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Correlated errors in quantum-error corrections
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We show that errors are not generated correlatedly provided that quantum bits do not directly interact with
~or couple to! each other. Generally, this no-qubit-interaction condition is assumed except for the case where
two-qubit gate operation is being performed. In particular, the no-qubit-interaction condition is satisfied in the
collective decoherence models. Thus, errors are not correlated in the collective decoherence. Consequently, we
can say that current quantum error correcting codes that correct single-qubit errors will work in most cases
including the collective decoherence.
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Information processing with quantum bits~qubits!, e.g.,
quantum computing and quantum cryptography is a te
nique that will solve some classically intractable proble
@1–5#. However, in order to make quantum computing pra
tical, quantum error correcting codes~QECCs! @6–13# are
indispensable@14#. With QECC’s, we can correct errors o
qubits induced by interactions of qubits with the enviro
ment.

However, there exists no QECC that can correct all err
That is, only some subsets of all possible errors can be
rected with QECC’s. So, the strategy is to choose cer
subclasses of errors that constitute dominant parts as to
corrected ones, while other classes of errors that const
negligible parts as not-to-be-corrected ones. Genera
single-qubit errors, where only one qubit has undergone
teraction with the environment or arbitrary unitary operatio
are assumed to be the most common ones. More precise
is assumed thatthe probability of k~integerk >0) errors are
of order ek, which is much smaller thane the probability of
a single error ife is small enough andk>2 @14#. This is the
independence condition. However, it should be noted that
independence condition is distinguished from the indep
dent decoherence, where each qubits interact with their
environments, which do not interact with one another.1 Al-
though the independence of qubit-environment interac
ensures the independence condition, the converse is not g
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anteed. The purpose of this paper is to show that eve
qubits do not interact independently with environments,
generated errors satisfy the independence condition to
second order, provided that quantum bits do not directly
teract with ~or couple to! each other. Generally, this no
qubits-interaction condition is assumed except for the c
where two-qubit gate operation is being performed. In p
ticular, the no-qubits-interaction condition is satisfied in t
collective decoherence models@15–17#. Thus, we can say
that correlated errors are not generated in most cases inc
ing the collective decoherence. Therefore, current QEC
@6–9# which correct single-qubit-errors work in most cas
including the collective decoherence. Recently Knillet al.
have shown that there exist some QECC’s that can cor
errors due to general interaction@12#. So, there exist some
QECC’s, which correct errors due to collective interactio
However, their results do not directly mean that QECC
correcting single-qubit-errors work in collective decohe
ence.

First, let us consider complete independent decohere
where qubits interact with their own environments, which
not interact with one another. This has been addressed
worked out thoroughly in Refs.@10# and @11#. We will con-
sider this in Hamiltonian formulations. Let us consider t
following total Hamiltonian.
c.kr
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1Correlated decoherence should also be distinguished from collective decoherence. The former is the one that does not s

independence condition while the latter is the one where qubits interact with environments collectively.
©2001 The American Physical Society03-1



t
he

ve
th

.

th

sy

o
n

e
ha
te
o

itio
he
a
n
o
th
ar

we
de-
tate
ch

or

HWANG, AHN, AND HWANG PHYSICAL REVIEW A 63 022303
Here,Ha andHa
E are the free Hamiltonian ofath qubit and

ath environment, respectively, (a51,2, . . . ,n and n is the
number of qubits and integerj >1) and I is the identity
operator.Qa

j is an operator that acts onath qubit andEa
j is

an operator that acts onath environment. It is clear that a se
of terms in a parentheses commute with those in ot
parentheses in Eq.~1!. Since exp((iAi)5)i exp(Ai) when
@Ai ,Aj #50 for eachi , j (@A,B#5AB2BA), the total uni-
tary time evolution operatorU(t)5exp(2iHTt) decomposes
into n factors. Thus each qubit-environment system evol
separately by their own unitary operators, for example,
first qubit- environment system byU1(t)5exp(2i@H1^ I2

^ ••• ^ In ^ I1
E

^ I2
E

^ ••• ^ In
E1I1 ^ I2 ^ ••• ^ In ^ H1

E
^ I2

E
^

•••^ In
E1( jQ1

j
^ I2^ •••^ In^ E1

j
^ I2

E
^ •••^ In

E#t). Each
qubit-environment’s evolution can be decomposed@6,14# as,
for example,

U1~ t !uc&1ue&15 (
k50

3

~sk
^ I2^ •••^ In!uc&1uek&1

[(
k50

3

s1
kuc&1uek&1 . ~2!

Here,uc&a andue&a denotesath qubits andath environment
state, respectively.s05I ,s15sx,s252 isy, ands35sz, I
is the identity operator, andsx,sy,sz are the Pauli operators
sa

k denotessk acting onath qubit leaving others intact.uek&
are not normalized and not necessarily orthogonal@6,9#.
However, in general the norm of the terms withs1

1 ,s1
2 ,s1

3 in
Eq. ~2! are of the first order of timet while that withs1

0 is of
the zeroth order. This property is required to ensure
quantum Zeno effect@18–20#. Therefore,

(
k50

3

s1
kuc&1ue&15c1

0t0s1
0uc&1uē0&11c1

kt (
k51

3

s1
kuc&1uēk&1 ,

~3!

whereuēk& is the normalized state ofuek& andc1
k’s are some

constants. The same relation is satisfied for othera ’s. As
noted above, the total qubits-environments system can
expressed as direct products of each qubit-environment
tem, each of which satisfy an equation similar to Eq.~3!.
Then, we can see by inspection thatterms with k errors are
of order tk in general~Note that the total state is in a form
similar to @11t#n). So we can say that the independence
qubits-environments interactions ensure the independe
condition.

Next, let us consider incomplete independent decoh
ence, where qubits interact with different environments t
are still interacting with one another. In this case total sta
do not decompose into factors in general and thus the ab
method cannot be used to derive the independence cond
On the other hand, one may guess that collective deco
ence generates correlated errors. However, there is no re
why the collective interaction of qubits with the environme
necessarily induces correlated errors. However, in both m
els, qubits do not couple to each other or they satisfy
no-qubits-interaction condition. Then correlated errors
02230
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not generated, as we show in the following. Therefore,
can say that both incomplete-independent and collective
coherence do not generate correlated errors. Now, we s
the no-qubits-interaction condition more precisely: in ea
term of the qubit-environment interaction HamiltonianHI ,
only one qubit-operator is a nonidentity. That is,

HI5(
j

Q1
j

^ I2^ •••^ In^ E1
j 1(

j
I1^ Q2

j
^ •••^ In^ E2

j

1•••1(
j
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j

^ En
j . ~4!

The total Hamiltonian is the following:

HT5H1^ I2^ •••^ In^ IE1I1^ H2^ •••^ In^ IE1•••

1I1^ I2^ •••^ Hn^ IE1I1^ I2^ •••^ In^ HE1HI

[H01HI . ~5!

Here we adopt the interaction picture@21#, whereuc& I ~the
state vector in the interaction picture! 5exp(itH0)uc&S ~the
state vector in Schrodinger picture!. The time evolution of
uc& I is determined by the Schrodinger-like equation

i
]uc& I

]t
5V~ t !uc& I , ~6!

where

V~ t ![exp~ i tH0!HI exp~2 i tH0!. ~7!

Since V(t) is time dependent, the time evolution operat
UI(t) for uc& I is given by the Dyson series@21#.

UI~ t !511 (
m51

`

~2 i !mE
0

t

dt1E
0

t1
dt2•••

3E
0

tm21
dtmV~ t1!V~ t2!•••V~ tm!. ~8!

From Eqs.~4! and ~7!,

V~ t !5exp~ i tH0!F(
j

Q1
j

^ I2^ •••^ In^ E1
j Gexp~2 i tH0!

1exp~ i tH0!F(
j

I1^ Q2
j

^ •••^ In^ E2
j Gexp~2 i tH0!

1•••1exp~ i tH0!F(
j

I1^ I2^ •••^ Qn
j

^ En
j G

3exp~2 i tH0!

[V1~ t !1V2~ t !1•••1Vn~ t !. ~9!

We consider the relation

UI~ t !5UI
1~ t !UI

2~ t ! . . . UI
n~ t !1O~ t2!, ~10!

where
3-2
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UI
a~ t !511(m51

` ~2 i !m*0
t dt1*0

t1dt2 . . . *0
tm21dtm

3Va~ t1!Va~ t2! . . . Va~ tm!

and O@ f (x)# means asymptotically less than a constant
erator times f (x). However, sinceuc&S5exp(2itH0)uc& I
and the operator exp(2itH0) do not entangle qubits with
environments, it is sufficient for us to consider onlyUI(t).
We can see that eachUI

a(t) makes theath qubit to entangle
with environment. For example,

UI
1~ t !uc& I ue& I5 (

k50

3

~sk
^ I2^ •••^ In!uc& I uek& I

[(
k50

3

s1
kuc& I uek& I . ~11!

Here,uc& I andue& I denotes qubits and the environment sta
in the interaction picture, respectively, anduek& I are not nor-
malized and not necessarily orthogonal. By operating all f
tors in UI(t) sequentially, we obtain

UI~ t !uc& I ue& I5(
$k%

s1
k1s2

k2
•••sn

knuc& I ue$k%& I

1O~ t2!uc& I ue& I , ~12!

where $k% is an abbreviation fork1 ,k2 , . . . ,kn , and ka
50,1,2,3. Let us consider Eq.~11!. As above, the norm of
the terms withs1

1 ,s1
2 ,s1

3 of Eq. ~11! are of the first order of
time t while the norm of the term withs1

0 is of the zeroth
order of timet. Therefore,

(
k50

3

s1
kuc& I ue& I5c1

0t0s1
0uc& I uē0& I1c1

kt (
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s1
kuc& I uēk& I

1O~ t2!uc& I ue& I , ~13!
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whereuēk& I is the normalized state ofuek& I . The same rela-
tion is satisfied for othera ’s. Then,

(
$k%

s1
k1s2

k2 . . . sn
knuc& I ue$k%& I1O~ t2!uc& I ue& I

5(
$k}

c$k%t
N($k%)s1

k1s2
k2 . . . sn

knuc& I uē$k%& I

1O~ t2!uc& I ue& I , ~14!

whereN($k%) is the number of instances whenkaÞ0. Now,
we can see thatall terms with more than 1 error [or
N($k%)>2] are of order t2. Thus the independence condi
tion is satisfied to the second order~we can obtain the full
independence condition in the case where theO(t2)uc& I ue& I
term is negligible!. So, we can say that any qubit
environment system that satisfies the no-qubits-interact
condition @Eq. ~4!# obeys the independence condition to th
second order so that the QECC’s correcting single-qub
errors works successfully.

To summarize, we have shown that errors are not gen
ated correlatedly, provided that quantum bits do not direc
interact with each other, or that in each term of the qub
environment interaction HamiltonianHI only one qubit op-
erator is a nonidentity operator@Eq. ~4!#. Generally, this no-
qubits-interaction condition is assumed except for the ca
where two-qubit gate operation is being performed. In pa
ticular, the no-qubits-interaction condition is satisfied in th
collective decoherence models@15–17#. So, current QECC’s
@6–9#, which correct single-qubit-errors, work in most case
including the collective decoherence.
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