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Classical information capacity of superdense coding
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Classical communication through quantum channels may be enhanced by sharing entanglement. Superdense
coding allows the encoding, and transmission, of up to two classical bits of information in a single qubit. In this
paper, the maximum classical channel capacity for states that are not maximally entangled is derived. Particular
schemes are then shown to attain this capacity, first for pairs of qubits, and second for pairs of quitrits.
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Quantum information exhibits many features that do not
have analogs in classical information thedij. For this C= max
reason, when a quantum channel is used for communication, Uk p
there exist a number of different capacities for the different
types of information transmitted through the chanret5]. Uk k +
. . . . - ®l Ua®l
Superdense codingeferred to in this paper simply as zk" PS((Ua@le)pas(Ua®ls) )
dense codiny first proposed by Bennett and Wiesii6t, is
where the transmission of classical information through arhis bound has been shown to be asymptotically attainable
quantum channel is enhanced by shared entanglement by ysing product state block codirig,11].
tween sender and receiver. The classical information capac- ag the operators){® I 3 are unitary, applying one of the
ity for a channel where sender and receiver share em"?mgl%perators tgag Will not change the eigenvalues. Hence the
ment _has been called thgntangleme_nt—as&sted cIaSS|_caI entropy, which depends only on the eigenvalues, of each
capacity G [5]. The classical capacity for dense coding, symmand in the second term of Ed) remains unchanged,
denoted here b, provides a lower bound o8¢ . and the second term reduces $(pg). To maximize the

For completely general dense codif@GDO) [7], the  capacity we must therefore maximize the first term,
sender Alice and receiver Bob share qubits in the siate

Alice may encode a message using a set of unitary transfor-
mations{UK}, with a priori probabilities{p,}, on her qubit. S(pas) =9 > pe(Uk®Ig)pas(Ukelg)T|. (2
Alice then sends her qubit to Bob, who decodes the message k
by doing joint measurements on both qubits. ) ) o

For pure states of pairs d state systems, wherexg A general density matrix of a two qubit bipartite system may
=W ae)(Wag|, the channel capacity has been derived byP® expanded as
both Hauslademrt al. [8] and by Barenco and Eke®], and
was shown to be&C=logD+Ypg). Here S is the von Neu-
mann entropyS(p)=—Trplogp, where the logarithm is
base 2.

‘Bose, Plenio, and Vedrdl’] have further proven that if \yhere thes's consist of a scaled version of the set of Pauli
Alice’s alphabet of operators is r(istrlcted to the set of thenatrices and the identity, that is,
identity and three Pauli matricetl,e{l,oy,0,,0,}, then

S(; P(UK® 1) pas(UK®1g)"

. 1)

pAB:% )\ijo-iA@O-{B’ ©)

the capaqity for a pair of qubits is maximized by settmg . 1 1/1 0
=1/4. This scheme was labeled by the authors as special 00:—|2:—( ) (4)
dense codingSDC). 2 210 1
In this paper, a bound on the channel capacity for dense
coding is derived for arbitrary sets of unitary operators on 1 1/0 1
pairs of qubits. It is shown that the scheme of SDC attains T=5075\1 o 5

that bound. Further, the proof for the case of pairs of qutrits

is outlined, utilizing the higher dimensional analog of SDC. ,
Suppose Alice and Bob share pairs of qubits in the state , 1 1/0 —i ©

pag, and Alice is restricted to using unitary operators and i 0/’

sending her message as a product state of letters, then the

maximal amount of classical information that may be trans- 1 1/1 0

ferred is given by the Kholevo bourd0], 03:_022_( )

0 -1 )

*Present address: Centre for Quantum Computation, ClarendoBy linearity we can obtain the reduced density matrices of
Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom. pag @ndp,g by tracing over the expansions
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pe=Tralpas] tS)

9

= TrA

z )\” O-EA® 0'{3
i

=Ej NijTralowloh (10)
(11)

22 AojUjB,

where the trace of each of the Pauli matrices is zero. Also,

' Tr UKol Ukl ' 12 is obtained by comparing E¢22) with Eq. (11). Thus, the
Pe= 1A Ek: PUa®ls)pas(Uale) 12 capacity for SDC is equal to the bound given in E@s®)—
(19), and SDC has been shown to be an optimal method for
, . CGDC.
=2 N> PeTralUKah(UK) 1o (13) A similar result applies for two qutrits, where Alice uses
' K the operators
. 0 0 1
=2 Nojok (14)
i Up=(1 O , (24
0 1
=pB, (15
0 1 0
using the fact that the trace of a matrix does not change 00 1
under unitary transformations. Ui= ' (25)
Combining the above derivations leads to the main result 1 00
of this paper. The amount of information that may be trans-
ferred for any{U',ﬁ,pk} using an arbitrary, two qubit mixed 0 0
tat is gi b i2m
statep,g is given by U,= e 0 |, (26)
0 0 ei471'/3
C=S 2 pu(Uk®@Ig)pas(Us®lp)"
. 1 0 0
_ ei471'/3 0
-3 pS(USelp)pas(Ukela)) (16 Us Nk @0
K 0 0 el271'/3
=S(pps) — S(pas) (17 U i (Uq.Us] 28)
, , 4 \/§ 0:Y21
<S(pa)+S(pg)—S(pas) (18
i
<log 2+ S(pg) — Spag). (19 Uszﬁ[uo,uﬂa (29
Here, Eq.(17) follows from the discussion following Ed1), )
and the first term is rewritten as for E(R). Equation(18) U =I—[U U,] (30)
uses the subadditivity of the entropies of a bipartite system, N
and Eq.(19) follows from the relationsS(pg) =S(pg), by
Eqg. (15), and the boun(p,)<log 2 for a qubit. i
This bound is attainable using special dense coding, U;=——[U,Us], (31)
where Alice uses the operatotsi=2c%, each occurring V3
with a priori probability p,=1/4. Using this scheme, the
state received by Bob is completely disentangled, that is, Ug=ls, (32
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pha=2 pku/i(iEj xijoL\@o’g)(ux)* (20
-3 [ 3 dhohot|eob @

1]
=2 \ojoa®ah (22

J

1
:§|A®pBi (23)

where Eq.(22) follows from Eq.(21) due to the relationship
olo'gl=3680—30'=x50 fori,je{1,2,3, and Eq.(23
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with a priori probability p;=1/9, whereg U; ,U;] denotes the hanced over the use of a single qubit by a factor equal to the

commutator. Expanding the density matfixg in terms of ~ von Neumann mutual entropy of the combined state.

the identity and the traceless Hermitian generafarg of The capacity also gives an exact bound on the mixedness

SU(3) [12], we find of a state for when dense coding with that state may be said
to fail [14]. For an arbitrary bipartite state the capacity will

r_ n 1 not exceed log\, for an NXM state system, witiN,M
Pas 2 PiUjpasU (33 €{2,3}, wheneverS(pg) — S(pag)<0. Disentangled states
[15] satisfy the inequality
1
:§|3®p3, (34)

S(pag)=maxS(pa),S(ps)}, (39

and therefore cannot be used to transmit more thail loigs
per state. The proof of Eq39) is given in the Appendix.
C=log 3+ S(pg)—S(pag)- (35 It may also be notefil6] that the result for the capacity of

o ) ) a two qubit system also proves the conjecture that the capac-
Similar constructions for arbitrarf\X M state systems ity for dense coding is bounded ty]

may easily be considered using analogs of the unitary trans-

and the capacity is given by

formations used in SDC. The transformations consist of the C=<1+Ep, (40)
set of cyclic permutations of th®, basis states of{,,
whereD, is the dimension of the Hilbert spadé, of Al- whereEp is the (one way distillable entanglement Qf 55,

ice’s state, the set of unitary matrices derived from the cycligorovided the Hashing inequalifit 7] Ep=S(pg) — S(pag) IS
group generated by the matrix consisting of g roots of  true.
unity on the diagonalup to overall phase and the normal- In summary, the classical information capacity of dense
ized commutators between elements of these two sets a@bding, through a noiseless channel, using arbitrary mixed
transformations. The connection between sets of unitary destates of two qubits or two qutrits, has been derived. A
polarizers, the existence of orthonormal bases of maximallynethod of generalizing thl X M state systems has been out-
entangled states, and dense coding have previously bedined, and a conjecture made about the classical capacity of
noted by Wernef13]. dense coding using such systems.

We thus make the conjecture that, for Bk M state

system , the dense coding capacity is given b . . .
ystempas g capacty s g y The author would like to thank Craig Savage and Tim

C=logD s+ S(pg)—S(pag), (36)  Ralph for discussions. The author was supported by the
DETYA.
The result obtained in this paper agrees with the previ- APPENDIX

ously obtained results in the case of pure states. The capacity

may also be rewritten in the form Proof of Eq. (39) Supposepg is disentangled, then the
density matrix may be written in the formag==;p;w)

C(pap) =10gDa=S(pa) +S(pa) +S(ps) ~S(pas) ®wh, with 3;p;=1 andp;>0, where the reduced density
(37) matricesw' are all pure states. By the convexity of the ex-

=C(pn)+S(A,B), (39) pressionS(pg) —S(pap) [18], we have

for C(pa), the capacity of sending qubdt without access to S _ < Swh)— ‘ i % wh)=0
qUDILB, ANdS(A. B) = S(p,) + S(ps) — S(pag), the von Neu:- (pg) —S(pas) ZI PiS(wg) E. PiS(wa® wp) =0,
mann mutual entropy gi,g . In this way it is shown that the

capacity due to the joint measurement of both qubits is enand henceS(pag)=S(pg). Similarly for S(pag)=S(pa)-
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