 198
with no observable hexadecapole coupling above 12 k
@22#. They also criticized Goutou’s analysis, pointing o
that the reported discrepancies in the fit procedure are ra
due to experimental errors than due to a hexadecapole
pling. In 1991, Ni and Sears reported nuclear quadrup
resonance measurements for127I in KI claiming a hexadeca-
pole coupling constant of 2.8 Hz@23#. Three years later, Liao
and Harbison@24# found no evidence for nuclear hexadec
pole coupling of the127I nucleus in CdI by NMR spectros
copy. Cederberg and co-workers@25# recently chose the less
deformed127I nucleus in molecular beam electric resonan
measurements of LiI. They achieved a precision of a f
hertz in the hyperfine spectrum. A careful analysis revea
that the observed data fitted best a Hamiltonian that inclu
the hexadecapole coupling term, which resulted in a coup
constant of 15.163.0 Hz for 127I. However, they could not
rule out a pseudohexadecapole effect in analogy with
electron-coupled spin–self-spin effect that is known as
pseudoquadrupole interaction@25–27#.

In order to verify Cederberget al.’s analysis, in this study
we investigate the quadrupole and hexadecapole coupling
the 127I isotope in LiI by relativistic Dirac-Hartree-Fock
techniques for the electronic tensors and Skyrme Hart
Fock and relativistic mean-field calculations for the nucle
moments. The paper is organized as follows. Section II
views the atomic and nuclear theory of hexadecapole hy
fine interactions and moments. The computational details
given in Sec. III. The results of our calculations are discus
in Sec. IV. Finally, Sec. V contains the main conclusions
our work.

II. THEORY

A. Cartesian multipole expansion of the interaction energy

The interaction energy between two charge distributio
%(r) and%N(r8) is

E5E E dr dr8
%N~r!%~r8!

ur2r8u

5E drF%N~r!E dr8
%~r8!

ur2r8u
G5E dr %N~r!V~r!, ~1!

where the integral is over all space. In Eq.~1! V(r) is the
potential arising from the charge distribution%(r). The Car-
tesian multipole expansion is obtained by expandingV(r) in
a fourth-order Taylor series around the origin of the nucle
r50 according to

s
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V~r!5V01S ]V

dra
D

0

ra1
1

2 S ]2V

]ra]rb
D

0

rarb

1
1

6 S ]3V

]ra]rb]rg
D

0

rarbrg

1
1

24S ]4V

]ra]rb]rg]rd
D

0

rarbrgrd1•••. ~2!

Here and in the following, greek indices run through t
Cartesian coordinates~i.e., r15x, r25y, r35z) and the Ein-
stein summation convention is usedfor greek indices only.
Inserting Eq.~2! into Eq. ~1!, one obtains

CE5qV02maVa2
1

2
QabVab2

1

6
RabgVabg

2
1

24
HabgdVabgd , ~3!

where

q5E dr %N~r!, ~4a!

ma5E dr %N~r!ra , ~4b!

Qab5E dr %N~r!rarb , ~4c!

Rabg5E dr %N~r!rarbrg , ~4d!

Habgd5E dr %N~r!rarbrgrd , ~4e!

Va52S ]V

]ra
D

0

, ~4f!

Vab52S ]2V

]ra]rb
D

0

, ~4g!

Vabg52S ]3V

]ra]rb]rg
D

0

, ~4h!

Vabgd52S ]4V

]ra]rb]rg]rd
D

0

, ~4i!

q, m, Q, R, and H denote the nuclear monopole, dipol
quadrupole, octupole, and hexadecapole moments, res
tively, andVa , Vab , Vabg , andVabgd are the electric field,
electric field gradient, electric field second derivative, a
electric field third derivative, respectively. The superscripC
in CE denotes the Cartesian energy expansion.
02250
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B. Spherical multipole expansion of the interaction energy

It is common to rewrite Eq.~1! using the standard multi
pole expansion in spherical harmonics:

1

ur2r8u
5 (

l50

`

(
m52l

l
4p

2l11

r ,
l

r .
l11

Ylm* ~ r̂!Ylm~ r̂8!, ~5!

where r ,5min(r,r8) and r .5max(r,r8). Assuming r ,r 8
~i.e., assuming a pointlike nucleus! and taking only terms up
to fourth order, one can rewrite Eq.~1! in the form

SE5 (
l50

4
4p

2l11 (
m52l

l F E dr %N~r!Ylm* ~ r̂!r lG
3F E dr8%~r8!Ylm~ r̂8!~r 8!2l21G , ~6!

where the superscriptS denotes the spherical multipole ex
pansion. To compare the Cartesian energy expansion,
~3!, with the spherical expansion, Eq.~6!, it is useful to re-
write Eq. ~6! in Cartesian coordinates@28,29#:

SE5qV02maVa2
1

3
QabVab2

1

15
VabgVabg

2
1

105
FabgdVabgd , ~7a!

where

Qxx5E dr %N~r!r 2P2~ x̂!, ~7b!

Qxy5
3
2 E dr %N~r!xy, ~7c!

Vxxx5E dr %N~r!r 3P3~ x̂!, ~7d!

Vxxy5E dr %N~r!S 5

2
x2y2

1

2
xr2D , ~7e!

Vxyz5
5
2 E dr %N~r!xyz, ~7f!

Fxxxx5E dr %N~r!r 4P4~ x̂!, ~7g!

Fxxxy5
5
8 E dr %N~r!~4x3y23xy323xyz3!, ~7h!

Fxxyy5
1
2 E dr %N~r!@P4~ ẑ!2P4~ x̂!2P4~ ŷ!#, ~7i!

Fxxyz5
5
8 E dr %N~r!~6x2yz2y3z2yz3!. ~7j!
5-3
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In the above expressions,r̂a[ra /r andPl are the Legendre
polynomials. The remaining Cartesian components in
~7b! can be generated by permutation of indices. It is to
noted that in the standard derivation of Eq.~7! it is assumed
that V(r) fulfills the Laplace equation at the origin,

Vaa524p%~0!50, ~8!

and that all the derivatives of%(r) vanish atr50,

S ]k%

]ra1
]ra2

•••]rak
D

0

50 for k51,2, . . . , ~9!

which guarantees that

Va1a2•••akaa50. ~10!

C. Transformation of the Cartesian expansion
to the spherical form

It is important to realize that while the Cartesian ener
expansion Eq.~3! is exact, the commonly used spheric
multipole expansion Eq.~7! is not. In particular, conditions
~8! and ~10! cannot be met in the realistic case because
relativistic electron functions for thes1/2 and p1/2 states do
not vanish at the origin. This implies that neither%(0) nor
its derivatives vanish atr50. Secondly, since the nucleus h
finite size, the assumption ofr ,r 8 that leads to Eq.~6! is not
justified.

In order to bring the Cartesian expansionCE to the famil-
iar spherical form, new traceless tensorsṼab , Ṽabg , and
Ṽabgd have to be introduced. They are

Ṽxx5Vxx2
1

3
Vaa ,

~11!
Ṽxy5Vxy

~for the electric field gradient EFG!,

Ṽxxx5Vxxx2
3

5
Vxaa ,

Ṽxxy5Vxxy2
1

5
Vyaa , ~12!

Ṽxyz5Vxyz

~for the electric field second derivative EFS!, and

Ṽxxxx5Vxxxx2
27

35
Vxxaa1

3

35
Vyyaa1

3

35
Vzzaa ,

Ṽxxxy5Vxxxy2
3

7
Vxyaa , ~13!

Ṽxxyy5Vxxyy2
4

35
Vxxaa2

4

35
Vyyaa1

1

35
Vzzaa ,
02250
.
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Ṽxxyz5Vxxyz2
1

7
Vyzaa

~for the electric field third derivative EFT!. The remaining
Cartesian components can be generated by permutation
indicesx, y, andz.

It is easy to check that, unlike the original electric-fie
tensors, the traceless tensors fulfill the conditions~8!–~10!:

Ṽaa50, ~14!

Ṽabb50, ~15!

Ṽabgg50. ~16!

Moreover, when inserted into Eq.~3!, the traceless tensor
yield an energy expression that is formally identical to th
of Eq. ~7!. That is,

CE~V→Ṽ!5 SE~Ṽ!5 SE~V!. ~17!

As will be discussed below in Sec. III A, the calculated va
ues of the EFT tensorV are very large, while those obtaine
with the traceless EFT tensorṼ are reasonably small, due t
the dramatic renormalization.

Of course, the energy expressionsCE andSẼ[ CE(V
→Ṽ) differ. This is easy to show explicitly by writing the
exact Cartesian energy expansion in the following way:

CE5 SẼ1(
l

DE(l), ~18!

whereDE(l) is the correction to the term of multipolarityl
in the spherical expansion due to the fact that the origi
potentialV is not traceless.

The quadrupole correction is the well-known Poiss
term @30#:

DE(2)52
1

6
VaaE dr %N~r!r 2. ~19!

Since this term has a monopole character, it does not c
tribute to the quadrupole~or hexadecapole! splitting in first
order.

Although the electric octupole splitting must be ze
~nuclear states have a well-defined parity; the par
violating effects are negligible in this context!, we shall still,
for the sake of completeness, derive the corresponding
rection associated with the EFS:

DE(3)52
1

10
VbaaE dr %N~r!rbr 2. ~20!

Of course, this correction vanishes since the nuclear dip
moment is zero.

For the electric field third derivative, the energy corre
tion is
5-4
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DE(4)52
1

28
VabggE dr %N~r!S rarb2

1

10
r 2dabD r 2 .

~21!

As we shall see in the following,DE(4) can be written as a
sum of monopole and quadrupole terms.

D. Limit of axial symmetry

For a linear molecule, assuming the molecular axis is
z axis, one gets

Vxx5Vyy , ~22a!

Vxxxx5Vyyyy, ~22b!

Vxxzz5Vyyzz, ~22c!

Vxxxx53Vxxyy. ~22d!

Due to the fact that the proton density distribution is refle
tion symmetric in the molecular frame, the following uniqu
nuclear tensor components are zero:

ma50, ~23a!

Rabg50, ~23b!

Qxy5Qxz5Qyz50, ~23c!

Hxxxy5Hxxxz5Hxxyz5Hxyyy5Hxyyz

5Hxyzz5Hxzzz5Hyyyz5Hyzzz50. ~23d!

In addition, since the charge density distribution is axia
symmetric with respect to the molecularz axis, the following
identities hold:

Qxx5Qyy , ~24a!

Hxxxx5Hyyyy, ~24b!

Hzzxx5Hzzyy, ~24c!

Hxxxx53Hxxyy. ~24d!

The resulting interaction energy can be written as

CE5qV02
1

2
QzzṼzz2

1

24
FzzzzṼzzzz1DE(2)1DE(4),

~25!

whereDE(2) is given by Eq.~19!, andDE(4), Eq. ~21!, can
be simplified to
02250
e

-

DE(4)52
1

420
~2Vzzaa1Vxxaa!E dr %N~r!r 4 ~26a!

2
1

84
~Vzzaa2Vxxaa!E dr %N~r!~3z22r 2!r 2. ~26b!

The term ~26a! has a monopole character and it does n
contribute to the multipole splitting. On the other hand, t
second contribution toDE(4), Eq. ~26b!, has the same tenso
structure as the quadrupole term in the multipole expans
Consequently, it produces a renormalization of the quad
pole splitting.

E. The nuclear hexadecapole coupling constant

Traditionally, the nuclear hexadecapole coupling const
eHh derived from the hyperfine splitting is defined as t
product of the nuclear momentH5Fzzzz and the electric-
field third derivativeh5hzzzz5Ṽzzzz,

eHh5FzzzzṼzzzz. ~27!

The nuclear momentFzzzz is usually given in b2 (1 b
51.0310228 m2). As the EFT is given in a.u.~atomic
units! and the nuclear hexadecapole coupling constant u
ally is given in hertz~Hz!, a useful conversion formula is

eHh@Hz#5Fzzzz@b2#3Ṽzzzz@a.u.#38.390 741 564.
~28!

More details can be found in Ref.@25# and we shall not
repeat them here. Various conflicting definitions ofh andH
exist in the literature. For instance, Cederberget al. defineh
as hC5h/24. Moreover, their value ofH differs from the
commonly used definition of the nuclear hexadecapole m
ment by a factor of 4, i.e.,HC54H ~see Sec. II F below!.
Consequently, in order to compare our results with exp
mental number of Cederberget al., the following scaling has
to be performed:

~hH!C5
1

6
hH. ~29!

F. Nuclear multipole moments

The nuclear quadrupole (l52) and hexadecapole (l
54) moments that enter the expression for the hyper
splitting are thespectroscopicmoments. Assuming the axia
intrinsic density distribution, for the nuclear state charact
ized by angular momentumI and the projectionK of the total
spin on the intrinsic nuclear axis, the spectroscopic mom
Q(El) is given by@31#

Q~El!5^IKl0uIK &^II l0uII &Q0~El!, ~30!

where

Q0~El!5eS 16p

2l11D 1/2E %N~r!r lYl0~V!dr ~31!
5-5
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is the intrinsic multipole moment and%N is the single-
particle proton density. By evaluating explicitly the Clebsc
Gordan coefficients in Eq.~30!, one arrives at

Q~El!5 f l~ I ,K !Q0~El!, ~32!

where

f 2~ I ,K !5
3K22I ~ I 11!

~ I 11!~2I 13!
, ~33!

f 4~ I ,K !52
~2I 11!!

~2I 15!!
@210K2~4K221!13~ I 212I 25K2!

3~ I 225K221!#. ~34!

The above expressions@Eqs. ~32!–~34!# are valid in the
strict limit of strong coupling@31#. In most cases, howeve
K is not a good quantum number and the nuclear wave fu
tion is a combination of several components having differ
K. The degree ofK mixing strongly depends on nuclear d
formation. In particular,K is not a very useful quantum num
ber for weakly deformed nuclei where~i! the intrinsic de-
formed system cannot be well defined, and~ii ! the Coriolis
coupling is strong. In general, the nuclear wave function
be written as

uI &5(
K

cKuIK &. ~35!

Consequently, in the limit of the intrinsic axial shape, o
obtains the following expression for the spectroscopic m
ment:

Q~El!5 f l~ I !Q0~El!, ~36!

where

f l~ I !5(
K

ucKu2f l~ I ,K !. ~37!

Note that this definition agrees with that for the quadrup
momentQ of Cederberget al.but not with their definition of
the hexadecapole momentH. That is, QC5Q(E2)/e and
HC54Q(E4)/e.

III. COMPUTATIONAL DETAILS

A. Electronic structure calculations

Our interest is concerned with the electric-field thir
derivative tensor,

Vabgd
A 5Vabgd

A,el 1Vabgd
A,nuc , ~38!

which, for a given nucleusA, can be expressed as a sum
the nuclear contribution,

Vabgd
A,nuc5 (

BÞA

]4

]aA]bA]gA]dA

1

uRA2RBu
~39!

and the electronic contribution
02250
-

c-
t

n

-

e

f

Vabgd
A,el 5 K CU ]4

]aA]bA]gA]dA

1

ur2RAu UC L , ~40!

whereRA5(xA ,yA ,zA) is the position of nucleusA.
The electronic and nuclear part of the hexadecapole te

was computed using the all-electron relativistic fou
component program packageDIRAC @32#. The integral pro-
gramHERMIT @33# was modified to produce fourth-derivativ
integrals for the electronic part, and the nuclear part w
calculated directly from Eq.~39!. The atomic fourth-
derivative integrals were transformed to the traceless fo
@Eq. ~13!# and then contracted with the density matrix.

When constructing the traceless EFT tensor, one can
avoid subtracting large, almost identical, integrals. As
tracelessEFT tensor transforms asY4m , all one-centers-s,
s-p, s-d, andp-d integrals can be set to zero. However, f
thed-d integrals, the numerical difficulty due to cancellatio
cannot easily be avoided. For our relativistic four-compon
calculations, this is most evident in the small-component
tegrals, since the small-component basis set functions
generated from the large components in order to fulfill t
kinetic balance condition. For example, a large-compon
Gaussianp function generates a small-components and d
function. Very compact~high exponent! p functions in the
basis set are required to describe thep1/2 spinor which results
in a compact small-componentd function. To remedy this
problem, we simply decided to neglect the small-compon
integrals when the EFT tensor is calculated. Hence o
large-component–large-component~LL ! property integrals
are calculated, whereas the small-component–sm
component~SS! property integrals are neglected. Since t
four-component operator

Î Ṽzzzz, ~41!

where Î is the unity matrix, is diagonal, there are no larg
component–small-component~LS! property integrals. Be-
low, we shall estimate the error introduced by neglecting
SS property integrals.

For the Dirac-Hartree-Fock~DHF! calculations, the two-
electron integrals dominate the computational effort. Th
integrals come in three types: LLLL, LLSS, and SSS
where L and S denote large- and small-component basis
functions, respectively. The DHF calculations were carr
out using all two-electron integrals.

The basis set used for the calculations was a w
tempered family basis set, i.e., the exponents for the basi
functions were all taken from the same master list. The
ponents for iodine@34# and lithium are shown in Table I. The
range of exponents used for eachl quantum number was
1–28 (s), 4–28 (p), 8–27 (d), 18–27 (f ) for iodine; 1–12
(s), 4–12 (p), 7–12 (d) for lithium. The experimental bond
length of 2.391 924 Å@35# was used in all calculations.

B. Nuclear structure calculations

The equilibrium shapes of127I in several low lying qua-
siparticle states were calculated with the self-consist
mean-field theory. In order to assess the uncertainties ari
5-6
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QUADRUPOLE AND HEXADECAPOLE COUPLINGS FOR . . . PHYSICAL REVIEW A 63 022505
from nuclear structure models, we have performed calc
tions with two different successful mean-field mode
namely, the ~nonrelativistic! Skyrme Hartree-Fock~HF!
model and the relativistic mean-field~RMF! model. In both
cases, the nucleons are described as pointlike particles m
ing independently in a common self-consistent field. Bo
models employ effective interactions specially designed
the purpose of nuclear mean-field calculations. The to
binding energy is formulated in terms of an effective ene
functional which depends on local densities and curre
only. This links the HF and RMF models to the effectiv
energy functional theory in the Kohn-Sham approach@36#
which was originally developed for many-electron system

For both models there is a large variety of parametri
tions of the effective interaction to be found in the literatu
All of them are developed through fits to experimen
nuclear data, but with different bias. Of course, the ba
ground-state properties of spherical nuclei~energy, radius!
are always well reproduced. Small variations appear w
respect to further demands.

Our implementation of the HF model is based on the st
dard ansatz@37# for the effective interaction which employ
a completely local energy functional. From the large pool
Skyrme interactions that are available nowadays, we h

TABLE I. Exponents for family basis sets for I and Li. Th
exponents for iodine are taken from Ref.@34#.

No. I exponents Li exponents

1 109066880.00000000 1950.00810000
2 23490795.00000000 439.43845000
3 5726263.50000000 103.39728000
4 1568306.70000000 25.45163800
5 478497.25000000 6.56816480
6 161092.95000000 1.78119720
7 59231.11900000 0.50891349
8 23530.84100000 0.15363426
9 9991.88790000 0.04916296
10 4487.66590000 0.01673633
11 2110.92280000 0.00608594
12 1030.64160000 0.00237500
13 518.19560000
14 266.49834000
15 139.40228000
16 73.83244900
17 39.45256600
18 21.21128400
19 11.45092200
20 6.19812970
21 3.36036180
22 1.82356800
23 0.99010488
24 0.53771463
25 0.29205998
26 0.15863939
27 0.08616991
28 0.04680599
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selected two typical samples of comparable~high! quality
from recent fits. The parametrization SLy6@38,39# gives a
good overall description of nuclear bulk properties of sphe
cal and deformed nuclei. The parametrization SkX@40# was
fitted with a bias to a good description of single-partic
properties.

In the RMF model, nucleons are described as independ
Dirac particles moving in local isoscalar-scalar, isoscal
vector, and isovector-vector mean fields usually associa
with s, v, and r mesons, respectively~see Ref.@41# and
references therein!. As in the HF model, there exist man
RMF parametrizations which differ in details. For the pu
pose of the present study, we chose two successful re
forces, NL-Z2 @42# and NL3 @43#, which give a good de-
scription of nuclear bulk and single-particle properti
throughout the chart of nuclei.

The energy functional of the effective nuclear interacti
in both models is, of course, complemented by the Coulo
interaction for the protons. In the HF and RMF models, p
correlations of the nucleons are treated within the B
scheme using a~nonrelativistic! d pairing force~see@42# and
references therein for details!. We find that the soft potentia
energy surface of the transitional nucleus127I is sensitive to
small changes in the pairing strength. To minimize the u
certainties from the pairing interaction, we have adjusted
pairing strength~separately for protonsVp and neutronsVn)
to the odd-even staggering of nuclear masses for
semimagic nuclei127Sn and 135I. The values obtained are
Vn52263 andVp52305 for SLy6,Vn52212 andVp5
2270 for SkX, Vn52385 andVp52440 for NL3, and
Vn52343 and Vp52350 for NL-Z2, all in units of
MeV fm3.

For both models, the mean-field equations are solved
an axially symmetric grid assuming reflection symmet
Nuclei with odd mass number are calculated in a se
consistent blocking approximation~see@44# for details!, tak-
ing into account time-odd contributions to the single-parti
Hamiltonian as described in@45# for HF and@44# for RMF.
This includes the core polarization effects induced by
blocked particle in a self-consistent way.

In order to relate self-consistent results to other calcu
tions it is convenient to introduce the axial deformation p
rametersbl , which, for small deformations, are proportion
to the intrinsic electric moments~31! @11#:

bl5
A~2l11!p

3ZeR0
l

Q0~El!, ~42!

whereR051.2A1/3 fm.

IV. RESULTS AND DISCUSSION

A. Equilibrium deformations of 127I

The proton Fermi level of127I lies in the vicinity of the
d5/2 and g7/2 shells. The deformed Nilsson orbitals that a
pear aroundZ553 are the low-K @420#1/2 and @422#3/2
~prolate! and high-K @402#5/2 and@404#7/2 ~oblate! states.
According to the calculations of Ref.@46#, all four of these
5-7
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one-quasiproton states appear very close in energy. Ex
mentally, the ground state of127I is a 5/21 state, and there is
an excited 7/21 level at 58 keV. Built on both levels~asso-
ciated with protond5/2 and g7/2 excitations, respectively!
there are decoupled quasirotational bands@47#. At higher ex-
citation energy~around 1.2 MeV!, there appear rotationa
bands built upon theg9/2 ~@404#9/2! andh11/2 intruder orbit-
als.

Having only three valence protons and eight valence n
tron holes, 127I is a weakly deformed transitional nucleu
Recently, 127I received considerable interest because of
applications in solar-neutrino detectors@48#. In several theo-
retical papers, the structure of127I was investigated, espe
cially in the context ofb decay, Gamow-Teller strength, an
neutrino-nucleus scattering@49–51#. All these works em-
ployed the shell-model framework in a limited configurati
space. In particular, in Ref.@50# predictions were made fo
the ground-state quadrupole moment of127I using the quad-
rupole effective charges appropriate to theA'130 mass re-
gion ~i.e., ep51.5e anden50.5e). Unfortunately, since the
hexadecapole effective charges are not known, one is bo
to use the no-core mean-field approach, and this is the s
egy that we adopted in the present study.

According to our configuration-constrained axial mea
field calculations, the four Nilsson orbitals@420#1/2, @422#3/
2, @402#5/2, and@404#7/2 appear close in energy. The qua
rupole and hexadecapole deformations for the@422#3/2
Nilsson level, predicted to be the best deformed in our c
culations, are shown in Fig. 2. It is seen that the quadrup
deformation ranges fromb250.17 ~HF 1 SLy6! to b2
50.11~RMF 1 NL3!, and the hexadecapole deformationb4
varies between 0.057~HF 1 SLy6! and 0.026~RMF 1
NL3!. The shapes of the neighboring iodine isotopes
fairly similar ~see Fig. 2!. The @420#1/2 one-quasiparticle
state is calculated to be slightly less deformed~e.g., b2
50.14 in HF1 SLy6! but its hexadecapole deformation
still positive. Both the @402#5/2 and @404#7/2 one-
quasiparticle states are predicted to be oblate. For insta
the calculated proton deformations for the@402#5/2 state are

FIG. 2. Quadrupole and hexadecapole proton equilibrium de
mations calculated for123,125,127,129,131I in the HF 1 SkX and RMF
1 NL-Z2 models. The deformations for127I predicted in the HF1
SLy6 and RMF1 NL3 models are also shown.
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b2520.14, b450.014 in the HF1 SkX model andb25
20.14, b450.009 in HF1 SLy6. In the RMF calculations
quadrupole deformations are lower (20.09,b2,20.05)
and hexadecapole deformations are close to zero.

The predicted closeness of prolate and oblate struct
and fairly small equilibrium deformations suggest that tria
ality could play a role in the ground state of127I and that
dynamical correlations can influence the predicted multip
moments. One should bear this in mind when estimat
nuclear quadrupole and hexadecapole moments in
nucleus using the static mean-field approach.

According to Eq.~36!, the measured spectroscopic m
ment is proportional, but not equal, to the intrinsic mome
The proportionality coefficient depends on the angular m
mentum of nuclear state and itsK distribution. In the limit of
good K, one can use expressions~32!–~34!. For theI 55/2
state, the corresponding values off l(I ,K) are displayed in
Table II. One can see thatf 2 is negative forK51/2 and 3/2,
and that f 4 changes sign betweenK51/2 and 3/2. Conse-
quently, the actual sign of the spectroscopic moment
only depends on the nuclear shape~i.e., the sign of the in-
trinsic moment! but can also depend rather strongly on t
degree ofK mixing.

Due to the relatively small deformation, one expec
strong Coriolis coupling, which should give rise to rotatio
ally aligned configurations. Indeed, the fact that the grou
state of 127I has I p55/21, that there appears a low lyin
I p57/21 level, and that there are decoupled quasirotatio
bands built upon them, all suggest that one is close to
limit of rotational alignment. In this limit, the expansion co
efficientscK in Eq. ~35! are given by the rotation matrice
djK

j (p/2) with j 5I ~see, e.g., the discussion in Ref.@52#!,
and the resulting values off 2(5/2) andf 4(5/2) are –0.18 and
0.009, respectively. This yields the nuclear quadrupole m
ment in the range20.44,Q(E2),20.29 b, assuming pro
late deformations calculated with different mean-field mo
els. According to recent work@53#, the nuclear quadrupole
moment of127I is –0.69~3! b, i.e., it is significantly larger in
magnitude. For the oblate shapes, employing the strong
pling expression, one obtains20.74,Q(E2),20.47 b.
Although this result is closer to the data, the absence o
strongly coupled ground-state band indicates that theI p

55/21 ground state of127I does not have a highK character.
For the hexadecapole moments, in the limit of rotation

alignment, one obtains a dramatic reduction of the intrin
value due to a very smallf 4(5/2) factor. For the prolate
configurations, the resulting values of the nuclear hexade
pole moment lie in the range 631024,Q(E4),2

r-

TABLE II. Factors @Eq. ~33! and Eq. ~34!# relating intrinsic
multipole moments to spectroscopic moments forI 55/2. Note that
f 2 is negative forK51/2 and 3/2 andf 4 changes sign when going
from K51/2 to K53/2.

K f 2(5/2,K) f 4(5/2,K)

1/2 20.29 0.048
3/2 20.07 20.072
5/2 0.36 0.024
5-8



fs.

QUADRUPOLE AND HEXADECAPOLE COUPLINGS FOR . . . PHYSICAL REVIEW A 63 022505
TABLE III. Calculated and observed quadrupole and magnetic moments, andB(E2) values for the low
lying states in127I. The measured magnetic moment for the 3/21 state at 203 keV is 0.97~0.07! n.m.; the
calculated value for the lowest 3/21 state at prolate deformations is 0.8 n.m. TheB(E2) rates are given in
Weisskopf units@1 W.u.5(1.2)2/(4p)(3/5)2A4/3 e2fm4#. ~The experimental data are taken from Re
@47,53#.!

b2 b4 Q2(5/2) m(5/2) Q2(7/2) m(7/2) B(9/2→5/2) B(11/2→7/2)
(e b) ~n.m.! (e b) ~n.m.! ~W.u.! ~W.u.!

0.17 0.049 20.60 3.3 20.60 2.0 2.3 41
0.14 0.028 20.40 3.5 20.51 2.1 29 2.7

20.14 0.009 20.64 3.3 20.77 2.5 9.4 10.5
Expt. 20.69 2.8 20.71 2.5 3.6~5! 40~8!
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31023 b2, i.e., they are very small and positive. Assumi
oblate shapes and the strong coupling approximation,
obtainsQ(E4)'0.

B. Particle-plus-rotor calculations and K mixing

Since the Coriolis mixing plays such an important role
the reliable prediction of nuclear moments in127I, we de-
cided to perform particle-plus-rotor model~PRM! calcula-
tions. In this model@31#, the total angular momentum of a
odd-mass nucleus is written as a sum of the single-par
angular momentum of an odd nucleon and that of the
formed core. Since the PRM Hamiltonian is explicitly co
structed in the intrinsic~rotating! reference frame, the Cori
olis mixing is properly accounted for.

Our PRM calculations were performed using the form
ism of Ref.@54# but with the Woods-Saxon potential for th
deformed mean field@55#. A number of calculations were
made with deformations motivated by the HF and RMF
sults, and qualitatively similar features were found for all t
prolate shapes considered. The proton Fermi level and p
ing gap were obtained from a standard BCS calculation.
moment of inertia was estimated from Grodzins’ rule@56#,
and forb250.17 this resulted in a core 21 energy of 0.522
MeV, which is rather close to the average 21 energy of the
neighboring even-even nuclei126Te and128Xe ~0.555 MeV!.
The sping factor for the odd proton was taken as 70% of t
free value, and the coregR value was estimated asZ/A.

As in the self-consistent calculations, the Nilsson sta
that are closest to the Fermi level atb2'0.17 are the@420#1/
2, @431#1/2, and @422#3/2 orbitals, although a sufficiently
large number of Nilsson states are included to ensure
merical convergence. Rotational mixing between lowK
states is usually very strong, and consequently the low
ergy states in127I are expected to be significantly distorte
from the simple strong coupled band patterns.

The PRM calculations for prolate shape reproduce
general features of rotational bands observed in127I. Further-
more, some electromagnetic properties are compared
Table III, and these are very well described, even though
calculated states are rather mixed. The large admixture
components withK,I accounts for the negative observe
~spectroscopic! quadrupole moment~cf. Table II and the dis-
cussion above!. The predicted hexadecapole moments
small and positive, 631023 b2 at b250.17 and 2
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31023 b2 at b250.14. This is consistent with the simpl
estimates shown above.

It is interesting to note that the calculations performed
the oblate shape also give reasonable results for the ele
magnetic moments~see Table III!. The hexadecapole mo
ment is positive and very small, 631024 b2. However,
since at oblate deformations theK55/2 and 7/2 Nilsson or-
bitals are rather pure highK states, calculations yield a clea
strong coupled band pattern built on these levels, and
disagrees strongly with experimental data.

C. The hexadecapole coupling constant

The calculated electric field derivatives are given in Ta
IV. These, combined with nuclear multipole moments, yie
the nuclear multipole coupling constants given in Table V

For the quadrupole coupling, the calculated results ag
reasonably well with the experimentally obtained value.
more precise calculation of the NQCC was not the m
purpose of this work and would require the inclusion of ele
tron correlation effects, a better basis set, and the inclusio
zero-point vibrational effects. It is unlikely that these effec
are larger than 10%–15% (625 MHz), which we give as
the uncertainty. We note that the results listed in Table
show that neglecting the SS part has only a very small ef
~approx. 2%! on the property matrix.

The correction to the quadrupole constant originat
from the hexadecapole term, Eq.~26b!, can easily be esti-
mated by noting that in the liquid-drop model

TABLE IV. Electric-field derivatives along the molecular ax
for iodine in LiI calculated at the DHF level. All values are given
atomic units.

Integralsa Electronic Nuclear Total
contribution contribution

EFG (Ṽzz) LL 1 SS 0.9801 0.0547 1.0450

EFG (Ṽzz) LL 0.9553 0.0547 1.0203

EFT (Ṽzzzz) LL 7.2358 0.0382 7.2740

aThe integrals used in the calculation of the property integrals. T
actual DHF calculations were all carried out using all~LLLL,
LLSS, and SSSS! integrals.
5-9
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E dr %N~r!~3z22r 2!r 2'Q~E2!R2. ~43!

By taking Q(E2)520.69 b, R55 fm, and the calculated
value of Vzzaa2Vxxaa51.453105 a.u., the resulting cor-
rection becomes

d~qQ!52
1

21
Q~E2!R2~Vzzaa2Vxxaa!5210.0 kHz,

~44!

i.e., its magnitude is about four orders smaller compared
the experimental value of the NQCC (2194 MHz). This
term has been neglected so far in all electronic field grad
calculations and clearly limits the precision to which nucle
quadrupole moments can be determined from nuclear q
rupole coupling constants. We also note that the calcula
of (Vzzaa2Vxxaa) requires all one-centers-p, p-p, s-d, and
p-d integrals.

For the EFT we cannot estimate the effect of neglect
SS integrals in the property matrix due to the numeri
problems described above. However, as the effect is 2%
the EFG, we estimate that the error is not much larger for
EFT. As for the EFG, a more precise calculation should
clude correlation and zero-point vibrational effects and
better basis sets. Again, we estimate these effects are o
same size as for the EFG. Thus, the total uncertainty is e
mated to be smaller than 25%. Our calculations predict
nuclear hexadecapole coupling constant to be in the rang
120 to160 mHz whereas the experimental range is218 to

TABLE V. Calculated and experimental nuclear multipole co
pling constants. The uncertainty given is in the units of the l
significant digit.

Experimental@25# Calculated

NQCC ~MHz! 2194.351212~17! 2174a

2169b

2147c

NHCC ~Hz! 215.1 ~30! 10.060d

10.020e

aCalculated using a nuclear quadrupole moment ofQ(E2)5
20.71 b~Ref. @9#!.
bCalculated using a nuclear quadrupole moment ofQ(E2)5
20.69 b~Ref. @53#!.
cCalculated using a theoretical nuclear quadrupole momen
Q(E2)520.60 b.
dCalculated using a nuclear hexadecapole moment ofQ(E4)5
10.006 b2 ~see Sec. II F!.
eCalculated using a nuclear hexadecapole moment ofQ(E4)5
10.002 b2 ~see Sec. II F!.
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212 Hz. Hence the calculated and experimental nucl
hexadecapole coupling constants differ by three orders
magnitude and the sign.

V. CONCLUSIONS

The main conclusions of our nuclear and electronic str
ture calculations can be summarized as follows.

~1! The low energy experimental data for127I ~band struc-
tures, electromagnetic transitions, and moments! are consis-
tent with a slightly deformed prolate shape (b2'0.17) and
small, but positive, hexadecapole deformation. The resul
quadrupole moment is negative and the hexadecapole
ment is positive.

~2! The calculated quadrupole and hexadecapole mom
and their signs are sensitive to theK mixing resulting from
the Coriolis coupling. Moreover, since127I is a transitional
nucleus, triaxial degrees of freedom may play a role;
reliable estimate of the full hexadecapole tensorQ(E4,m)
would require a theory that goes beyond the static mean-fi
approximation. However, we do not expect the resulting c
rections to affect the calculated multipole moments sign
cantly.

~3! The calculated hexadecapole coupling constant
127I is in the range of tens of millihertz and about thre
orders of magnitude smaller than the experimentally de
mined value. In addition, it is of opposite sign from the e
tracted experimental value. It is therefore likely that the e
perimental splitting originates from part of the second-ord
quadrupole~‘‘pseudohexadecapole’’! interaction@57# rather
than from the hexadecapole interaction~see the discussion in
Ref. @25#!. A rough estimate using (eqQ)2/DE for LiI shows
that for rotational transitions this term can easily be in t
hertz to kilohertz range.

~4! The transitional nucleus127I is perhaps not the bes
choice for an experimental search for a hexadecapole hy
fine splitting. Much better candidates are the well-deform
rare-earth nuclei@13# or actinides@58# with predicted large
hexadecapole moments such as175Lu. Moreover, for these
nuclei the static description and strong coupling are expec
to work very well, thus minimizing the nuclear uncertaint
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