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Simple analysis of correlation in few-body Coulomb systems:
Application in the diffusion Monte Carlo method
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An apporach is presented in order to study the interelectronic correlation in few-electron atomic or molecular
systems. The main point is that the correlation is described as a mutual collision between all the electrons. This
approach allows the determination of simple wave functions for complex systems including only three param-
eters, with a clear physical meaning. The method is applied to study three- and four-electron systems in
different states, including the so-called hollow states for lithium and beryllium. The overall results are found to
be in good agreement with those deduced using much more sophisticated wave functions. Subsequently, the
present wave functions are chosen as trial wave functions in the diffusion Monte Carlo method. This approach
leads to a very accurate determination of the ground-state energies of lithium, lithium negative ion, and
beryllium atoms, indicating that it becomes possible to deduce with very good accuracy some properties of
relatively complex systems with a quite simple wave function.
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I. INTRODUCTION

It is well known that the mechanisms leading to excitati
or ionization of two or more electrons in atomic or molecu
systems cannot be understood within the independent e
tron approximation model. Indeed the correlation in man
body systems due to the interaction between all the elect
must be properly taken into account. This is an import
problem, and a great deal of experimental and theoret
work has been done on this problem.

In order to investigate the role of electronic correlations
complex atoms, a lot of experimental work has been devo
to the study of multiple excitations of atoms and molecu
induced by photoabsorption or collisions with electrons. R
cent papers report on the multiexcitation or ionization of
helium and lithium atoms in different initial states, includin
the so-called hollow atomic states@1–4#. Multielectron ex-
cited states are of special interest to probe the metho
taking into account the electronic correlation, as it is e
pected to play an important role there. These experime
results have motivated theoretical works to improve the
derstanding of the various multielectron mechanisms.

Obviously the determination of both simple and accur
wave functions for few-body systems could be a key ta
On the one hand, the wave function has to describe the p
erties of the free atomic system. On the other hand, it sho
also take into account its behavior in a collision or when i
placed in an electric or magnetic field, or interacting with
surface. The determination of accurate wave functions
few-body Coulomb systems can be achieved in differ
ways~see, for example,@5–7#! and may be considered toda
as a solved problem. However, the presently available a
rate wave functions are always involved, including ma
Slater determinants, or explicitly correlated trial wave fun
tions.
1050-2947/2001/63~2!/022501~5!/$15.00 63 0225
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The determination of compact wave functions should
considered as an important task. They could be useful
further calculations on the system. For instance, when
atomic or molecular system is involved in a collision, o
generally needs the initial- and final-state wave functions
order to calculate the corresponding cross sections. Th
illustrated in many calculations relative to inelastic proces
in helium-atom-like double excitation, double~photo!ioniza-
tion, etc., where relatively simple correlated wave functio
are often chosen to describe the different helium states
seems of interest to be able to propose simple correlated
still accurate wave functions for three- and four-electron s
tems.

The purpose of the present work is to show that sim
correlated wave functions can be deduced in a system
way for few-electron atoms or molecules in different stat
even when two, three, or four electrons are excited. Next
will use these functions as trial functions in a diffusio
Monte Carlo method approach, and we show that we can
quasiexact values for the ground-state energies of the lith
atom, lithium negative ion, and beryllium atom. The ke
point of the present approach is the representation of
electronic correlation in a few-body Coulomb system as
mutual collision between all the electrons of the system.

II. THEORY

In the past, Pluvinage@8# suggested a new way to look a
electron correlation in the helium atom. In his approa
based on a semiseparation property of the Schro¨dinger equa-
tion, the electron-electron interaction is introduced as a m
tual collision due to the Coulomb repulsion. Some ye
later, Vainsteinet al. @9# studied the polarization of a hydro
gen atom in collision problems with electrons in a simil
approach. More recently, Briggset al. @10# described the
©2001 The American Physical Society01-1
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double ionization of helium by a wave function including
Coulomb wave function in order to describe the correlat
in the continuum between the two escaping electrons.

The Schro¨dinger equation for anN-electron atomic sys-
tem with nuclear chargeZ is written in atomic units~used
throughout this paper! within the nonrelativistic approxima
tion and using the usual notation

S 2
1

2
D3N2(

i 51

N
1

r i
1 (

i , j 51

N
1

r i j
DC~r i !5EC~r i !, ~1!

where D3N stands for the 3N dimensions Laplacian. The
wave functionC(r i) will be written as a product of two
functions:C(r i)5F(↑↓r i)V(r i ,r i j ), where the arrows rep
resent the up-down spin electrons. The basic idea is to
clude the antisymmetric part of the total wave function,
lated to the orbital motion of the free electrons in the nucl
field, in the determinant functionF(↑↓r i), and to put the
interelectronic interaction depending explicitly upon the
terelectronicr i j and electron-nucleus distancesr i in the sym-
metric functionV(r i ,r i j ).

Replacing theC function by its product in the Schro¨-
dinger equation~1!, the D3N operator will introduce the 3N
dot product“3NF(↑↓r i)•“3NV(r i ,r i j ). We notice that it is
very similar to the so-called backflow correlation; see R
@11# for a discussion of this term.

As explained in@12#, it can be shown that for any functio
Cm written as a product,Cm5FmV, the calculation of the
diagonal elementsHm,m or the off-diagonal matrix element
Hm,n reduces to the computation of a single multivaria
quadrature,

Hm,m5Em1K FmU “3NV•“3NV

2
1V2S (

i , j
1/r i j DUFmL ,

~2!

Hm,n5
Em1En

2
1K FmU“3NV•“3NV

2
1V2S (

i , j
1/r i j DUFnL .

~3!

To derive these expresions, it was assumed that the f
tions Fm are the solutions of the independentN-particle
problem:

S 2
1

2
D3N2(

i 51

N
1

r i
DFm5EmFm .

The form of the functionV(r i ,r i j ) has to be chosen. In
principle, any parametrization that makes Eqs.~2! and ~3!
convergent can be chosen for the correlation factor, as,
example that of Boys and Handy@13#. In this work, we pro-
pose a general parametrization that includes only a
variational parameters with a clear physical meaning t
leads to very good results.

The V(r i ,r i j ) function, which describes the electron
nucleus and electron-electron correlation, is presently
fined for the lithium atoms as
02250
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V~r i ,r i j !5S (
i , j

cosh~lr i !cosh~lr j ! D
3S)

i , j
@110.5bri j e

2ari j # D ~4!

and for beryllium as

V~r i ,r i j !5S (
i , j ,k

cosh~lr i !cosh~lr j !cosh~lr k! D
3S)

i , j
@110.5bri j e

2ari j # D . ~5!

In Eqs. ~4! and ~5! the indexesi, j, and k run to the
number of electrons. The cosh functions describe
electron-nucleus correlations. This choice fulfills th
electron-nucleus cusp condition; see, e.g., Refs.@14,15# for
details and considerations about cusp conditions. When
electron is close to the nucleus, the function cosh(lri) tends
to 1 asr i

2 , giving the limit

lim
r i→0

]C

]r i
52ZC~0!. ~6!

Moreover, such a choice insures the correct behavio
large electron-nucleus distances, i.e., the electron-electro
teraction is decoupled and becomes the screen felt by
electron when it is at large distance from the nucleus. I
easy to see thatl is closely related to a familiar screenin
coefficient due to the exponential behavior of cosh(lri) when
r i→`.

The second factor on the right-hand side of Eq.~4! de-
scribes the electron–electron correlation. It can
understood—see below—that a term likeg(r i j )51
10.5bri j e

2ari j is simulating the Coulomb diffusion of two
electrons, hence the full product represents the elect
electron correlation in the system as a mutual diffusion of
electron pairs. This parametrization fits the expansion of
Coulomb wave function (l 50 wave! for the small interpar-
ticle distancesr i j . The functiong(r i j ) tends to 1 for large
interelectronic distances. This means that for bound sta
when an electron goes at large distances from the other
interelectronic correlation is shifted to the screening idea;
above. This choice of theg function was found to be quite
efficient @16#, leading to better results than the true Coulom
wave function. The function includes the right description
the electron-electron up-down spin cusps ifb51 ~Kato’s
theorem!. The functiong(r i j ) was first suggested by Hir
schfelder@17# for the case of a two-electron problem.

III. RESULTS

The basic possibilites of the method will now be illu
trated. Results concerning two–electron atoms and m
ecules have been previously reported@18,19#, and the overall
accuracy of the wave function has been tested@20#. We will
present here results for different states of atomic or io
systems with three and four electrons. We will focus o
1-2
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SIMPLE ANALYSIS OF CORRELATION IN FEW-BODY . . . PHYSICAL REVIEW A63 022501
attention on the atoms or ions: Li, He2, Li2, and Be. For the
lithium atom, many states have been already determined
excellent accuracy, allowing comparison between differ
methods. To obtain the stability of negative ions such as H2

and Li2, one must include good correlation in their wa
functions, hence these systems are a good measure o
possibilities of the present method. We study the berylli
atom to illustrate the present approach in the case of a f
electron problem. For the latter atom, we also calculate m
tiply excited electronic states, which, to the best of o
knowledge, have never been calculated previously.

Taking into account the integration over the spin symm
tries of the determinantal function, the free-particle wa
function F(↑↓r i) can be simplified if only the energies o
different atomic states are determined. As a proof of
outstanding simplicity of the fully correlated wave functio
the expresion used to calculate the ground-state energy o
lithium Li(1s2,2s) is shown here,

CLi5C1s~r 1!@1s~r 2!2s~r 3!21s~r 3!2s~r 2!#

3S (
i , j

cosh~lr i !cosh~lr j ! D
3S)

i , j
@110.5bri j e

2ari j # D .

The functions 1s(r i) and 2s(r i) are the usual hydrogeni
orbitals, 1s(r i)5e2Zri, . . . , Z is the true nuclear charge o
the atom or ion under consideration (Z53), andC is the
normalization constant. It is important to notice that the
functions include only three positive parameters—l, a, and
b—that will be optimized subsequently by energy minimiz
tion. It is worth mentioning that we never did observe a
variational collapse with this method.

In the case ofS atomic states of three-electron ions
atoms, the multivariate integral equations~2! and~3! reduce
to six dimensions, eight dimensions for non-S states. It be-
comes a nine dimensions quadrature in the case ofSstates of
four-electron systems like beryllium. The multivariate int
gral is computed without any numerical approximation, u
ing a new method presented in@16#. This approach was
found to be efficient in many calculations. The numeric
accuracy is presently at least 1023. For a four-electron prob-
lem, typically 203106 points of integration are needed, lea
ing to a quite reasonable computing time. Calculations
be easily performed on any desk computer, taking only a
minutes with a PII 300 processor.

The values of the energies of some ground or hyper
cited ~resonant! states of the systems He2(1s,2s2),
Li(1s2,2s), Li(2s2,2p)2P, Li2(1s2,2s2), Be(1s2,2s2),
Be(1s2,3s2), and Be(2s2,2p2)1S are presented in Table
When 2s-2p degeneracies occur, for example
He2(1s,2s2) and in He2(1s,2p2)1S, Li2(1s2,2s2),
Li2(1s2,2p2)1S, Be(1s2,2s2), and Be(1s2,2p2)1S states, a
diagonalization has been made between these two qua
generated states. In addition, the optimized values by en
minimization of the variational parameters,l, a, andb, are
given in Table I .
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In all cases the agreement between the presented re
and the accurate values is better than a few 1023 a.u. The
energy of the He2(1s,2s2) resonant state was recently ca
culated by Ho @21#. The value reported there isE
522.1920 a.u. calculated with a Hylleras-type correlat
function involving up to 3543 terms. This result is to b
compared to the present calculated valueE522.190 a.u.
obtained with a much simpler wave function. The groun
state energy for the lithium atom deduced with the pres
method is E527.473 a.u., to be compared withE
527.4731 a.u. obtained with a nine parameter correla
wave function@11# andE527.477 a.u. deduced with a 42
parameter correlated wave function@22#. The best value is
known to beE527.478 06 a.u.@23#. Let us quote the recen
calculations using also a simple wave function for the grou
state of lithium proposed by Patil@24#, giving the value of
the energyE527.4732 a.u.

The ground-state values for Li2 and Be using a single
configuration are found to be, respectively,E527.463 a.u.
and E5214.625 a.u. With a two-state configuration
interaction wave function, the ground-state energy of L2

becomesE527.480 a.u. and the energy of beryllium
found to beE5214.648 a.u. The latter should be compar
to the value E5214.6332 a.u., deduced with a nine
parameter wave function@11#, and to the recently calculate
value reported by Linet al. @22#, E5214.647 a.u., obtained
using the correlated quantum Monte Carlo approach usin
42-parameter wave function. In the latter case, the pre
correlated wave function provides similar accuracy to ot
more sophisticated parametrizations. Theexactvalue for the
Be ground state in the nonrelativistic fixed nucleus fram
work is estimated to beE5214.6673 a.u., see Ref.@7#. In
spite of its simplicity, the accuracy of the present wave fun
tion including only three variational parameters is gratifyin

TABLE I. Energies of some states of He2, Li, Li 2, and Be,
calculated using the present correlated wave function and the
responding variationally optimized values of the parametersl, a,
andb. In the last column, we have reported different results cal
lated within different approaches for comparison.

l a b State
Energy:

This method Other results

0.45 0.03 0.5 He2(1s,2s2) 22.190 22.1920a

0.79 0.21 0.8 Li(1s2,2s) 27.473 27.4731b

27.477c

0.0 0.12 1.0 Li(2s2,2p)2Po 22.249 22.2509d

0.84 0.115 0.57 Li2(1s2,2s2) 27.480 27.5005e

0.78 0.115 0.61 Be(1s2,2s2) 214.648 214.6332b

214.647c

0.49 0.08 0.8 Be(1s2,3s2) 214.156
0.6 0.1 0.7 Be(2s2,2p2)1S 24.811
0.2 0.06 1.4 Be(3s2,3p2)1S 22.261

aReference@21#. dReference@6#.
bReference@11#. eReference@26#.
cReference@22#.
1-3
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The energy values for the two-electron excited states
beryllium, Be(1s2,3s2), are also reported in Table I, alon
with those of the hollow states Be(2s2,2p2) and
Be(3s2,3p2). In these cases, the 2s-2p and 3s-3p degenera-
cies are taken into account by considering the interacti
with the configuration Be(2p4), and Be(3p4) 1S states, re-
spectively.

IV. APPLICATION TO THE DIFFUSION MONTE CARLO
METHOD

To further study the performance of the wave functio
proposed in this work, we have used them as trial functi
in a quantum Monte Carlo~QMC! calculation. More specifi-
cally, we shall use in this work the so-called diffusion Mon
Carlo ~DMC! method. We recall briefly here the main ide
underlying the DMC approach. Further details relative to t
powerful approach to solve the Schro¨dinger equation by
simulating the Green’s function of the system by statisti
methods can be found in, e.g., Ref.@25#.

Generally speaking, the wave function is represented
set of points in the configuration space of the system, usu
called walkers, that constitutes the initial ensemble. Then
Green’s function is simulated iteratively by means of rand
walks. Differences in QMC methods come from how this
achieved. DMC starts from the time-dependent Schro¨dinger
equation in imaginary time, which becomes a classical
fusion equation. To determine the random walk that sim
lates the Green’s function, a short-time approximation is
voked. Then a step of the random walk consists in
isotropic Gaussian diffusion and a branching process of
walkers. After a large number of iterations, the excited-st
contributions are projected out from the initial emsemb
converging to the ground-state wave function, and then
ground-state energy can be deduced.

The systematic error introduced by the short-time
proximation can be eliminated by using small time steps
extrapolating the results to zero time step. For boson s
tems, this method provides the exact ground-state en
~except for statistical errors!. However, Fermi systems suc
as those studied in this work are affected by sign proble
resulting from the required antisymmetry of the wave fun
tion. Here we will employ the fixed-node approximation th
uses a prefix nodal surface in the configuration space of
system. The results so calculated are not exact any m
instead, an upper bound for the energy is obtained. The
curacy of such a bound is governed by the quality of
nodal surface employed in the simulation. This is the m
commonly used approach in the literature.

The algorithm, as described above, is in general very
efficient due to the large fluctuations in the ensemble al
the random walk introduced by the interaction potent
Practical implementations usually make use of the Mo
Carlo technique known as importance sampling that gre
reduces these fluctuations. This method requires an ana
cal trial function that is used to bias the random walk. This
included in the algorithm by considering in the Gauss
diffusion an additional drift term proportional to the logarit
mic derivative of the trial wave function and using the loc
02250
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energy in the branching part instead of the interaction pot
tial. The better the trial function, the smaller the fluctuatio
will be, and therefore the smaller the statistical error of t
calculation will be. However, very involved parametriz
tions, which generally are time consuming, will slow dow
the calculation due to the fact that in each step the grad
and the Laplacian must be calculated for each walker. He
compact and concise and still accurate wave functions
ideal. Another highly desirable requirement for a trial wa
function is that it fulfill the cusp conditions, because t
largest branching fluctuations tend to occur where two p
ticles come together and the potential diverges. This ef
can be minimized by the cusps in the trial function. Quant
Monte Carlo methods are computationally demanding a
the statistical errors go as the inverse of the square root o
number of sampling points.

The choice of an adequate trial function that affects
statistical error in the calculation is very important. For fe
mion systems, the trial wave function not only affects t
statistical error, but also the value obtained for the ener
This comes from the fact that the trial function also det
mines the location of the nodal surface. In general, very li
is known about the exact location of the nodes in ferm
systems. The quality of the nodal structure induced by
trial wave function will determine how close one can com
to the exact result. This is usually establisheda posteriorifor
those systems for which exact or quasiexact solutions
available by other methods.

In Table II, we show the results obtained by using t
wave function proposed in this work as a trial function in
fixed-node DMC calculation. These results show the qua
of the present parametrization. In spite of the simplicity
the three-parameter wave function used, it reproduces q
accurately the many-dimension exact nodal suface.
Be(1s2,2s2), the inclusion of the (1s2,2p2) configuration in
the trial wave function leads to a significant improvement
the variational and also in the DMC energy. The accuracy
those results makes us confident that this simple param
zation is able to incorporate reliably the most importa
physical effects involved in the dynamic of these system
For Li2(1s2,2s2), a noticeable improvement is also obtain

TABLE II. DMC results for Li, Li2, and Be ground states usin
the present three-parameter wave function. SC, (1s2,2s2); CI,
(1s2,2s2)1d(1s2,2p2); meaning, respectively, single configuratio
and configuration interaction wave function. The statistical erro
the last figure is given in parentheses.

Atom or ion Wave function
Energy:

This method Accurate results

Li 27.4782(2) 27.4780a

Li2 SC 27.4979(4)
Li2 CI 27.5007(7) 27.5005b

Be SC 214.6566(3)
Be CI 214.6667(5) 214.6673c

aReference@23#.
bReference@26#.
cReference@7#.
1-4
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in the variational energy when the near degeneracy is exp
itly included in the trial wave function. However, the DM
results for the alkali-metal anion obtained with the sing
and the two-configuration wave functions are very simi
and both are very accurate. This tells us about the qualit
the present parametrization and that the effect of the n
degeneracy is more important in the variational energy t
in the nodal surface, which seems to be well described by
single-configuration wave function. This is due to the fa
that the nuclear charge is reduced with respect to
Be(1s2,2s2) case, and mean field effects, such as this n
degeneracy, become relatively less important.

Our feelings are that the present description of the co
lation is relatively general, and should be useful to anal
A.
ov

.
ev

r-
et

.
J.
ev

p
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the correlation in more complex systems. Clearly, t
method is applicable also to molecules. For larger syste
the statistical methods of multivariate integration could
considered in order to perform the necessary numer
quadratures.

Finally, let us point out that these approximate ve
simple wave functions are of interest as trial wave functio
in a DMC approach, leading to quasiexact energy values
relatively complex systems such as Li2 and Be.
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