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Decoherence and entanglement in two-mode squeezed vacuum states
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I investigate the decoherence of two-mode squeezed vacuum states by analyzing the relative entropy of
entanglement. I consider two sources of decoherence:~i! the phase damping and~ii ! the amplitude damping
due to the coupling to the thermal environment. In particular, I give the exact value of the relative entropy of
entanglement for the phase damping model. For the amplitude damping model, I give an upper bound for the
relative entropy of entanglement, which turns out to be a good approximation for the entanglement measure in
the usual experimental situations.
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Quantum entanglement is an essential ingredient in qu
tum communication and computation@1#. Therefore, it is of
great importance to quantify the entanglement to assess
efficacy of quantum information processing. Recently, u
conditional quantum teleportation of an unknown coher
state has been realized experimentally by exploiting a t
mode squeezed vacuum state as an entanglement res
@2#, shortly after the theoretical proposal of Ref.@3#. The
two-mode squeezed vacuum state shared between
parties—Alice and Bob—is formally generated from t
vacuum stateuvac& by the unitary transformationU(r )
5exp@2r(a1

†a2
†2a1a2)#, where r (>0) is called a squeezing

parameter. The indices 1 and 2 refer to the optical mode
Alice and Bob, respectively. The two-mode squeez
vacuum stateuC&5U(r )uvac& is written in the Fock basis a
uC&5(coshr)21(n50

` tanhnrun,n&, where un,n&[un&1^ un&2.
Since uC& is a pure state, its amount of entanglement
uniquely quantified by the von Neumann entropy of the
duced state of Alice or Bob:

S~ uC&)5cosh2r log2~cosh2r !2sinh2r log2~sinh2r !. ~1!

In real experimental situations, due to coupling to the en
ronment, the entangled state inevitably loses its purity
becomes mixed. This phenomenon—decoherence—is the
most dangerous obstacle for all entanglement manipulati
Several protocols for entanglement enhancement or puri
tion in continuous variable systems have been propo
@4–8# and the decoherence of continuous variable states
been studied@9–11#. However, the quantification of en
tanglement of mixed entangled states in continuous varia
systems is still not well understood.

In this paper, I investigate the decoherence of two-mo
squeezed vacuum states by analyzing the relative entrop
entanglement@12#. I consider two sources of decoheren
separately:~i! the phase dampingand ~ii ! the amplitude
dampingdue to the coupling to the thermal environme
The damping is assumed to affect each mode of the s
independently with the same coupling parameters. In part
lar, I show that the exact calculation of the relative entro
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of entanglement can be performed for the phase damp
model. For the amplitude damping model, I give an upp
bound for the relative entropy of entanglement, which tu
out to be a good approximation for the entanglement m
sure in the usual experimental situations.

The relative entropy of entanglement of pure states
duces to the von Neumann entropy of the reduced stat
either subsystem. For a mixed stater it is defined as
ER(r)5minsPDS(ruus), where S(ruus)5Tr@r(log2r
2log2s)# is the quantum relative entropy. The minimum
taken overD, the set of all disentangled states. It is usua
difficult to calculate the relative entropy of entanglement
mixed states, except for some specific states. Recently,
following theorem on the relative entropy of entangleme
has been proved@13,14# and it turns out to be quite suitabl
for the present analysis.

Theorem 1. For a bipartite quantum state described by
density matrix of the form

r5 (
n1 ,n2

an1 ,n2
ufn1

,cn1
&^fn2

,cn2
u, ~2!

the relative entropy of entanglement is given by

ER~r!52(
n

an,nlog2an,n1Tr~r log2r!, ~3!

and the disentangled stater* that minimizes the quantum
relative entropyS(ruur* ) is

r* 5(
n

an,nufn ,cn&^fn ,cnu. ~4!

Here, ufn& and ucn& are orthonormal states of each su
system.

First, I consider the phase damping model. The den
matrix obeys the following master equation in the interact
picture:

d

dt
r~ t !5~L11L2!r~ t !, ~5!

with
©2001 The American Physical Society05-1



to
t o
f
z

e

ha
en
rg
s
o

te

as

v
th
p

how

f

TOHYA HIROSHIMA PHYSICAL REVIEW A 63 022305
Lir5
g

2
@2ai

†airai
†ai2~ai

†ai !
2r2r~ai

†ai !
2#. ~6!

The solution of Eq.~5! with the initial conditionr(t50)
5uC&^Cu is calculated as

r~ t !5
1

cosh2r
(

n1 ,n250

`

~ tanhr !n11n2exp~2gtun1

2n2u2!un1 ,n1&^n2 ,n2u. ~7!

It should be noted that the density matrix of Eq.~7! takes the
form of Eq.~2! in Theorem 1. Consequently, it is possible
compute numerically the relative entropy of entanglemen
the state of Eq.~7!. Figure 1 shows the relative entropy o
entanglementER thus computed as a function of the squee
ing parameterr and the degree of dampingd[gt. In nu-
merical computations, the truncated photon number has b
taken to be max(n1)5max(n2)5100, the value of which is
sufficiently large for numerical convergence. It is seen t
with an increasing amount of squeezing the amount of
tanglement decreases rapidly with the damping. For la
values ofd, ER is vanishingly small but remains finite; it i
still larger than the conceivable numerical errors. It is n
clear from the present numerical analysis whether the sta
always entangled for finitegt.

Next, I consider the amplitude damping model. The m
ter equation for the density matrix is the same as Eq.~5!, but

Lir5
g

2
~11n̄!~2airai

†2ai
†air2rai

†ai !

1
g

2
n̄~2ai

†rai2aiai
†r2raiai

†!, ~8!

wheren̄ is the average photon number of the thermal en
ronment. To solve the master equation, I first represent
two-mode squeezed vacuum state as a continuous super
tion of two-mode coherent states@9#:

FIG. 1. The relative entropy of entanglementER of the state of
Eq. ~7! as a function of the squeezing parameterr and the degree o
dampingd(5gt). The amount ofER is shown in units of bits.
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uC&5E d2aG~a,r !ua,a* &, ~9!

where G(a,r )5exp@2(cothr21)uau2#/(p sinhr). According
to the treatment of Ref.@15#, the solution for the density
matrix with the initial conditionr(t50)5uC&^Cu is calcu-
lated as

r~ t !5E d2aE d2bG~a,r !G~b,r !s1~a,b!s2~a* ,b* !,

~10!

where

s i~a,b!5
^bua&

n~ t !11
exp~2j1j2* !Di~j1!exp~kai

†ai !Di
†~j2!.

~11!

In Eq. ~11!, n(t)5n̄(12e2gt), Di(j j )5exp(jjai
†2jj*ai), and

k5 ln$n(t)/@n(t)11#%. Furthermore,j1 and j2 are given by
j15e2gt/2$@n(t)11#a1n(t)b%/@2n(t)11# and j2
5e2gt/2$n(t)a1@n(t)11#b%/@2n(t)11#. By noting the
completeness of coherent states, it is straightforward to s
that

i^m1uDi~j1!exp~kai
†ai !Di

†~j2!um2& i

5
1

p2
A 1

m1!m2! E d2g1E d2g2g1
m1~g2* !m2

3expF2
1

2
~ ug1u21ug2u21ug12j1u21ug22j2u2!

1~g12j1!* ~g22j2!ek1A21Im~j1g1* !

2A21Im~j2g2* !G . ~12!

Using Eq.~12!, we obtain

^n1 ,n3ur~ t !un2 ,n4&5
R

p4sinh4r
A 1

n1!n2!n3!n4!

3E d2g1E d2g2E d2g3

3E d2g4g1
n1~g2* !n2g3

n3~g4* !n4

3exp@2ug1u22ug2u22ug3u2

2ug4u2#exp@P~g1* g3* 1g2g4!

1Q~g1* g21g3* g4!#, ~13!

where

P5R e2gtcothr , ~14!

Q5
1

n~ t !11
$n~ t !1R e2gt@n~ t !112e2gt#%, ~15!
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and

R5$coth2r @n~ t !11#22@n~ t !112e2gt#2%21. ~16!

The integral of Eq.~13! can be evaluated by expandin
exp@P(g1*g3*1g2g4)1Q(g1*g21g3*g4)# with respect tog1* g3* ,
g2g4 , g1* g2, andg3* g4. Finally we obtain

r~ t !5 (
n1 ,n250

`

cn1 ,n2

(0) un1 ,n1&^n2 ,n2u

1 (
k51

`

(
n1 ,n250

`

cn1 ,n2

(k) un1 ,n11k&^n2 ,n21ku

1 (
k51

`

(
n1 ,n250

`

cn1 ,n2

(k) un11k,n1&

3^n21k,n2u, ~17!

where

cn1 ,n2

(k) 5
An1!n2! ~n11k!! ~n21k!!

sinh2r
Pn11n2QkR

3 (
l 50

min(n1 ,n2)
1

l ! ~ l 1k!! ~n12 l !! ~n22 l !! S Q

P D 2l

.

~18!

To estimate the relative entropy of entanglement of the s
r(t) of Eq. ~17!, I write r(t) as a convex combination o
new density matricesr0(t) andrk

(6)(t) (k51,2, . . . ):

r~ t !5p0r0~ t !1 (
k51

`

pk
(1)rk

(1)~ t !1 (
k51

`

pk
(2)rk

(2)~ t !.

~19!

The first, second, and third terms of the right-hand side
Eq. ~19! correspond to the first, second, and third terms
the right-hand side of Eq.~17!, respectively. By convexity of
the relative entropy of entanglement@12#, we have that

ER„r~ t !…<p0ER„r0~ t !…1 (
k51

`

pk
(1)ER„rk

(1)~ t !…

1 (
k51

`

pk
(2)ER„rk

(2)~ t !…. ~20!

The density matricesr0(t) and rk
(6)(t) (k51,2, . . . ) have

the form of Eq.~2! in Theorem 1, so the right-hand side
Eq. ~20! can be calculated exactly and it yields an upp
bound for the relative entropy of entanglement ofr(t). At
gt50, this upper boundER* gives the exact value of th
relative entropy of entanglement of Eq.~1!. Figures 2 and 3
show ER* thus computed as a function of the squeezing
02230
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rameterr and the degree of dampingd([gt). In Fig. 2 ~3!,

n̄, the averaged number of photons in the thermal envir
ment, has been taken to be 0.01~0.1!. The dotted line on the
data surface in each figure indicates the separabi
inseparability borderline, which is given by the necess
and sufficient separability criterion for the two-mod
squeezed state in the thermal environment@16,17#; gt

5 ln@11(12e22r)/(2n̄)#. Within the inside region~above the
dotted line! the state is entangled, while within the outsid
region~below the dotted line! it is separable and the relativ
entropy of entanglementER vanishes. It is seen that the va
ues of the upper boundER* on these borderlines forr &1 are
already negligibly small. AlthoughER* is merely an upper
bound forER , it may be considered as an approximation f
ER . Since r &1 and n̄!1 in the usual experimental situa
tions, this approximation is a fairly good one in the sen

FIG. 2. The upper boundER* for the relative entropy of en-
tanglement of the state of Eq.~17! as a function of the squeezin
parameterr and the degree of dampingd(5gt). The averaged

number of photons in the thermal environmentn̄50.01. The dotted
line is the separability-inseparability borderline. The amount ofER*
is shown in units of bits.

FIG. 3. The same as Fig. 2, butn̄50.1.
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that the upper boundER* '0 for the separable region.
In summary, the decoherence of two-mode squee

vacuum states has been investigated by analyzing the rel
entropy of entanglement for~i! the phase damping model an
~ii ! the amplitude damping model. For the phase damp
f.

.

.J.

v

. A
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d
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model, a method for the exact numerical computation of
relative entropy of entanglement has been established.
the amplitude damping model, a good approximation for
relative entropy of entanglement in the usual experimen
situations has been introduced.
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