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Decoherence-free subspaces for multiple-qubit errors. I. Characterization
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Coherence in an open quantum system is degraded through its interaction with a bath. This decoherence can
be avoided by restricting the dynamics of the system to special decoherence-free subspaces. These subspaces
are usually constructed under the assumption of spatially symmetric system-bath coupling. Here we show that
decoherence-free subspaces may appear without spatial symmetry. Instead, we consider a model of system-
bath interactions in which to first order only multiple-qubit coupling to the bath is present, with single-qubit
system-bath coupling absent. We derive necessary and sufficient conditions for the appearance of decoherence-
free states in this model, and give a number of examples. In a sequel paper we show how to perform universal
and fault tolerant quantum computation on the decoherence-free subspaces considered in this paper.
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I. INTRODUCTION In this paper, the first of two, it will be shown that under
conditions that do not relate to a spatially symmetric system-
Quantum information must be protected against the detribath coupling DFSs may still exist. This result is exact, i.e.,
mental effects of decoherencgl,2]. To this end itis not of a perturbative nature as in Ref8-10]. Instead,
decoherence-free subspac@3FS9 [3-10] have recently it relies on the assumption that errors affecting single qubits
been proposed, alongside quantum error correcting codese absent, and to lowest order only multiple-qubit errors are
(QECCs [11-14 and “dynamical decoupling” and symme- possible instead. Formally, the condition is that the qubit
trization schemefl5-18. A DFS is a “quiet corner” of the  register is not affected by the full Pauli group of errors, but
system’s Hilbert space, where the evolution is decouplednly by a subgroup thereof. One may then proceed to find
from the bath and thus is entirely unitary. DFSs are a specidDFSs with respect to this subgroup. The interesting class of
class of(fully degenerateQECCS9], so in order to properly  system-bath interaction Hamiltonians that allow for such
distinguish between DFSs and all other QECCs we note thgirocesses generally involve only multiple-qubit operators.
DFSs arepassivecodes, in that the information encoded in Relevant physical systems are therefore those where the bath
them may not require any active stabilization proceduregan couple only to multiple system excitations as is the case
[19,20. All other QECCs, in contrast, always involve an for decoherence due to dipolar coupling, e.g., in NMR].
active error detection/correction process. Examples of DFS#\nother interesting class of examples are composite par-
have so far focused almost exclusively on the presence of ticles, such as biexcitons in quantum dots/wgR3], or Coo-
permutation symmetrgf some sort in the system-bath cou- per pairs in superconductof24].
pling. The most often used example is that of “collective  The structure of this paper is as follows. In Sec. Il we
decoherence3-5,8,2], where the bath couples in an iden- briefly review the structure of Hamiltonians pertinent to sys-
tical fashion to all qubits, implying that all qubits undergo tems that may function as quantum computers, coupled to a
the sameerror. In this case four physical qubits suffice to decohering environment. Using these Hamiltonians, we re-
encode a logical qubit against any collective error, and theall in Sec. Ill the derivation of the operator sum represen-
code efficiencynumber of encoded per physical qubigg-  tation evolution equation for the system density matrix. We
proaches unity asymptoticall$s]. It has been shown that the show in particular that for a qubit system the evolution can
requirement of an exact symmetry can be lifted by allowingbe expressed entirely in terms of linear combinations of ten-
for a symmetry-breaking perturbation, without spoiling thesor products of Pauli matrices. We then use this in Sec. IV to
DFS property significantly8,10]. Moreover, by concatena- derive the DFS condition under the assumption that decoher-
tion with an active QECC, a symmetry-broken DFS can beence is the result of a subgroup of the Pauli group. In Sec. V
stabilized completely9]. While these results indicate that a we illustrate our general analysis with some examples, and
small departure from the exact symmetry condition for thefind decoherence-free states for a number of subgroups. We
system-bath coupling is admissible, they leave unanswerederive the dimension of these DFSs in Sec. VI. Conclusions
the question of whether a DFS may exist when no assumpand a summary are presented in Sec. VII. Finally, some im-
tions are made regarding the spatial symmetry of this couportant properties of the Pauli group are summarized in Ap-
pling. pendix A, and some examples of “nongeneric” DFSs are
presented in Appendix B. We show in a following pap2s]
how to perform universal fault tolerant quantum computation
*Present address: Chemistry Department, University of Torontousing at most two-body Hamiltonians on the DFSs derived
80 St. George Street, Toronto, Ontario, Canada M5S 3H6. here.
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II. STRUCTURE OF THE HAMILTONIAN FOR A
UNIVERSAL QUANTUM COMPUTER COUPLED
TO A BATH

This section provides a brief review of the structure of
Hamiltonians relevant for a qubit system allowing for uni-
versal quantum computation and coupled to a decoherin
bath.

The dynamics of a quantum syste&oupled to a batiB
(which together form a closed systgewvolves unitarily un-
der the combined Hamiltonian

H:HS®IB+IS®HB+H|1 (21)
whereHg, Hg, andH, are the system, bath, and interaction
Hamiltonians, respectively;is the identity operator. Ledr*
denote thexth Pauli matrix,a={0x,y,z}, acting on qubii.
The 2x2 identity matrix is denotedr’. For K qubits the
components o can often be written as follows:

K

HSZE 2 €

i=1 a=x,z

K
a __«a +
i O +Zj Jijoi o

i +H.c.,

(2.2

where ;" = (ofFi0Y)/2. The first sum contains the qubit
energies £7) and tunneling elements:{) [26], and the sec-
ond sum expresses tunneling between sitesd j. Other

forms are also possible, e.g., in an anisotropic dipolar me-

dium such as solid state NMR22], where one would typi-
cally encounter an Ising;; ofo; term. A Hamiltonian of the
form above is sufficiently general to allow for universal
guantum computation by satisfying the following two re-
quirement§27-29. (i) Arbitrary single-qubit operations are
made possible by the presenceddf, which allows for the
implementation of a continuous $2) rotation in theith
qubit Hilbert space, while the{ term allows for the intro-
duction of an arbitrary phase shift between & and |1)
states. Whemr{ ando{ are exponentiated, they can be com-
bined, using the Lie sum and product formu|&§)]

lim (eiaA/neiBB/n)n: ei(aA+ﬁB),

n—o

iAINGIB/Vng—iAlR

B/ \ig ~iBIAyN = g[AB]

lim (€

n—o

e (2.3

to close the Lie algebra &), and thus to construct any
evolution in the Lie group SI2) of all possible operations
on a single qubif28]. (i) The second ingredient needed for
universal quantum computation is the controlled-(@toT)
gate, which is made possible through the ability to imple-
ment each of thénearest neighb@m(Jijai+ o; +H.c.) terms,
When exponentiated, such a term yields

1 0 0 0
0 cosf isind O
Y=l 0 isine coss 0
0 0 0 1
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with #oJ;;t. For 6= /4 this is(up to a phasethe “square-
root-swap” operation, which when combined with single-
qubit rotations allows for the implementation oRoOT. Al-
ternatively, aJf; oo term alone is sufficient, since it can be
used to implement a controlled phase shift, as is done rou-
gnely in NMR [31]. It is important to emphasize that the

niversal gate construction just described is but one of many
different ways to achieve universal quantum computation. In
fact, universal gates implementing logic operations directly
on physical qubitgas abovgare generally inappropriate for
the purpose ofault tolerantcomputation32]. We consider
a different gate construction in the sequel paj#s], oper-
ating instead on “encoded” qubits, which can be used to
implement universal fault tolerant quantum computation. For
a useful survey of different universal and fault tolerant sets
of gates, see Ref33].

The bath Hamiltonian can be written as

HBZEK By, (2.4

where, e.g., for the spin-boson Hamiltonidy= b by [26],
and bl and b, are, respectively, creation and annihilation
operators of bath mode

Finally, the system-bath interaction Hamiltonian is

H|=i:El N E

=+,

» Zk 9ot eBy, (2.5

whereg;y is a coupling coefficient. In the spin-boson model
one would haveB, =b,, B, =b}, andBi=b|+b,. Thus
o ®Bg expresses a dissipative couplifig which energy is
exchanged between system and environimead 7@ BE
corresponds to a phase damping prod@ssvhich the envi-
ronment randomizes the system phases, e.g., through elastic
collisions.

An interesting limiting case arises when the coupling con-
stants are independent of the qubit indgg=gy . This situ-
ation, known as “collective decoherence,” arises when there
is full permutational symmetry of qubit positions, and im-
plies the existence of a large DF5,21]. Defining collective
system operator§*=3{_ o, one can then express the in-
teraction Hamiltonian in greatly simplified form as

H::oII: E

a=+,—,Z

S*®

Ek gﬁﬁﬁ”)-

A case of intermediate symmetry arises when the coupling
constants are equal not over the entire qubit register but
rather only over finite clusteris=1-C. One can then define

cluster system operato@fzzfglaﬁ, where K; is the
]

number of qubits in clustey. The interaction Hamiltonian
becomes

C
HE-S S st
=1 a=%,-z

> oiBi.
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In this case too DFSs can be found. The point we wish to

emphasize presently is that the underlying assumption in o () =Ug(h)opUit) =, (T

cluster decoherence is thatgdatial symmetrin the system- e

bath coupling. This is to be contrasted with the decoherence

models studied in this paper, where DFSs will be shown to

arise without the need for spatial symmetry.
Returning to the general cadd, can be rewritten as

Bfi.(1) = Ug(t) B UL(1) (3.3

[see, e.g., Ref.35] for an explicit calculation of thaﬁﬁ(t)
for some examplgsThe system-bath density matrix is trans-

K formed accordingly from the Schdinger into the interaction
H=> > > o'‘®B%, (2.6)  picture(denoted by a prime
1=1 a=x,y,z k
- o , pse()—pset)=Ule(tpseUse(t), (3.4
whereBj, =By, andB;,, B}, are appropriate linear combina-
tions ofElj andE; : and the full dynamics is
1 = pse(t)=U(t) psg(0)U' (1), (3.9
Bixkzz(gikBk +0ikBy ), 2.7
where
i ~ ~ .
Y=—(a.B. —0." B It
B2 (9B~ 8uB). @8 U(t)=7exp[— %f H\(r)dr (3.6
0

The qubit-coupling term iftH 5 can also be expressed entirely i i i _ L
in terms ofo®, wherea=x, y, or z. Thus all system com- andT is the Dyson time-ordering operat@tefined explicitly

ponents of the Hamiltoniakl can be expressed in terms of P€low. From now on we work in the interaction picture
tensor products of the single-quistauli matrices only, so for notgtlonal simplicity thg prime is dr'opped from
the density matrices. At=0 the Schrdinger and interaction

pictures coincide. Thus, assuming that system and bath are
initially decoupled so thapsg(0)=p(0)® pg(0), wherep

The purpose of this section is to show that the evolutiordand pg are, respectively, the system and bath density matri-
of the density matrix of an open system can be expanded if€s, the system dynamics is described by the reduced density
terms of tensor products of the Pauli matridgise Pauli ~ maitrix
group, and that this follows from the structure of the Hamil-
tonians assumed above for a qubit register. This result is p(0)—p(t)=Trg{U(t)[ p(0)® pg(0)JU'(1)}.

obvious from a formal mathematical point of viggince the i ) )
elements of the Pauli group of ordés form a complete Here Tg is the partial trace over the bath. By using a spec-

orthogonal set for the < 2% matrices [34], so that the tral decomposition for the bathpg(0)=X,p,|v)(v|," this
reader for whom this type of argument is satisfactory maycan be rewritten in the “operator sum representation”
safely skip ahead to the next section. We present the derivad0,36—-38
tion of this result here in order to motivate the appearance of
the multiple-qubit errors that are the subject of this paper. _ T

We first transform to the interaction pictufd5] defined Pt ; Ad(DP(0)AL() @7
by the system and bath Hamiltonians:

IIl. TIME EVOLUTION OF THE DENSITY MATRIX

where
H—H(t)=Usg() HUL (1) =Hs® g+ 1@ Hg+ H (1),
(3. Ad)=\p(ulUM|p), d=(u,v). (3.8
where Also, by unitarity of U, one derives the normalization con-
dition,

Ugg(t)=exd —(Hg® g+ 1@ Hp)it/hi]=exd —itHg/% ]
®@exd —itHg/A]=Ug(t)® Ug(1). 2 AgAd=|s, (3.9
d

Because the system and bath operators commute, the inter-
action picture interaction Hamiltonian can be written as ~ which guarantees preservation of the trace of

K
Hi(h=UsgOHULg =2 > X of (@B,

i=1 a=xy,z K !For a bath in thermal equilibriuniy) would be an energy eigen-
(3.2 state with energ¥, , andp,=exp(—BE,)/Z, whereg is the inverse
temperature andZ=Tr[exp(—BHg)] is the canonical partition
where function.
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: QECC one does not consider such high orders in time since
; Agp(0)Aq one assumes that error correction can be done quickly
enough. Instead the error analysis is usually confined to time

Tr{p(t)]=Tr

evolution toO(t) only, which leads to “independent deco-
:Tr[P(O)E AgAd} herence,” i.e., single-qubit errors affecting only one qubit at
¢ a time® It is possible to use multiple-error-correcting quan-
=Tr{p(0)]. (3.10  tum codes forO(t") with arbitrary n, but these codes are

rather unwieldy(i.e., the number of encoding qubits becomes
The{A4}, called theKraus operatorsbelong to thg€Banach large. In the case of “burst errors’(a spatially contiguous

or Hilbert-Schmidt space3(H) of bounded operators acting cluster of errors such als - -1X---Xl---1) some particu-
on the system Hilbert space, and #ubits are represented larly efficient codes are knowj#1].
by 2Kx 2K matrices, just likep.? On the other hand, a DFS that exists by virtue of a spa-
Consider now a formal Taylor expansion of the propagadially symmetric system-bath coupling is not affected by this
tor: proliferation of errors, which all occur in the subspace or-
thogonal to the DF$9]. The assumption of spatial symmetry
Z(=i)" t n manifests itself in restrictions on the coefficients appear-
Ut = 2 nt (f '(T)dT) ing in the interaction HamiltoniafEq. (2.5)]. For example,

as mentioned above, collective decoherence corresponds to
(—=i)" ft t t the conditiong;, =g, Vi, i.e., the bath cannot distinguish be-
f dt f dt,—; f dt, tween the qubit§5]. In this paper no such spatial symmetry
assumptions will be made. Instead, ontultiple-qubiterrors

XT{H,(ty) - - -H(ty)} will be allowed to lowest order instead of single-qubit errors.
. This condition will be defined more precisely in the next
_ (—=i)" section.
=l +nzl n! Un(1). (3.1D As for the Kraus operators, it can be seen from the calcu-

lations above that they may be expanded as sums over tensor
The Dyson time-ordered product is defined with respect tgroducts of the Pauli matrices:

any set of operator®;(t;) as[39] A+
T{O4(ty)- - - Oy(tp)} =0,.(t,)--- O, (t,) Ad()= 2 a4a(UPn, (3.12
(t, >t > >t ). where p,e Px. The Kraus operators thus belong to the

group algebra(the space of linear combinations of group

Using Eq.(2.6) we have for the terms in the above sum  elements of Py [42]. As alluded to in the beginning of this
section, that this expansion is possible actually follows sim-

n K ‘ ply from the fact that the Pauli group forms a complete or-
[MTH=> X > el_,o(t)e]_,B (1), thogonal setwith respect to the trace inner produéar the
=1 =1 a=xy.z k : Y expansion(with complex coefficientsof arbitrary 2¢x 2X
where i={i,.| i1 a={aj.a @), and k matrices. However, here we have seen how the expansion in
112y - - slng, - 1:425 « - - &y, i i
—{Ky.Kp, ... K. The important point to notice in this terms of the Pauli grougrather than some other basis

. o . . physically motivated by virtue of the structure of the Hamil-
complicated expression is that, after taking the bath matri orﬁan y y

elements{u| - - -|v) [because of Eq(3 8], one is left with A simple example will now serve to illustrate the point
all possible tensor products | 1‘7 (t;)) overnout of K made above about multiple-qubit errors. Consider an interac-
gubits. The integration and time- orderlng operation will nottion Hamiltonian of the forrr1—||—22 107®B; (on two qu-
change this conclusion. Thus, using, the expansioagf) bits). Some algebra suffices to show that thénp(t)

in Eq. (3.9, after a timeO(tX) one finds the tensor product =cy(t)lg+cy(t) i+ cy(t) o5+ Cit)oi® 5. In this case
®}<:10i”fi, i.e., all qubits are involvedhere «j=0, corre-  the single-qubit errors;, o5 appear, as well as the multiple-
sponding to the identity matrix, is allowgdAt this point the ~ dubit error i@ a. This situation does not allow for the
entire Pauli grouf appearsall possible £** tensor prod- ~ appearance of DFSunless spatial symmetry is present
ucts of the three Pauli matrices and the identity matrix, anchlternatively, consider the interaction Hamiltoniah = (o7
the four roots of unlty{_,_l}—see Appendix A and one  ®03)®Bi1,+ (03®0;)®Bg, (0n four qubity. In this case
has “complete decoherence,” i.e., multiple-qubit errors overone finds Ay(t) =co(t)ls+Cix(t) oi® o5+ Cay(t) 050 04
the entire system Hilbert space. In the usual approach te-ciy3{t)oi® o5® o5® o . Thus only multiple-qubit terms

2See, however, Ref38] for a discussion of Kraus operators rep- °In fact, spatially correlated errors can also be dealt with by
resented by non-square matrices. QECCs[40Q].
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appear, and, as will be shown below, this allows for thewhere U is an arbitrary,d-independent but possibly time-
existence of nontrivial DFSS, even though no Spatlal Symmedependent unitary transformation, ang a Complex con-

try assumptions were made.
An important example of this correlated type of system-
bath interaction is the dipolar-coupling Hamiltonian, rel-

stant. Under this condition, an initially pure state belonging
to Span{|j)}],

evant, e.g., to decoherence resulting from spin-rotation cou-

pling in NMR [22].% The dipolar Hamiltonian for a system of
spins interacting with a bath of rotations is

YiYk
3

>

j.k

H,

(3.13

Loy o=3(oj-Tj) (o T ],

where y; is the gyromagnetic ration of spip rj, is the
distance between spijsandk, and o is the vector of Pauli
matrices. Introducing an anistropy tenggfﬁﬁ, this can be
rewritten as

) 9il(ofeaf)Y,; P, (3.14

where Y[" are the spherical harmonics, aed=c¢? Even

| in) = ; yl1),
will be decoherence-freesince
|ba) = Ad| thin) = 2 ¥€aU[7) = cqUl ¢in)
o)
Pout= Ed: AgpinAg
=2 cqUlin)(tinl UTc}

d

:D|‘//in><¢in|UTa

though only multiple-qubit terms appear here it is necessarj#here we used the2 normalization of the Kraus operdoes
to further impose anisotropy in order to obtain an exampld3-9] to set=g|cq|*=1. This means that the time-evolved

with a nontrivial DFS, as we discuss in more detail in Sec.

V A4. This is the case, e.g., when onif® oy terms remain
(i-e., 0/’= 8,00300j). coupled toY? rotations.

With these observations, we are now ready to study th(ﬁ,

qguestion of DFSs in open systems without spatial symmetr
in the system-bath couplings.

IV. DECOHERENCE-FREE SUBSPACES FROM
SUBGROUPS OF THE PAULI GROUP

We begin this section by recalling the condition for DFSs

within the framework of the Kraus operator-sum representa

tion, derived in Ref[9]. We then analyze the conditions for

the appearance of DFSs when the erors are spanned by&Lﬁ characterization of a DFS if one does not know the ex-

subgroup of the Pauli group. The result is summarized by
theorem presented at the end of the section.

A. Condition for decoherence-free subspaces

A DFS is a subspacé{=Spar[])} of the full system
Hilbert spaceHy over which the evolution of the density

matrix is unitary. Necessary and sufficient conditions for a

DFS were derived in the Markovian case in Ref] and in
the exactnon-Markovian case in Ref[6]. A formulation of
the exact DFS condition was given in terms of the operator
sum representation in RgO], and will be briefly reviewed.

Let{[])} be a set of system states satisfying

AqdT)=cq0f1) Vd, (4.2)

“We thank Professor Dieter Suter for suggesting this example.

statep,, is pure, and its evolution is governed bl This
argument is easily generalized to an initial mixed siate
=3p;;[1)(7’|, in which casepy,=Up;,U'. The unitary
ansformationU is a “gauge freedom” which can be ex-

¥)Ioited in choosing a driving system Hamiltonian that imple-

ments a useful evolution on the DFS. In the interaction pic-
ture used in the previous sectidican be made to disappear

by redefining all Kraus operators &§A,. The calculation
above shows that Eq4.1) is a sufficient condition for a
DFS. It follows from the results of Ref6,43] that it is also
a necessary condition for a DFS$under “generic”

conditions—to be explained below
Equation(4.1), however, does not seem to be a very use-

plicit form of the Kraus operator@n general, this cannot be
found in closed analytical form, although they can be deter-
mined experimentally34]). When the Kraus operators de-
rive from a Hamiltonian, as in Eq3.8), an equivalent DFS
condition is[9]

SJ/D=adi) Ve, 4.2
where the system-bath interaction Hamiltonian is written as
H/=2,S,®B, [compare to Eq(2.6)], with {S,} being the
system operators. To make use of this last DFS condition,
one needs to introduce assumptions about the structure of
system-bath coupling, and this is how one is led to spatial
symmetry considerations8]. Here, however, the DFS con-
dition of Eq. (4.2) will be considered directly, based purely
on the expansion of the Kraus operators in terms of the Pauli
group elements, and without resorting to an explicit form for
these operators.
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B. Representation theory construction reps, as known from the general theory of DHSS]. As
of decoherence-free states will be shown next, the recipe for finding these DFSs uses

When the Kraus operators are viewed as operators in thif!€ standard projection operators from elementary group rep-
algebra of the Pauli group, the DFS conditjdy. (4.1)] has resentation theory. The projection is onto the subspace trans-

. o v forming according to a particular irrep.
?naturalhlnterpreégtlon. Fhe (Ijgcogergtr)llce—free sl{ét(}}?_pe- First, recall the multiplicity formula for unitary irreps
ong to the one-dimensional Irreducible (epresentat!@ns (which we can always assume in this case since the Pauli
reps of the Pauli group. Motivated by this observation we roup is finite:
now consider a group representation theory construction 09 '
decoherence-free states. 1 N

The general criterion for the reducibility of a representa- M= > TG T* X (G, (4.4

tion {T'(G,)}_,of a finite groupG={G,} of orderN is [44] n=1

N wherem, is the number of times irref* appears in the
Z IX[T(Gy1I*>N, (4.3)  given reducible representatiogi I'*(G,,) ] is the character of
n=1 theT'¥ irrep on the group elemef@, ; and x[T'(G,)] is the

. character ofG,, in the given reducible representatibn
wherey is the character of the representatioftrace of the " g b

trix T(G it lity holds. then th tation i We denote a set djorthonormal basis states transform-
irprgtgz(cib(le n)]. If equality holds, then the representation is ing according to an irred* by {|¢%), ... ¢1§k>}. These

The full Pauli groupPy is irreducible over the Hilbert States span the invariant subspace of the ifférand trans-
spaceH, of K qubits: since all Pauli matrices are traceless,form according to

only the four elements proportional to the identity matrix d
contribute(see also Appendix A Gal k)= 21 TGy, .l ). (4.9
4K+l v
> IxIpall?=125 24 | — 2K 2+ [i 2K|2+ | —i2K|2= 4K+, Furthermore, they obey the orthogonality relation
n=1
(Dl )= 8By (4.6

which is just the order oPy (generally the direct product

representation of irreps of any direct product group is itselfNext, a projection operator onto the subspace belonging to

an irrep of that grouj44]). the d-dimensional irrepk is given by the appropriate sum
Now we come to the central assumption setting the stagever group elementst4]

for the DFSs considered in this papevhat if the Kraus

operators belong to the group algebra of a subgroupQ }

P? The motivation for this situation could be the case in Pun=

which either (i) only higher order errors occur, such that

first-order terms of the form® - - - @I®o{'®@I®---®1 are 444 has the following properties:

absent in the Pauli group expansion of the Kraus operators,

dy —
WZ r%Gn%,Gn, wv=1,...4d¢, (47

n=1

or (i) only errors ofone kind, eithero*, oY, or o* take Pk Pl =6845,.PX,
place. Caséi) would imply one of the following(a) There pye o« VKT
are certain cancellations involving bath matrix element terms
; P ) = 8ol ). 48

such that first-order system operators are absent in the ex-
pansipn O.f E?.(.S.ll). This wou'ldl bfe ac:;ath(ke)r r;fbr;g%?eric To obtain a set of (orthonormal basis states
situation, involving a very special “friendly” bath( e K K . .
system-bath Hamiltonian is in fact not of the form in Eq. {Ml_)’ o k| l’bdk>} transf_ormlng as a set of partners in the
(2.6), but rather involves only second-order terms such adasis forl frorp an arbltr_ary statgp), one Csn apply the set
ot®af (identity on all the rest® Case(ii) is applicable in, of operators[P,,} for a fixed v (such thatP;,[$)#0) and
e.g., the case of pure phase dampireievant to NMR[22]) renormallz_e the states thu_s obtained. Every sitm_ecgn bfa
and optical lattices using cold controlled collisiof45]), expanded in terms of basis states for the constituting irreps

. k
wherea? errors are dominant. I'" as
In the subgroup case under consideration, we may find o
nontrivial irreducible representations Qf over Hx (a so- _ KI Kk
called “subduced” representatio?2]). This situation can |¢>_§k: Zl 0ulvn). (4.9

be interesting especially if there exist one-dimensional ir-
where P¥ | ¢)=6%| %) and the summation ovek is over
inequivalent irrep$44.
SNote that in this case the expansion of the Kraus operators in Let us now consider the effect of applying the operators
terms of tensor products of Pauli matrices, Kg.12, remains ﬁ;;znad,nGn from the group algebra to an arbitrary state
valid. :
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di It will now be shown that Eq(4.11) is also anecessary
Agdy=> > a'LAdWZ) condition for a DFS under the “genericity” assumption that
ki w=1 the error coefficient§ay ,} are arbitrary. In other words, it
" di will be shown under these conditions that, if a set of basis

N d
=> ad'nE > 9‘;2 Fk(Gn)wa- stfltes{ﬁ)} satisfies the DFS condition E@4.1), then the
n=1 ko ow=1 "w=1 {[1)} belong to the invariant subspace of some one-
(4.10  dimensional irrep of our subgroup.
Assume that thé 4 have been redefined to incorporate the
We would like to find the conditions such that this trans-(constant unitary transformatior) such that Eq(4.1) be-
forms into the DFS condition, Eq4.1). Consider the case .jmasa [7)=c4[]). Expand the stat§) as in Eq.(4.9:°
whenT* are allone-dimensional irrepspossibly appearing d iz S

with multiplicity m,: - de
M= 2 0N (4.17
TG m=7h, mr=1. (4.12) K w1
k — plk| kK ;
In this case the indiceg,v are irrelevant and we will omit wherePW|¢>— O |"/’#>' Now, using q.(4.10,
them. Then, A4 =c4l])
N ; dy
_ K| 1k Tl
Add)= 2 aan YUY, (412 =2 2 005

For |¢) to be a decoherence-free state, one would like to de . .

have this proportional tdg)= =, 6% ¢) [as in the original =Ek 21 0, Adl )

expansion of Eq(4.9]. However, this does not work be- m=

cause of the presence tpﬁ in the sum. We thus see that the de

initial function | ¢) must be restricted to be one of the basis =2 2 0 agnGilvk) (4.18
states 4*). Then, with Kewstooon

dy dy
N ~
= ok> a G k
CEEHZ:L ad,n’yﬁ! (413) Zk =t} “w ; d,n}\zl ( n))\;L|¢)\>
a (4.19
we have finally and taking inner productsising Eq.(4.6)]
Adly)=cil ). (4.14 - X -
(ol AdTy=ca> 2 045wl lvk)
At this point it is useful to introduce another indexor the ko ow=l
multiplicity of the irrepk, i.e., z=1,... my. The Hilbert —c 0”“
space ofK-qubit states splits into invariant one-dimensional 4o
subspace¥/X that are spanned bffixed) basis state$y). de ) d ) o
Each of the]¢*) in Eq. (4.9 is a linear combination of the sz 21 o), ; ad,n)\El TG ul ol 90
. = =
|): )
L
i =2 0> agal'(Gp)yy- (4.20
0= 2, o515, (415 =

Using this result we would like to show that tli&(G,,) that
[Because of Eq4.9), the 65 depend on the initial states).] ~ appear here must be one-dimensional irreps. Let us establish
Thus for| ) to be a decoherence-free state, it is allowed to'generic” conditions for this purpose.
be an arbitrary superposition inside copies ofigenirrep ~ Equation(4.20 can be rewritten as an eigenvalue equa-
(differentz's), but not to be a superposition between differ- 10N

ent irreps(differentk’s). In particular we have within each 13~ 2
copy of the irrepl’® Aqb;=cabj, (4.21)
K Kok where
Adlltbz>=cd|l/fz>1 z=1,... My . (416)
I [
This is just the DFS condition, Eq4.1), with the {| %)} Ag=2 agnl'(Gy), (4.22

being the basis states for the DFS. Therefore (Bd.D) is a

sufficientcondition for a DFS, provided that our initial state  SFor notational simplicity we avoid introducing another index for
satisfies the condition that it is a superposition of stateshe multiplicity of the irrep here. That such superpositions are al-
within afixedirrep, Eq.(4.15. lowed for DF states is clear from E¢.15.
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5}5(6T’| L ,07;,]',). 4.23 A. Abelian subgroups
The simplest nontrivial example of a subgroup is found
already forK =2 qubits:
The vectoré} may be zero for a given irrep!, in which case Q,={1%,21,12,7%. (5.2

Eq. (4.2]) is trivially satisfied. Let us assume this is not the
case for some[it cannot be the case fail |, by Eq.(4.17].  This subgroup(generated byZ| and 1Z) describes phase
Then the mPSt general way in which E¢.21) can be sat-  gamping.

isfied is for 0} to be an eigenvector 01|1{j for all codewords As another simple example, I&t=4 qubits and consider
(1), with eigenvaluecy. However, while this is the most the following subgroup:

general condition, it iongeneric By genericwe mean that

we take the errors to be arbitrary, i.e., we do not want to Qy={1%X212,12X2, x4,

make any assumptions on tlag ,. Now, if the eigenvalue

equation were to be satisfied, the vector of coeffici Mts P_hysically, this would cqrrespond to the error process where
would have to be “special.” In other word#,would have to  bit flips happen on certain clusters of two or four qubits only
be adjusted to be an eigenvector.gfé . To make this ad- (note thatX1X1 and IX1X were left out—this case will be
justment would require two conditionsi) havinga priori ~ considered in the sequel pagés)).

knowledge of theay , and (ii) being able to contro@} . We Another example is

would like to avoid assuming) because fine-tuning the bath
is physically unacceptable. In contrast, controlé})fis cer-

tainly desirable. However, we would like to avoid the situa- . . . :
with all Pauli errors occurring just on clusters of four qubits.

tion where only certain special choices @f, compatible ; ; ;
with specific bath parameters, yield decoh?erence-free stat% t,hegé ’Sﬁgggtg;e ;Céggtrp;rg targgeﬁb:gh? rr]lé?"tgfén fgts
[7).” We thus conclude _tha_t to avoid 1_‘|_ne—tun|ng of the bathgg thatS?_,|x[T(G,)]|2=256>4 and thus the natural rep-
parameters and/or special initial conditions; must be pro-  resentation of these subgroups on four qubits is reducible.
portional to the identity. But sincE' is an irrep this is only  Since they are Abelian, they have only one-dimensional ir-
possible if it is one dimensional, i.4"(G,),,= Yoo MV reps. These irreps are given in the following table, expressed
=1, andcdzEnad,ny'n. In addition we see thaiy can only in terms of the elements @y :

be | independent if the DFS statdﬂs) are spannenly by

Q4:{| 4,X4,Y4,Z4},

basis states of copies of tisameirrep I''. Q.E.D. 1 X212 12X? X4
We summarize with the following theorem. It 1 1 1 1
Theorem 1 Suppose that the Kraus operators belong to

the group algebra of some groug={G,}, ie., Ay T2 1 1 -1 -1

=3\_,a4,Gy. If a set of stateg[])} belong to a given

one-dimensional irred™® of G, then the DFS condition I 1 -1 1 -1

A4lj)=cq4[]) holds. If no assumptions are made on the bath4 1 -1 -1 1

coefficients{ay ,}, then the DFS conditioA[])=cq(]) im- 52

plies thatﬁ) belongs to a one-dimensional irr&}$ of G.

For completeness we give in Appendix B an example of
the “nongeneric DFSs,” which result from “accidentally”  \jotivated by Theorem 1, this reducibility implies the exis-
satisfying Eq.(4.21) with irreps of dimension greater than 1. ignce of DFSs, as long as the Kraus operators belong to the

group algebra of these subgroups.

V. EXAMPLES OF SUBGROUPS WITH 1. The subgroup Q

DECOHERENCE-FREE STATES . .
Consider the case @y, i.e., assume that the Kraus op-

The general considerations from the previous section wilkerators can be written as
now be illustrated with some examples. To simplify the no-
tation, letX,Y,Z represent ther*, 0¥, 0% Pauli matrices, and Ag=ag ol *+ag X212+ ag )l 2X2+ag X* (5.3
let us drop the tensor product symbdle., let ZI=Z ' ’ ' ’
@1, X?=X@X, efc). Also, we will ignore normalization [the coefficientsay ; are of course constrained by the nor-
factors in this section. malization condition Eq(3.9)].
Using the general arguments of Sec. IV B and in particu-
lar Eq.(4.7), we can just read off the matrix elements of the

"This statement of what are generic conditions that lead to a DF$our (one-dimensionalirreps from the table in Eq(5.2).
is very similar to that in Ref{8]. Thus the four projection operators are
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PI=144 X212+ 12X2+ X4, P2=144X212—12X%2— X4, and again
P3:|4_X2|2+|2Xz_x4, P4:|4_X2|2_|2X2+X4. Ad|1//%>=[ad‘0|4+ad'1X2|2+ad’2| 2X2+ad’3X4](|OOO]>
(54 +]1102) +|0010 +|1110)

The multiplicity of each of the four one-dimensional irreps in —(aut 8y tas+a 1 59
the reducible representation generated here bKthé qu- (a0t art a2t 2a ). 69

bits is 4. To see this, recall the multiplicity formula E¢.4).  with similar results for the other states. All of this is in agree-
In the present case, tzhez given representation yietds ment with the general results of Sec. IV B. Finally, we may
=1{16,0,0,Q (for I*,X1%,1°X*,X"* respectively and so, with  consider an arbitrary superposition of decoherence-free states

X% =1, mk:%le(!4)1§=4 for all k. taken from the multiple appearances of a given irfef)
Now, let us explicitly find the decoherence-free states. To=54__ X 4%}, and this will again be decoherence-free.

do so we can pick an arbitrary, convenient four-qubit state

and project it onto a given irrep. For example, starting with 2. The subgroup Q

|0000: In this case the Kraus operators can be written as

1 _ 1
P1/0000 =|0000 + |1100 +]0012) + 1111 = | 42, Agmaydi+agXitagYitagZt. (510
P2/0000 =|0000 +|1100 0011 — [111D =|y5), Again, using the general arguments of Sec. IV B, in the case

(5.5  of Q4 we can just read off the matrix elements of the four

3 3 (one-dimensionalirreps from the table in Eq5.2). Thus the
P°|0000 =|0000 —[1100 + (0013 —[111)=[y3), four projection operators are

P#/0000 =|0000 —|1100 — |0012) + |111D =] 7). Pl=14+X*+Y4+2% P?=14+X*-Y4-2Z%,

Each of these four states belongs to a different irrep, and thus ~ P3=14=X*+Y*4-Z%  Pp4=14-X*-Y44+Z%
to a different DFS, which can be verified by applying an (5.1

bit K tor, as in E(.3). F le, . .
arbitrary Kraus operator, as in E€p.3). For example Using the multiplicity formula, Eq(4.4), the given represen-

Aql by =ag o(|0000 +|1100 + 0012 +]1111) tation again yieldsx={16,0_,01,(}k(f(‘)1r I“,_X“,Y“,Z4 respec-
tively) and so once more= z x(1%)16=4 for all k.
+a4,4(/1100 +]0000 +|1111) +|0011)) To find the decoherence-free states let us start again with
|0000. We find

+ag2(/0011) +[1111) +|0000 +|1100)
+ag5(]1112 4001 +|1100 +]0000)

= (A o+ g1+ g+ aga)| ¥ (5.6) P2/0000 =|0000 +[1111)—|1111)—|0000 =0,
(5.12
P3/0000=|0000—|1111)+|1111)—|0000 =0,

P'|0000 =2(/0000 +[111D)=|y7),

Similarly,

Adl¥1)= (g0t ag1— a4~ 243 [ ¥1),
TR e e P*|0000 =2(|0000 — |1118) =|y3).
3\ _ _ 3
Adl¥1)=(a40= g1+ 842 aq3)| Y1), (57 The vanishing of the projections & and P? implies that
N 4 |0000 has no components in the irrepg andI'®. Thus a
Adlg1) =(ago— g1~ ag2t ag.3) | ¥1)- different starting state is needed, e|§001). Then

This is in agreement with Eq4.16). p2|000:|>:2(|0001>+|111@)E|¢§>,

Now, recall that each irrep appears four times. This means
we should be able to find three more independent states be- p3|0003>:2(|0003>_|1llq)5|¢3> (5.13

. . . . 1/ .
longing to each of the irreps. Indeed, by performing projec-
tions on the statel9001), |0100, and|1001) (using|0010  That these states are decoherence-free is again easily verified
and|1000 does not produce new statege obtain the com- by application of an arbitrary Kraus operator, e.g.,
plete basis for the DFSs. For example,
Agl i) =[agl*+agX*+ag,Y*+aq52%]

X 2(]000) +]1110)
P*|0100 =|0100 +|1000 +|011) +|101} =| ¢%>,(5 9 =(agotaq1— a4, aq.9)| V2, (5.14

P1|0001) =|0001) +|1101)+]0010 + 1110 = y3),

1 L etc. The full DFS corresponding to the projecti®his found
P*/1003=|1001)+[0103) +[1010 +[0110 =), by applyingP? to the initial stateg0011),|0101),|1001),
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Pl|001]>:2(|001]>+|110(>)E|(/;%>’ four-spin molecule constrained to rotate only about the
axis. This amounts to settingf}’ = 8,0608;« in Eq. (3.14),
PY0102)=2(|0101)+]1010)=|43), (5.19  so that onlyo{® oy terms remain. The corresponding sub-

group is
P1/1002)=2(/1002+|0110)=|43),
in addition t0|¢,//%> above. Qo ={IN,ZZI,ZNZ NZZ,Z1Z1,1ZZ1,1Z1Z2,2Z2Z}.
Since the decoherence process describe@bys differ- (5.19

ent from that ofQy, the decoherence-free states are, not

surprisingly, different in the two cases. _ ) 1
To find the DFS undeiQ,,, construct the projectoP

3. The subgroup Q = %EqEQZZq corresponding to the identity irrep &,z . Ap-
WRling this projector to the initial stat¢®000 and|1113)

we find a two-dimensional DFS, spanned by these two states.
This DFS thus encodes a single qubit.

As another example of an Abelian subgroup, assume no
that the Kraus operators, fé¢=2 qubits, can be written as

Ag=agol?+agZl+aglZ+ag 2% (5.16

The four projection operators are thus B. Non-Abelian subgroups?

It would have been interesting to find examples of non-
Abelian subgroups that have one-dimensional irreps and thus
P3=|2_7|+1Z—72 P*=12—71—1Z+72. support a DFS. However, no such subgroups exist in the case
’ (5.17) of the Pauli group, as we now prove.
Each two elements of the Pauli groip either commute
In this case, the given representation on two qubits yield®r anticommutdAppendix A). Let Q be a non-Abelian sub-
x=1{4,0,0,0 (for 12,Z1,12,Z?, respectively and som,  group ofPy . Then there must be at least two elementQof
=1yX(1%)4=1 for all k. Thus, as expecte@ince the repre- sayq; andq,, that anticommute. Assume that the state
sentation is four dimensionathe multiplicity of each of the  pelongs to a one-dimensional irrdp of Q. ThenT (qy)|i)

four one-dimensional irreps is 1. o T N i
i o =c4]i) and I'(qy)|i)=c,|i), where c;,c, are numbers.
Let licitly find the decoh -f tates: L= ~
et us again explicitly find the decoherence-free states Now, by assumption '(qyay)=T(—ua,). Therefore

P/00)=4[00)=|y"), T(~Q1Q2)|i>:f(QQF(QZ)|L>:Clcz|i>1 i‘nd a|50T‘(Q1Q2)|Q
=I(=aq)[)=T(-a)l(a)[i)=cil'(=a)li). If T
(5.18 (_Q2)::F(Q2) then we haVer(Q1Q2)|i>:_C102|i> SO
thatc,c,= —c,C,. This implies that at least one of andc,
p3|1o)=4|1o>z | ¢3>, is zero. However, this cannot be true since the representation
is unitary. Is there another possibility? Note thB{—q,)
=T(-1g,)=T(-NT(q,), so the question boils down to
And indeed the value ofa in T(—1)=aT'(1). But since 1)(—1)=1 it
follows thatT' (—1)T(—1)=T'(1)=1, so thatl'(—1)=*1.
Assume then that the other cadq,—1)=1, holds. Let us

This means that each of the four “computational basisYSe Eq.(4.4) while recalling that only the four multiples of

states”|¢¥) is by itselfa DFS. However, since these DFSs the identity have nonvanishing trace:
belong to different irreps, a superposition is not decoherence- 1 N

free. This agrees with the well known fact that phase damp- 1, —=— > [Tk *

: ; . X[ (pn) I* X[T'(Pn) ]
ing leads to decay of the off diagonal elements of the density N & " ¥
matrix in the computational basis, but does not cause any

population decay. — %{X[Fk“)]*(ZK) +X[Fk(_ | )]*(—ZK)

Pl=12+ZI+1Z2+2% P?*=1%+ZI-12-2?

P?|01)=4/01)=|4?),

P11 =4[12)=|y%).

Adl )= (agotagi+agatags)|v), k=1,....4.

4. The subgroup Q-

+x[T* DT> (12°) + x[TH=iDT* (=12},
As a final example of an Abelian subgroup, let us return

to the anisotropic dipolar-coupling HamiltonidEg. (3.14)] (5.20
discussed in Sec. Ill. Note first that it is necessary to trans-
form from the o™ basis used there to*Y in order for our S
Pauli-group-based discussion to apply. Having done that, it . ) ~ .
is clear that unless anisotropy is imposed this Hamiltoniargharacter is the element itself. Now [EL{‘ZF- Then since
generates the entire Pauli group, since all bilinear combinaF (—1)=1, and usingl'’*(—il)=T(—1)T'(il), we find m

tions o“® o® appear in it. Assume therefore that we have a=0. Therefore such irreps do not appear at all.

ince the irred’™ is one dimensionaly[T'“]=T¥, i.e., the
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Thus an anticommuting pair of elements@is incom-  These groups support only one-dimensional DFSs. The last
patible with a one-dimensional irrep, so thaQfhas a one- group is relevant for errors due to exchange on pairs of iden-
dimensional irrep, it must be Abeligh. tical qubits [46], and we see that the corresponding

Recall that the DFS condition of theorem 1 applies todecoherence-free state is automatically immune to exchange
arbitrary groups. Groups other than the Pauli group may superrors.(See Ref[21] for a discussion of protection of DFSs
port non-Abelian subgroups with one-dimensional irrehs  against exchange errors arising in the spatially correlated col-
above proof relied strongly on a property specific to the Paullective decoherence caje.
group, that its elements either commute or anticommute
However, at least within the Hamiltonian framework ex- VII. SUMMARY AND CONCLUSIONS
pounded in Secs. Il and lll, it is the Pauli group that appears

naturally for the group algebra to which the Kraus operators Decoh_erence—freg subspaces are .associated most com-
belong. monly with the existence of a spatial symmetry in the

system-bath coupling, as in the collective decoherence
model. Here we have considered the case when no such sym-
metry is assumed, and have shown that one can nevertheless
find DFSs under certain conditions. The essential assump-
We showed in the previous section that for the Paulitions are that either to lowest order omhultiple-qubit errors
group DFSs can exist only for Abelian subgroups. This ob-are possible, meaning that the bath can couple only to mul-
servation allows us to calculate the dimension of these DFSé$iple system excitations; or that only one type of error pro-
Recall from the general discussion in Sec. IV B that in thecess(such as phase dampingccurs, which can be relevant
generic case a superposition of states belonging to differefior NMR quantum computer schemes and optical lattioes
irreps will decohere, whereas a superposition of states withiany other realization where scattering-induced phase shifts
copies of a given irrep will be decoherence-ffeee also the are the dominant decoherence mechapidm either case,
examples in the previous sectjorlso, by the Abelian prop- instead of the full Pauli group of errors, only a subgroup
erty, each such copy supports only a single decoherence-freeeds to be considered. Barring certain nongeneric cases, the
state. Hencehe dimension of the DFS associated with aDFSs then correspond to states that transform according to
given irrepI'¥ is simply its multiplicity . the one-dimensional irreducible representations of such a
Let Q be an ordeN Abelian subgroup of the Pauli group subgroup. This characterization of DFSs, while formally
on K qubits. Using Eq(5.20 andI'*(—1)==1 again, we similar to previous results, is different in that it trades the
have two(and only twg cases:(i) If T¥(—1)=1 thenm,  assumption of spatial symmetry for one of multiple-qubit
=0, so such irreps do not support a DR8) If T'X(—1)  coupling to the bath.
= _1 then We show in a sequel papg25] how to perform universal
fault tolerant quantum computation on the DFSs found in
m,=2%"2/N. this paper using only one- and two-body Hamiltonians. It
would further be desirable to identify in detail the physical
This shows that all irreps that support a DFS have the sameonditions under which the Pauli subgroup model is relevant
multiplicity, and thus all these DFSs have the same dimenfor current proposals for quantum computers. An important
sion. example we have discussed is the dipolar-coupling-induced
If the subgroup does not include elements with th&,  decoherence in NMR.
+i factors, as in the examples in Sec. V, then only the term

I'(1) appears in Eq(5.20, and consequently ACKNOWLEDGMENTS

VI. DIMENSION OF THE DECOHERENCE-FREE
SUBSPACES

m=2%/N, no {+1,*i} factors. This material is based upon work supported by the U.S.
Army Research Office under Contract/Grant No. DAAG55-

In any case, the dimension of the DFS is inversely propor98-1-0371, and in part by NSF Grant No. CHE-9616615.
tional to the order of the subgroup. This implies a trade-off

between the number of errors that can be dealt with by the APPENDIX A: THE PAULI GROUP
code (N) and the number of decoherence-free qubits . .
(log, M. The Pauli matrices are

As an interesting corollary we see that the largest Abelian 1 0 0 1
subgroup of the Pauli group has ordet™2 (sincem,=>1 oo |:( ) o :( )
implies N<2K*2), Examples of such subgroups af#) 0 1 “\1 0
the group generated by all the single-qubits (or Y's (A2)
or Z's) with =*=1=*i; (2) the group generated 0 -—i 1 0
by XX, YY o, Z2ZI -0, XX -1 Oy= i o/ 0z= 0 -1
HYYH---1, nzzi---1, ... M---11ZZ with =1,*i.

They have the following properties:
8We thank Dr. P. Zanardi for discussions regarding this point. Ui: I, a=0xyy,z,
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[0a.05]=2ieag,0,, VE=(lyp).|¥1) = (1000),]110),
100,051 =204pl, (A2) V2=(|yp).191) = (|112),]00D),
Oo0=18,5,0,% 0,41, (B2)
V3= (|93, 193)) = (1100,]010),
Tr(o,)=0, a=x,y,z.
: : : VA=([gg),|¥1)) =(]011),|10D)).
The Pauli groupof orderK is the set of all 4% possible (Jo).|¥1))=(]011),101)
tensor products oK of the Pauli matrices and:, *i: On each of these two-dimensional subspaces the group acts
Pe==,+i{®K 100 ite- (A3) Iike4F. é codewoird 9in the DFS can be expanded |"j§)§
’ =37 12,00, ,|¥,)." Let us take as our code just the first
Some of its useful properties are the following. basis vector of each irreducible subspace, i.e.,
(i) Let pi,ppePk. Since either[o,,045,]=0 or o
{00k 05} =0 it follows that C={[1),12),|3).|14)}={|vp):z=1, ... .4
either [py,p,]=0 or {p;,p,}=0. (Ad) =1{/000,/111),{100,|013)}. (B3)
(i) Sincea, are all unitary, so are afp e Py . Denoting the vector of coefficients a@=(6.,,6. ), this

(iii) Sinceao, are all Hermitian but we allow for-i fac- means tha@ﬁz(l,O) andéifzz(o,O). In this case we can

tors, pe Py is either Hermitian or anti-Hermitian. Thus if ¢pqow that there are Kraus operatdrg that satisfy the DFS

1
pe Py thenp'ePy. _condition on the code, by searching for matricdg that
(iv) Since TrA®B)=TrAXTrB, the only elements in havedl as eigenvectors. An examole is

Pk that are not traceless are the faur=i multiples of the z 9 ' P
c, dp
[} A2=<

identity, and each has trac& 2
( 0 e (B4)

APPENDIX B: EXAMPLES OF NONGENERIC 0 &

DECOHERENCE-FREE SUBSPACES with the conditionsc}d,+c%d,=0, |c,|?+|c,/?=1, and

We will show here an example of a DFS that arises out ofd|*+[d,|*+|e;|*+|e,|*=1 for normalization[Eg. (3.9].
a two-dimensional irrep of aon-Abeliansubgroup, in the The corresponding Kraus operators are
“nongeneric” case. Let us consider the non-Abelian eight-

_ ; cit+e d ci—e d
element subgroumQg={=1ll,=XXI,*IZZ,*iXYZ}. In A= 2xxi 2T zz s 2ixyz,
this standard representation it is reducible and splits into four 2 2 2 2
copies of a two-dimensional irreducible representation of
Qs. Since there is just one irrep, we drop the irrep inden _Cot ey ds C2— € da.
I'%, etc. The two-dimensional representation @f is the Ar= 2 I +7XXI+ 2 IZZ+7'XYZ'
following: (B5)
10 0 1 The codeC is a DFS. It is the particular equality.e., the
r(xil)y==+ , (=XX)== , “conspiring.” ; idental relati i
0 1 1 0 piring,” nongeneric or accidental relationshifpe
tween the coefficients of th&X| and XY Z terms that is
1 -1 responsible for the existence of this DFS.
+ =+ + =+
I(=1z2z) _(0 1), I(xiXyz _(1 0)
(B1)

®Note that our indices here differ somewhat from the notations in
The eight-dimensional Hilbert space is split into four irre- Sec. IV B, because there we either considered one-dimensional ir-
ducible subspaceé” (corresponding to the four copies B reps, or mostly avoided explicitly indicating superpositions between
spanned by copies of a given irrep.
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