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Nonexponential dephasing in a local random matrix model
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Deviations from exponential decay dynamics have been proposed for a wide variety of systems in high-
energy, atomic, and molecular physics. This work examines the quantum dynamics of a simple hierarchical
local random matrix model. The hierarchical structure is imposed by two physically motivated constraints: an
exponential size scaling of matrix elements, and a quantum number “triangle rule,” which introduces corre-
lations in the quantum-state space by mimicking the nodal structure of wave functions in a coordinate Hamil-
tonian. These correlations lead to a systematic slowing of dephasing dynamics compared to exponential
decays. A generalized Lorentzian line shape is introduced as the Fourier transform of a polynomial survival
amplitude to describe the average behavior of these decays. The model is brought into a representation that can
be compared directly with the golden rule. In this representation, the deviations from exponentiality
arise from energy-dependent correlations among the coupling matrix elements that persist even for large
systems. Finally, the effects of relaxing the size scaling and “triangle rule” constraints are studied. Sparsity
of the random matrix alone is not sufficient to produce slow asymptotic dynamics; both types of constraints
are required.
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[. INTRODUCTION approximated by coupled electron pairs. Vibrational energy
is therefore locally transferred through the lattice of molecu-
The relaxation of a quantum state coupled to a denséar bonds, connecting the atord; the nominal connectivity
manifold is often approximated by an exponential decay obf this lattice is quite low(usually 1-4 bonds per atom in
the initially prepared state. Such approximate models includerganic molecules
the Redfield equations and the first-order golden rule. Exami- We investigate the minimal requirements that a HLRM
nation of real physical situations shows that in many circum-model must satisfy in order to produce asymptotically slow
stances, the actual dec&(t) becomes nonexponential be- dephasing dynamics of quantum wave packets propagated
fore the asymptotic value oP(t) is reached. Examples underthe HLRM. As it turns out, a HLRM model introduces
include certain autoionizing atomic stafdg, asymptotic de- energy-dependent correlations among the amplitudes of
cays in field theories studied by nonperturbative approachestates of the spectrum that represents the quantum system.
[2], decoherence of spin-boson systems at low temperaturhe local structure of the matrix ensures that these correla-
[3], or for certain Kondo parametefd], diffusion of wave tions do not die off as the size of the quantum system is
packets corresponding to molecular vibrational motionsncreased, so spectral correlations persist even in multidi-
[5,6], and dynamics of kicked rotatof§]. Asymptotically, = mensional quantum systerfik4].
these phenomena are best described by a powerPlgyw Section Il introduces some preliminaries needed in the
~t~ % instead of an exponential functiofThe factor of 1/2  analysis of our HLRM model. A generalized Lorentzian line
is included in the exponent if one wishes to make a connecshape is introduced that corresponds to power-law decays in
tion to the classical theory of diffusion proces$es. the time domain. It is chosen to yield an exponential decay in
The existence of nonexponential dephasing has poterthe limit §—o, thereby making it a useful unbiased fitting
tially important physical implications. For scalar fields pro- function for spectral representations of the HLRM. The
ducing bosons, it can lead to dynamical multiparticle con-Lawrance-Knight-Lehmann (LKL ) inversion procedure
densation[2]. In quantum computing, asymptotically slow [15,16] is used to see how this line shape affects matrix
increase of incoherence due to a bath could extend the tenelement distributions in a “golden rule” basis. Finally, a
poral limits of computability. In molecules, slow dephasing simple example of matrix randomization shows how the re-
of the vibrations allows the possibility of controlling the re- moval of spectral correlations reduces the stretched dynam-
activity through coherent laser excitatip®,9]. ics to simple exponentials. Section Ill discusses our HLRM,
The temporal hierarchy of a power law implies a hierar-the previously defined Bose-statistics-triangle-rule model
chical structure of the underlying Hamiltoniarl0-12, (BSTR) [17]. This model uses simple rules for the construc-
which in turn implies a hierarchical structure of its matrix tion of an ensemble of Hamiltonian matrices. The rules were
representation. Although exponential decay can be studiechosen because they are approximately obeyed by a number
by global random matricelsl 3], power laws require a hier- of real physical systems. The model produces initial expo-
archical local random matritHLRM) as a minimal model. nential deflation of the survival probability of nonstationary
Such models arise quite naturally in the study of many-states, followed by slow asymptotic dynamics as the wave
dimensional quantum systems. For example, the chemicgacket reaches the “statistical limit.” A numerical study of
bonds in molecules are often highly localized and can bé8STR quantum dynamics is presented, together with an ex-
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amination of the effect of relaxing the model's rules. Theare sufficiently randomly distributed, the well-known result
model is also examined in a “golden rule” basis, allowing from first-order time-dependent perturbation theory is the
us to study the spectral correlations directly, and the consegolden rule

qguences of destroying such correlations. Section IV dis-

4 — —k
cusses these results, and presents some experimentally stud- P()=(1-0)e “'+o, (3a
ied examples that range from nuclear magnetic resonance

i ibrati i i k=2mp(Vos)2nd . (3b)
spectra of proteins to vibrational spectra of highly excited P{Vos)m
molecules.

The constantr arises if the density of statgsis finite be-
causeP(t) cannot decay to an average value lower than the
Il. PRELIMINARIES number of statese) under the spectral envelopg) s indi-
cates a root-mean-square average.
The line shape that corresponds to E3g) (with the long-
Quantum systems such as molecules, semiconductors, time average removeds a Lorentzian
nuclei are usually studied experimentally via their spectra.
To establish a link with experiment, we therefore consider _om kR
the asymptotic dynamics from the point of view of the spec- Z(kI2)%+ w?’ )
trum | (w), or of the time-dependent dec&(t) of an ini-
tially prepared state. Consider a bound gquantum system withentered in the intervadw at wy=0 for convenience. One

HamiltonianH, spectrum{w,}, and dipole operatof.. Let possible deviation from this line shape results from spectral
the system initially be in a staig). Interaction with a weak fruncation, i.e., if the intervalAw is not sufficiently much

frequency-tunable field allows population of excited eigen-arger thank. Indeed, such truncation effects are a major
statese) of A with intensity proportional to source for the deviation of certain atomic autoionization

spectra from Eq(4) [1]. In this paper we are not concerned

e with truncation effects, but correlations betweepandV g
|(w)=§e: (el 2| g)[?8(w — we). (1) instead.

A. Spectrum and time evolution

. . . . B. Generalized Lorentzian
The summation notation assumes a finite density of states

(although in practice a potentially very large onEquation Instead of Eq.(3a), consider an asymptotic power-law
(1) neglects radiative decay or other couplings external to thE€cay

system(hence thes function in the summation Neverthe-

less, processes describable as relaxation or dephasing can P(t)=(1-0)
occur within the system as follows. The magnitude of the

coupling amplitudege|1|g) may be peaked in a spectral
region Aw covering a large number of eigenstates the
spectrum in this region contains a line shape. Associate
with that line shape is a stat6) located atw,. |0) is ob-
tained by defining a distorted initial stajt¢)=i|g), and a 1 [+
projection operato=3.’|e){e| summing over the interval Lﬁ,zz—f dt cog wt)(1+ 2kt/ )~ 4. (6)
Aw, such that0)=P| ¢) [18]. |0} is the state that carries the 7J/o
oscillator strength in the regiofAw, and it is nonstationary.
Its survival probability is given by

t —6/2

1+ —

5 +o. (5)

This approaches E@3a) in the limit 5—«. The correspond-
H1g line shape will be termed a generalized LorentZiap
and is given by(after eliminating the long-time average

One can immediately see that the generalized Lorentzian
must go to Eq(4) in the limit of an infinite exponent. Equa-

_ tion (6) is easily expressed in terms of trigonometric inte-
P(t)=|(0le”"M"|0)[?=|(O|t)[*. (2 grals and powers ob. For example,

Experimentally, one could excite this state with a short, La(x=20/k) =sin(x)/k=2Si(x)sin(x)/ 7k
chirp-free optical pulse centered af, and of bandwidth —2Ci(x)cog x)/ k. (7)
greater tham\w. P(t) decreases as this initial state dephases
according to Eq(2). Alternatively, one could speak of relax- Figure 1(top) shows a Lorentzian and a generalized Lorent-
ation of population out of0) into an orthogonal manifold zian for the case’=8. As expected from the slower long-
{9} in the intervalAw. The line shapé(w) is related to the time dynamicsl, is more sharply peaked toward the center
survival amplitude(0|t) by Fourier transform. of the spectrum than the Lorentzian, and smaller at interme-
The statd0) and its orthogonal “dark” manifold|s)} are  diate energy gaps. Asymptotically, all functiobg, have a
easily constructed from thi eigenvaluesv, and intensities leading term proportional te 2, and hence a long spectral
l=|(e| £|g)|* in the intervalAw via the LKL inversion. In  tail. The slow decay dynamics of E¢5) are therefore not
the resulting “golden rule” representation, the initial state associated with a narrowing of the spectrum at large energy
|0) is coupled byN— 1 coupling constant¥s to a prediago-  gaps (bottom). The logarithmic derivatives of all 5, ap-
nalized manifold oN—1 stategs) at ws. If the wg andVos  proach zero at the line center, although the line shape can
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used in Sec. Ill to illustrate which part of the slow dynamics
is due to the intrinsic structure of the random matrix Hamil-
tonian, rather than to noise P(t) resulting from the random
choice of matrix elements. It is also illustrated for the simple
example discussed here in Figs. 1-3. Figure 3 shows a ran-
dom distribution ofVyg obtained by shuffling thé& , matrix
elements shown in the same figure, redistributing the smaller
Vs from a windowW to the overall windowAw. Figure 1
have a pronounced cusp for small values &fThe time shows that the spec_trum obtained by diagonalization now
domain decays corresponding to Fig. 1 are shown in Fig. 2natches the Lorentzian line shape. Figure 2 shows that the
What type of Hamiltonian in the energy range» gives  'e€SultingP(t) approaches an exponential decay with a larger
rise to slowed dynamics? This can be answered by applying§@selineo. (The calculations were carried out with a finite
the LKL inversion to the spectra in Fig. 1, converting them Number of spectral points; the larger valuecopbserved for
to the prediagonalized golden rule representation. Figure §1€ shuffled matrix elements is actually the statistically ex-
shows that the Lorentzian results in the expected picket fendeected one at the density of stajewe used; ther is small
form of Vs, without a dependence of the off-diagonal ele- " the two smooth decays becqqse the evenly.spaced. frequen-
mentsV, on the energy gap from the initial state. By con- Ci€S®s lead to a coherent addition of the cosine basis func-
trast, the generalized Lorentzian yields a Hamiltonian intions of the decay. _ _
which the coupling strength is depleted toward the center, |N€ Sensitivity of the long-time dynamics to the assump-
The dependence df on the energy gap is approximately tion of uncorrelated couplings is apparent from the above

given by a stretched exponential, whose widérand ampli- examples. It remains to be seen under what circumstances an
tude are inversely related t6. W and the rms coupling “uncooked” model Hamiltonian yields slowed dephasing.

strength V=13 |V§ Y2 must be of comparable magni- We therefore depart from the rather idealized golden rule
rms S - - . . .
tude in order to yielé power-law dynamics. In the linit representation, and investigate a physically motivated

—0, as well as in the limiWw=>k, simple exponential dy- HLRM model of dephasing next.
namics are recovered. The correlation len@th the energy
axis) of coupling constants must therefore be comparable to
the linewidth, or no deviations from exponential decay can
occur.

The asymptotic power-law behavior can therefore be de- o ) )
stroyed if the energy-dependent correlation amypggis re- The Bose Stf’itI_StICS triangle _ru_le model isa local random
moved by shuffling matrix element positions in the Hamil- Matrix model similar to one originally devised to study the

tonian on a scale comparable to the linewidth. This will bedephasing of highly excited molecular vibrational stqted.
The constraints imposed by it on the Hamiltonian are quite

FIG. 1. Intensity vs frequencgin units of 2x/t) plots for L.,
and L, line shapes. Randomizing the matrix eleme¥its corre-
sponding toL, as shown in Fig. 3 yields a line shape best fitted by
L... Upper plot, linear scale; lower plot, log scale.

Ill. DEPHASING IN A LOCAL RANDOM
MATRIX MODEL

A. The BSTR model

10° = generic, and are approximately satisfied in many real sys-
i tems. The model is defined as follows in terms of its matrix
107 elementsh;; :
] (i) The h;; are Poisson-distributed with average energy
PO - - = exponential e SpacingAE.
wid g"l;”::;;:n;ii:ds) \\“" “=,f ) (ii) hjj==Va"i (random signs o
_ power law \ (iii ) n;; is normal-distributed with meam=E/w and vari-
10® e anceo?=2E/Nw?.
0.1 1 10 100 (iv) For any tripleti,j,k, |nj; —nj | <nj=<[nj; +ny.

FIG. 2. Survival probabilitiesP(t) corresponding to the line

shapes in Fi

t

g. 1.

V, a, E, AE, N, andw are model parameters. The physical
motivation of the model is as follows. Let a quantum system
of WV, oscillators have a Hamiltonian of the form
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N 1 7 A N TABLE |. Parameters used for the BSTR model calculation in
H= Z > pﬁ#zwm%] T3 E: U mpAmdpQr Figs. 4-8, as well as the range sampled in a sequenkeaitula-
m=1 m,p,r=1 tions used to sample the statistics of the BSTR model.
2 n-2

FHaE AHGFATH e AT H e ®) Vit 8.3x10°* 2.3x107*-1.710°3
The unitless coordinates are given by ladder operators as & 0.25 0.2-0.3
Om=b! +bp,. H, has Poisson-distributed eigenvalues in any N 19500 11250-57750
interval Aw at sufficiently high energyg, as long as the E/h“’_a 13 . 1'5_23_6 s
oscillator frequencies are distributed over a sufficiently wide AE/%e 2.6x10 1.2x107°-4.8<10
range[19]. The eigenfunctions ofl, in the rangeAw at E N 9 6-15

gave Bosfef—Elnjteln distributed quantum nfurﬂhﬂ%,{sn ea}clh .. ®Here we treat\E as an independently adjustable model parameter.
egree of freedomm. As a consequence of the central limit Strictly speaking, the density of statess AE™ ! is not independent

theorem, this results in a normal distribution of the total @, N and E, but is rather given byp=\NT(E/@

quantum number differenag; = ;| nim—N:m| between two
states, wheuV is sufficiently JIarge[l?]. Th(Ja mean and vari- FMREEL)T (N} (29
ance of this distribution depend on the enekgyimension-  order n. The sources of these variations are twofold. The
ality of the systemV\, and harmonically averaged frequen- presence of symmetries constrain matrix elements more
ciesw; as shown in case$) and(ii) [17]. Equation(8) is a  strongly than constrain(ii); for example, many matrix ele-
good model for many systems, such as lattice phonons, mdnents predicted by constraifit) to be nonzero may in fact
lecular vibrations, coupled excitons, or any discretized bosoRe zero due to symmetry. The very lack of symmetry can
field theory. have a similar effect: by replacing the couplings among dif-
The locality of the BSTR model arises from the two con-ferent modes by a single constat constraint(ii) implies
straints [(ii) and (iv)]. Both of these introduce averaged that a coupling such asp,, is a geometric mean of the
knowledge about the nodal structure of eigenfunctionsl of ~ COUPIINGSUmmm vppp @Nd vy . In real systemsy yp,, will
into the BSTR matrix structure. First, because the coupling'sually be smaller because the modes are partially localized
terms are smooth coordinate functions, coupling matrix eledue to defects or other reasons for the low symmetryof
ments drop off with orden by a constant factoa on aver- ~ Therefore, larger variations in the coupling constants, .
age. In other words, the overlap between two eigenfunctionfan suggested by constraiiit arise in real systems of low
liy and [j) of H, and of a smooth coordinate function de- OF high symmetry. .
creases exponentially with;;, the total quantum number  The BSTR model is an excellent laboratory for studying
difference between the wave functions. Second, because @gVviations of dephasing line shapes from Lorentzians caused
the triangle rule in constrairiv), couplings among triplets by weak correlations among matrix elements. Is nonexpo-
of states are correlated. Strong couplings tend to occur iReéntial dephasing observed, and if so, how is it affected if the
groups, and weak couplings tend to occur in groups: Gage constraints in casg$)—(iv) are relaxed, turning BSTR into a
states that if one of two strongly coupled states is stronglypParse global random matrix?
coupled to a third state, the other one is also likely to be
strongly coupled to the third state; if not, the second one is
also likely not to be coupled to the third state. The dephasing of an initial state evolving under the BSTR
For sufficiently small\, and if all potential constants Hamiltonian was studied for a variety of models summarized
vij... of a given ordern were identical, the triangle rule in Table I. Time-independent calculations were carried out
would be exactly obeyed by any Hamiltonian of the fqi@n by combining the matrix-fluctuation-dissipatiéMFD) algo-
It is a simple consequence of the fact that wave functionsithm with Lanczos iteration to yield spectf20,21]. Time-
with similar nodal structure are strongly coupled by a smoottdependent propagations of an initial state were performed
coordinate function, while wave functions with very differ- using the shifted-update-rotatig8UR) symplectic propaga-
ent nodal structure are only weakly coupled. In real systemdgpr [22]. Matrix elements in the golden rule basis were ob-
case(iv) can be only a propensity rule because the magnitained by applying the LKL inversion to the specfd,16|.
tudes of individual coupling constants;, . can vary sub- A single state|0) was assumed to carry the oscillator
stantially, and because higher-order contributions can exceeddrength. Convergence was established as a functidmdd
lower-order contributions as approaches 1. If matrix ele- ensure that long-time dynamics was not affected by trunca-
ments zero due to symmetry are excluded, cése¢ is  tion of the energy window. In all cases therefdr€ A w.
obeyed by over 90% of matrix elements in a typical lattice Superimposed on a smoof(t) decay, a local random
phonon or molecular Hamiltonian with realistic parametermatrix ensemble will show fluctuations or “quantum beats.”
choices[17]. Although these are interesting in their own righif7], here
The correlation among matrix elements introduced bywe are mainly concerned with the long-time behavior of the
cases(ii) and (iv) makes the BSTR model a local random average envelope. In order to highlight the average decay
matrix model. It should be noted that these correlations arehehavior of P(t), a Gaussian smoothing function of full
if anything, weak compared to real quantum systems modwidth t/10 was applied to all computed decays to remove
eled by Eq(8). Additional correlations exist in such systems small high-frequency quantum beats frddft). The same
because the magnitudes of the couplings vary for a given  smoothing was applied to all decays, whether nonexponen-

B. Numerical results
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1 o —— smoothed P(t) -
TR, e best fit exponential 100x10
0.1 === best fit power law 80

®=41)

Wyl
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FIG. 4. Survival probability of a typical BSTR matrix with the 0
parameters shown in Table |. The power-law fit of the decay is 6 4 2 0 2 4 6
superior to a weighted exponential fit. Energy gap (2r/t)

FIG. 6. Absolute value of matrix elementg, in the “golden
tial (e.g., Fig. 4 or exponential(e.g., Fig. 10. The time rule” representation corresponding to Figs. 4 and 5.
window was chosen sufficiently small so as not to affect the
average functional form of the faster exponential decays at
time t on time scales>t/10.

Constraint(ii) indicates that the phasésigng of the ma-
trix elements were chosen randomly-as. Simulations with )
several randomly chosen sets of phases, but which kept theéements are of course not conﬂng daie-0. H°We"ef' re-
magnitudes of matrix elements unchanged, showed that tHEONS of smaller and Iarger matrix elements persist: they
average decay of an ensemble and the average size of thnch together to form dips and peaks when plotted as a
fluctuations is unaffected by the detailed phase structure. Th&nction of zero-order state energy. Examination of the
exact pattern of fluctuations iR(t) varies upon phase ran- BSTR matncgs reveal_s that this stru‘c‘;ture is d,l,.le to Iocz_ahza-
domization, but is excluded from the figures by smoothing adion Of couplings, which produces “gateway” states into
discussed above. which the staté0) must first dephase before coupling to the

For all calculationsyV=1 was chosen so tha(t) lies 'emainder of the bath. Because the statistical structure of the

just above the delocalization threshold, and decays to thatrix is independent of the initial state chosen, these gate-

statistical limito at long timeg23,24.  All frequencies and Ways have their own gateways, and so on, leading to the
times are expressed in reduced unitsese 27/t; energy hierarchical organization of the time evolution and power-

scales are also expressed in units af/2 by using units in law decay. .
which=1. Why a slowed decay and not a faster-than-exponential

A representativé®(t) generated using the BSTR model is decay? The reason is that gateway states are statistically not

shown in Fig. 4. That calculation modeled a nine degree ofike!Y to occur at exactly» =0, but they are likely to occur in
freedom system, with 19500 basis states distributed in th(giee wmgshof the line shape_ thSta!@' Thel Iattferhls trule
energy window. Table | summarizes the parameters used fgiccause the gateway statifinethe time scale of the early-

this particular calculation, as well as the range of parameterdme dynamics, and hence the overall widthof the line

used in all calculations. The corresponding spectrum Comg,hape, at I_east in cases where Iow-or_der c_ouplings dominate
puted using the MFD theorem, and the golden rule represer€_dynamics. As a result, the coupling distribution of the
tation Hamiltonian coupling matrix elements obtained with BSTR ensemble on average f_ulﬁlls the rgquwer_nent of Fig. 3
the LKL inversion are shown in Figs. 5 and B(t) exhibits f_or a generalized Lorentzian line shape: couplings are more
an early exponential decay phase uft ol, followed by a likely to enhanced for & w<k than forw=0. The gateway

long-time nonexponential tail. A fit of the smoothed decaystates that correspond to regions of enhanced couplings in

confirms power-law behavior over a period roughly 10 timesthe gOIden rulg representation are clearly seen as pegks n the
pectrum in Fig. 5 and maxima in the correlated distribution

longer than the initial exponential phase. The best-fit poweF‘f -
law has an exponenrg of 4.1+ 0.3, showing that the matrix 0 V.OS n F'g'h6' he level ing distribut q
models a system already significantly above the localization F'9uré 7 shows the level spacing distribution, and cumu-

threshold[25]. (The largest possible value @fis N—1 in Iativehlevell ﬁpa(f;ing prqbability O(; g‘e dspg_ctrqtr)n ?n Fig. 5,
the case of quasimicrocanonical excitatjon. together with a it to an integrated Brody distribution

Energy-dependent correlations of the coupling strength
are clearly visible in the golden rul@GR) Hamiltonian in
Fig. 6. Unlike the simple model in Sec. Il, fluctuating matrix

B+2 (1+8)
12x10° W(s,B)= 1—e><pl’ — F(m) s/(s) ] (9)
2 8
§ for comparison(s) is the mean level spacing, atla frac-
=4 tional repulsion coefficient that tunes the distribution from
0 Poisson B=0) to Wigner (3=1). Level repulsion due to

T T T T T T
-6 -4 -2 0 2 4 6
Energy (2n/t)

the moderate-to-strong mixing limit and a much closer re-
semblance to the Wigner function than to a Poisson distrib-
uted spacing are clearly seen, with a value for fractional
FIG. 5. BSTR line shape corresponding to the dephasing dyfepulsion of 3=0.76. This is in keeping with the fact that
namics in Fig. 4. 6=4.1 lies above the localization threshold, but not at the
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Spacing distribution
Intensity
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Energy gap (2m/t)

Intensity

Brody (3=0.76)
- — - Poisson

T T T T T T
0 1 / 2 3 03 02 01 00 01 02 03
si<s> Energy gap (2n/t)

FI.G' 7.‘ L.eve_l spacing distributior@top) and inte_gra_ted level FIG. 9. Top, gray: another BSTR line shape modeling a ten-
spacing distributiotV(s) (bottom for the line shape in Fig. 5, best dimensional quantum system. The solid curve is the best-fit gener-

fitted by a Brody distribution with3=0.76. alized Lorentzian with6=8=*1. Bottom: line shape recalculated
after shuffling the matrix elements in the “golden rule” basis;
maximal value corresponding to loss of all good quantum=« fits best.
numbers. AsV in Table | approaches 0, a Poisson distribu-
tion is recovered.
As one might expect, the intensity distribution of the

random matrices. Is a simple sparse matrix sufficient to ob-
R =~ serve slow long-time dynamics? The correlations in the
spectrum in Fig. 5 r?ea_rly f_ollows a Porte_r-Thomas d"Q’tr'bu'BSTR model can be destroyed in several increasingly subtle
tion (Fig. 8. The distribution appears slightly depleted atways.
very large intensities, but these are most sensitive 10 the' oo gjger first the reduction of the BSTR Hamiltonian to
proper .scahng of the line-shape envelope, which is not Fhe assumption of statistically uncorrelatég usually made
Lorent2|a_n her(_a. _ . . when the golden rule is applied. This can be achieved by
The size d|str|_buF|on of matrlx elementSys in the randomly shuffling thé/,s shown in Fig. 6, and rediagonal-
“golden rule” basis is Gaussian foVoq|)0.05Vos|. (FOr  jzing the Hamiltonian in the “golden rule” representation.
smaller values the distribution cannot be accurately deterSwitching the couplings leaves the, and matrix element

mined from the present calculations due to rounding errors iRjze djstribution unchanged, so that whatever differences are
the LKL inversion) The Gaussian distribution is usually as- gpserved in the corresponding spectrumPgt) can be at-

sumed when applying the golden rule to the random simulagiy ted only to correlations among the, andVo.. P(t)

ti(_)n _of spectra, yi_elding an exponenti_al_. The matrix_ elem_entand Vo, as a function of energy for the thus randomized
distribution alone is therefore not sufficient to explain devia-j5miitonian are shown in Fig. 1@(t) now fits an exponen-

tions frolrln exrp])onential dynamki]cs. oh tial decay very well. Nearest-neighbor level spacing statistics
Not all of the members of the BSTR ensemble have gateyq ;i fitted by a Brody distribution witl8=0.74, indicat-

ways as obvious as 'Fhe one in Fig. 4. Figur(atdp) shows ing that in the “golden rule” basis representation of the
the line shape associated with a calculationf6r 10. De-  ggrR Hamiltonian, the level repulsion is already fully en-

spite its smoother appearance, this line shape still has Iar%ded in the eigenvalues,, not in the coupling®/,,. This
coupling fluctuations. It fits best th s, with §=8=1, in ’ 0s

close accord with the fi(not shown obtained for itsP(t),

- 4 0 4
10* 107 107 Energy gap (2m/t)
Intensity

which yields §=7.1+ 1. 9 —P0)
The question remains of how sensitive the long-time de- 01 =+- exponential
cays are to the correlations present in the ensemble of local P(1)
0.01 -
g 3 0.001 vy T - :
5 ] 0.1 1 10 100
=] b t
g 10 8x10-2
g ; IVOsl j :
= p
g 2
— O—

FIG. 10. Survival probabilitftop) and absolute value of matrix
FIG. 8. Intensity distribution for the spectrum in Fig. 5. The elements/y (bottom corresponding to Figs. 4 and 6 after shuffling
solid curve is the Porter-Thomas distribution. of the Vs in the “golden rule” basis.
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FIG. 11. Survival probabilitftop) and absolute value of matrix
elements/ (bottom corresponding to Figs. 4 and 6 after shuffling
BSTR matrix elements;; save those connecting to the initial
state|0).

8 -4 0 4
Energy gap (2m/t)
FIG. 12. Survival probabilitftop) and absolute value of matrix
elements/ (bottom) corresponding to Figs. 4 and 6 after shuffling
%STR matrix elementhij>Va2, save those connecting to the ini-
tial state|0).

8

shows that nearest-neighbor level statistics alone are not
good predictor of the nature of the long-time dynamics.

The effect of randomizing th&/ys can be equally well
illustrated using the spectral line shape instead of the tempo- |v. DISCUSSION AND EXPERIMENTAL EXAMPLES
ral decay. For the\'=10 calculation mentioned earlier, Fig.
9 (bottom shows the line shape obtained when thg cor- A simple intuitive picture can be given for the results
responding to the BSTR line shape in Fig. (®p) are  obtained in Sec. Ill. Quantum diffusion in av-dimensional
shuffled in the golden rule representation. The shuffled lingtate space could in principle always be a power-law process.
shape is best fitted by a Lorentzian, not the small value oHowever, the simulations show that the evolving wave
6=8=1 of the original BSTR line shape. packet probes the effective diffusion dimensidonly when

The correlations resulting from the BSTR model can bethe Hamiltonian can be brought into a locally coupled form.
destroyed more subtly by randomizing the BSTR matrix it-Otherwise, the dynamics remain exponential even for a
self. In the following two examples, the elemehts of the  sparse matrix, corresponding to an effectively infinite-
BSTR matrix in Figs. 5—7 have been shuffled, except for thelimensional diffusion manifold.
elementshy, directly coupling the initial statg0). Any The finite § arises because the HLRM structure of the
changes in the dynamics are therefore not simply due t8STR Hamiltonian mimics the preservation of a local set of
changing the “gateway” states, but rather to the hierarchicalpproximately conserved quantum numbers. Conditi@ns
structure of states not directly connected|® Figure 11  and (iv) define a rudimentary state space by introducing a
shows P(t) and Vo for the case where thlj; has been distance measurg;;. Of course, a single distance measure
shuffled by randomly reassigning and j. The resulting cannot map out all the coupling anisotropies that may be
BSTR matrix no longer satisfies the triangle rule. Again, anpresent in the full state space of Addimensional quantum
exponential decay results. No significant correlations remaigystem. Nonetheless, conditiofis) and (iv) prevent direct
among theVs in this case, just as in Fig. 10. The Brody flow to far away parts of the quantum state space, and
distribution approacheg=0.99, nearly that of a Gaussian dephasing of the wave packet is retarded. Above the full
orthogonal ensemble. This is to be expected for a simpléocalization threshold giV=1, the state space of the BSTR
sparse global random matrix with sufficiently strong cou-model remains connected, so an evolving wave packet can
plings. Matrix sparsity alone cannot encode the correlationgventually sample it. The structure of the BSTR Hamiltonian
that result from a Hamiltonian such as H§) or its more  cannot prevent statistical coverage of the state space by a
weakly correlated BSTR model approximatiofsand(iv).  wave packet at infinite time.
A similar result is obtained by simply decreasing the vari- The BSTR model does not encode any of the details of
ance of the matrix elements; by lettinga— 1. the locally conserved quantum numbers. Thus, power-law

The triangle rule in casév) can be broken in an even dephasing is expected in actual physical systems even in
more subtle fashion. Figure 12 shoRét) and theVos when  cases when the approximately conserved gquantum numbers
only thevaluesof theh;; above a certain threshold have beenare strongly dependent on the location in state space. In such
randomized, but not the locationg themselves. This leaves a case the evolving wave packet is embedded in a manifold
the connectivity of the BSTR matrix unchanged, but destroysf dimension less thav” but which nonetheless connects
the triangle rule for the largest matrix elemeri®$t) is again  arbitrary regions of phase spadén action space, such a
nearly exponential, and only weak correlations on a largemanifold would be labeled fractal of dimensidhand per-
energy scale than in Fig. 6 persist among thg. In this  haps such a label is useful even for a discrete quantum state
case, the Brody distributiond=0.85) is intermediate be- space.
tween the original and randomly shuffled BSTR matrix. In the BSTR model, the multiple time scales of the
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FIG. 13. NMR spectrunitop) and corresponding(t) (bottom Time (ps)
of the protein human ubiquitin. The spectrum was acquired,@ D FIG. 14. Experimental spectrum of the molecule SG@ith six
solution at 1 mM protein concentration on a 500-MHz NMR. vibrational modes(top), and quantum dynamics for a randomly

chosen initial vibrational stat233222 computed from the experi-

power-law decay cannot be attributed to a specific set ofnentally derived Hamiltoniafbottomn).
guantum numbers or resonances that initiate population
transport in state space. In real physical systems such as the
ones discussed below, one could inquire which conservegpm on the scale of Fig. 13; the number of solvent degrees of
quantum numbers or local sets of conserved quantum nunfreedom interacting with ubiquitin is too large for the corre-
bers are specifically responsible for the various stages afponding generalized Lorentzian to be distinguished from a
P(t). The answer to this question will provide much deeper_orentzian line shapg.
knowledge about the mechanism of dephasing and quantum Another example is shown in Fig. 14: we have recently
transport in real systems, and remains to be studied in detagtudied the sequence of eigenstates corresponding to the

The requirements embodied in E@) are quite general. quantized vibrational motions of th&=6 molecule SCGI
This raises the question as to whether power-law decays cd8,26]. The hierarchical structure of the experimental spec-
be deduced from experimentally observed spectra. One sugfum in Fig. 14 is evident, and indicative of a localized cou-
set of spectra is furnished by coupled nuclear sgjrsl/2,  pling structure ofH up to energies where the molecule dis-

interacting in the isotropically averaged limit via the Hamil- sociates. In fact, the experimentally determined Hamiltonian
tonian

unrandomized

n
H=Bin (1*(Ti)5iz+2, JijSizSjz (10

1 absorption
(arbitrary units)

where the’ in the summation indicates that only nearest
neighbors can interaci, is a result of variations in the local 0
spin environment. Although E¢10) corresponds to coupled 2.1 E(eV) 26
two-level systems, not to a set of coupled oscillators such as
Eq. (8), similarities abound: the two-level nature introduces

strong anharmonicity, and nearest-neighbor interactions in-
troduce a local structure to the Hamiltonian. Equatitm)

can be approximately realized by the proton NMR spectrum
of a large molecule tumbling freely in a solvent. Figure 13

randomized
(0.06 eV max)

1, absorption
(arbitrary units)

shows a proton nuclear magnetic resonance spectrum of the 21 E(eV) 2.6
protein ubiquitin, which contains over 150 protons. In such a 1+ ,
molecule, only spins in direct contact, or connected by a 0.1 NG
bridge of exactly two heavier atoms, can interact signifi- 4 )
cantly. TheP(t) derived from the spectrum via P(®) |

P(t)ZJ de do'l(w)l(o")cog[w—w']t) (11) 1074, N

]
- G 1 ot(ts) 10
in Fig. 13 has a power-law tail, indicative of the locally
coupled nature oH in Eq. (11). (The tail has nothing to do FIG. 15. Vibrational absorption spectrum of tige electronic
with the dephasing induced by the solvent, which causes state of } (top); the shuffled version of the spectrumiddle), and
purely exponential response resulting from linewidtt3.01  the corresponding survival probabilitigsottom.
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for this system has exactly the structure of E&).[26] and is responsible for the slow decay heféis the rotational and
satisfies the constraints in cag@s-(iv) with good accuracy v the vibrational quantum number, and thg,, decrease
[17]. Figure 14 also shows tHe(t) derived from a quantum rapidly with n andm.) Such correlations do not usually exist
dynamics calculation with a randomly chosen initial state,among the frequencias,, of the zero-order HamiltoniaH ,
using a Hamiltonian fitted to the experimental spectf  in Eq. (8), but when they exist, must be taken into account in
The dephasing decay is well approximated by a power |aV&ssessing power-law decays.

with 6~3 at longer timeg(but levels off at the statistical |5 conclusion, a local random matrix that satisfies an ex-
limit). Even at energies of more than 1 étte characteristic onential scaling lawanda localization criterion such as the
energy scale in Eq8) is w;=0.037-0.14eV)dis smaller  yiangle rule for its off-diagonal matrix elements, produces a
than the maximum possible value 5, indicating two Ioca"yslower-than-exponential dephasing of quantum wave packets
conserved good quantum nL_Jm_be(r‘Ehe fact that th_e SPEC™ hefore the statistical limit is reached. Elimination of either
trum does decay to the statistical value at long times |nd|—the scaling property or the triangle rule reverts the dynamics

cates that they are only locally conserved. ; ; .
. ._to simply exponential. The structure of the matrix apparently
It should be noted that slow long-time decays can arise .~ . .
imics the conservation of local good quantum numbers.

even from a completely regular system if there are strong{}1 . .
correlations among the parameters of the Hamiltonian. Con- arious types of spectroscopies O.f molecular systems reveal

sider the rovibrational spectrum of the diatomic molecyle | POWer-law behavior consistent with the HLRM model. In-

in the B electronic statd27,28. Figure 15 illustrates the deed, molecular spectroscopy provides an ideal tool for the

spectrum and correspondin’%;;(t). In the second spectrum study of mesoscopic systems and their dephasing or decoher-
the line positions have been raﬁdomized 9.06 eV. The ence properties because large numbers of transitions can usu-

correspondind?(t) progresses from a power law to a simple ally be observed in such spectra.

exponential with increasing randomization. A randomization

of =0.03 eV is required to recover an exponential decay; this

is on the scale~0.03 eV of the vibrational frequency of the ACKNOWLEDGMENTS
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