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Simple analysis of correlation in few-body Coulomb systems:
Application in the diffusion Monte Carlo method
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An apporach is presented in order to study the interelectronic correlation in few-electron atomic or molecular
systems. The main point is that the correlation is described as a mutual collision between all the electrons. This
approach allows the determination of simple wave functions for complex systems including only three param-
eters, with a clear physical meaning. The method is applied to study three- and four-electron systems in
different states, including the so-called hollow states for lithium and beryllium. The overall results are found to
be in good agreement with those deduced using much more sophisticated wave functions. Subsequently, the
present wave functions are chosen as trial wave functions in the diffusion Monte Carlo method. This approach
leads to a very accurate determination of the ground-state energies of lithium, lithium negative ion, and
beryllium atoms, indicating that it becomes possible to deduce with very good accuracy some properties of
relatively complex systems with a quite simple wave function.
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[. INTRODUCTION The determination of compact wave functions should be
considered as an important task. They could be useful for
It is well known that the mechanisms leading to excitationfurther calculations on the system. For instance, when an
or ionization of two or more electrons in atomic or molecularatomic or molecular system is involved in a collision, one
systems cannot be understood within the independent elegenerally needs the initial- and final-state wave functions in
tron approximation model. Indeed the correlation in many-order to calculate the corresponding cross sections. This is
body systems due to the interaction between all the electroriBustrated in many calculations relative to inelastic processes
must be properly taken into account. This is an importanin helium-atom-like double excitation, doublghotgioniza-
problem, and a great deal of experimental and theoreticdlion, etc., where relatively simple correlated wave functions
work has been done on this problem. are often chosen to describe the different helium states. It
In order to investigate the role of electronic correlations inseems of interest to be able to propose simple correlated and
complex atoms, a lot of experimental work has been devotedtill accurate wave functions for three- and four-electron sys-
to the study of multiple excitations of atoms and moleculegems.
induced by photoabsorption or collisions with electrons. Re- The purpose of the present work is to show that simple
cent papers report on the multiexcitation or ionization of thecorrelated wave functions can be deduced in a systematic
helium and lithium atoms in different initial states, including way for few-electron atoms or molecules in different states,
the so-called hollow atomic stat¢s—4]. Multielectron ex- even when two, three, or four electrons are excited. Next we
cited states are of special interest to probe the method ofill use these functions as trial functions in a diffusion
taking into account the electronic correlation, as it is ex-Monte Carlo method approach, and we show that we can get
pected to play an important role there. These experimentajuasiexact values for the ground-state energies of the lithium
results have motivated theoretical works to improve the unatom, lithium negative ion, and beryllium atom. The key
derstanding of the various multielectron mechanisms. point of the present approach is the representation of the
Obviously the determination of both simple and accurateelectronic correlation in a few-body Coulomb system as a
wave functions for few-body systems could be a key taskmutual collision between all the electrons of the system.
On the one hand, the wave function has to describe the prop-
erties of the free atomic system. On the other hand, it should
also take into account its behavior in a collision or when it is
placed in an electric or magnetic field, or interacting with a  In the past, Pluvinaggs] suggested a new way to look at
surface. The determination of accurate wave functions foelectron correlation in the helium atom. In his approach,
few-body Coulomb systems can be achieved in differenbased on a semiseparation property of the Stihger equa-
ways(see, for exampld5—7]) and may be considered today tion, the electron-electron interaction is introduced as a mu-
as a solved problem. However, the presently available accuual collision due to the Coulomb repulsion. Some years
rate wave functions are always involved, including manylater, Vainsteiret al.[9] studied the polarization of a hydro-
Slater determinants, or explicitly correlated trial wave func-gen atom in collision problems with electrons in a similar
tions. approach. More recently, Briggst al. [10] described the
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double ionization of helium by a wave function including a
Coulomb wave function in order to describe the correlation Q(ry,ri)=
in the continuum between the two escaping electrons.

2 cosm\ri)cosr{)\rj))

i<j

The Schrdinger equation for amN-electron atomic sys- Car
tem with nuclear charg& is written in atomic unitsused X 1;[ [1+0.%r;e” ] (4)
throughout this papémithin the nonrelativistic approxima- =
tion and using the usual notation and for beryllium as
N N
1 1 1
— A=, =t X —|W(r)=E¥(r), (1) Q(ri,rip)=| > cosh\r;)cost\r;)costinry)

2 =16 i<j=1Tlj i<j<k
where Azy stands for the Bl dimensions Laplacian. The x| 11 [1+0.50r;e "] |. (5
wave functionW(r;) will be written as a product of two i<

functions: W (r;) =@ (7 r;)(r;,ri;), where the arrows rep- : o
resent the up-down spin electrons. The basic idea is to inr-1 rlrr]1bErqS-f(4) lan;jr (ﬁ) th_lr-:\hmdexeﬁl,fj,nagdnk “ijn toriLhe th
clude the antisymmetric part of the total wave function, re- umber: ol electrons. € cosh Tunctions —describe the

lated to the orbital motion of the free electrons in the nucleag::gggn:nﬂg:zﬂz ng”ilg:]'girt'isdn_ 1;2': eChO'%e[df;ull%"?m the
field, in the determinant functiob(T |r;), and to put the details and considererx)tions abou't cus’ c.g.r;dition’s When the
interelectronic interaction depending explicitly upon the in- P '

terelectronia;; and electron-nucleus distanagsn the sym- teleftronzls c_Io_se iﬁ thl_e r_ltucleus, the function casp(tends
metric functionQ(r;,ry;). 0 1asri, giving the imi
Replacing the¥ function by its product in the Schro

. . - A%
dinger equatior(1), the A5y operator will introduce the 19 lim T —ZV(0). (6)
dot productV g\ ® (T [r;) - VN2 (ri,ri;). We notice that it is ri—0 Il
very similar to the so-called backflow correlation; see Ref. o )
[11] for a discussion of this term. Moreover, such a choice insures the correct behavior at

As explained if12], it can be shown that for any function 'arge electron-nucleus distances, i.e., the electron-electron in-
¥ written as a product¥ ,=® (), the calculation of the teraction is decoupled and becomes the screen felt by an

diagonal elements,, ,, or the off-diagonal matrix elements electron when it is at large distance from the nucleus. It is
H,. . reduces to the computation of a single multivariateaSy to see that is closely related to a familiar screening

quadrature coefficient due to the exponential behavior of casf)(when
[j—.
Vo Q- Vi Q The second factor on the right-hand side of E4). de-
Hm,m=Em+<q>m %4_92(2 1/r”->q>m>, scribes the electron—electron correlation. It can be
<] understood—see below—that a term likg(rj;)=1

2 +0.5r;;e” %" is simulating the Coulomb diffusion of two
electrons, hence the full product represents the electron-
P > electron correlation in the system as a mutual diffusion of all
nie electron pairs. This parametrization fits the expansion of the
(3  Coulomb wave functionl=0 wave for the small interpar-
ticle distances ;. The functiong(r;;) tends to 1 for large
To derive these expresions, it was assumed that the fundéaterelectronic distances. This means that for bound states,
tions @, are the solutions of the independeNtparticle ~ when an electron goes at large distances from the other, the
problem: interelectronic correlation is shifted to the screening idea; see
above. This choice of thg function was found to be quite
1 N efficient[16], leading to better results than the true Coulomb
( — A=, —) O=E P, wave function. The function includes the right description of
2 =1 the electron-electron up-down spin cuspsbif1 (Kato's
theorem. The functiong(r;;) was first suggested by Hir-

‘The form of the function{}(r;,rj;) has to be chosen. In gchfelder{17] for the case of a two-electron problem.
principle, any parametrization that makes E. and (3)

convergent can be chosen for the correlation factor, as, for
example that of Boys and Handl¢3]. In this work, we pro-
pose a general parametrization that includes only a few The basic possibilites of the method will now be illus-
variational parameters with a clear physical meaning thatrated. Results concerning two—electron atoms and mol-
leads to very good results. ecules have been previously reporfé8,19, and the overall
The Q(ri,rj;) function, which describes the electron- accuracy of the wave function has been te$2d). We will

nucleus and electron-electron correlation, is presently depresent here results for different states of atomic or ionic
fined for the lithium atoms as systems with three and four electrons. We will focus our
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attention on the atoms or ions: Li, HeLi~, and Be. For the TABLE |. Energies of some states of Heli, Li -, and Be,
lithium atom, many states have been already determined witplculated using the present correlated wave function and the cor-
excellent accuracy, allowing comparison between differentéSponding variationally optimized values of the parameiers,
methods. To obtain the stability of negative ions such as He andb. In the last column, we have reported different results calcu-
and Li, one must include good correlation in their wave '2t€d Within different approaches for comparison.

functions, hence these systems are a good measure of the

possibilities of the present method. We study the beryllium b State Thlizsn?r:rgilﬁod Other results
atom to illustrate the present approach in the case of a four-
electron problem. For the latter atom, we also calculate mul0.45 0.03 0.5 He(1s,25?) —2.190 —2.1926
tiply excited electronic states, which, to the best of ouro.79 021 0.8 Li(%?,2s) —7.473 —7.4737P
knowledge, have never been calculated previously. —7.47F
Taking into account the integration over the spin symme-o0 012 1.0 Li(222p)2P° —2.249 —2.2509
tries of the determinantal function, the free-particle waveggs 0.115 057 Li(1s?2s?) —7.480 —7.500%
function ®(7|r;) can be simplified if only the energies of 78 0115 061 Be@2s?) —14.648 —14.633%
different atomic states are determined. As a proof of the _14.64F
outstanding simplicity of the fully correlated wave function, 549 008 038 Be(£2,35) —14.156
the expresion used to calculate the ground-state energy of thes 1 (7 Be(8,2p?)1S —4811
lithium Li(1s2,2s) is shown here, 02 006 14 Be(SZ’SpZ)ls _ 2961
Wii=C1s(ry)[1s(rz)2s(rs) —1s(rs)2s(rz)] dReferencd 21]. 9Referencd6].
PReference 11]. °Referencd26].
X 2 cosmri)cosmrj)) °Referencg 22].
% H [1+0.5brije‘arii]). In all cases the agreement between the Ergesented results
i<j and the accurate values is better than a few~18.u. The

energy of the He(1s,2s?) resonant state was recently cal-
The functions $(r;) and (r;) are the usual hydrogenic culated by Ho [21]. The value reported there i€
orbitals, Is(r;)=e"“"i, ..., Z is the true nuclear charge of =—2.1920 a.u. calculated with a Hylleras-type correlated
the atom or ion under consideratiod £ 3), andC is the  function involving up to 3543 terms. This result is to be
normalization constant. It is important to notice that thesecompared to the present calculated vafe —2.190 a.u.
functions include only three positive parameters—&, and  gptained with a much simpler wave function. The ground-

b—that will be optimized subsequently by energy minimiza-gtate energy for the lithium atom deduced with the present
tion. It is worth mentioning that we never did observe anyethod is E=—7.473 au. to be compared Wit

variational collapse with this method.

In the case ofS atomic states of three-electron ions or
atoms, the multivariate integral equatiof® and(3) reduce
to six dimensions, eight dimensions for nB8rstates. It be-

=—7.4731 a.u. obtained with a nine parameter correlated
wave function[11] andE= —7.477 a.u. deduced with a 42-
parameter correlated wave functip22]. The best value is
comes a nine dimensions quadrature in the casestdtes of known t_o beE:_ — 7478 06_a.u[23]. Let us q_uote the recent
calculations using also a simple wave function for the ground

four-electron systems like beryllium. The multivariate inte- ¢ lithi db p o h I ¢
gral is computed without any numerical approximation, us-Staté of lithium proposed by Pafi24], giving the value o

ing a new method presented [16]. This approach was the energye=—7.4732 a.u. . . _
found to be efficient in many calculations. The numerical The ground-state values for Liand Be using a single
accuracy is presently at least T0 For a four-electron prob- configuration are found to be, respectivelis= —7.463 a.u.
lem, typically 20< 10° points of integration are needed, lead- and E=—14.625 a.u. With a two-state configuration-
ing to a quite reasonable computing time. Calculations cainteraction wave function, the ground-state energy of Li
be easily performed on any desk computer, taking only a fewwecomesE= —7.480 a.u. and the energy of beryllium is

minutes with a PIl 300 processor. found to beE= —14.648 a.u. The latter should be compared
The values of the energies of some ground or hyperexto the value E=—14.6332 a.u., deduced with a nine-
cited (resonant states of the systems Hgls,2s?), parameter wave functiofl1], and to the recently calculated

Li(1s%,2s), Li(2s%2p)?P, Li (1s%2s?), Be(1s?2s?), value reported by Liret al.[22], E= —14.647 a.u., obtained
Be(1s%,3s%), and Be(22,2p?)'S are presented in Table I. using the correlated quantum Monte Carlo approach using a
When X-2p degeneracies occur, for example in 42-parameter wave function. In the latter case, the present
He (1s,2s?) and in He (1s,2p?)!S, Li (1s%,25?), correlated wave function provides similar accuracy to other
Li~(1s%,2p?)!S, Be(1s?,2s%), and Be(k?,2p?)'S states, a more sophisticated parametrizations. Ex@ctvalue for the
diagonalization has been made between these two quasidBe ground state in the nonrelativistic fixed nucleus frame-
generated states. In addition, the optimized values by energyork is estimated to b&= —14.6673 a.u., see Rdf7]. In
minimization of the variational parameteps, a, andb, are  spite of its simplicity, the accuracy of the present wave func-
given in Table | . tion including only three variational parameters is gratifying.
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The energy values for the two-electron excited states of TABLE Il. DMC results for Li, Li~, and Be ground states using
beryllium, Be(1s?,3s%), are also reported in Table I, along the present three-parameter wave function. SCGs%@8%); Cl,
with those of the hollow states Beg22p?) and  (1s?25°)+d(1s%2p%); meaning, respectively, single configuration
Be(3s?,3p?). In these cases, thes2p and 3-3p degenera- and configurati.on !ntera}ction wave function. The statistical error in
cies are taken into account by considering the interactiont® last figure is given in parentheses.
with the configuration Be(g*), and Be(®*) 'S states, re-

spectively. _ _ I_Energy:
Atom or ion Wave function This method Accurate results

IV. APPLICATION TO THE DIFFUSION MONTE CARLO LI, ~.4782(2) 74780
Li SC —7.4979(4)
METHOD L
Li cl —7.5007(7) —7.500%
To further study the performance of the wave functions Be SC —14.6566(3)
proposed in this work, we have used them as trial functions  Be Cl —14.6667(5) —14.6673

in a quantum Monte Carl@QMC) calculation. More specifi-
cally, we shall use in this work the so-called diffusion Monte :Reference[z?’]-
Carlo (DMC) method. We recall briefly here the main ideas Reference26].
underlying the DMC approach. Further details relative to this Reference7].
powerful approach to solve the ScHioger equation by
simulating the Green’s function of the system by statisticalenergy in the branching part instead of the interaction poten-
methods can be found in, e.g., REZ5]. tial. The better the trial function, the smaller the fluctuations
Generally speaking, the wave function is represented as w&ill be, and therefore the smaller the statistical error of the
set of points in the configuration space of the system, usuallgalculation will be. However, very involved parametriza-
called walkers, that constitutes the initial ensemble. Then th&ons, which generally are time consuming, will slow down
Green'’s function is simulated iteratively by means of randonthe calculation due to the fact that in each step the gradient
walks. Differences in QMC methods come from how this isand the Laplacian must be calculated for each walker. Hence
achieved. DMC starts from the time-dependent Sdimger  compact and concise and still accurate wave functions are
equation in imaginary time, which becomes a classical difideal. Another highly desirable requirement for a trial wave
fusion equation. To determine the random walk that simufunction is that it fulfill the cusp conditions, because the
lates the Green'’s function, a short-time approximation is indargest branching fluctuations tend to occur where two par-
voked. Then a step of the random walk consists in anicles come together and the potential diverges. This effect
isotropic Gaussian diffusion and a branching process of thean be minimized by the cusps in the trial function. Quantum
walkers. After a large number of iterations, the excited-statéMonte Carlo methods are computationally demanding and
contributions are projected out from the initial emsemble the statistical errors go as the inverse of the square root of the
converging to the ground-state wave function, and then theumber of sampling points.
ground-state energy can be deduced. The choice of an adequate trial function that affects the
The systematic error introduced by the short-time ap-statistical error in the calculation is very important. For fer-
proximation can be eliminated by using small time steps andanion systems, the trial wave function not only affects the
extrapolating the results to zero time step. For boson sysstatistical error, but also the value obtained for the energy.
tems, this method provides the exact ground-state energhhis comes from the fact that the trial function also deter-
(except for statistical errorsHowever, Fermi systems such mines the location of the nodal surface. In general, very little
as those studied in this work are affected by sign problemss known about the exact location of the nodes in fermion
resulting from the required antisymmetry of the wave func-systems. The quality of the nodal structure induced by the
tion. Here we will employ the fixed-node approximation thattrial wave function will determine how close one can come
uses a prefix nodal surface in the configuration space of th the exact result. This is usually establislzegosteriorifor
system. The results so calculated are not exact any moréhose systems for which exact or quasiexact solutions are
instead, an upper bound for the energy is obtained. The a@vailable by other methods.
curacy of such a bound is governed by the quality of the In Table Il, we show the results obtained by using the
nodal surface employed in the simulation. This is the mostvave function proposed in this work as a trial function in a
commonly used approach in the literature. fixed-node DMC calculation. These results show the quality
The algorithm, as described above, is in general very inof the present parametrization. In spite of the simplicity of
efficient due to the large fluctuations in the ensemble alonghe three-parameter wave function used, it reproduces quite
the random walk introduced by the interaction potential.accurately the many-dimension exact nodal suface. For
Practical implementations usually make use of the MonteBe(1s?,2s?), the inclusion of the (42,2p?) configuration in
Carlo technique known as importance sampling that greatlyhe trial wave function leads to a significant improvement in
reduces these fluctuations. This method requires an analytihre variational and also in the DMC energy. The accuracy of
cal trial function that is used to bias the random walk. This isthose results makes us confident that this simple parametri-
included in the algorithm by considering in the Gaussianzation is able to incorporate reliably the most important
diffusion an additional drift term proportional to the logarith- physical effects involved in the dynamic of these systems.
mic derivative of the trial wave function and using the local For Li~ (1s?,2s?), a noticeable improvement is also obtained
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in the variational energy when the near degeneracy is explidhe correlation in more complex systems. Clearly, the
itly included in the trial wave function. However, the DMC method is applicable also to molecules. For larger systems,
results for the alkali-metal anion obtained with the single-the statistical methods of multivariate integration could be
and the two-configuration wave functions are very similarconsidered in order to perform the necessary numerical
and both are very accurate. This tells us about the quality ofjuadratures.
the present parametrization and that the effect of the near Finally, let us point out that these approximate very
degeneracy is more important in the variational energy thasimple wave functions are of interest as trial wave functions
in the nodal surface, which seems to be well described by them a DMC approach, leading to quasiexact energy values of
single-configuration wave function. This is due to the factrelatively complex systems such as Land Be.
that the nuclear charge is reduced with respect to the
Be(1s?,2s?) case, and mean field effects, such as this near ACKNOWLEDGMENT
degeneracy, become relatively less important.
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