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Nonexponential dephasing in a local random matrix model
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Deviations from exponential decay dynamics have been proposed for a wide variety of systems in high-
energy, atomic, and molecular physics. This work examines the quantum dynamics of a simple hierarchical
local random matrix model. The hierarchical structure is imposed by two physically motivated constraints: an
exponential size scaling of matrix elements, and a quantum number ‘‘triangle rule,’’ which introduces corre-
lations in the quantum-state space by mimicking the nodal structure of wave functions in a coordinate Hamil-
tonian. These correlations lead to a systematic slowing of dephasing dynamics compared to exponential
decays. A generalized Lorentzian line shape is introduced as the Fourier transform of a polynomial survival
amplitude to describe the average behavior of these decays. The model is brought into a representation that can
be compared directly with the golden rule. In this representation, the deviations from exponentiality
arise from energy-dependent correlations among the coupling matrix elements that persist even for large
systems. Finally, the effects of relaxing the size scaling and ‘‘triangle rule’’ constraints are studied. Sparsity
of the random matrix alone is not sufficient to produce slow asymptotic dynamics; both types of constraints
are required.
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I. INTRODUCTION

The relaxation of a quantum state coupled to a de
manifold is often approximated by an exponential decay
the initially prepared state. Such approximate models incl
the Redfield equations and the first-order golden rule. Exa
nation of real physical situations shows that in many circu
stances, the actual decayP(t) becomes nonexponential be
fore the asymptotic value ofP(t) is reached. Example
include certain autoionizing atomic states@1#, asymptotic de-
cays in field theories studied by nonperturbative approac
@2#, decoherence of spin-boson systems at low tempera
@3#, or for certain Kondo parameters@4#, diffusion of wave
packets corresponding to molecular vibrational motio
@5,6#, and dynamics of kicked rotators@7#. Asymptotically,
these phenomena are best described by a power lawP(t)
;t2d/2 instead of an exponential function.~The factor of 1/2
is included in the exponent if one wishes to make a conn
tion to the classical theory of diffusion processes.!

The existence of nonexponential dephasing has po
tially important physical implications. For scalar fields pr
ducing bosons, it can lead to dynamical multiparticle co
densation@2#. In quantum computing, asymptotically slo
increase of incoherence due to a bath could extend the
poral limits of computability. In molecules, slow dephasi
of the vibrations allows the possibility of controlling the r
activity through coherent laser excitation@8,9#.

The temporal hierarchy of a power law implies a hier
chical structure of the underlying Hamiltonian@10–12#,
which in turn implies a hierarchical structure of its matr
representation. Although exponential decay can be stu
by global random matrices@13#, power laws require a hier
archical local random matrix~HLRM! as a minimal model.
Such models arise quite naturally in the study of ma
dimensional quantum systems. For example, the chem
bonds in molecules are often highly localized and can
1050-2947/2001/63~2!/022502~9!/$15.00 63 0225
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approximated by coupled electron pairs. Vibrational ene
is therefore locally transferred through the lattice of molec
lar bonds, connecting the atoms@5#; the nominal connectivity
of this lattice is quite low~usually 1–4 bonds per atom i
organic molecules!.

We investigate the minimal requirements that a HLR
model must satisfy in order to produce asymptotically sl
dephasing dynamics of quantum wave packets propag
under the HLRM. As it turns out, a HLRM model introduce
energy-dependent correlations among the amplitudes
states of the spectrum that represents the quantum sys
The local structure of the matrix ensures that these corr
tions do not die off as the size of the quantum system
increased, so spectral correlations persist even in mul
mensional quantum systems@14#.

Section II introduces some preliminaries needed in
analysis of our HLRM model. A generalized Lorentzian lin
shape is introduced that corresponds to power-law decay
the time domain. It is chosen to yield an exponential deca
the limit d→`, thereby making it a useful unbiased fittin
function for spectral representations of the HLRM. T
Lawrance-Knight-Lehmann ~LKL ! inversion procedure
@15,16# is used to see how this line shape affects ma
element distributions in a ‘‘golden rule’’ basis. Finally,
simple example of matrix randomization shows how the
moval of spectral correlations reduces the stretched dyn
ics to simple exponentials. Section III discusses our HLR
the previously defined Bose-statistics-triangle-rule mo
~BSTR! @17#. This model uses simple rules for the constru
tion of an ensemble of Hamiltonian matrices. The rules w
chosen because they are approximately obeyed by a num
of real physical systems. The model produces initial ex
nential deflation of the survival probability of nonstationa
states, followed by slow asymptotic dynamics as the wa
packet reaches the ‘‘statistical limit.’’ A numerical study o
BSTR quantum dynamics is presented, together with an
©2001 The American Physical Society02-1
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VANCE WONG AND MARTIN GRUEBELE PHYSICAL REVIEW A63 022502
amination of the effect of relaxing the model’s rules. T
model is also examined in a ‘‘golden rule’’ basis, allowin
us to study the spectral correlations directly, and the con
quences of destroying such correlations. Section IV d
cusses these results, and presents some experimentally
ied examples that range from nuclear magnetic resona
spectra of proteins to vibrational spectra of highly excit
molecules.

II. PRELIMINARIES

A. Spectrum and time evolution

Quantum systems such as molecules, semiconductor
nuclei are usually studied experimentally via their spec
To establish a link with experiment, we therefore consid
the asymptotic dynamics from the point of view of the spe
trum I (v), or of the time-dependent decayP(t) of an ini-
tially prepared state. Consider a bound quantum system
HamiltonianĤ, spectrum$v«%, and dipole operatorm̂. Let
the system initially be in a stateug&. Interaction with a weak
frequency-tunable field allows population of excited eige
statesue& of Ĥ with intensity proportional to

I ~v!5(
e

z^eum̂ug& z2d~v2ve!. ~1!

The summation notation assumes a finite density of st
~although in practice a potentially very large one!. Equation
~1! neglects radiative decay or other couplings external to
system~hence thed function in the summation!. Neverthe-
less, processes describable as relaxation or dephasing
occur within the system as follows. The magnitude of t
coupling amplitudeŝ eum̂ug& may be peaked in a spectr
region Dv covering a large number of eigenstatesue&: the
spectrum in this region contains a line shape. Associa
with that line shape is a stateu0& located atv0 . u0& is ob-
tained by defining a distorted initial stateuf&5m̂ug&, and a
projection operatorP5S8ue&^eu summing over the interva
Dv, such thatu0&5Puf& @18#. u0& is the state that carries th
oscillator strength in the regionDv, and it is nonstationary
Its survival probability is given by

P~ t !5 z^0ue2 iHt /\u0& z25 z^0ut& z2. ~2!

Experimentally, one could excite this state with a sho
chirp-free optical pulse centered atv0 and of bandwidth
greater thanDv. P(t) decreases as this initial state depha
according to Eq.~2!. Alternatively, one could speak of relax
ation of population out ofu0& into an orthogonal manifold
$us&% in the intervalDv. The line shapeI (v) is related to the
survival amplitudê 0ut& by Fourier transform.

The stateu0& and its orthogonal ‘‘dark’’ manifold$us&% are
easily constructed from theN eigenvaluesve and intensities
I e5 z^eum̂ug& z2 in the intervalDv via the LKL inversion. In
the resulting ‘‘golden rule’’ representation, the initial sta
u0& is coupled byN21 coupling constantsV0s to a prediago-
nalized manifold ofN21 statesus& at vs . If the vs andV0s
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are sufficiently randomly distributed, the well-known resu
from first-order time-dependent perturbation theory is
golden rule

P~ t !5~12s!e2kt1s, ~3a!

k52pr^V0s& rms
2 /\. ~3b!

The constants arises if the density of statesr is finite be-
causeP(t) cannot decay to an average value lower than
number of statesue& under the spectral envelope;^ & rms indi-
cates a root-mean-square average.

The line shape that corresponds to Eq.~3a! ~with the long-
time average removed! is a Lorentzian

L`5
p21k/2

~k/2!21v2 , ~4!

centered in the intervalDv at v050 for convenience. One
possible deviation from this line shape results from spec
truncation, i.e., if the intervalDv is not sufficiently much
larger thank. Indeed, such truncation effects are a ma
source for the deviation of certain atomic autoionizati
spectra from Eq.~4! @1#. In this paper we are not concerne
with truncation effects, but correlations betweenvs andV0s
instead.

B. Generalized Lorentzian

Instead of Eq.~3a!, consider an asymptotic power-law
decay

P~ t !5~12s!S 11
2kt

d D 2d/2

1s. ~5!

This approaches Eq.~3a! in the limit d→`. The correspond-
ing line shape will be termed a generalized LorentzianLd/2
and is given by~after eliminating the long-time average!

Ld/25
1

p E
0

1`

dt cos~vt !~112kt/d!2d/4. ~6!

One can immediately see that the generalized Lorentz
must go to Eq.~4! in the limit of an infinite exponent. Equa
tion ~6! is easily expressed in terms of trigonometric int
grals and powers ofv. For example,

L4~x52v/k!5sin~x!/k22Si~x!sin~x!/pk

22Ci~x!cos~x!/pk. ~7!

Figure 1~top! shows a Lorentzian and a generalized Lore
zian for the cased58. As expected from the slower long
time dynamics,L4 is more sharply peaked toward the cen
of the spectrum than the Lorentzian, and smaller at interm
diate energy gaps. Asymptotically, all functionsLd/2 have a
leading term proportional tov22, and hence a long spectra
tail. The slow decay dynamics of Eq.~5! are therefore not
associated with a narrowing of the spectrum at large ene
gaps ~bottom!. The logarithmic derivatives of allLd/2 ap-
proach zero at the line center, although the line shape
2-2
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NONEXPONENTIAL DEPHASING IN A LOCAL RANDOM . . . PHYSICAL REVIEW A63 022502
have a pronounced cusp for small values ofd. The time
domain decays corresponding to Fig. 1 are shown in Fig

What type of Hamiltonian in the energy rangeDv gives
rise to slowed dynamics? This can be answered by appl
the LKL inversion to the spectra in Fig. 1, converting the
to the prediagonalized golden rule representation. Figur
shows that the Lorentzian results in the expected picket fe
form of V0s , without a dependence of the off-diagonal e
mentsV0s on the energy gap from the initial state. By co
trast, the generalized Lorentzian yields a Hamiltonian
which the coupling strength is depleted toward the cen
The dependence ofV0s on the energy gap is approximate
given by a stretched exponential, whose widthW and ampli-
tude are inversely related tod. W and the rms coupling
strengthVrms5$SsuV0s

2 u%1/2 must be of comparable magn
tude in order to yield power-law dynamics. In the limitW
→0, as well as in the limitW@k, simple exponential dy-
namics are recovered. The correlation length~on the energy
axis! of coupling constants must therefore be comparable
the linewidth, or no deviations from exponential decay c
occur.

The asymptotic power-law behavior can therefore be
stroyed if the energy-dependent correlation amongV0s is re-
moved by shuffling matrix element positions in the Ham
tonian on a scale comparable to the linewidth. This will

FIG. 1. Intensity vs frequency~in units of 2p/t) plots for L`

and L4 line shapes. Randomizing the matrix elementsV0s corre-
sponding toL4 as shown in Fig. 3 yields a line shape best fitted
L` . Upper plot, linear scale; lower plot, log scale.

FIG. 2. Survival probabilitiesP(t) corresponding to the line
shapes in Fig. 1.
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used in Sec. III to illustrate which part of the slow dynami
is due to the intrinsic structure of the random matrix Ham
tonian, rather than to noise inP(t) resulting from the random
choice of matrix elements. It is also illustrated for the simp
example discussed here in Figs. 1–3. Figure 3 shows a
dom distribution ofV0s obtained by shuffling theL4 matrix
elements shown in the same figure, redistributing the sma
V0s from a windowW to the overall windowDv. Figure 1
shows that the spectrum obtained by diagonalization n
matches the Lorentzian line shape. Figure 2 shows that
resultingP(t) approaches an exponential decay with a lar
baselines. ~The calculations were carried out with a fini
number of spectral points; the larger value ofs observed for
the shuffled matrix elements is actually the statistically e
pected one at the density of statesr we used; thes is small
in the two smooth decays because the evenly spaced freq
ciesvs lead to a coherent addition of the cosine basis fu
tions of the decay.!

The sensitivity of the long-time dynamics to the assum
tion of uncorrelated couplings is apparent from the abo
examples. It remains to be seen under what circumstance
‘‘uncooked’’ model Hamiltonian yields slowed dephasin
We therefore depart from the rather idealized golden r
representation, and investigate a physically motiva
HLRM model of dephasing next.

III. DEPHASING IN A LOCAL RANDOM
MATRIX MODEL

A. The BSTR model

The Bose statistics triangle rule model is a local rand
matrix model similar to one originally devised to study th
dephasing of highly excited molecular vibrational states@17#.
The constraints imposed by it on the Hamiltonian are qu
generic, and are approximately satisfied in many real s
tems. The model is defined as follows in terms of its mat
elementshi j :

~i! The hii are Poisson-distributed with average ener
spacingDE.

~ii ! hi j 56Vani j ~random signs!.
~iii ! ni j is normal-distributed with meann̄5E/v̄ and vari-

ancesn
252E/Nv̄2.

~iv! For any tripleti,j,k, uni j 2njku<nik<uni j 1njku.
V, a, E, DE, N, andv̄ are model parameters. The physic
motivation of the model is as follows. Let a quantum syste
of N, oscillators have a Hamiltonian of the form

FIG. 3. Absolute value of matrix elementsV0s in the ‘‘golden
rule’’ representation corresponding to the line shapes in Fig. 1.
2-3
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H5 (
m51

N H 1

2
pm

2 1
\

4
vmqm

2 J 1
l

3! (
m,p,r 51

N
vmprqmqpqr

1H21lH31l2H41¯1ln22Hn1¯ . ~8!

The unitless coordinates are given by ladder operators
qm5bm

† 1bm . H2 has Poisson-distributed eigenvalues in a
interval Dv at sufficiently high energyE, as long as the
oscillator frequencies are distributed over a sufficiently w
range@19#. The eigenfunctions ofH2 in the rangeDv at E
have Bose-Einstein distributed quantum numbersnm in each
degree of freedomm. As a consequence of the central lim
theorem, this results in a normal distribution of the to
quantum number differenceni j 5Smunim2njmu between two
states, whenN is sufficiently large@17#. The mean and vari-
ance of this distribution depend on the energyE, dimension-
ality of the systemN, and harmonically averaged freque
ciesv i as shown in cases~i! and ~ii ! @17#. Equation~8! is a
good model for many systems, such as lattice phonons,
lecular vibrations, coupled excitons, or any discretized bo
field theory.

The locality of the BSTR model arises from the two co
straints @~ii ! and ~iv!#. Both of these introduce average
knowledge about the nodal structure of eigenfunctions ofH2
into the BSTR matrix structure. First, because the coup
terms are smooth coordinate functions, coupling matrix e
ments drop off with ordern by a constant factora on aver-
age. In other words, the overlap between two eigenfuncti
ui& and uj& of H2 and of a smooth coordinate function d
creases exponentially withni j , the total quantum numbe
difference between the wave functions. Second, becaus
the triangle rule in constraint~iv!, couplings among triplets
of states are correlated. Strong couplings tend to occu
groups, and weak couplings tend to occur in groups: case~iv!
states that if one of two strongly coupled states is stron
coupled to a third state, the other one is also likely to
strongly coupled to the third state; if not, the second one
also likely not to be coupled to the third state.

For sufficiently smalll, and if all potential constants
v i jk ... of a given ordern were identical, the triangle rule
would be exactly obeyed by any Hamiltonian of the form~8!.
It is a simple consequence of the fact that wave functi
with similar nodal structure are strongly coupled by a smo
coordinate function, while wave functions with very diffe
ent nodal structure are only weakly coupled. In real syste
case~iv! can be only a propensity rule because the mag
tudes of individual coupling constantsv i jk ... can vary sub-
stantially, and because higher-order contributions can exc
lower-order contributions asl approaches 1. If matrix ele
ments zero due to symmetry are excluded, case~iv! is
obeyed by over 90% of matrix elements in a typical latt
phonon or molecular Hamiltonian with realistic parame
choices@17#.

The correlation among matrix elements introduced
cases~ii ! and ~iv! makes the BSTR model a local rando
matrix model. It should be noted that these correlations
if anything, weak compared to real quantum systems m
eled by Eq.~8!. Additional correlations exist in such system
because the magnitudes of the couplingsv i jk vary for a given
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order n. The sources of these variations are twofold. T
presence of symmetries constrain matrix elements m
strongly than constraint~ii !; for example, many matrix ele
ments predicted by constraint~ii ! to be nonzero may in fac
be zero due to symmetry. The very lack of symmetry c
have a similar effect: by replacing the couplings among d
ferent modes by a single constantV, constraint~ii ! implies
that a coupling such asvmpr is a geometric mean of the
couplingsvmmm vppp and v rrr . In real systemsvmpr will
usually be smaller because the modes are partially local
due to defects or other reasons for the low symmetry ofH.
Therefore, larger variations in the coupling constantsvnmp...
than suggested by constraint~ii ! arise in real systems of low
or high symmetry.

The BSTR model is an excellent laboratory for studyi
deviations of dephasing line shapes from Lorentzians cau
by weak correlations among matrix elements. Is nonex
nential dephasing observed, and if so, how is it affected if
constraints in cases~i!–~iv! are relaxed, turning BSTR into a
sparse global random matrix?

B. Numerical results

The dephasing of an initial state evolving under the BS
Hamiltonian was studied for a variety of models summariz
in Table I. Time-independent calculations were carried
by combining the matrix-fluctuation-dissipation~MFD! algo-
rithm with Lanczos iteration to yield spectra@20,21#. Time-
dependent propagations of an initial state were perform
using the shifted-update-rotation~SUR! symplectic propaga-
tor @22#. Matrix elements in the golden rule basis were o
tained by applying the LKL inversion to the spectra@15,16#.
A single state u0& was assumed to carry the oscillat
strength. Convergence was established as a function ofDv to
ensure that long-time dynamics was not affected by trun
tion of the energy window. In all cases thereforek!Dv.

Superimposed on a smoothP(t) decay, a local random
matrix ensemble will show fluctuations or ‘‘quantum beats
Although these are interesting in their own right@17#, here
we are mainly concerned with the long-time behavior of t
average envelope. In order to highlight the average de
behavior of P(t), a Gaussian smoothing function of fu
width t/10 was applied to all computed decays to remo
small high-frequency quantum beats fromP(t). The same
smoothing was applied to all decays, whether nonexpon

TABLE I. Parameters used for the BSTR model calculation
Figs. 4–8, as well as the range sampled in a sequence ofx calcula-
tions used to sample the statistics of the BSTR model.

V/\v̄ 8.331024 2.331024– 1.731023

a 0.25 0.2–0.3
N 19 500 11 250–57 750
E/\v̄ 13 1.5–23
DE/\v̄a 2.631026 1.231026– 4.831026

N 9 6–15

aHere we treatDE as an independently adjustable model parame
Strictly speaking, the density of statesr5DE21 is not independent
of v̄, N, and E, but is rather given by r5AN G(E/v̄
1N )/$G(E/v̄)G(N )v̄% @29#.
2-4
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NONEXPONENTIAL DEPHASING IN A LOCAL RANDOM . . . PHYSICAL REVIEW A63 022502
tial ~e.g., Fig. 4! or exponential~e.g., Fig. 10!. The time
window was chosen sufficiently small so as not to affect
average functional form of the faster exponential decay
time t on time scales.t/10.

Constraint~ii ! indicates that the phases~signs! of the ma-
trix elements were chosen randomly as61. Simulations with
several randomly chosen sets of phases, but which kep
magnitudes of matrix elements unchanged, showed tha
average decay of an ensemble and the average size o
fluctuations is unaffected by the detailed phase structure.
exact pattern of fluctuations inP(t) varies upon phase ran
domization, but is excluded from the figures by smoothing
discussed above.

For all calculationsrV*1 was chosen so thatP(t) lies
just above the delocalization threshold, and decays to
statistical limits at long times@23,24#. All frequencies and
times are expressed in reduced units sov52p/t; energy
scales are also expressed in units of 2p/t by using units in
which \51.

A representativeP(t) generated using the BSTR model
shown in Fig. 4. That calculation modeled a nine degree
freedom system, with 19 500 basis states distributed in
energy window. Table I summarizes the parameters used
this particular calculation, as well as the range of parame
used in all calculations. The corresponding spectrum co
puted using the MFD theorem, and the golden rule repres
tation Hamiltonian coupling matrix elements obtained w
the LKL inversion are shown in Figs. 5 and 6.P(t) exhibits
an early exponential decay phase up tot51, followed by a
long-time nonexponential tail. A fit of the smoothed dec
confirms power-law behavior over a period roughly 10 tim
longer than the initial exponential phase. The best-fit pow
law has an exponentd of 4.160.3, showing that the matrix
models a system already significantly above the localiza
threshold@25#. ~The largest possible value ofd is N21 in
the case of quasimicrocanonical excitation.!

FIG. 4. Survival probability of a typical BSTR matrix with th
parameters shown in Table I. The power-law fit of the decay
superior to a weighted exponential fit.

FIG. 5. BSTR line shape corresponding to the dephasing
namics in Fig. 4.
02250
e
at

he
he
the
he

s

e

f
e
or
rs
-

n-

s
r

n

Energy-dependent correlations of the coupling stren
are clearly visible in the golden rule~GR! Hamiltonian in
Fig. 6. Unlike the simple model in Sec. II, fluctuating matr
elements are of course not confined tov'0. However, re-
gions of smaller and larger matrix elements persist: th
bunch together to form dips and peaks when plotted a
function of zero-order state energy. Examination of t
BSTR matrices reveals that this structure is due to local
tion of couplings, which produces ‘‘gateway’’ states in
which the stateu0& must first dephase before coupling to th
remainder of the bath. Because the statistical structure of
matrix is independent of the initial state chosen, these g
ways have their own gateways, and so on, leading to
hierarchical organization of the time evolution and pow
law decay.

Why a slowed decay and not a faster-than-exponen
decay? The reason is that gateway states are statistically
likely to occur at exactlyv50, but they are likely to occur in
the wings of the line shape of stateu0&. The latter is true
because the gateway statesdefinethe time scale of the early
time dynamics, and hence the overall widthk of the line
shape, at least in cases where low-order couplings domi
the dynamics. As a result, the coupling distribution of t
BSTR ensemble on average fulfills the requirement of Fig
for a generalized Lorentzian line shape: couplings are m
likely to enhanced for 0,v,k than forv50. The gateway
states that correspond to regions of enhanced coupling
the golden rule representation are clearly seen as peaks i
spectrum in Fig. 5 and maxima in the correlated distribut
of V0s in Fig. 6.

Figure 7 shows the level spacing distribution, and cum
lative level spacing probability of the spectrum in Fig.
together with a fit to an integrated Brody distribution

W~s,b!512expH 2FFGS b12

b11D s/^s&G~11b!G J ~9!

for comparison.̂ s& is the mean level spacing, andb a frac-
tional repulsion coefficient that tunes the distribution fro
Poisson (b50) to Wigner (b51). Level repulsion due to
the moderate-to-strong mixing limit and a much closer
semblance to the Wigner function than to a Poisson dist
uted spacing are clearly seen, with a value for fractio
repulsion ofb50.76. This is in keeping with the fact tha
d54.1 lies above the localization threshold, but not at

s

y-

FIG. 6. Absolute value of matrix elementsV0s in the ‘‘golden
rule’’ representation corresponding to Figs. 4 and 5.
2-5
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VANCE WONG AND MARTIN GRUEBELE PHYSICAL REVIEW A63 022502
maximal value corresponding to loss of all good quant
numbers. AsV in Table I approaches 0, a Poisson distrib
tion is recovered.

As one might expect, the intensity distribution of th
spectrum in Fig. 5 nearly follows a Porter-Thomas distrib
tion ~Fig. 8!. The distribution appears slightly depleted
very large intensities, but these are most sensitive to
proper scaling of the line-shape envelope, which is no
Lorentzian here.

The size distribution of matrix elementsV0s in the
‘‘golden rule’’ basis is Gaussian foruV0su&0.05uV0su. ~For
smaller values the distribution cannot be accurately de
mined from the present calculations due to rounding error
the LKL inversion.! The Gaussian distribution is usually a
sumed when applying the golden rule to the random sim
tion of spectra, yielding an exponential. The matrix elem
distribution alone is therefore not sufficient to explain dev
tions from exponential dynamics.

Not all of the members of the BSTR ensemble have ga
ways as obvious as the one in Fig. 4. Figure 9~top! shows
the line shape associated with a calculation forN510. De-
spite its smoother appearance, this line shape still has l
coupling fluctuations. It fits best toLd/2 with d5861, in
close accord with the fit~not shown! obtained for itsP(t),
which yieldsd57.161.

The question remains of how sensitive the long-time
cays are to the correlations present in the ensemble of l

FIG. 7. Level spacing distribution~top! and integrated leve
spacing distributionW(s) ~bottom! for the line shape in Fig. 5, bes
fitted by a Brody distribution withb50.76.

FIG. 8. Intensity distribution for the spectrum in Fig. 5. Th
solid curve is the Porter-Thomas distribution.
02250
-

-
t
e
a

r-
in

-
t
-

-

ge

-
al

random matrices. Is a simple sparse matrix sufficient to
serve slow long-time dynamics? The correlations in
BSTR model can be destroyed in several increasingly su
ways.

Consider first the reduction of the BSTR Hamiltonian
the assumption of statistically uncorrelatedVi0 usually made
when the golden rule is applied. This can be achieved
randomly shuffling theV0s shown in Fig. 6, and rediagona
izing the Hamiltonian in the ‘‘golden rule’’ representation
Switching the couplings leaves thevs and matrix element
size distribution unchanged, so that whatever differences
observed in the corresponding spectrum orP(t) can be at-
tributed only to correlations among thevs and V0s . P(t)
and V0s as a function of energy for the thus randomiz
Hamiltonian are shown in Fig. 10.P(t) now fits an exponen-
tial decay very well. Nearest-neighbor level spacing statis
are still fitted by a Brody distribution withb50.74, indicat-
ing that in the ‘‘golden rule’’ basis representation of th
BSTR Hamiltonian, the level repulsion is already fully e
coded in the eigenvaluesvs , not in the couplingsV0s . This

FIG. 9. Top, gray: another BSTR line shape modeling a t
dimensional quantum system. The solid curve is the best-fit ge
alized Lorentzian withd5861. Bottom: line shape recalculate
after shuffling the matrix elements in the ‘‘golden rule’’ basis;d
5` fits best.

FIG. 10. Survival probability~top! and absolute value of matrix
elementsV0s ~bottom! corresponding to Figs. 4 and 6 after shufflin
of the V0s in the ‘‘golden rule’’ basis.
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shows that nearest-neighbor level statistics alone are n
good predictor of the nature of the long-time dynamics.

The effect of randomizing theV0s can be equally well
illustrated using the spectral line shape instead of the tem
ral decay. For theN510 calculation mentioned earlier, Fig
9 ~bottom! shows the line shape obtained when theV0s cor-
responding to the BSTR line shape in Fig. 9~top! are
shuffled in the golden rule representation. The shuffled
shape is best fitted by a Lorentzian, not the small value
d5861 of the original BSTR line shape.

The correlations resulting from the BSTR model can
destroyed more subtly by randomizing the BSTR matrix
self. In the following two examples, the elementshi j of the
BSTR matrix in Figs. 5–7 have been shuffled, except for
elementsh0i directly coupling the initial stateu0&. Any
changes in the dynamics are therefore not simply due
changing the ‘‘gateway’’ states, but rather to the hierarchi
structure of states not directly connected tou0&. Figure 11
shows P(t) and V0s for the case where thehi j has been
shuffled by randomly reassigningi and j. The resulting
BSTR matrix no longer satisfies the triangle rule. Again,
exponential decay results. No significant correlations rem
among theV0s in this case, just as in Fig. 10. The Brod
distribution approachesb50.99, nearly that of a Gaussia
orthogonal ensemble. This is to be expected for a sim
sparse global random matrix with sufficiently strong co
plings. Matrix sparsity alone cannot encode the correlati
that result from a Hamiltonian such as Eq.~9! or its more
weakly correlated BSTR model approximations~i! and ~iv!.
A similar result is obtained by simply decreasing the va
ance of the matrix elementshi j by letting a→1.

The triangle rule in case~iv! can be broken in an eve
more subtle fashion. Figure 12 showsP(t) and theV0s when
only thevaluesof thehi j above a certain threshold have be
randomized, but not the locationsi,j themselves. This leave
the connectivity of the BSTR matrix unchanged, but destr
the triangle rule for the largest matrix elements.P(t) is again
nearly exponential, and only weak correlations on a lar
energy scale than in Fig. 6 persist among theV0s . In this
case, the Brody distribution (b50.85) is intermediate be
tween the original and randomly shuffled BSTR matrix.

FIG. 11. Survival probability~top! and absolute value of matrix
elementsV0s ~bottom! corresponding to Figs. 4 and 6 after shufflin
BSTR matrix elementshi j save those connecting to the initia
stateu0&.
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IV. DISCUSSION AND EXPERIMENTAL EXAMPLES

A simple intuitive picture can be given for the resul
obtained in Sec. III. Quantum diffusion in anN-dimensional
state space could in principle always be a power-law proc
However, the simulations show that the evolving wa
packet probes the effective diffusion dimensiond only when
the Hamiltonian can be brought into a locally coupled for
Otherwise, the dynamics remain exponential even fo
sparse matrix, corresponding to an effectively infinit
dimensional diffusion manifold.

The finite d arises because the HLRM structure of t
BSTR Hamiltonian mimics the preservation of a local set
approximately conserved quantum numbers. Conditions~ii !
and ~iv! define a rudimentary state space by introducing
distance measureni j . Of course, a single distance measu
cannot map out all the coupling anisotropies that may
present in the full state space of anN-dimensional quantum
system. Nonetheless, conditions~ii ! and ~iv! prevent direct
flow to far away parts of the quantum state space, a
dephasing of the wave packet is retarded. Above the
localization threshold atrV51, the state space of the BST
model remains connected, so an evolving wave packet
eventually sample it. The structure of the BSTR Hamiltoni
cannot prevent statistical coverage of the state space
wave packet at infinite time.

The BSTR model does not encode any of the details
the locally conserved quantum numbers. Thus, power-
dephasing is expected in actual physical systems eve
cases when the approximately conserved quantum num
are strongly dependent on the location in state space. In s
a case the evolving wave packet is embedded in a mani
of dimension less thanN but which nonetheless connec
arbitrary regions of phase space.~In action space, such a
manifold would be labeled fractal of dimensiond, and per-
haps such a label is useful even for a discrete quantum s
space.!

In the BSTR model, the multiple time scales of th

FIG. 12. Survival probability~top! and absolute value of matrix
elementsV0s ~bottom! corresponding to Figs. 4 and 6 after shufflin
BSTR matrix elementshi j .Va2, save those connecting to the in
tial stateu0&.
2-7
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power-law decay cannot be attributed to a specific se
quantum numbers or resonances that initiate popula
transport in state space. In real physical systems such a
ones discussed below, one could inquire which conser
quantum numbers or local sets of conserved quantum n
bers are specifically responsible for the various stages
P(t). The answer to this question will provide much deep
knowledge about the mechanism of dephasing and quan
transport in real systems, and remains to be studied in de

The requirements embodied in Eq.~8! are quite general
This raises the question as to whether power-law decays
be deduced from experimentally observed spectra. One
set of spectra is furnished by coupled nuclear spinssi51/2,
interacting in the isotropically averaged limit via the Ham
tonian

H5Bz(
i

~12s i !siz1( 8
i , j

n

Ji j sizsjz , ~10!

where the8 in the summation indicates that only neare
neighbors can interact.s1 is a result of variations in the loca
spin environment. Although Eq.~10! corresponds to couple
two-level systems, not to a set of coupled oscillators such
Eq. ~8!, similarities abound: the two-level nature introduc
strong anharmonicity, and nearest-neighbor interactions
troduce a local structure to the Hamiltonian. Equation~11!
can be approximately realized by the proton NMR spectr
of a large molecule tumbling freely in a solvent. Figure
shows a proton nuclear magnetic resonance spectrum o
protein ubiquitin, which contains over 150 protons. In suc
molecule, only spins in direct contact, or connected by
bridge of exactly two heavier atoms, can interact sign
cantly. TheP(t) derived from the spectrum via

P~ t !5E dvE dv8I ~v!I ~v8!cos~@v2v8#t ! ~11!

in Fig. 13 has a power-law tail, indicative of the local
coupled nature ofH in Eq. ~11!. ~The tail has nothing to do
with the dephasing induced by the solvent, which cause
purely exponential response resulting from linewidths,0.01

FIG. 13. NMR spectrum~top! and correspondingP(t) ~bottom!
of the protein human ubiquitin. The spectrum was acquired in D2O
solution at 1 mM protein concentration on a 500-MHz NMR.
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ppm on the scale of Fig. 13; the number of solvent degree
freedom interacting with ubiquitin is too large for the corr
sponding generalized Lorentzian to be distinguished from
Lorentzian line shape.!

Another example is shown in Fig. 14: we have recen
studied the sequence of eigenstates corresponding to
quantized vibrational motions of theN56 molecule SCCl2
@5,26#. The hierarchical structure of the experimental sp
trum in Fig. 14 is evident, and indicative of a localized co
pling structure ofH up to energies where the molecule di
sociates. In fact, the experimentally determined Hamilton

FIG. 15. Vibrational absorption spectrum of theB̃ electronic
state of I2 ~top!; the shuffled version of the spectrum~middle!, and
the corresponding survival probabilities~bottom!.

FIG. 14. Experimental spectrum of the molecule SCCl2 with six
vibrational modes~top!, and quantum dynamics for a random
chosen initial vibrational stateu233222& computed from the experi-
mentally derived Hamiltonian~bottom!.
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for this system has exactly the structure of Eq.~8! @26# and
satisfies the constraints in cases~i!–~iv! with good accuracy
@17#. Figure 14 also shows theP(t) derived from a quantum
dynamics calculation with a randomly chosen initial sta
using a Hamiltonian fitted to the experimental spectrum@5#.
The dephasing decay is well approximated by a power
with d'3 at longer times~but levels off at the statistica
limit !. Even at energies of more than 1 eV~the characteristic
energy scale in Eq.~8! is v i50.037– 0.14 eV),d is smaller
than the maximum possible value 5, indicating two loca
conserved good quantum numbers.~The fact that the spec
trum does decay to the statistical value at long times in
cates that they are only locally conserved.!

It should be noted that slow long-time decays can a
even from a completely regular system if there are stro
correlations among the parameters of the Hamiltonian. C
sider the rovibrational spectrum of the diatomic molecule2

in the B̃ electronic state@27,28#. Figure 15 illustrates the
spectrum and correspondingP(t). In the second spectrum
the line positions have been randomized by60.06 eV. The
correspondingP(t) progresses from a power law to a simp
exponential with increasing randomization. A randomizat
of 60.03 eV is required to recover an exponential decay;
is on the scalev'0.03 eV of the vibrational frequency of th
I—I bond. The highly regular structure of energy levels th
is given by an expansion of the type

E~J,n!5(
n,m

Ynm@J~J11!#n~n1 1
2 !m ~12!
J

e

ys

,

02250
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e
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t

is responsible for the slow decay here.~J is the rotational and
n the vibrational quantum number, and theYnm decrease
rapidly with n andm.! Such correlations do not usually exi
among the frequenciesvm of the zero-order HamiltonianH2

in Eq. ~8!, but when they exist, must be taken into account
assessing power-law decays.

In conclusion, a local random matrix that satisfies an
ponential scaling law,anda localization criterion such as th
triangle rule for its off-diagonal matrix elements, produce
slower-than-exponential dephasing of quantum wave pac
before the statistical limit is reached. Elimination of eith
the scaling property or the triangle rule reverts the dynam
to simply exponential. The structure of the matrix apparen
mimics the conservation of local good quantum numbe
Various types of spectroscopies of molecular systems re
power-law behavior consistent with the HLRM model. I
deed, molecular spectroscopy provides an ideal tool for
study of mesoscopic systems and their dephasing or deco
ence properties because large numbers of transitions can
ally be observed in such spectra.
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