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Correlated errors in quantum-error corrections

Won Young Hwang, Doyeol (David) Ahn," and Sung Woo Hwarlg
Institute of Quantum Information Processing and Systems, University of Seoul, 90 Jeonnong, Tongdaemoon, Seoul 130-743, Korea
(Received 31 January 2000; published 11 January 2001

We show that errors are not generated correlatedly provided that quantum bits do not directly interact with
(or couple t9 each other. Generally, this no-qubit-interaction condition is assumed except for the case where
two-qubit gate operation is being performed. In particular, the no-qubit-interaction condition is satisfied in the
collective decoherence models. Thus, errors are not correlated in the collective decoherence. Consequently, we
can say that current quantum error correcting codes that correct single-qubit errors will work in most cases
including the collective decoherence.
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Information processing with quantum bifgubity, e.g., anteed. The purpose of this paper is to show that even if
qguantum computing and quantum cryptography is a techgubits do not interact independently with environments, the
nique that will solve some classically intractable problemsgenerated errors satisfy the independence condition to the
[1-5]. However, in order to make quantum computing prac-second order, provided that quantum bits do not directly in-
tical, quantum error correcting cod¢QECCS [6-13] are  teract with (or couple t9 each other. Generally, this no-
indispensabl¢14]. With QECC’s, we can correct errors on qupits-interaction condition is assumed except for the case
qubits induced by interactions of qubits with the environ-\yhere two-qubit gate operation is being performed. In par-

ment. _ ticular, the no-qubits-interaction condition is satisfied in the
However, there exists no QECC that can correct all errors,active decoherence models5—17. Thus, we can say

That is, only some subsets of all possible errors can be COjp o correlated errors are not generated in most cases includ-

rected with QECC's. So, the strategy 1s to choose Certa”fhg the collective decoherence. Therefore, current QECC'’s
subclasses of errors that constitute dominant parts as to-b 5_9] which correct single-qubit-errors work in most cases

corrected ones, while other classes of errors that constituIncluolin the collective decoherence. Recently Kl al
negligible parts as not-to-be-corrected ones. Generally 9 . ' ; y )
single-qubit errors, where only one qubit has undergone inha\/e shown that there_ exist some QECC’s that can correct
teraction with the environment o arbitrary unitary operation,&"ors due to general interacti¢h2]. So, there exist some
are assumed to be the most common ones. More precisely,qECC S, wh|gh correct errors dqe to collective interaction.
is assumed thahe probability of Kintegerk =0) errors are ~ However, their results do not directly mean that QECC's
of order €, which is much smaller thaa the probability of ~ Correcting single-qubit-errors work in collective decoher-
a single error ife is small enough ankd=2 [14]. This is the  €nce.

independence condition. However, it should be noted that the First, let us consider complete independent decoherence,
independence condition is distinguished from the indepenwhere qubits interact with their own environments, which do
dent decoherence, where each qubits interact with their owRot interact with one another. This has been addressed and
environments, which do not interact with one anothéd- ~ worked out thoroughly in Ref§10] and[11]. We will con-
though the independence of qubit-environment interactiorsider this in Hamiltonian formulations. Let us consider the
ensures the independence condition, the converse is not gudellowing total Hamiltonian.
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ICorrelated decoherence should also be distinguished from collective decoherence. The former is the one that does not satisfy the
independence condition while the latter is the one where qubits interact with environments collectively.
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Here,H, andHE are the free Hamiltonian afth qubit and  not generated, as we show in the following. Therefore, we
ath environment, respectively=1,2,...n andn is the can say that both incomplete-independent and collective de-
number of qubits and integgr=1) and| is the identity =~ coherence do not generate correlated errors. Now, we state
operator.Q{I is an operator that acts arth qubit andE{I is  the no-qubits-interaction condition more precisely: in each
an operator that acts agth environment. It is clear that a set term of the qubit-environment interaction Hamiltoniédy,

of terms in a parentheses commute with those in othePnly one qubit-operator is a nonidentity. That is,
parentheses in Eq(l). Since expEA)=II;exp@;) when

[A ’AJ]:O for gachi,j ([A,B]=AB— B_A), the total uni- HI:E QLo - 81,® EJ'1+2 1,8Q,® - - ®1,0E)

tary time evolution operatdd (t) =exp(—iHt) decomposes ] i

into n factors. Thus each qubit-environment system evolves

separately by their own unitary operators, for example, the Tk D L ®1L® - - - 2QIeE! . (4

first qubit- environment system by, (t)=exp(—i[H.®I, j

® - 8,eIfel58. - al5+11®1,8 - 8l,eHI®15®

- -®|rE,+Eij1®|2®- .®l,oEl®59. - 215]t). Each The total Hamiltonian is the following:

qubit-environment’s evolution can be decompopgd4] as, Hi=H®1,0 - @1, @1+ 1,0H,® - - @1, @l g+ - - -
for example,
3 +Il®|2®®Hn®IE+Il®|2®®In®HE+H|
Ul(t)|¢>1|e>1:k20(Uk®|2®~~®ln)|¢>1|ek>1 =Ho+H,. (5

3 Here we adopt the interaction pictui2l], where|), (the
EE aklz,/;> &) @) state vector in the interaction pictires exp(tHo)|#)s (the
S T UFIAEKL state vector in Schrodinger picturéThe time evolution of
| ), is determined by the Schrodinger-like equation
Here,|#), and|e), denotesxth qubits andxth environment
state, respectivelyr®=1,0'= 0¥, 0?=—ioY, ando’= 07, | )

is the identity operator, ang*, oY, c* are the Pauli operators. "ot =Vl ®
a‘; denotess acting onath qubit leaving others intacte,)

are not normalized and not necessarily orthogoitas].  Where

However, in general the norm of the terms \Aklti'l'n,al,ol in V(t)=explitHo)H, exp(—itHy). @

Eq. (2) are of the first order of timewhile that Withcrg is of
the zeroth order. This property is required to ensure theSince V(t) is time dependent, the time evolution operator

quantum Zeno effed18—20. Therefore, U,(t) for |¢), is given by the Dyson serig®1].
3 3 "
- — t t
go o-'§|:,//>1|e)l=c(1)t00'2|z/;)1|eo)1+c'itk21 ok ) 1len, U|(t)=1+mE:l (—i)mfodtlfoldtz' .
() t
m—1
where|e,) is the normalized state ¢&,) andcX’s are some X fo dtyV(t)V(t2) - V(tm). ®)

constants. The same relation is satisfied for other. As

noted above, the total qubits-environments system can berom Eqgs.(4) and(7),
expressed as direct products of each qubit-environment sys-

tem, each of which satisfy an equation similar to ES8). V(1) = explitHo)
Then, we can see by inspection thetms with k errors are N 0
of order t in general(Note that the total state is in a form
similar to[1+1t]"). So we can say that the independence of
qubits-environments interactions ensure the independence
condition.

Next, let us consider incomplete independent decoher-
ence, where qubits interact with different environments that
are still interacting with one another. In this case total states
do not decompose into factors in general and thus the above X exp(—itHo)
method cannot be used to derive the independence condition. _

On the other hand, one may guess that collective decoher- =VaO+Va(O+ -+ V(1) ©)
ence generates correlated errors. However, there is no reasgfk consider the relation

why the collective interaction of qubits with the environment

necessarily induces correlated errors. However, in both mod- u,(t):u,l(t)u,z(t) .. .Uln(t)+O(t2), (10
els, qubits do not couple to each other or they satisfy the

no-qubits-interaction condition. Then correlated errors arevhere

exp(—itHg)

> Qlel® - -ol,0F)
J

exp(—itHg)

+exp(itHo)[2 1,0Q,® - - ®I,0E)
J

+--~+exp(itHo)[2 11®1,® - - ~®QL®E{1
]
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Uf(t)=1+=,_ 1(—|)mfodt1f 1dt, . . f m-1dt,, Wherelgk>| is the normalized state d&,),. The same rela-
tion is satisfied for othet’s. Then,
Xva(tl)va(tZ) . -Va(tm)

and O[ f(x)] means asymptotically less than a constant op- ki Ko

erator timesf(x). However, since|y)s=exp(—itHg)|¥), {Zk} T1 02 - |"/’> leggh +O(E)|le),
and the operator exp(itHy) do not entangle qubits with

environments, it is sufficient for us to consider orly(t). = ¢, tNEKD & kl kz Kn e
We can see that eadh*(t) makes thexth qubit to entangle {% tk ol il

with environment. For example,
. +O(t?) [y [e) (14

1 _ k

Vi (t)|l’b>'|e>'_k20 (078128 - @ln)[¥)i]ed), whereN({k}) is the number of instances whép+0. Now,

3 we can see thaall terms with more than 1 error [or
=3 N({k})=2] are of order £. Thus the independence condi-
& oal¥hledr (D tion is satisfied to the second ord@gve can obtain the full

independence condition in the case where@{€?)|¢),|e),

Here,|¢), and|e), denotes qubits and the environment stateterm is negligible. So, we can say that any qubit-

in the interaction picture, respectively, ajg}l), are not nor-  environment system that satisfies the no-qubits-interaction

malized and not necessarily orthogonal. By operating all faceondition[Eq. (4)] obeys the independence condition to the

tors inU,(t) sequentially, we obtain second order so that the QECC’s correcting single-qubit-
errors works successfully.
k k K To summarize, we have shown that errors are not gener-
Uilgnlen=2% ooz - ol uhilewy) 0

ated correlatedly, provided that quantum bits do not directly
interact with each other, or that in each term of the qubit-
+O(t)[¢) e, (12 environment interaction Hamiltoniald, only one qubit op-
erator is a nonidentity operatpgq. (4)]. Generally, this no-
i gubits-interaction condition is assumed except for the case
=01,23. L?t uls cgns;der EqL1). As above, Fhe norm of -\ here two-qubit gate operation is being performed. In par-
the terms withoy, 07,03 of Eq. (11) are of the first order of o\ yjar, the no-qubits-interaction condition is satisfied in the

time t while the norm of the term withr; is of the zeroth  giective decoherence modéls5—17. So, current QECC'’s

where {k} is an abbreviation fork; ks, ... k,, andk,

order of timet. Therefore, [6-9], which correct single-qubit-errors, work in most cases
3 3 including the collective decoherence.
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