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Decoherence and entanglement in two-mode squeezed vacuum states
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| investigate the decoherence of two-mode squeezed vacuum states by analyzing the relative entropy of
entanglement. | consider two sources of decoherefic¢he phase damping ar(d) the amplitude damping
due to the coupling to the thermal environment. In particular, | give the exact value of the relative entropy of
entanglement for the phase damping model. For the amplitude damping model, | give an upper bound for the
relative entropy of entanglement, which turns out to be a good approximation for the entanglement measure in
the usual experimental situations.
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Quantum entanglement is an essential ingredient in quaref entanglement can be performed for the phase damping
tum communication and computati¢h|. Therefore, it is of model. For the amplitude damping model, | give an upper
great importance to quantify the entanglement to assess thmund for the relative entropy of entanglement, which turns
efficacy of quantum information processing. Recently, un-out to be a good approximation for the entanglement mea-
conditional quantum teleportation of an unknown coherensure in the usual experimental situations.
state has been realized experimentally by exploiting a two- The relative entropy of entanglement of pure states re-
mode squeezed vacuum state as an entanglement resoudieces to the von Neumann entropy of the reduced state of
[2], shortly after the theoretical proposal of REB]. The either subsystem. For a mixed stapeit is defined as
two-mode squeezed vacuum state shared between twig(p)=min,.p,S(p|lc), where S(p||o)=Trp(log,p
parties—Alice and Bob—is formally generated from the —log,o)] is the quantum relative entropy. The minimum is
vacuum state|vac) by the unitary transformatiorJ(r) taken overD, the set of all disentangled states. It is usually
=exd —r(aja—a;a,)], wherer(=0) is called a squeezing difficult to calculate the relative entropy of entanglement for
parameter. The indices 1 and 2 refer to the optical modes ahixed states, except for some specific states. Recently, the
Alice and Bob, respectively. The two-mode squeezedollowing theorem on the relative entropy of entanglement
vacuum stat¢W )= U(r)|vac is written in the Fock basis as has been provefl3,14 and it turns out to be quite suitable
| W)= (coshr)~1=;_stanHr|n,n), where |n,n)=|n);®|n),.  for the present analysis.

Since | W) is a pure state, its amount of entanglement is Theorem 1For a bipartite quantum state described by a
uniquely quantified by the von Neumann entropy of the re-density matrix of the form
duced state of Alice or Bob:

S(|W)) = cosHr log,(costr) —sinkPr log,(sinker). (1) p=n§2 8n,y | Enys ¥n )Py Uy @

In real experimental situations, due to coupling to the envithe relative entropy of entanglement is given by
ronment, the entangled state inevitably loses its purity; it
becomes mixed. This phenomenodeeoherence-is the
most dangerous obstacle for all entanglement manipulations.
Several protocols for entanglement enhancement or purifica-
tion in continuous variable systems have been proposednd the disentangled stagg that minimizes the quantum
[4—8] and the decoherence of continuous variable states haslative entropyS(p||p*) is
been studied9-11. However, the quantification of en-
tanglement of mixed entangled states in continuous variable .
systems is still not well understood. p _; An,nlbn o) b . “)

In this paper, | investigate the decoherence of two-mode
squeezed vacuum states by analyzing the relative entropy éfere, |¢,) and |,) are orthonormal states of each sub-
entanglemenf12]. | consider two sources of decoherencesystem.
separately:(i) the phase dampingnd (i) the amplitude First, | consider the phase damping model. The density
dampingdue to the coupling to the thermal environment. matrix obeys the following master equation in the interaction
The damping is assumed to affect each mode of the stafsicture:
independently with the same coupling parameters. In particu-
lar, | show that the exact calculation of the relative entropy

Er(p)= =2 annlogannt Tr(plogzp), (3

d
ap(t)=(£1+£2)p(t), (5)
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|\I’>=Jd2aG(a,r)|a,a*>, 9

where G(a,r)=exd —(cothr—1)|af?)/(ssinhr). According
to the treatment of Refl15], the solution for the density
matrix with the initial conditionp(t=0)=|W¥)(¥| is calcu-
lated as

p()= f da f 2BG (a1 G(B ) or(a )o@ BY),

(10

where
20 % oi(a,/s):nf)'?lexp(—glfs)Di<§1>exp(f<a?ai>D?(§2>.
(1)

FIG. 1. The relative entropy of entanglemdty of the state of

Eq. (7) as a function of the squeezing parametand the degree of ey _ _ T

dampingd(= yt). The amount oEg is shown in units of bits. In Eq.(11), n(t) =n(1-e" "), Di(£) =expa — & a), and
k=In{n(t)/[n(t)+1]}. Furthermore,£, and &, are given by
L=e MAnt)+1]e+n)B}/[2n(t)+1] and &

Eip=%[Zaraipa?ai—(aiTai)ZP—P(aiTai)z]- (6) =e "2n(t)a+[n(t)+1]B8}/[2n(t)+1]. By noting the
completeness of coherent states, it is straightforward to show
The solution of Eq.(5) with the initial conditionp(t=0) &
=[W){¥] is calculated as {(my|Di(&1)expl kafa) D (&) [my);
1S 1 [ 1
t)= tanhr)"*"2exp( — yt|n - _f 2 j 2. M x\m
pl cosHr nl%ﬂ( = 7tins a2 ¥ mymy! A | oy, i (v2)™
—n2[?)[ng,ng)(nz,ng|. (7 1

_ _ Xexp{— §(|3’1|2+|72|2+|71_§1|2+|72_§2|2)
It should be noted that the density matrix of Ed). takes the

form of Eq.(2) in Theorem 1. Consequently, it is possible to R TIN ki [— *
compute numerically the relative entropy of entanglement of o )" (e g V= 1Im(£1y])
the state of Eq(7). Figure 1 shows the relative entropy of

entanglemenEg thus computed as a function of the squeez- —V—1Im(&,73)
ing parameter and the degree of dampirgd= yt. In nu-

merical computations, the truncated photon number has beansing Eq.(12), we obtain
taken to be max())=max(,)=100, the value of which is

sufficiently large for numerical convergence. It is seen that R 1
with an increasing amount of squeezing the amount of en-  {N1,Na|p(t)[Nz,Ng)=—— e Vnginnginl
tanglement decreases rapidly with the damping. For large m SInT pree
values ofd, Eg is vanishingly small but remains finite; it is
still larger than the conceivable numerical errors. It is not Xf dz?’lf dz?’zf d?ys
clear from the present numerical analysis whether the state is
always entangled for finitet.

Next, | consider the amplitude damping model. The mas- Xf a2 ey (v3)"2y5 (i)™
ter equation for the density matrix is the same as(Bjg.but

: (12)

xexf —|yil? =] val* =] val?

’y P
Lip=(1+n)(2apa —alap—pa/a;) = |val?1exd P(v1 v5 + v27a)
v +Q(vI v2t vz va)l, (13
+ §n(ZaiTpai—ai alp—paia)), ®  here
wheren is the average photon number of the thermal envi- P=R e cothr, (14)
ronment. To solve the master equation, | first represent the
two-mode squeezed vacuum state as a continuous superposi- Q= () +Re "[n(t)+1—e "]}, (15

tion of two-mode coherent statgg]: n(t)+1
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and
R={cotlPr[n(t)+1]>—[n(t)+1—e "]?}"L. (16)

The integral of Eq.(13) can be evaluated by expanding

ex P(¥] ¥5 + v272) + Q(¥1 v2+ 75 va) ] with respect toy] v5 , .
Y2¥a, v v, andy% y,. Finally we obtain Ei

0

p()= 2 ¢, In.ng)(ny,nyl
nn,=0 1772

+> > cgkl)‘n2|nl,n1+k)(nz,n2+k|

k=1 nqy,n,=0
1.2 20 0.0
+> > ¢ Ini+k,ny) FIG. 2. The upper bound}, for the relative entropy of en-
k=1ngnp=0 172 tanglement of the state of E(¢L7) as a function of the squeezing
parameterr and the degree of dampind(= yt). The averaged
X{ny+k,ny, 17 . . —
number of photons in the thermal environmert0.01. The dotted
line is the separability-inseparability borderline. The amoun pf
where is shown in units of bits.

0 Vnitnot (ng+k)H(ny+k)!

nqy,ny

rameterr and the degree of dampirtf =yt). In Fig. 2 (3),

n, the averaged number of photons in the thermal environ-

min(ny o) " ment, has been taken to be 0@11). The dotted line on the

« 2 1 (9) data surface in each figure indicates the separability-
=6 A+ (N =D (n,=)!\ P inseparability borderline, which is given by the necessary

and sufficient separability criterion for the two-mode

squeezed state in the thermal environmé¢h6,17); -yt

_ e 2V(om Withi . ;
To estimate the relative entropy of entanglement of the stat& N[L+(1—€"%)/(2n)]. Within the inside regior(above the

i P dotted ling the state is entangled, while within the outside
t) of Eq. (17), | write p(t) as a convex combination of ; el -
ﬁ((av)v dens?ty( mZtricepo(t)p;%dpki)(t) (k=12 ): region(below the dotted lingit is separable and the relative

entropy of entanglemertig vanishes. It is seen that the val-

ues of the upper bounidy on these borderlines for<1 are

already negligibly small. AlthouglE}, is merely an upper

bound forEg, it may be considered as an approximation for
(19 Egr. Sincer<1 andn<1 in the usual experimental situa-

tions, this approximation is a fairly good one in the sense
The first, second, and third terms of the right-hand side of
Eqg. (19 correspond to the first, second, and third terms of
the right-hand side of Eq17), respectively. By convexity of
the relative entropy of entanglemgrt?], we have that

Pn1+ ankR

sinkPr

(18

p(t>=popo(t>+k§1 p&”p&”(twgl pi pl ().

ER<p(t>)sp0ER(po<t>>+k§1 p{VER(LI(D)

+k§l Pl ER(p (1)) (20)

The density matricepo(t) and p{”)(t) (k=1,2,...) have
the form of Eqg.(2) in Theorem 1, so the right-hand side of
Eq. (20) can be calculated exactly and it yields an upper
bound for the relative entropy of entanglementpgt). At
yt=0, this upper bouncE} gives the exact value of the 20 00
relative entropy of entanglement of Ed,). Figures 2 and 3

showEf thus computed as a function of the squeezing pa- FIG. 3. The same as Fig. 2, bot=0.1.
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that the upper bount}~0 for the separable region. model, a method for the exact numerical computation of the

In summary, the decoherence of two-mode squeezetklative entropy of entanglement has been established. For
vacuum states has been investigated by analyzing the relatitke amplitude damping model, a good approximation for the
entropy of entanglement fdr) the phase damping model and relative entropy of entanglement in the usual experimental
(ii) the amplitude damping model. For the phase dampingituations has been introduced.
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