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Secure quantum key distribution using squeezed states
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We prove the security of a quantum key distribution scheme based on transmission of squeezed quantum
states of a harmonic oscillator. Our proof employs quantum error-correcting codes that encode a finite-
dimensional quantum system in the infinite-dimensional Hilbert space of an oscillator, and protect against
errors that shift the canonical variablegndq. If the noise in the quantum channel is weak, squeezing signal
states by 2.51 dBa squeeze fact@' = 1.34) is sufficient in principle to ensure the security of a protocol that
is suitably enhanced by classical error correction and privacy amplification. Secure key distribution can be
achieved over distances comparable to the attenuation length of the quantum channel.
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[. INTRODUCTION correction; nevertheless, the connection between quantum er-
ror correction and quantum key distribution is a powerful

Two of the most important ideas to emerge from recentool, enabling us to invoke the sophisticated formalism of
studies of quantum information are the concepts of quantunguantum error-correcting codes in an analysis of the security
error correction and quantum key distributi@@KD). Quan-  of quantum key distribution protocols.
tum error correction allows us to protect unknown quantum Also recently, new quantum error-correcting codes have
states from the ravages of the environment. Quantum kelgeen proposed that encode a finite-dimensional quantum sys-
distribution allows us to conceal our private discourse fromem in the infinite-dimensional Hilbert space of a quantum
potential eavesdroppers. system described by continuous variadlé In this paper,

In fact these two concepts are more closely related than ige will apply these new codes to the analysis of the security
commonly appreciated. A quantum error COWEC_“OF! protocoby qguantum key distribution protocols. By this method, we
must be able to reverse the effects of both bit flip errorsygye the security of a protocol that is based on the trans-
which reflect the polarization state of a qubit about € mission of squeezed quantum states of an oscillator. The

th < B ina both t ¢ th ; :’ﬂ)rotocol is secure against all eavesdropping strategies al-
€z axis. by reversing both types of errars, the protoco Ir%ved by the principles of quantum mechanics.

removes any entanglement between the protected state a In our protocol, the sending party, Alice, chooses at ran-

the environment, thus restoring the purity of the state. dom to send either a state with a well defined posit

In a quantum key distribution protocol, two communicat- ¢ Then Ali h | ; b
ing parties verify that qubits polarized along both thaxis momentump. 1hen AlCE Chooses a value gior p by sam-
pling a probability distribution, prepares a narrow wave

and thez axis can be transmitted with an acceptably small
probability of error. An eavesdropper who monitors the Packet centered at that value, and sends the wave packet to

x-polarized qubits would necessarily disturb thpolarized ~the receiving party, Bob. Bob decides at random to measure
qubits, while an eavesdropper who monitors theolarized eitherq or p. Through public discussion, Alice and Bob dis-
qubits would necessarily disturb the-polarized qubits. card their data for the cases in which Bob measured in a
Therefore, a successful verification test can show that théifferent basis than Alice used for her preparation, and retain
communication is reasonably private, and the privacy caithe rest. To correct for possible errors, which could be due to
then be amplified via classical protocols. eavesdropping, to noise in the channel, or to intrinsic imper-
In quantum key distribution, the eavesdropper collects infections in Alice’s preparation and Bob’s measurement, Al-
formation by entangling her probe with the transmitted qu-ice and Bob apply a classical error correction and privacy
bits. Thus both error correction and key distribution share themplification scheme, extracting from the raw datarfars-
goal of protecting quantum states against entanglement witbillators a numbek<n of key bits.
the outside world. Alice and Bob also sacrifice some of their data to perform
Recently, this analogy between quantum error correctiom verification test to detect potential eavesdroppers. When
and quantum key distribution has been sharpened into a preerification succeeds, the probability is exponentially small
cise connection, and used as the basis of a new proof ah n that any eavesdropper has more than an exponentially
security against all possible eavesdropping strateflés small amount of information about the key. Intuitively, this
Earlier proofs of securityfirst by Mayers[2], and later by  protocol is secure because an eavesdropper who monitors the
Bihamet al.[3]) made no explicit reference to quantum error observableg necessarily causes a detectable disturbance of
the complementary observahjpe(and vice versa
Since preparing squeezed states is technically challeng-
*Email address: preskill@theory.caltech.edu ing, it is important to know how much squeezing is needed
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to ensure the security of the protocol. The answer depends on -

how heavily the wave packets are damaged during transmis- [1)cc 2 lg=(2s+ 1)\/;>

sion. When the noise in the channel is weak, we show that it =

suffices in principle for the squeezed state to have a width . 2
smaller by the factoe™"=0.749 than the natural width of a > SIp=sya

coherent statécorresponding to an improvement by 2.51 dB “S:_w (—1)%p=sym).

in the noise power for the squeezed observable, relative to

vacuum noisg It is also important to know that security can The operators

be maintained under realistic assumptions about the noise

and loss in the channel. Our proof of security applies if the Z=e'Ma  Xx=g i(/mMp (3)
protocol is imperfectly implemented, and shows that secure

key distribution can be achieved over distances comparabléommute with the stabilizer generators and so preserve the
to the attenuation length of the channel. Squeezed-state keypde subspace; they act on the basis @paccording to
distribution protocols may have some practical advantages

over single-qubit protocols, in that neither single-photon Z@_)@, |T>_>_|T>,
sources nor very efficient photodetectors are needed. (4)
Key distribution protocols using continuous variable Y‘@Hm |T>H|6>

guantum systems have been described previously by others

[5-7], but ours is the first complete discussion of error cor-  rig code is designed to protect against errors that induce
rection and privacy amplification, and the first proof of se-gpitis in the values off and p. To correct such errors, we

curity against arbitrary attacks. measure the values of the stabilizer generators to determine

In Stgc. I \éve rewev(;/ .cogtlnuc:ltljs variable czﬁantum errotr-the values ofg and p modulo /7, and then apply a shift
correcting code$4] and in Sec. IIl we review the argumen transformation to adjusy andp to the nearest integer mul-

[1] exploiting quantum error-correcting codes to demonstrate. . ; :
the security of the BB84 quantum key distribution scheme(?IpIeS of . If the errors induce shifta.g, Ap that satisfy

[8]. This argument is extended to apply to continuous vari-

able key distribution schemes in Secs. IV and V. Estimates |Aq|<\/;/2, |Ap|<\/;/2, ®

of how much squeezing is required to ensure security of th@,ap, the encoded state can be perfectly restored.

protocol are presented in Sec. VI. The effects on security of 5 -qde that protects against shifts is obtained for any

losses due to photon absorption are analyzed in Sec. VIl, and,ice of the eigenvalues of the stabilizer generators. The
Sec. VIl contains conclusions. code with

— 27 —p 27

Il. CODES FOR CONTINUOUS QUANTUM VARIABLES Sq € K Sp € & ©)
We begin by describing codes for continuous quantunfan be obtained from thé,=¢,=0 code by applying the

variables[4]. The two-dimensional Hilbert space of an en- Phase-space translation operator

coded qubit embedded in the infinite-dimensional Hilbert

space of a system described by canonical variatplead p

can be characterized as the simultaneous eigenspace of the )
two commuting operators the angular variableg, and ¢, € (—1/2,1/2 denote the al-

lowed values ofy/\/7 and p/\/P? modulo an integer. In this

207 —i@mp code space, the encoded operatiErandf(which square to
Sy=e A Sy =e TR, (D the identity can be chosen to be

ei G?(q(f’p)e_i \?(pd’q), (7)

the code’s “stabilizer generators.” If the eigenvalues are Z(pg) =", X(gpp)=e TP (g)
Sy=S,=1, then the allowed values af andp in the code
space are integer multiples afr, and the codewords are
invariant under shifts i or p by integer multiples of 2/7.
Thus an orthogonal basis for the encoded qubit can be ch

The code with stabilizer Eq1) can be generalized in a
variety of wayq4]. For example, we can increase the dimen-
sion of the protected code space, and we can modify the code
% protect against shifts that are asymmetrigiand inp. If

senas we choose the stabilizer to be
> Sq(n,@)=exgdi(vV2md)(q/a)],
[0y X [q=(25)/m) | ©)
= Sp(n,a)=exd —i(y2md)(pa)],
o whered is a positive integer and is a positive real number,
o E |p=s\/;> then the code has dimensidrand protects against shifts that
s ' satisfy
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o\ 2m 1 2 cepted, Alice and Bob will know it is unsafe to use the key
|AQ|<(§) a |Ap|<z q° (10 and can make further attempts to establish a secure key. If
eavesdropping is not detected, the key can be safely used as
The codewords Eq2) are nonnormalizable states, infi- & one-time pad for encoding and decoding.
nitely “squeezed” ing andp. In practice, we must always Establishing that a protocol is secure is tricky, because
work with normalizable finitely squeezed states. For ex-there inevitably will be some noise in the quantum channel
ample, a Gaussian approximatifB) to the ideal codeword Used to distribute the' key, and the effects of.eavesdropping
0) of thed=2, =1 code, characterized by squeezing pa_could be confused with the effects of the noise. Hence the
rametersA . A.<1 is protocol must incorporate error correction to establish a
TR shared key despite the noise, and privacy amplification to
5 4\ V4 o 1o, & 1 s control the amount of information about the key that can be
|0>~(—) f dgjgye 249" > e 2a-2smMag collected by the eavesdropper.
T o =T In the case of the BB84 key distribution invented by Ben-
1 (e 1o, & 1 s, nett and Brassar(B], the necessary error correction and pri-
~—7| dplpye 2P > e aP~sMAL (11)  vacy amplification are entirely classical. Nevertheless, the
(R = formalism of quantum error correction can be usefully in-
) ~ ) . voked to show that the error correction and privacy amplifi-
the approximate codewof@) can be obtained by subjecting ¢ation work effectively{1]. The key point is that if Alice and
|0) to shifts inq and p governed by Gaussian distributions Bob carry out the BB84 protocol, we can show that the
with widths A4 andA, respectively. IfA; andA, are small,  eavesdropper is no better off than if they had executed a
then in principle these shifts can be corrected with high probprotocol that applies quantum error correction to the trans-
ability: e.g., forAq=A,=A, the probability that a shiftilj  mitted quantum states. Appealing to the observation that Al-
or p causes an uncorrectable error is no worse than the prole and Bobcould haveapplied quantum error correction
ability that the size of the shift exceedsr/2, or (even though they didn't really apply)jtwe place limits on
what Eve can know about the key.
P.< S dq e /A< 28 exp( — 7/4A?)
¢ JmA?) @2 ™ ' o
(12) A. Entanglement distillation
. ) ) First we will describe a key distribution protocol that uses
For thed=2 code witha#1, this same estimate of the error g q,;antum error-correcting code to purify entanglement, and
probability applies if we rescale the widths appropriately, \yjji explain why the protocol is secure. The connection be-
_ _ tween quantum error correction and entanglement purifica-
Ag=Aa,  Ap=Ala. (13 tion was first emphasized by Bennettal.[13]; our proof of
We can concatenate a shift-resistant code with arfecurity follows a proof by Lo and Chdu4] for a similar
[[n,k,d]] stabilizer quantum code. That is, first we encodekey distribution protocol. Later, following Refl], we will
(say a qubit in each of oscillators; therk better protected S€€ how the entanglement-purification protocol is related to
qubits are embedded in the blockrofif the typical shifts are  theé BB84 protocol. _
small, then the qubit error rate will be small in each of the A stabilizer code can be used as the basis of an
oscillators, and the error rate in tkeorotected qubits will be ~ €ntanglement-purification protocol with one-way classical
much smaller. The quantum key distribution protocols thaommunication[13,14. Two parties, both equipped with
we propose are based on such concatenated codes. qua_m;u_rr.\ computers, can use.thls protopol to extract from
We note quantum codes for continuous quantum variable§'eir initial shared supply of noisy Bell pairs a smaller num-
with an infinite-dimensionatode space were described ear-Per of Bell pairs with very high fidelity. These purified Bell
lier by Braunstein9], and by Lloyd and Sloting10]. En-  Pairs can then be employed for Einstein-Podolsky-Rosen
tanglement distillation protocols for continuous variable sys{EPR quantum key distribution. Because the distilled pairs
tems have also been propoddd, 12 are very nearly pure, the quantum state of the pairs has neg-
ligible entanglement with the quantum state of the probe of
any potential eavesdropper; therefore no measurement of the

Il QUANTUM KEY DISTRIBUTION AND QUANTUM probe can reveal any useful information about the secret key.

ERROR-CORRECTING CODES

Now let us recall the connection between stabilizer quan-

tum codes and quantum key distribution schefilds ~ iye implicitly assume that Eve uses a strategy that passes the
We say that a protocol for quantum key distribution is yerification test with nonnegligible probability, so that the rate of
secure if(1) the eavesdropper Eve is unable to collect akey generation is not exponentially small. If, for example, Eve were
significant amount of information about the key without be-to intercept all qubits sent by Alice and resend them to Bob, then
ing detected(2) the communicating parties Alice and Bob she would almost certainly be detected, and key bits would not be
receive the same key bits with high probability, a3l the likely to be generated. But in the rare event that she is not detected
key generated is essentially random. Then if the key is interand some key bits are generated, Eve would know a lot about them.
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Let us examine the distillation protocol in greater detail.covery operation he should apply to his qubits to ensure that
Suppose that Alice and Bob start out withshared EPR  the M; g’s match theM; 4’s, and he performs this operation.

pairs. Ideally, these pairs should be in the state Now Alice and Bob are in possessionloéncoded pairs with
- ven improved fidelity.
|D)=[gT)*N, (14) These encoded pairs can be used for EPR key distribution.

where|¢*) is the Bell state |@O>+|11>)/\/§; however, the _For eacha=1,2,...k, Alice gnd Bob measurg,, obtai_n— '
pairs are noisy, approximating ™) with imperfect fidelity. "9 outcomes that are essentially random and agree with high

They wish to extrack<n pairs that are less noisy. probability. These outcomes are their shared private key.

For this purpose, they have agreed in advance to use a
particular[[ n,k,d]] stabilizer code. The code space can be B. Verification
characterized as a simultaneous eigenspace of a set of mutu-

ally commuting stabilizer generator$M;,i=1,2,...n int fi f d for oth then th
—k}. EachM; is a “Pauli operator,” a tensor product of INtervention ot an eavesaropper or for other reasons, ten the
single-qubit cIJperators where each single-qubit operator i urlflcqt!on protocol m|ght not supceed. A_Ilce and Bp_b nged
one of{1,X,Y,Z} definéd by o §acr|f|ce some of th_e_|r EPR pairs to verify that purification
T is likely to work. If verification fails, they can abort the pro-

If the initial pairs aretoo noisy, either because of the

1 0 0 1 tocol.
| =( ) x:( ) Under what conditions will purification succeed? If their
0 1 10 pairs were perfect, each would be in the stpte’), the
. (195 simultaneous eigenstate with eigenvalue one of the two com-
Y= ( 0 _') 7 (1 0 ) muting observableX® X andZ®Z. Suppose for a moment,
i 0)’ 0 —-1/° that each of the pairs a simultaneous eigenstate of these
o observablega Bell state, but not necessarily with the right
The operations{X,,Z,,a=1,2, ...k} acting on the en- eigenvalues: in fact no more thdg of the n pairs haveX
coded qubits are Pauli operators that commute with all of thes X=—1, and no more thah, of the n pairs haveZ® Z=
M; . —1. Then, if Alice and Bob use a stabilizer code that can
The Bell state|¢™) is the simultaneous eigenstate with correct up tot, bit flip errors and up tdy phase errors, the
eigenvalue one of the two commuting operatdps» Xg and  purification protocol will work perfectly—it will yield the
Z,®Zg (Where subscripté& and B indicate whether the op- encoded stated ¥y =| ¢+ )2k with fidelity F=1.

erator acts on Alice’s or Bob's qubitThus the statgd (™) Now, the initialn pairs might not all be in Bell states. But

is the simultaneous eigenstate with eigenvalue one of th§uppose that Alice and Bob were able to perform a Bell

commuting operators measurement on each pair, projecting it onto a simultaneous
M, A®Mig, =12, ...0n—kK, eigenstate oX®X andZ®Z. Of course, since Alice and

Bob are far apart from one another, they cannot really do this
- = Bell measurement. But let's nevertheless imagine that they
Xan®Xap, a=12,...k (16) first perform a Bell measurement on each pair, and then pro-
- — ceed with the purification protocol. Purification works if the
Zaa®Zap, a=12,...k Bell measurement yields no more thap pairs with X® X

= —1 and no more thaty pairs withZ®Z= —1. Therefore,

if the initial state of then pairs has the property that Bell
measurement applied to all the pairs will, with very high

Now suppose that Alice and Bob both measure thek
commuting M;’s. If the state they measure is precisely

(n) i in i i i~ . . .
lq)t ): ther'1: AtI;]ce and B(.)b o?rt]al_n identical metas(ljjrem?r&t_ robability, produce pairs with no more thanbit flip errors
outcomes. Furthermore, since their measurements do Not digyy g more thamy phase errors, then we are assured that

turb the encoded operations, and_fa, their measurement Be|l measurement followed by purification will produce a
would prepare the encoded state!))=[¢")“, the en-  yery high fidelity approximation to the encoded staté¥).

coded state with But what if Alice and Bob execute the purification proto-
- col without first performing the Bell measurement? We
Xaa®Xap=Zan®Zap=1, know that the purification works perfectly applied to the
(17)  spaceHgyqoq SPanned by Bell pairs that differ fromg*)="
a=12,...k by no more thari; bit flip errors and no more thatry phase

in the code subspace with the specified valueMepf + 1. errors. L?tH denOte the prqjgction O.nfdgoo“' Then if the
However, since the initial pairs are noisy, Alice’s and prgtocol |s.appl|ed t'o an initial densny.operatp_wof thgn

Bob's measurement of thel;’s need not match perfectly; Pars, the final density operatpf approximate$® ) with

they should apply error correction to improve the fidelity of fidelity

their encoded pairs. Thus Alice broadcasts the values of the

M; A’s that she obtained in her measurements. Comparing to

his own measurements, Bob computes the relative syndrome

M; aM; g. From this relative syndrome, he infers what re- Therefore, the fidelity is at least as large as the probability

F=(®®|p'|®W)=tr(TTp). (18)
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thatt, or fewer bit flip errors andy or fewer phase errors vide them with high statistical confidence. We must now
would have been found if Bell measurement had been persuppose that Alice and Bob start out with more tingoairs;
formed on alln pairs. to be definite, suppose they have abontt@ start, and that
To derive the inequality EJ18), we represenp as a pure they are willing to sacrifice about half of them to conduct
state| W) gg of the n pairs (the “system” S) and an ancilla their verification test. Alice randomly decides which pairs
(the “environment” E, which might be under Eve’s contpol  are for verification(the “check pairs’) and which are for
The recovery superoperator can be represented as a unitétgy distribution(the “key pairs”), and for each of her check
operatorU sy that is applied t@ and an auxiliary systerfthe  qubits, she randomly decides to measure ei¥er Z. Then
“reservoir’ R) that serves as a repository for the entropyAlice publicly announces which are the check pairs, whether
drawn from the pairs by error correction. Denote the initialshe measurel or Z on her half of each check pair, and the
pure state of the reservoir B9). Then the state of system, results of those measuremeitis addition to the results of
environment, and reservoir to which the recovery operatiorher measurements of the stabilizer generators

is applied can be resolved into a “good” component Upon hearing of Alice’s choices, Bob measukéer Z on
his half of each of the check pairs; thus Alice and Bob are
|V good ser= (TTs® 1 gR) V) sg® |O) R, (19 able to measurX® X on about half of their check pairs, and

they measur&@® Z on the remaining check pairs. Now since
the check pairs were randomly chosen, the eavesdropper Eve
_ _ has no way of knowing which are the check pairs, and she
Whadser=[(1s~ )@l erl[¥)se®[O)r- (20 cannot treat them any differently than the key pairs; hence
Since the stateisl goo) serand| VW pad serare orthogonal, the the measured error rate found for the check pairs will be
unitary recovery operatiotJsg® |z maps them to states representative of_ thg error rate that Wou_ld have been foqnd
W/ oodser and [Widser that are also orthogonal to one " the key pairs if Alice and Bob had projected the key pairs

another. Furthermore, since recovery works perfectly on th@nto the Bell basis. Therefore, /-\_Iice and Bob can use L
SPaceH,yoq We have check data and classical sampling theory to estimate how
good:

many bit flip and phase errors would have been expected if

' =|p® iunk) g, 21 they had measured the key pairs.
| gOO(DSER_l 5@ liunker ) For example, in a sample &f pairs, suppose thét Alice

where the stat¢junk)cr of environment and reservoir has @nd Bob both measured for all the pairs, a fractiorp of

and an orthogonal component

norm their measurements would disagree, indicating bit flip errors.
Then if they randomly sampl®l <N of the pairs, the prob-
er(UNKjUNK) er= seR Y good ¥ good SER ability distribution for the numbeM (p—¢) of errors found
would bé
= SEF(quooJ\Pgoo&SER:tr(HP)-
(22) P(e)<exd —Me?2p(1—p)]. (25)

Thus the fidelity of the recovered state can be expresselﬂi Alice and Bob h,ave na priori knowlc_a(_jge of the Va.IL.Je of
p, then by Bayes’ theorem, the conditional probability that

as . N :
the total number of errors in the populationpibl, given that
F= vl (|p® Ol A there arepzM errors in the sample, is the same as the prob-
ser W'l )s Deler¥")ser ability that there argp;M errors in the sample given that
= SER(xpéoomq_)(k))S éa(k)|)®|ER|‘I’éooc95ER there arepN errors in the total population. Writing=p5
- o +¢, the number of errors on thd—M untested pairs is
+ sef Vhad (| 2W)s PO ®IerViadser Np—Mpz=(N—M)pz+Ne=(N-M)(pz+e'), wheree’
_ _ =Ne/(N—M). ExpressingP(¢e) in terms ofe’ we find
=tr(Ilp) + (DY ppd @) =tr(Ilp), (23
M(N—M)2g’?
where P(e")<ex e F (26)
2N“pz(1—-pz)
Poa= Ter(|Vhadser sV bad); (24)

a bound on the probability that the fraction of the untested

Eq. (18) then follows. The key point is that, because of Eg.Pairs with errors is larger thap, +¢". In particular, if they
(22), and becausgl .9 serand | ¥}, dser are orthogonal, test aboutM =n/2 pairs for bit flip errors out of a total of
there is no “good-bad” cross term in E(R3). about N=n+n/2 pairs, the probability that a fractiop,

Our arguments so far show that Alice and Bob can bet ¢’ of the remainingN—M=n pairs have bit flip errors is
assured that entanglement purification will work very well if
they know that it is highly unlikely that more thag bit flip
errors or more thaty, phase errors would have been found if 2This bound is not tight. It applies if the sample Bf pairs is
they had projected their pairs onto the Bell basis. While theythosen from the population dfi with replacementin fact, the
have no way of directly checking whether this condition issample is chosen without replacement, which suppresses the fluc-
satisfied, they can conduct a test that, if successful, will protuations. A better bound was quoted in Rif].
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P(e")<exd —ne’?/9p,(1—p5)]. (27)  Taking D=2% (the total dimension of Alice’s and Bob’s
code spacgswe conclude that

A similar argument applies to the probability of phase errors.
We conclude that by conducting the verification test, Alice 1
and Bob can be very confident that, if they had measired S(ppg) =<2 m+2k+|ogz(1/5) +0(8%). (31
®Z (or X®X) on then key pairs, no more thampg+e¢’)n e
[or (px+&')n] errors would have been found. By choosing a
guantum error-correcting code that can correct this many er- Finally, we have shown that if the verification test suc-
rors with high probability, they can be confident that theceeds, then with probability exponentially close to dties
encoded state they prepare approximé®ed)) with fidelity probability that the error rate inferred from the check sample
exponentially close to one. is not seriously mlslgadlﬁg Eve’s mutual information with

It is important to emphasize that this argument requires né1€ key is exponentially smafbecause the state of the key
assumption about how the errors on different pairs may béits approximate$d ) with fidelity exponentially close to
correlated with one another. Rather the argument is appliedne. This proof of security applies to any conceivable eaves-
to a hypothetical situation in which the value 8®Z (or  dropping strategy adopted by Eve.
X®X) already has been measured and recorded for all of the The proof relies on the ability of quantum error-correcting
check pairs and all of the key pairs. Sampling theory is thergodes to reverse the errors caused by interactions between
used to address the question: how reliably does a “poll” ofthe key pairs and Eve’s probe. Hence it may seem odd that
M bits randomly chosen from among allow us to predict the proof works for arbitrary attacks by Eve, since quantum
the behavior of the rest of the population. Classical samplingrror correction works effectively only for a restricted class
theory can be applied to the values of b&@® Z and X® X of error superoperators. Specifically, the error superoperator
for the key pairs, because the operators commute and so a@éting on a block of qubits can be expanded in terms of a
simultaneously measurable in princigte4]. basis of “Pauli error operators,” where in each term of the

Furthermore, if the state of the encoded pairs that Aliceexpansion bit flip errors and/or phase errors are inflicted on
and Bob use for key distribution is exponentially close tospecified qubits within the block. The encoded quantum in-
being a pure state, it follows from Holevo’'s theorem thatformation is well protected only if the error superoperator
Eve’s mutual information with the distributed key is expo- has nearly all of its support on Pauli operators that can be
nentially small[14,1]. In the worst case, the imperfect fidel- corrected by the code, e.g., those with no more thabit
ity of Alice’s and Bob’s pairs is entirely due to Eve’s inter- flip errors andty phase errors.
vention; then the complete state consisting of the pairs and If Eve’s probe interacts collectively with many qubits, it
Eve’s probe is pure, and the Von Neumann entr&yc) may cause more bit flip or phase errors than the code can
=—1tr pelogpe of the statepg of the probe equals the en- correct. But the crucial point is that, with high probability, an
tropy of the state g of the pairs. By extracting a key from attack that causes many errors on the key bits will also cause
their pairs, Alice and Bob in effect prepare a state for Evemany errors on the check bits, and Alice and Bob will detect
governed by an ensemble with density mafrix According Eve’s presence.
to Holevo’'s theorem, the mutual informatiddAB;E) of
this state preparation with any measurement that Eve can

. C. Reduction to the BB84 protocol
carry out on her probe satisfies

Since the entanglement distillation protocol requires only
I (AB;E)<S(pg)=S(pag), (28) one-way classical communication, this protocol is actually
equivalent to one in which Alice, rather than preparing Bell
and sincep g is very nearly pureS(pag) andl (AB;E) are  Pairs and sending half of each pair to Bob, instead prepares
very close to zero. Specifically, if the fidelity @f,s is F @n encoded quantum state that she sends to Bob. Using a set
—1- 5, then the largest eigenvalue pfg is at least - 5.  Of stabilizer generators on which she and Bob have agreed in
For a system with dimensiaD, the density matrix with larg- dvance, Alice chooses a random eigenvalue for each stabi-

est eigenvalue 6 that has the maximal Von Neumann lizer generatorM;; then employing the corresponding
entropy is [[n,k,d]] quantum code, she prepares one &fndutually

orthogonal codewords.
) S ) Alice also decides at random which of her qubits will be
Pmax= dia% 1-6, D-1'D-1' D—1)’ (29 used for key distribution and which will be used for verifi-
cation. For each of the check bits, she decides at random
whether to send aK eigenstatéwith random eigenvalyeor

for which a Z eigenstatdwith random eigenvalye
B Bob receives the qubits sent by Alice, carefully deposits
S(pman =~ (1= 9)logy(1~ 8) — §logy[ 6/(D—1)] them in his quantum memory, and publicly announces that
1 the qubits have been received. Alice then publicly reveals
= 6(@ +log,(D—1)—log, 8| +O(6?). which qubits were used for the key, and which qubits are the
e

check qubits. She announces the stabilizer eigenvalues that
(30 she chose to encode her state, and for each check qubit, she
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announces whether it was prepared asXeor Z eigenstate, H;x=s, H,z=t. (36)
and with what eigenvalue.

Once Bob learns which qubits carry the encoded key inThus, to distribute the key, Alice choosesndz at random,
formation, he measures the stabilizer operators and comparescodes one of thpj(v)) 'S, and sends the state to Bob.
his results with Alice’s to obtain a relative error syndrome. After Bob confirms receipt, Alice broadcasts the values of
He then performs error recovery and measures the encodeghd z Bob compares Alice’s values to his own measure-
state to decipher the key. ments of the stabilizer generators to infer a relative syn-

Bob also measures the check qubits and compares thirome, and he performs error correction. Then Bob measures
outcomes to the values announced by Alice, to obtain aiZ of each of hisn qubits, obtaining a bit string +w+ x.
estimate of the error rate. If the error rate is low enoughFinally, he subtractx and applieH, to computeH v, from
error recovery applied to the encoded key bits will succeedvhich he can infer the coset representedvbgnd hence the
with high probability, and Alice and Bob can be confident in key.
the security of the key. If the error rate is too high, Bob  Now notice that Bob extracts the encoded key information
informs Alice and they abort the protocol. by measuringZ of each of the qubits that Alice sends. Thus

As described so far, the protocol requires that Alice andBob can correctly decipher the key information by correcting
Bob have quantum memories and quantum computers thahy bit flip errors that occur during transmission. Bob does
are used to store the qubits, measure stabilizer generatoksot need to correct phase errors, and therefore he has no use
and correct errors. But if they use a stabilizer code of the&or the phase syndrome information; hence there is no need
CSS(Calderbank-Shor-Steang/pe[15,16, then the proto- for Alice to send it.
col can be simplified further. The crucial property of the CSS  without in any way weakening the effectiveness of the
codes is that there is a clean separation between the syprotocol, Alice can prepare the encoded stat@) )y ., but
drome information needed to correct bit flip errors and thediscard her value dof, rather then transmitting it; thus we can
syndrome information needed to correct phase errors.  consider the state sent by Alice to be averaged over the value

A CSS quantum stabilizer code is associated with a clasof z. Averaging over the phase-(1)*" destroys the coher-
sical binary linear cod€; onn bits, and a subcodé,CC;. ence of the sum ovewe C, in |(v))y,; in effect, then,

Let H, denote the parity check matrix &, and H, the  Alice is preparingn qubits asZ eigenstates, in the state
generator matrix for the code, (and hence the parity check +w-+x), sending the state to Bob, and later broadcasting the
matrix of the dual cod€;). The stabilizer generators of the value ofx. We can just as well say that Alice sends a random
code are of two types. Associated with thi@ row of the  stringu, and later broadcasts the valueusf v. Bob receives
matrix H, is a “Z generator,” the tensor product dfs and  u+e (wheree has support on the bits that flip due to erjors
Z’s extractsv +e, corrects it to the neare€l; codeword, and
o (o) infers the key, the coset+C,.
Mzi=®j_1(Zj)" Vi, (32 Alice and Bob can carry out this protocol even if Bob has
) ) ) ) no quantum memory. Alice decides at random to prepare her
and associated with theh row of H, is an “X generator,”  gubits asX or Z eigenstates, with random eigenvalues, and
the tensor product dfs andX's Bob decides at random to measure in ¥er Z basis. After
o (Hy): public discussion, Alice and Bob discard the results in the
Max,i =@ j=1(X))T20. (33 cases where they used different bases and retain the results
where they used the same basis. Thus the protocol we have
described is just the BB84 protocol invented by Bennett and
Brassard 8], accompanied by classical error correcti@al-
Susting v +e to a C, codeword and privacy amplification
(extracting the cosat+C,).

SinceH; hasn—k; rows, wherek;=dim(C,), andH, has
k, rows, wherek,=dim(C,), there are all togethem—k;
+k, stabilizer generators, and the dimension of the cod
space(the number of encoded qubitss k=k;—k,. From

measurements of the generators, bit flip errors can be di- What error rate is acceptable? In a random CSS code,
agnosed, and fTOm measurement of hgenerators, phase about half of then—k generators correct bit flips, and about
errors can be dlagnosed._ L alf correct phase flips. Suppose that the verification test
The elemt_'-znts of a basis for the code space with mgenvaFnds that bit flip errors Z,®Zg= — 1) occur with probabil-
ues of stabilizer generators ity pz and phase errors{(,® Xg= —1) occur with probabil-
My i=(—1)%, My =(—1)t (34) ity px. Classical coding theory shows that a ra_n_dor_n CSS
Zi ' X code can correct the bit flips with high probability if the
number of typical errors on bits is much smaller than the
number of possible bit flip error syndromes, which holds
provided that

are in one-to-one correspondence with kheosets ofC, in
C,; they can be chosen as

n
npz

Wwezcz (—1)Z'W|U+W+X>; (35

|¢(v)>x,z:

)2—(n—k)/2~2nH2(Pz)—(”—k)/2<1, (37)

herev e C; is a representative of &, coset, andx, z are  whereH,(x) = —xlog,x—(1—X)log,(1—x) is the binary en-
n-bit strings satisfying tropy function. Similarly, the phase errors can be corrected
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with high probability provided the same relation holds with is able to infer by probing the qubits as they travel to Bob.

pz replaced bypy. Therefore, asymptotically as— o, se- Security can be maintained in a more general scenario. In
cure key bits can be extracted from transmitted key bits athe entanglement-purification protocol, we can allow Eve ac-
any rateR satisfying cess to Alice’s qubits. As long as Eve has no way of know-

ing which pairs Alice and Bob will select for their verifica-
tion test, and no way of knowing whether the check pairs
will be measured in th& or X basis, then the protocol still
(38) works: eavesdropping can be detected irrespective of
whether Eve probes Alice’s qubits, Bob’s qubits, or both.
R= ﬁ<1—2H2(px). Now if we imagine that Alice measures her qubits before
sending to Bob, we obtain a BB84-like protocol in which
Alice’s source is imperfect and/or Eve is able to collect some
We conclude that secure key distribution is possiblp,gf information about how Alice’s source behaves. Our proof
2 that the BB84-like protocol is secure still works as before.

<11%. However the proof applies only to a restricted type of
The random coding argument applies if the errors in the : P b pp_bl y late Alice’ yp
key qubits are randomly distributed. To assure that this is Sosource—n must be possible to simulate Alice’s source ex-
) . ' . actly by measuring half of a two-qubit state.

we can direct Alice to perform a random permutation of the

qubits before sending them to Bob. After Bob confirms re- To be concrete, consider the following special case, which

ceipt, Alice can broadcast the permutation she performedNI” suffice for our purposes: Alice has many |d§nt|cal copies
. : of the two-qubit state 5. To prepare a Z state” she mea-
and Bob can invert it.

Again, the essence of this argument is that the amount Lgss(')r?:%ﬁhg tt/t/]g Sthféss{lmA |1)a}. Thus she sends to
information that an eavesdropper could acquire is limited by

k
R= ﬁ<1_2H2(pz),

This upper bound ofRR crosses zero giz(or pyx)=0.1100.

how successfully we could have carried out quantum error (0] pag|0)a

correction if we had chosen to—and that this relation holds pOZW,

irrespective of whether we really implemented the quantum r(a(0lpagl0)a)

error correction or not. (lpaal1) (39
Other proofs of the security of the BB84 protocol have pl:w,

been presentef?,3], which do not make direct use of this tr( a(1lpasl1)a)

connection with quantum error-correcting ches. HOW(_averChosen with respective probabilities
these proofs do use classical error correction and privacy
amplification, and they implicitly exploit the structure of the Prol{0) =tr( (0| pag|O)a),

CSS codes. (40)

Prob(1)=tr( a(1|pagl/1)a)-

S . . . Similarly, to prepare arX state she measures in the basis
Our objective in this paper is to analyze the security Ofﬂﬂ’l_»’ sending one of

key distribution schemes that use systems described by co
tinuous quantum variables. The analysis will follow the strat- al+|pagl+)a

egy we have just outlined, in which an entanglement- P+ =+ )
purification protocol is reduced to a protocol that does not (al+[pagl+)a)

D. Imperfect sources

require the distribution of entanglement. But first we need to A= 1Pasl = )a (42)
discuss a more general version of the argument. p_= ,
In the entanglement-purification protocol, whose reduc- tr(aC— lpasl =)a)
tion to the BB84 protocol we have just described, there is ahosen with respective probabilities
implicit limitation on the eavesdropper’s activity. We have
assumed that Alice prepares perfect entangled pairs in the Prol{ +)=tr( a(+ | pag| + )a),
state| ¢ "), and then sends half of each pair to Bob. Eve has (42)
been permitted to tamper with the qubits that are sent to Bob Prol( —)=tr( a{—|pasl = )a)-

in any way she chooses, but she has not been allowed any

contact with Alice’s qubits. Therefore, if we imagine that Unless the statp,g is precisely the pure statep™), Alice’s
Alice measures her qubits before sending to Bob, we obtaigource isn’'t doing exactly what it is supposed to do. Depend-
a BB84 protocol in which Alice is equipped with a perfect ing on howp,g is chosen, the source might be biased; for
source of polarized qubits. When she sends @igenstate, example it might senghy with higher probability tharp;.

the decision to emit #0) or a|1) is perfectly random, and And the stateg, andp, need not be the perfectly prepared
the state emerges from her source with perfect fidelity. Simi{0) and|1) that the protocol calls for.

larly, when she sends ax eigenstate, the decision to send  Now suppose that Alice’s source always emits one of the
|=)=(|0Y*+|1))/2 is perfectly random, and the state is statespy,p;,p+ .p—, and that after the qubits emerge from
prepared with perfect fidelity. Furthermore, Eve has nathe source, Eve is free to probe them any way she pleases.
knowledge of what Alice’s source does, other than what sh&ven though Alice’s source is flawed, Alice and Bob can
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perform verification, error correction, and privacy amplifica- or
tion just as in the BB84 protocol. To verify, Bob measures

or X, as before; if he measures say, they check to see gg=0a (mod V),
whether Bob’s outcomf) or | 1) agrees with whether Alice (46)
sentp, or p; (even though the state that Alice sent may not pg=—pa (mod Jm).

have been & eigenstatg Thereby, Alice and Bob estimate o _ o
error ratesp, and py. If both error rates are below 11%, Similarly, the initial state was an eigenstate with eigenvalue

then the protocol is secure. one of the observables
We emphasize again that the security criteriog,p, _ _ _ _ .
<11% applies not to all sources, but only to the restricted Xa(hp) @ Xg(Pp),  Zaldg) ®Zg(dg) ™, (47)

class of imperfect sources that can be simulated by measur- . . . .
ing half of a (possible noisy entangled state. To give an which also commute with the stabilizer generators that Alice

extreme example of a type of source to which the security"€@sured. Thus Alice’s measurement has prepared an en-
proof does not apply, suppose that Aliglvayssends thee ~ coded Bell pair in the code space labeled hiy, (#;), the
state|0) or the X state|+). Clearly the key distribution ~State
protocol will fail, even if Bob’s bits always agree with
Alice’s! Indeed, a source with these properties cannot be
obtained by measuring half of any two-qubit staigg.

Rather, if the source is obtained by such a measurement, then

a heavy bias when we sendZastate would require that the  Of course the initial EPR pair shared by Alice and Bob

_ 1
|¢+>AB:E(|O>A|O>B+|1>A|1>B)- (48)

error probability be large when we send Arstate. might be imperfect, and then the encoded state produced by
Alice’s measurement will also have errors. But if the EPR
IV. DISTRIBUTING A KEY BIT pair is not too noisy, they can correct the errors with high

WITH CONTINUOUS VARIABLES probability. Alice broadcasts her measured values of the sta-

ilizer generators to Bob; Bob also measures the stabilizer

NOV\{ let us consider how the abov&_—:‘ i‘?‘eas can.be app"_egenerators and compares his values to those reported by Al-
to continuous variable systems. We will first describe how INice, obtaining a relative syndrome

principle Alice and Bob can extract good encoded pairs of

qubits from noisy EPR pairs. However, the distillation pro- g(¢qa=dap) e i(patdpe), (49)

tocol requires them to make measurements that are difficult

in practice. Then we will see how key distribution that in- That is, the relative syndrome determines the valueyof
vokes (difficult) entanglement distillation can be reduced to — g, (mod \/7r) andp,+ pg (mod 7). Using this informa-
key distribution based ofeasief preparation, transmission, tjon, Bob can shift his oscillator's) and p (by an amount
and detection of sqyeezed states. _ _ between— /2 and7/2) to adjustys— gg (mod /) and

Suppose that Alice and Bob share pairs of oscillators A+ pg (Mod y7r) both to zero. The result is that Alice and

Ideally each pair has been prepared in an EPR state, a simykop now share a bipartite state in the code subspace labeled
taneous eigenstaféet us say with eigenvalue) ®f qa—qg by (¢bq.bp)-

andp,+ pg . Now suppose that Alice measures the two com- ~ ¢ e nitial noisy EPR state differs from the ideal EPR
muting stabilizer generators defined in Edj), obtaining the  g¢ate only by relative shifts of Bob’s oscillator relative to

outcomes Alice’s that satisfy|Aq|,|Ap|< /2, then the shifts will be
_ 27y A —a2midy A corrected perfectly. And if larger shifts are highly unlikely,
e“mMPaA S e PA, 43 ; X . .
SaA p.A “3 then Alice and Bob will obtain a state that approximates the
or desired encoded Bell pdiy™) with good fidelity. This pro-
cedure is a “distillation” protocol in that Alice and Bob start
aa= ¢q,A\/; (mod /), out with a noisy entangled state in a tensor product of infinite
(44)  dimensional Hilbert spaces, and “distill” from it a far
pPa= ¢p,A\/; (mod /7). c[eaner_ entangled state in a tensor product of two-
dimensional subspaces.
Now, the initial state was an eigenstate with eigenvalue one Once Alice and Bob have distilled an encoded Bell pair,
of the operator$§, o® S;é andS, ,®S, g. The observables they can use it to generate a key bit, via the usual EPR key
measured by Alice commute with these, and so preservdistribution protocol: Alice decides at random to measure

their eigenvalues. Thus if the initial EPR state of the oscil-gjther X or Z, and then publicly reveals what she chose to
lators were perfect, Alice’s measurement would also prepargheasure but not the measurement outcome. Bob then mea-
for Bob a simultaneous eigenstate of the stabilizer generatok§,res the same observable and obtains the same outcome—
with that outcome is the shared key bit.

How do they measur& or Z? If Alice (say wishes to
(45) measureZ, she can measug and then subtracp,, from the
S,p=€ 2"?%pB=g?"paA, outcome. The value d is determined by whether the result

Sq B= eZTri ¢q,B: e271'i ¢q,A,
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is an evenZ=1) or an odd Z= — 1) multiple of 7. Simi- (1) Alice chooses random valug m bits of accuracy
larly, if Alice wants to measur, she measures and sub-  for the stabilizer generatoss(*™9 ande”(>?, chooses a

tracts¢,—the value ofX is determined by whether the result Emdom bit to decide whether to encod& aigenstate or an
is an even Kz 1) or an odd Rz_l) multiple of \7r. X eigenstate, and chooses another random bit to decide

Imperfections in the initial EPR pairs are inescapable notVhether the eigenvalue will be-1. She then prepare@
just because of experimental realities, but also because t§90d approximation fothe encoded eigenstate of the chosen

ideal EPR pairs are unphysical nonnormalizable states. Like2Perator with the chosen eigenvalue in the chosen code, and

wise, the stabilizer operators cannot even in principle b&€nds it to Bob. _ _ _

measured with arbitrary precisiaithe result would be an (2 After Bob confirms receipt, Alice broadcasts the sta-

infinite bit string, but only to some finiten-bit accuracy. bilizer eigenvalues and whether she encodeéia anX.

Still, if the EPR pairs have reasonably good fidelity, and the (3) Bob measuresg or p. He subtracts from his outcome

measurements have reasonably good resolution, entanglde value moduloy7 determined by Alice’s announced

ment purification will be successful. value of the stabilizer generator, and corrects the result to the
To summarize, Alice and Bob can generate a shared bitearest integer multiple of . He extracts a bit determined

by using the continuous variable code for entanglement puby whether the multiple of/7 is even or odd; this is the

rification, carrying out the following key distribution proto- shared bit that they have generated.

col using entanglement purification. _ . . -
g g P To carry out this protocol, Alice requires sophisticated

tools that enable her to prepare the approximate codewords,

(1) Alice preparega good approximation jaan EPR state and Bob needs a quantum memory to store the state that he
of two oscillators, a simultaneous eigenstateqgf-qg=0  receives until he hears Alice’s classical broadcast. However,
=pa+pg, and sends one of the oscillators to Bob. we can reduce the protocol to one that is much less techni-

(2) After Bob confirms receipt, Alice and Bob each mea- cally demanding.
sure (to m bits of accuracy the two commuting stabilizer When Bob extracts the key bit by measurifsgy g, he
generators of the code|(2™4 ande'2™P_ (Equivalently, needs Alice’s value off modulo \7, but he does not need
they each measure the valuegfindp modulo \/7r.) Alice  her value of the other stabilizer generator. Therefore, there is
broadcasts her result to Bob, and Bob applies shiftgamd o need for Alice to send it; surely, the ea_vesdrop_per will be
p to his oscillator, so that his values qfandp modulo \/7 no better off if Alice sends less classical information. If she
now agree with Alice’sto m-bit accuracy. Thus, Alice and ~does not send the value &,, then we can consider the
Bob have prepareda very good approximation tca Bell protocol averaged over the unk_nown value of this generator.
state|$+) of two qubits encoded in one of the simultaneousF_Orma”y! for perfe_ct(nonnormallzabl}acodewor_ds the den-
eigenspaces of the two stabilizer operators. sity matrix describing the state that is accessible to a poten-

(3) Alice decides at random to measure one of the enIiaI eavesdropper then has a definite valu&gbut is aver-

ded torX or Z- th h hat she ch aged over all possible values ofS,—it is a
coded operatora or Z, then she announces what sné chos nonnormalizableequally weighted superposition of all po-
to measure, but not the outcome. Bob measures the sal

observable; the result is the shared bit that they have gene_r?[Ion eigenstates with a spemﬁeﬂvaluequnod Vm eg,

ated. in the case where Alice prepareZeigenstate, we have

p( ¢q ,Z=1),
Now notice that, except for Bob’s confirmation that he
received the states, this protocol requires only one-way clas- x> [q=(25+ p)NTHq=(25+ ¢pg) V7],
sical communication from Alice to Bob. Alice does not need s
to receive any information from Bob before she measures her —
stabilizer operators or before she measures the encoded op- p(dq.2=—1),

erationX or Z. Therefore, the protocol works just as well if

Alice measures her oscillator before sending the other one to “g 4= (25+ 1+ dg) Vm)(q=(25+ L+ o) \7].

Bob. Equivalently, she prepares an encoded state, adopting

randomly selected values of the stabilizer generators. Sha&veraged overp, as well, Alice is sending a random posi-
also decides at random whether the encoded state will be aion eigenstate. Likewise, in the case where Alice prepares

X eigenstate or & eigenstate, and whether the eigenvaluean X eigenstate, she sends a random momentum eigenstate.
will be +1 or —1. Therefore, the protocol in which Alice prepares encoded

Again, since the codewords are unphysical nonnormalizgubits can be replaced by a protocol that is simpler to ex-
able states, Alice cannot really prepare a perfectly encodedcute but is no less effective and no less secure. Instead of
state; she must settle for a “good enough” approximatebothering to prepare the encoded qubit, she just decides at
codeword. random to send either q or p eigenstate, with a random

In summary, we can replace the entanglement purificatiomigenvalue. If Bob had a quantum memory, he could store
protocol with the following equivalent key distribution pro- the state, and wait to hear from Alice whether the state she
tocol using encoded qubits. sent was ag or p eigenstate; then he could measure that

(50

022309-10



SECURE QUANTUM KEY DISTRIBUTION USING . .. PHYSICAL REVIEW A63 022309

observable. Subtracting,\7 (or ¢,+/m) from his measure- ~or a state squeezed fn The position of the squeezed state is
ment outcome, he would obtain an even or odd multiple ofdetermined by samplinga discrete approximation oa
. probability distribution P,o{q) or Ppyon(p). Alice then
But Bob does not really need the quantum memory. As irsends the oscillators to Bob.
the BB84 protocol, it suffices for Bob to decide at random to  (2) Bob receives the (4 8)n oscillators, measuring each
measure eitheq or p, and then publicly compare his basis in the g or p basis at random.
with Alice’s. They discard the results where they used dif- (3) Bob confirms that the oscillators have been received,
ferent bases and retain the others. and then Alice announces whether each oscillator was
A problem with this procedure is that the position andsqueezed i or in p.
momentum eigenstates are unphysical nonnormalizable (4) Alice and Bob discard the results in the cases where
states, and the probability distribution that Alice samples tdBob measured in a different basis than Alice used in her
decide on what value ofj or p to send is also non- preparation. With high probability, there are at leastraea-
normalizable. For it to be implementable, we need to modifysured values leftif not, abort the protocol Alice decides
the procedure so that Alice sends narrgwr p wave pack- randomly on a set of 12 values to use for the protocol, and
ets, and chooses the position of the center of the wave packebooses at random of these to be check values.

by sampling a broad but normalizable distribution. (5) For all 2n measured values, Alice announces the value
Therefore, Alice and Bob can adopt the key following of g or p modulo /7 (to m bits of accuracy.
distribution protocol using squeezed states. (6) Bob subtracts the corresponding number announced

y Alice from each of his measured values, and then corrects
he result to the nearest integer multiple (z% Bob and
Alice now extract bit values determined by whether the mul-
tiple of \/7 is even or odd.
(7) Alice and Bob announce the values of their check bits.
(ij_ too few of the check bits agree, they abort the protocol.
(8) Alice announcesi+uv, whereu is the string consisting
of the remaining noncheck bits, ands a random codeword

(1) Alice chooses a random bit to decide whether to sen
a state squeezed gor in p. She samples @liscrete approxi-
mation tg a probability distributionP,,{q) or Pyon(p) to
choose a value off or p, and then sends to Bob a narrow
wave packet centered at that value.

(2) Bob receives the state and decides at random to me
sure eitherg or p.

(3) After Bob confirms receipt, Alice and Bob broadcastin C,
whether they sent/measured in ther p basis. If they used : . .
different bases, they discard their results. If they used the (9) Bob subtractai+v from his code qub|tsu4_re, a_md
same basis, they retain the result and proceed to S;T(,%, 4. g?;Le;gﬁitt;‘eB:)ebSl:glé:Vt;.rstO a codeword inC,. With high

(4) Alice broadcasts the value that she sent, mo > '
(to m-bit accuracy. Bob subtracts Alice’s value from what (10) Alice and Bob use th€, cosetv +C;, as the key.
he measured, and corrects to the nearest integer multiple of Here, to be specific, we have instructed Alice and Bob to
J7. He and Alice extract their shared bit according tosacrificen check bits for eachm bits that are used for key

whether this integer is even or odd. distribution. They might instead use fewer or more, depend-
ing on how stringent a bound on the eavesdropper’s mutual
V. A SECURE PROTOCOL USING information they require.
CONTINUOUS VARIABLES The check bits provide Alice and Bob with estimates of

_ . the bit error ratep; (respectivelypy) when states squeezed

Now we are ready to combine the _protocol of Sec. Ill with;, q (respectively,p) are transmitted. Our analysis of the
the protocol of Sec. IV. The result is a protocol based onggg4 protocol indicates that the squeezed state protocol is

concatenating the continuous variable code with ang.re provided thap, and py are both below 11%, and

[[n,k,d]] binary CSS code. The concatenated code embedssming that Alice and Bob scramble and unscramble the
ak-dimensional Hilbert space in the infinite-dimensional Hil- oscillators (by applying a random permutation and its in-

bert space of oscillators. verse.

Again, we first imagine that Alice and Bob carry out an  a\ever, as noted in Sec. 11l D, the proof and the security
entanglement distillation protocol. They start out shaimg . iterion D, ,px<11% apply only if Alice’s source can be

pairs of oscillators, each in @oisy) EPR state. By measur- qjmjated by measuring half of an entangled state of two
ing the stabilizer generators of the concatenated code, theysgijjators. In particular, we may imagine that Alice has
distill k encoded Bell pairs of much better fidelity, and thenmany pairs of oscillators identically prepared in the state

generate a key by measuring the encoded Bell pairs. pag, and that she prepares the state that she sends to Bob by

By once again following the chaln_ of reductlon_s '€ measuring oscillatoA. When she measures in tlogbasis,
counted in Sec. lll and Sec. IV, we arrive at an equivaleniyho sends the state

protocol involving transmission of squeezed states. The com-

plete protocol, including verification, error correction, and Aldlpasld)a
privacy amplification, becomes the continuous-variable pe(q)= T RCINON) (5
QKD described in the following steps.
(1) Alice has (4+ 8)n oscillators. For each oscillator, Al- with probability
ice decides at random to prepare either a state squeezgd in Pood @) =tr(a{alpasld)a), (52
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p a description of how the code is used for entanglement puri-
fication, but where Alice and Bob start with many copies of
a Gaussian entangled pair of oscillators that is an approxi-
mate eigenstate aj,—gg andp,+pg. If we imagine that
Alice measures half of each pair before she sends the other
half to Bob, then we obtain a protocol in which Alice sends
imperfectly squeezed states governed by a particular prob-
ability distribution.

The initial Gaussian entangled state of the two oscillators

is
1 1 ,/0at0s 2
[#(A)ne="7=] ddadds exj —5 4% =5
1 2 2
X ex —E(qA—qB) /A |QA:QB>

FIG. 1. One-sigma contours of the Wigner functions for typical
squeezed states used in the quantum key distribution protocol, with 1 1 ,( PA—Ps 2
squeeze factoh =e~"=1/2. The signal states squeezegiand in = \/_—f dpadps eXF{ - EA (T) }
g overlap with one another, preventing Eve from learning about one ™

without disturbing the other. 1
xex;{ = 5(PatPe)?/A%|pa.pe), (55
and when she measures in fhéasis, she sends the state
A(PlpaglP)a where A? is real and positive. Sinchj(A))ag is actually
pe(pP) TRCTON (53 invariant under
with probability A?—4/A% dg——0s, Pe——Ps (56)
Pmon(P) =tr(a{P|paslP)a)- (54  we may assume without loss of generalithanging the sign

) _of the position and momentum of Bob’s oscillator if neces-
Thus, the states that Alice sends need not be perfect positiagyy), that 0<A2<2. In the limiting caseA?=2, |4(A))ag
or momentum eigenstates for the proof of security to workhecomes the product of two oscillator vacuum states. For
and Alice’s source might even have a bias so that the rai2<> it s an entangled state. The amount of entanglement

key bit carried by an oscillator is more likely tela O than  gnared between the oscillators, in “ebits,” is defined as
a 1. Still, for a source of this type, if Alice and Bob verify

that the error rate for the raw key bits is below 11% in both E(A)=S(pa)=—tr palogspa, (57)
bases, then the protocol is provably secure. We will discuss
examples in Sec. VI and Sec. VIL. (the Von Neumann entropy of Alice’s density matrpg

Intuitively, the squeezed-state protocol is secure because tr.|(A))((A)]), and can be expressed [d5]
the eavesdropper cannot monitor the valug ¢or p) trans-

mitted without intrOdUCing a detectable disturbance in the E(A):(Cosﬁr“ogz(cosﬁr)_(Sinhzr)k)gz(sinhzr),
complementary observabge(or q). As shown in Fig. 1, the (58)
Wigner functions of the signal states squeezeg and inq

overlap, so that the states cannot be reliably distinguished.where

VI. GAUSSIAN STATES A’=2e 7", (59)

Perfectly squeezed stat@sosition or momentum eigen-
state$ are unphysical nonnormalizable states, so the protoccHe
will actually be carried out with imperfectly squeezed statesg
Furthermore, engineering a source that produces highly
squeezed states would be quite technically demanding. How
much squeezing is really needed for the protocol to be se- [ (qn))e= ~12 1/4f dos

(mA%)

In this entangled state, if Alice measures the position of
r oscillator and obtains the outcomg, she prepares for
ob the Gaussian state

cure? A related question is, how must we choose the prob-
ability distributions Ppo{q) and P,{(p) that govern the 1
center of the squeezed state? P 2,32
We will analyze the most favorable case, in which the Xexr{ 5 (05~ Geo) /A %), (60)
squeezed states are Gaussian wave packets and the probabil-
ity distributions are also Gaussian. We will begin again withwhere
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1
1—ZA4
Oso= 1 QA:(l_AA)llqua
AL
1+4A
and
2
i
1+1A4‘
4

The probability distribution for the outcome of Alice’s mea-

surement can be expressed as

Plap) =~ exp(~ K%g2)
A \/; da)

and we can easily see from E@5) that if Alice and Bob

PHYSICAL REVIEW A63 022309

bipartite mixed state, diagonal in the encoded Bell basis,
with fidelity F=(1—p,)(1—px); this encoded state has en-
(61)  tanglement of formatiof13]

E=H2(%+ F(1—F)> (67)

(whereH, is the binary entropy function

If Alice and Bob have a large numberof oscillators in
(62)  the statd(A))ag. they can carry out an entanglement dis-
tillation protocol based on the concatenation of the single-
oscillator code with a binary CSS code, and they will be able
to distill qubits of arbitrarily good fidelity at a finite
asymptotic rate provided thai, and py are both below
11%; from Eq.(66) we find that this condition is satisfied for
A<0.784 (which should be compared with the value
= /2 corresponding to a product of two oscillators each in
its vacuum state Thus secure EPR key distribution is pos-
sible in principle with two-mode squeezed states provided
that the squeeze parametessatisfiesr > —l0gy(0.7844/2)

(63

both measure, then the difference of their outcomes is gov- = 0.590; from Eqs(58) and (67), A=0.784 corresponds to

erned by the probability distribution

1
Prob(ga—0g) = ﬁexr{ —(ga—0s)¥/A%]. (69

Similar formulas apply if Alice and Bob measupe

E=1.19 ebits carried by each oscillator pair, which is re-
duced by error correction and encoded Bell measurement to
E=0.450 ebits carried by each of the encoded Bell pairs.
Now consider the reduction of this entanglement distilla-
tion protocol to a protocol in which Alice prepares a
squeezed state and sends it to Bob. In the squeezed-state
scheme, Alice sends the staié(q,)) with probability

Suppose that Alice and Bob try to distill one good qubitp g The widthA of the state that Alice sends is related to

from the imperfect entangled sta{g/(A))as. They both 0" o meten appearing in the estimated error probabilit
measure the stabilizer generators, that is, the valugsaofi accc?rding to PP g P y

p modulo /7. Alice broadcasts her values, and Bob adjusts
his values so that they agree with Alice’s; thereby they ob-
tain a pair of encoded qubits, which would have been in the
state| ¢ ™) if the initial pair of oscillators had been a perfect
EPR pair @220) Then if Alice and Bob Were_tO proceed to The state Alice sends is centered not qﬂ: but at qBO
perform a complete Bell measurement on_thgr encoded qubit. ga(1— A% Y2 Nevertheless, in the squeezed state protocol
pair, the probabilityp; that they would findZ®Z=—11isno  that we obtain as a reduction of the entanglement distillation
worse than the probability that, ¢fx andqg were measured, protocol, it isga rather thargg, that Alice uses to extract a
the results would differ by more thagim/2, or key bit, and whose value modulér she reports to Bob. The
error probability that is required to be below 11% to ensure
o R 2A ) security is the probability that error correction adjusts Bob'’s
dq e < exp(—m/4A%), measurement outcome to a value that differs frgg(not
(65) Ogo) by an odd multiple of/w. As we have noted, this error
probability is below 11% forA<0.784, which[from Eq.
(62)] corresponds tal <0.749; this value should be com-

the values ofA that are typically of interese.g.,A<1), the  pared to the valud =1 for an oscillator in its vacuum state.
error probability is dominated by values gi—qg (or p, ~ Thus, secure squeezed-state key distribution is possible in
+pg) lying in the rangd \7/2,3y7/2], so that the estimate principle using single-mode squeezed states, provided that
of the error probability can be sharpened to the squeeze parameterdefined byA=e™" satisfiesr>
—100,(0.749)=0.289. When interpreted as suppression, rela-

A‘2=Z‘2;(1+ V1-2A%). (68)

2
=
Pz A2

Ny

and similarly forpy (the probability thatX® X = — 1). For

2 3vmi2 a2 tive to vacuum noise, of the quantum noise afflicting the
Pz,Px~ ﬁf' dg e 9%, (66) squeezed observable, this amount of squeezing can be ex-
13 Vw2

pressed as 10 IggA ~?)=2.51 dB.

After error correction and measurement in the encoded Bell The error rate is below 1% fol <0.483 (A<0.486),
basis, the initial bipartite pure state of two oscillators, with@nd drops precipitously for more highly squeezed states, e.g.,
entanglemenE given by Eqs(58) and(59), is reduced to a  to below 10 © for A~ A <0.256. For example, if the noise in
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P herent states about half the time if she increases the squeez-
ing of her other transmissions by a compensating amount.
Can we devise a secure quantum key distribution scheme
in which Alice always sends coherent states? To obtain, as a
reduction of an entanglement distillation protocol, a protocol

in which coherent statesA(=1) are always transmitted, we
must consider the cask?=2. But in that case, the initial
state of Alice’s and Bob’'s oscillators is a product state.
Bob’s value ofqg or p is completely uncorrelated with Al-
ice’s, and the protocol obviously won’t work. This observa-
~—= qorp tion does not exclude secure quantum key distribution
schemes using coherent states, but if they exist another
FIG. 2. Probability distributions for the squeezed quantum keymethod would be needed to prove the security of such
distribution protocol, with squeeze facthr=1/2. The dotted lineis schemes.
the probability distribution P [a Gaussian with variance In general, the source that we obtain by measuring half of
(1/2A%)(1—A%] that Alice samples to determine the center of thethe entangled pair is biased. Af is not small compared to
squeezed signal that she sends. The solid lines are the probability, then Alice is significantly more likely to generate a 0
distributions in position or momentum of the squeezed si@esis- than a 1 as her raw keyit. But as we have already discussed
sians with variancé /2, shown with a different vertical scale than in Sec. Ill D, after error correction and privacy amplification,
P) centered at- /7, 0, andy/7r. The intrinsic error probability due the protocol is secure by andp, are both less than 11%.
to imperfect squeezinfprior to binary error correction and privacy This result follows because the squeezed-state protocol is

amplification) is 1.2%. obtained as a reduction of an entanglement distillation pro-
tocol.

the channel is weak, Alice and Bob can use the Gaussian

Squeezed State protocol WIE'IN 1/2 (see Flg 2to generate VIl. LOSSES AND OTHER IMPERFECTIONS

a shared bit via theg or p channel with an error rate
(~1.2%) comfortably below 11%; thus the protocol is se- The ideal BB84 quantum key distribution protocol is
cure if augmented with classical binary error correction andProvably secure. But in practical settings, the protocol cannot
privacy amplification. be implemented perfectly, and the imperfections can com-
Of course, if the channel noise is significant, there will bepromise its security(See Ref[18] for a recent discussion.
a more stringent limit on the required squeezing. Many kindg=or example, if the transmitted qubit is a photon polarization
of noise (for instance, absorption of photons in an opticalstate carried by an optical fiber, losses in the fiber, detector
fiber will cause a degradation of the squeezing factor. If thisinefficiencies, and dark counts in the detector all can impose
is the only consequence of the noise, the squeezing exitingerious limitations. In particular, if the photons travel a dis-
the channel should still satist¥<0.784 for the protocol to tance large compared to the attenuation length of the fiber,
be secure, as we discuss in more detail in Sec. VII. Otherthen detection events will be dominated by dark counts, lead-
wise, the errors due to imperfect squeezing must be added {89 to an unacceptably large error rate.
errors from other causes to determine the overall error rate. Furthermore, most present-day implementations of quan-
So far we have described the case whereptiséates and  tum cryptography use, not single-photon pulses, but weak
the q states are squeezed by equal amounts. The protocéPherent pulses; usually the source “emits” the vacuum
works just as well in the case of unequal squeezing, if westate, occasionally it emits a single photon, and with nonneg-
adjust the error correction procedure accordingly. Consideligible probability it emits two or more photons. Quantum
carrying out the entanglement distillation using the code withkey distribution with weak coherent pulses is vulnerable to a
general parametes rather thana=1. The error rates are Photon number splitting” attack, in which the eavesdrop-
unaffected if the squeezing andp is suitably rescaled, so Per diverts extra photons, and acquires complete information

that the width of they andp states becomes about their polarization without producing any detectable
disturbance. A weaker pulse is less susceptible to photon
Ag=Aa, Ap=Ala. (69 number splitting, but increases the risk that the detector will
be swamped by dark counts.
In this modified pr0t0C0|, Alice broadcasts the Valueq)f From a practica| Standpoint, guantum key distribution

modulo\/ma or the value ofp modulo\/zr/a. Bob subtracts  with squeezed states may not necessarily be better than
the value broadcast by Alice from his own measurement outBB84, but it is certainly different. Alice requires a source
come, and then adjusts the difference he obtains to the neafat produces a specified squeezed state on demand; fortu-
est multiple ofwa or \Jz/a. The key bit is determined by nately, the amount of squeezing needed to ensure the secu-
whether the multiple of/a, or \@r/a, is even or odd. rity of the protocol is relatively modest. Bob uses homodyne
Thus, for example, the error rate sustained due to imperdetection to measure a specified quadrature amplitude; this
fect squeezing will have the sanfacceptably smallvalue  measurement may be less sensitive to detector defects than
irrespective of whether Alice sends states with=A,  the single-photon measurement required in BB84.
=1/2, orA,=1 andA,=1/4; Alice can afford to send co- But, as in the BB84 protocol, losses due to the absorption
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of photons in the channel will enhance the error rate in
squeezed-state quantum key distribution, and so will limit
the distance over which secure key exchange is possible. We
study this effect by modeling the loss as a damping channel

described by the master equation

pa'al; (70)

tan_
alap—3

. T_
p=TI|apa >

herep is the density operator of the oscillaterjs the anni-
hilation operator, and’ is the decay rate. Eq70) implies
that

%<a*ka'>t= - %(k+l>r<a*ka'>t, (72)

where

(Oy=TOp(1)] (72

denotes the expectation value of the operafoat timet.
Integrating, we find

<aTkaI>T:e—(l/2)(k+I)I‘T<aTkal>0, (73)
and so, by expanding in power series,
(:f(a%a))r=(:f(&a" £a):)o, E=e T2 (79

wheref is an analytic function, andf: denotes normal or-
dering(that is, in f(a',a):, all a'’s are placed to the left of
all a’s).

In particular, by normal ordering and applying E@4),
we find

(eiP) = e~ (UA(L-EB% giBtay (75)

whereq=(a+a')/ 2 is the position operator. A similar for-

PHYSICAL REVIEW A63 022309

1 ~
P(QB|QA):ﬁexq_(QB_QBo)z/Az], (77)

and when Bob receives the state this distribution has, accord-
ing to Eq.(76), evolved to

P'(dslaa) = exf —(dg—0go)?/A'?],  (78)

1
A\
where

Ugo= Ggo=&(1— A%, ,

(79)
A/2:§2'A'2+(1_§2).

By integrating overis in P’ (da,ds) = P’ (ds|da) P(da), we
can obtain the final marginal distribution for the difference

da—0s:

1
P/ (Qa—Qr &)= —(Qa—0r)YA2],
(da—0g;$) Ag\/;eXF[ (da—0ae)/AZ]
_ (80

L A2

Ag2= = =
£ 14 2-24(1-KH V24 (1- £2)A2

which generalizes Eq(68). We can express the damping
factor ¢ as
g=e 2, (81)

whered is the length of the channel and ! is its attenua-
tion length (typically of the order of 10 km in an optical
fiber).

The protocol is secure if the error rate in both bases is
below 11%; as in Sec. VI, this condition is satisfied foy
<0.784. Thus we can calculate, as a function of the initial

mula applies to the momentum operator or any other quadrasgueezing parametdr, the maximum distancéy, that the
ture amplitude. Equatiofv5) shows that if the initial state at  sjgnal states can be transmitted without compromising the

t=0 is Gaussiand is governed by a Gaussian probability
distribution), then so is the final state & T [19]. The mean
{(q) and variance\g? of the initial and final distributions are
related by

(=0 A5 =& acg-5). 79

Now let us revisit the analysis of Sec. VI, taking into

security of the protocol.
ForA<1, we find

k Oma= (1.57)A+0(A?). (82)

Thus, the more highly squeezed the input signal |éisswe
can tolerate the losses in the channel. This feature, which

sounds surprising on first hearing, arises because the amount
of squeezing is linked with the size of the rangeqin that

account the effects of losses. We imagine that Alice prepareslice samples. Errors are not unlikely if losses cause the

entangled pairs of oscillators in the state Esp), and sends
one oscillator to Bob through the lossy channel; then the
perform entanglement purification. This protocol reduces t
one in which Alice prepares a squeezed state that is tran
mitted to Bob. In the squeezed-state protocol, Alice decide
what squeezed state to send by sampling the probability di
tribution P(g,) given in Eq.(63); if she chooses the value
ga, then she prepares and sends the dtafe,)) in Eq.

value ofqg to decay by an amount comparablefa/2. In

Your protocol, if the squeezed states have a small wiith
Qhen the typical states prepared by Alice are centered at a
iarge valuega~A ~1; therefore, a smafractional decay can
Lause an error.

On the other hand, even without losses, Alice needs to
send states withh <0.749 to attain a low enough error rate,

(60). When it enters the channel, this state is governed by thand asA approaches 0.749 from below, again only a small

probability distribution

loss is required to push the error probability over 11%. Thus
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Kd output state, and that the meéa) and varianceAg? of the
max . e . . . g .
A Gaussian position distribution are modified according to
0.4
without (q)—>§’1<q>,
amplification
0.3 (84)

1
AGP— € 2AQP+ 5 (677-1).

0.2

Other quadrature amplitudes are transformed similarly.

Now suppose that a damping channel with I§éss fol-

01 with - lowed by an amplifier with gaig 2. Then the mean of the
amplification position distribution is left unchanged, but the variance
I I i I I I NS A evolves as
01 02 03 04 05 06 07 1
FIG. 3. The effect of channel losses on the security of quantum AQP— £ 2| 2AQ%+ E(l— £

key distribution using squeezed states. The maximum lerdth,.

of the channel(in units of the attenuation lengths plotted as a 1

function of the widthA of the squeezed state that enters the chan- + 5(5_2_ 1)=Ag*+(£72-1). (89
nel. For a longer channel, the error rate due to losses is too large

and the pI’OOf of Security breaks down. The curve labeled “with For this ChanneL the probab”lty distribution goverr“ng

amplification” applies to the protocol in which the signal is ampli- ga— g is again a Gaussian as in E80), but now its width
fied prior to detection in order to compensate for the losses; th% determined by ’

curve labeled “without amplification” applies to the protocol in

which the signal is not amplified. 1. )

2
A= — —.
( é)amp 1—(1—A4)1’2+(§’2—1)A2

there is an intermediate value Af that optimizes the value (86)

of dhax, @S shown in Fig. 3. This optimal distance,

Error rates in theq and p bases are below 11%, and the
K dmax,opr=0.367, (83)  protocol is provably secure, for\() 4m<0.784.
By solving (A;)amp=0.784, we can find the maximum
distanced (where&~?=e*9) for which our proof of security

is attained forA ~0.426. _ . el .
Our analysis so far applies if Alice and Bob have no prior_hOIdS' the result is plotted in Fig. 3. When the squeezed input

knowledge about the properties of the channel. But if the losé narrow,A<1, the solution becomes
&?=e *d is known accurately, they might achieve a lower s 2
error rate if Bob compensates for the loss by multiplying his § "= expx dma) =1.307+ O(A%), (87)
measurement outcome k& * before proceeding with error
correction and privacy amplification. This amplification of
the signal by Bob is entirely classical, but to analyze the K Oy~ 0.268. (88)
security in this case, we may consider an entanglement pu-
rification scenario in which Bob applies a quantum amplifierComparing the two curves in Fig. 3, we see that the protocol
to the signal before measuring. Since the quantum amplifiewith amplification remains secure out to longer distances
(which amplifies all quadrature amplitudes, not just the onehan the protocol without amplificatioif, the input is highly
that Bob measuress noisier, the protocol will be no less squeezed. In that case, the error rate in the protocol without
secure if Bob uses a classical amplifier rather than a quantuamplification is dominated by the decay of the signal, which
one. can be corrected by the amplifier. But if the input is less
So now we consider whether entanglement purificatiorhighly squeezed, then the protocol without amplification re-
will succeed, where the channel acting on Bob’s oscillator inmains secure to longer distances. In that case, the nonzero
each EPR pair consists of transmission through the losswidth of the signal state contributes significantly to the error
fiber followed by processing in Bob's amplifier. If the error rate; the amplifier noise broadens the state further.
rate is low enough, the key will be secure even if the ampli- With more sophisticated protocols that incorporate some
fier, as well as the optical fiber, are under Eve’s control.  form of quantum error correction, continuous-variable quan-
Bob’s linear amplifier can be modeled by a master equatum key distribution can be extended to longer distances. For
tion like Eq.(70), but witha anda’ interchanged, and where example, if Alice and Bob share some noisy pairs of oscil-
I' is now interpreted as a rate of gain. The solution is similadators, they can purify the entanglement using protocols that
to Eq. (74), except the normal ordering is replaced doyti- require two-way classical communicatiod1,12. After
normal orderingall a’s are placed to thieft of all a™’s), and  pairs with improved fidelity are distilled, Alice, by measur-
with ¢2 replaced by the gaii- ?>=e' "=1. We conclude that ing a quadrature amplitude in her laboratory, prepares a
the amplifier transforms a Gaussian input state to a Gaussiayueezed state in Bob's; the key bits can be extracted using
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the same error correction and privacy amplification schemethe preparation of single-photon states is difficult, and
that we have already described. photon detectors are inefficient, at least in some settings
Our proof of security applies to the case where squeezethe squeezed-state protocol may have practical
states are carried by a lossy chanf@dsuming a low enough advantages, perhaps including a higher rate of key produc-
error ratg, because this scenario can be obtained as @on. Squeezing is also technically challenging, but the
reduction of a protocol in which Alice and Bob apply amount of squeezing required to ensure security is relatively
entanglement distillation to noisy entangled pairs ofyggest.
oscillators that they share. More generally, the proof The protocol we have described in detail uses each
applies to any imperfections that can be accurately mwe'?ﬁ'ansmitted oscillator to carry one raw key bit. An

as a quantum operation that acts on the shared paifg, ios generalization is a protocol based on the code

before Alice and Bob measure them. As one example,, siapilizer generators given in E(), which encodes

suppose that when Alice prepares the squeezed state, it &d-dimensional protected Hilbert space in each oscillator.
not really theq or p squeezed state that the protocol calls

for, but is instead slightly rotated in the quadratureThen a secure key can be generated more efficiently,

plane. And suppose that when Bob performs his homodynBUI more squeezing is required to achieve an acceptable
measurement, he does not really measuoep, but actually error rate. , i ) i )
measures a slightly rotated quadrature amplitude. In Our'protocols, llpclu'dlng their classical error correction
the entanglement distillation scenario, the imperfectio@"d Privacy amplification, are based on CSS codes: each
of Alice’s preparation can be modeled as a superoperat®f the stabilizer generators is either of theg™ type
that acts on her oscillator before she makes a perfedthe exponential of a linear combination ofg's) or of the
quadrature measurement, and the misalignment of Bob’sp type” (the exponential of a linear combination fp’s).
measurement can likewise be modeled by a superoperatdhe particular CSS codes that we have described in
acting on his oscillator before he makes a perfect quadraturdetail belong to a restricted class: they amencatenated
measurement. Therefore, the squeezed-state protocol witodes such that each oscillator encodes a single qubit,
this type of imperfect preparation and measurement i@and then a block of those single-oscillator qubits are
secure, as long as the error rate is below 11% in both baseassembled to encod& better protected qubits using a
Of course, this error rate includes both errors caused by thiginary [[n,k,d]] stabilizer code. There are more general
channel and errors due to the imperfection of the preparatiogSS codes that embekl protected qubits in the Hilbert
and measurement. _ _ space ofn oscillators but do not have this concatenated
We also recall that in the protocols of Sec. V, Alice’s strycture[4]; secure key distribution protocols can be based
preparation and Bob's measurement were performed {8, these too. The quantum part of the protocol is still the
m bits of accuracy. In the entanglement distillation SCeNaNOgame, but the error correction and privacy amplification

this finite resolgtion can Iikewise be .weII modeled by @ make use of more sophisticated close packings of spheres in
guantum operation that shifts the oscillators by an amoung dimensions

m ) ; .
of order 2°" before Alice and Bob perform their We analyzed a version of the protocol in which Alice

measurements. Thus the proof applies, with the finite repares Gaussian squeezed states governed by a Gaussian
resolution included among the effects contributing to theP"eP q 9 y

permissible 11% error rate. The finite accuracy causeB.mba.b”ity distri-bution. The siates, and the probapility dis-
trouble only when Alice’s and Bob's results lie a Olistancetr|but|on that Alice samples, need not be Gaussian for the

apart that is within about 2" of \r/2; thus, just a few bits protocol to be secure. However, for other types of states and

of accuracy should be enough to make this additional sourcBroPability distributions, the error rates might have to be
of error quite small. smaller to ensure the security of the protocol.

Our proof of security applies to a protocol in which the
squeezed states propagate through a lossy channel, over a
VIll. CONCLUSIONS distance comparable to the attentuation length of the channel.

We have described a secure protocol for quantum ke)To extend coptinuous-variable guantum key_distribution to
distribution based on the transmission of squeezed states of BUch larger distances, quantum error correction or entangle-
harmonic oscillator. Conceptually, our protocol resemblednent distillation should be invoked.
the BB84 protocol, in which single qubit states are transmit-  Strictly speaking, the security proof we have presented
ted. The BB84 protocol is secure because monitoring th@pplies if Alice’s state preparatidincluding the probability
observableZ causes a detectable disturbance in the obsendistribution that she samplesan be exactly realized by
ableX, and vice versa. The squeezed state protocol is secufgeasuring half of an imperfectly entangled state of two os-
because monitoring the observalleauses a detectable dis- cillators. The protocol remains secure if Alice’s source can
turbance in the observabfge and vice versa. Security is en- be well approximated in this way. Our proof does not work if
sured even if the adversary uses the most general eavesdroflice occasionally sends two identically prepared oscillators
ping strategies allowed by the principles of quantumwhen she means to send just one; the eavesdropper can steal
mechanics. the extra copy, and then the privacy amplification is not

In secure versions of the BB84 scheme, Alice’'sguaranteed to reduce the eavesdropper’s information to an
source should emit single photons that Bob detects. Sincexponentially small amount.
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