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Concentrating entanglement by local actions: Beyond mean values
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Suppose two distant observers Alice and Bob share a pure bipartite quantum state. By applying local
operations and communicating with each other using a classical channel, Alice and Bob can manipulate it into
some other states. Previous investigations of entanglement manipulations have been largely limited to a small
number of strategies and their average outcomes. Here we consider a general entanglement manipulation
strategy, and go beyond the average property. Fraentangled state shared between two separated persons
Alice and Bob, we show that theathematicainterchange symmetry of the Schmidt decomposition can be
promoted into gphysicalsymmetry between the actions of Alice and Bob. Consequently, the most general
(multistep two-way-communicatiopstrategy of entanglement manipulation of a pure state is, in fact, equiva-
lent to a strategy involving only a singlgeneralizegl measurement by Alice followed by one-way commu-
nications of its result to Bob. We also prove that strategies with one-way communications are generally more
powerful than those without communications. In summary, one-way communications is necessary and suffi-
cient for entanglement manipulations ofparre bipartite state. The supremum probability of obtaining a
maximally entangled stat@f any dimensionfrom an arbitrary state is determined, and a strategy for achiev-
ing this probability is constructed explicitly. One important question is whether collective manipulations in
guantum mechanics can greatly enhance the probability of large deviations from the average behavior. We
answer this question in the negative by showing that, giverairs of identical partly entanglegure states
(|¥)) with entropy of entanglemerE(|W)), the probability of gettingnK [K>E(|W¥'))] singlets out of
entanglement concentration tends to zera &snds to infinity.
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I. INTRODUCTION AND SUMMARY OF KEY RESULTS This paper concerns mainly the fundamental laws of en-
tanglement manipulations gbure bipartite states. Unlike

Entanglement—the nonlocality of entangled state—as irprevious investigations, here we allow the initial state to be a
the Einstein-Podolsky-Rosen paradd), discovered by Bell  single copy of a general stat. It is useful to note, how-

[2] in 1964, has long been regarded a hallmark of quanturgyer, that in fact all entanglement manipulation methods,
mec_hamcs. In the past, entanglement was often regarded as$)gth “single-pair” and “collective” ones can be reformu-

qualitative property of a state. The last few years, howeverl,ated as single-pair methods, by redefining the “particles.”

witnessed a dramatic change in the approach to entangl'ﬁideed, suppose Alice and Bob sharpairs of particles, and

ment. Entanglement is now regarded as an important quant|Jr'1tend to process them by some collective method. We can
tative and useful resource in achieving tasks of quantum in- P y '

formation processing such as dense codBig teleportation now rggard glln par'ticles .in each' side as a single particle,
[4], and reduction of communication complex[s. living in a higher-dimensional Hilbert spadequal to the

The study of quantum information processing has beefProduct of the Hilbert spaces of the origimaparticles. The
complicated by the fact that entanglement can appear il ©iginal pairs can thus be regarded a single pair of two
many nonstandard forms. Fortunately, we have learned thaf0re complexquantum particles, and the original “collec-
two distant parties sharing a bipartite pure state can applffve” manipulation can be regarded as a single-pair type ma-
local operations and classical communication to “manipu-hipulation of this new pair. Consequently, all questions con-
late” entanglement, thus converting one form to anoflédr ~ cerning collective manipulations can be answered by
To better understand quantum information processing, it istudying single-pair manipulations of a generic state of two
important to discover the fundmental laws of a general enarbitrary particles. This is the path that we will follow in the
tanglement manipulation. Most previous investigations fo-present paper. Our results are the following.
cused on some particular types of entanglement manipula- (i) First of all, we show that, rather surprisingly, general
tions, namely, entanglement concentration and dilution of aentanglement manipulations of a pure bipartite state with
ensemble of identical states, sa@=(a|11)+b|22))N,  only one-way communication are equally powerful as those
which are collectively processed. Moreover, the main interwith two-way communication, but are more powerful than
est was in the average properties, and little is known abouhose with no communication.
the actual probability distribution of the outcomes of those (ii) Then we specialize in a class of entanglement manipu-
manipulations. lations, namely, entanglement concentration, from a general
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pure bipartite initial stat& to am-dimensionally maximally age a distribution which yields the same averaﬁe

entangled statéwhich we shall call anm-ME statg, &, =nE(Y) while having a non-negligible probability for ob-
=(1/m)=M . ]i)ali)g, whereli) and|i)g are orthonormal taining a large number of singlets—for example, a distribu-
vectors in Alice’s and Bob’s Hilbert spacés, and Hg, tion in which the probability of obtainingn=n singlets is

respectively, anan is fixed but arbitrary(Note that®, is a E(W), while in all other cases zero singlets are obtained. The
direct product,®, is a singlet, andbP,q is equivalent toq question is “Does there exist any entanglement manipulation
singlets. Therefore, am-ME state can be regarded as a gen-procedure which realizes the latter distribution?”
eralization of singlet$.The main questions that we ask are A main point of our investigation is to gain a better un-
the following: What is the optimal probability of getting a derstanding of theollective propertiesnvolved in entangle-
@, from ¥? What is the optimal strategy that will achieve ment manipulation. Indeed, if Alice and Bob were to extract
such a probability? In this paper, we give complete answer§inglets by processing each of thepairs ¥ separately, the
to those questions. law of large numbers tells that the probability distribution of
(iii ) After this, we specialize in the entanglement manipu-the number of singlets wil(asymptotically be Gaussian.
lation of a large number of identical pairs &, and derive a Deviations from this distribution can be obtainétiat all)
bound to the probability of having a large deviation from theonly if Alice and Bob process all thepairs together. But are
average property. More specifically, suppose that two remot8uch deviations possible? And if so, how large can they be?
observers, Alice and Bob, shamepairs of spin-1/2 particles, (To put things in the right perspective, we would like to
each pair in a nonmaximally entangled pure stife) mention that the reversible procedufd discussed above is
=a|1)|1)+ B]2)|2). Then, by local actiongwhich may in- nota procedure in which each pair is processed separately
clude local unitary transformations, measurements, and afut a collective one; however, the distribution it yields is
tachment of ancillary quantum systenand classical com- €ssentially Gaussian.
munications, Alice and Bob can convert these pairs into a N this paper, we show that, in the context of entangle-
(smalley numberm of perfect singlets. It has been shoj ~ ment manipulations of a large ensemble of identical pure
that in the limit of largen, Alice and Bob can perform a bipartite states, collective manipulations cannot substantially

reversibleconversion of then pairs ¥ into singlets, obtain- enhanc_e the probability of large deviations from the average
properties.

E(W) is the “ent £ entanal o of binartit (iv) Afterward, we consider a subclass of entanglement
(V) is the “entropy of entanglement” of a pure bipartite manipulation strategies in which the final state is always one

state consisting of subsysterAsand B, and is defined to be of the ; ; ;
possibled,’s. (Say, the state&b; appears with prob-
the von Neumman entropy of subsysténtor B) [6].) Fur- ability p;, @, with probability p,, ® , with probability p, .

thermore, as a consequence of this reversibility property, toétc) We define a natural notion of a universal strategy for

cétntanglement manipulations for all values rof and show

increase via local actions and classical communicationfhat such a universal strategy cannot possibly exist
[6,7], this particular entanglement manipulation method (v) Finally, we present open questions in the entangle-

yields the maximal possible average number of singlets. hent manipulations of pure states and briefly discuss prob-
has_been ShOW[S] thatE(Y), the maX|maI. average r_1umber lems in generalizing our results to mixed states.

of singlets which can 'be gxtracted per qngmal PRIy IS up In summary, on a conceptual level, the novelties of our
to a constant multiplicative factor, thenique measure of investigation are the following

entanglement fol that is nonincreasing under local opera- (1) Some of our results—particularly the statement that

t'oT_f and cIagsm:IJ}I communlganor;: i f entanal tmanipulations with one-way communication are as powerful
.wa\fr’ mtz ]E)rewous mvesﬂ;ga lons o Ien anghemen as those with two-way communication—apply to a general
manipufations, the Tocus was on tagerage valugssuch as - opianglement manipulation strategy. In contrast, all previous

on the question "What is the average number of singletsy, e qfigations focused on either entanglement concentration
which can be extracted from n pais?” Indeed, the whole or dilution.

idea of reversibility refers only to the average properties. The Incidentally, we clearly demonstrate the important role of

point is that, as in all asymptotic results, there is always ymmetry in entanglement manipulations. Indeed, in our

very small but nonzero probability for an entanglement Cony,oof that manipulation strategies of a pure bipartite state

cent_ration procedure to give a substantially smaller amoun;ith only one-way communication are as powerful as those
of singlets than the expected number. Here we want to gQiin two-way communication, we are essentially promoting
beyond average values and ask about the actual distributionge mathematical interchange symmetry of the Schmidt de-

For example, the same average number of singlets, composition into a physical symmetry between the local ac-
=nE(W¥) might, in principle, be obtained from very differ- tions of Alice and Bob(See Sec. I).

ent distributions: In the reversible procedure described in (2) We allow the initial state to be a generdl. In con-
Ref.[6], out of n pairsW a number m of singlets is obtained trast, almost all previous investigations restrictdo be N
with some probabilityPy,, and the distribution is essentially identical copies of some state, say=a|11)+b|22), and
Gaussian, peaked aroung=nE(V). In particular, via this were mainly concerned with properties in the lafgdimit.
procedure the probability to obtain a large number of sin- (3) We are concerned with the role of probability rather
glets,m~n is exponential small. However, one could envis-than the average property in entanglement manipulations.

ing, on average a numberﬁan(\If) of singlets. (Here,
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Il. ONE-WAY COMMUNICATIONS IS NECESSARY AND of the Schmidt decomposition; ard) in eachstep of en-
SUFFICIENT FOR ENTANGLEMENT MANIPULATIONS tanglement manipulation, the Schmidt decomposition of the
OF BIPARTITE PURE STATES pure state involved is alwaysymmetricunder the inter-

change of Alice and Bob. With such symmetry, there is no
advantage in having Bob perform the measurement instead
The most general scheme of entanglement manipulationsf Alice [11-16.

of a bipartite pure entangled state involves two-way commu- More concretely, consider a round of communications in
nications between Alice and Bob. It goes as follows: Alicea two-way scheme of entanglement manipulation. Suppose
performs a measurement and tells Bob the outcome. Boplice has performed a measurement onfW’)
'Ehetr: perfforms a mgasurzme{ti;\el_ tyPe of measurer?enttthat zgk\/)\_“al;ﬂb(()’ and obtqined an outcome;. She can

ob performs can depend on Alice’s measurement out§ome\york  out the  Schmidt decomposition p01|\I//>

and tells Alice the outcome, etc., etc. The goal of this sub- \/—,, b of th hat sh h ith Bob
section is to prove that any strategy of entanglement manipu= >V k&) b) of the state that she now shares with Bob.

lation of a pure bipartite state is equivalent to a strategyNOW Alice is supposed to tell Bob the outcorg of her
involving only asingle (generalizedl measurement by Alice measurement, and Bob then will perform %Omeasurement
followed by theone-waycommunications of the result from With & set of local projection operators, sg %. How-
Alice to Bob (and finally local unitary transformations by €Ver. it turns out that there exists a set of local projection

A. Reduction from two-way to one-way communications

Alice and Bob. operators{P/"°®} by Alice which will do essentially the
Here we introduce some definition. same trick, as far as entanglement manipulation is con-
Definition 1. (ordered Schmidt coefficient®)n arbitrary ~ cerned. Mathematically, we claim the following proposition.

pure statel’ can be written in Schmidt decompositi¢®] Proposition 1: Given any pure bipartite statg¥)ag

N shared by AEIsiC% and Bob and any complete set of projection
operators{P"°"}’s by Bob, there exists a complete set of
\P:Z ilay)by), (1) projection operator§PA°?'s by Alice and, for each out-
come |, a direct product of local unitary transformations
where (aj|a;)=(b;|b;)=&;. We call y\’s the ordered Uft® UP such that, for each
Schmidt coefficienti$ the \;'s are ordered decreasingly, i.e., Bo A\ Br s Alice
A;=\,=---=\y. Note that all phases have been absorbed (1©PPO)|W)=(Ufo UP) (PN o1)|W). @)
in the definition of thda;) states, so that the’s are positive
real numbers.
First of all, since it is more convenient to deal with pro-
jection operators than positive-operator-valued measures, we
include any ancilldmeasuring apparatus Alice and Bob'’s W)= Vpiledale)s ®))
guantum systems. Therefore, without loss of generality, we !

regard Alice and Bob as sharing a pair of particles with an , _
infinite (or an arbitrarily large dimensional Hilbert space: shared between Alice and Bob. Note that, by the definition of

however initially onlyN of the coefficients of the Schmidt the Schmidt decomposition, it is symmetric under the inter-
decomposition9] are nonzero, i.ej¥)=3N JN|a)lb)  change ofe;)s and|e;)s . This is a mathematical symmetry.
where(a;|a;)= &; and(b;|b;)= &;; . We further assume that Now, in proposition 1, we promote this mathematical sym-
the above form of the Schmidt decomposition [af) is metry into a physical symmetry between the actions of Alice
known to Alice and Bob and Bob in the context of entanglement manipulations. More
Second, we consider only the most advantageous erp_recisely, if Bob applies a set of projection operatﬁ?gf’b}

tanglement manipulation scheme in each step of which Alic@n hiS system and obtains an outcolythe statdV") will be
keeps track of the results of all her measurements and telf§@nsformed into some state, say
Bob about them, and vice versa. Alice and Bob then update
Fheir information on the state they share in (_aach step. Since it | w8y = E Vil al)alb!)g. (4)
is a pure stat¢¥) that Alice and Bob start with, they always [
deal with apure statein each stepAny scheme in which o ] ]
Alice and Bob choose to be sloppy or ignorant can be recaden the other hand, if Alice applies a corresponding set of
as a situation in which they fail to make full use of their Projector operator§P{*'°} on her systeninstead of Bob,
information. Therefore, there is no loss in generality in ourthen we show that the corresponding outcdmell give her
consideratiori 10]. a state

We now argue that any two-way entanglement manipula-
tion strategy for the stat can be recast into an equiva- A\ _ TAM R
lent strategy which invol;/p?s only one-way communications e Z Viulal)albf e, ®
from Alice to Bob—that is to say, a strategy in which Alice
performs all the measurements and informs Bob of the outwith exactly the same Schmidt coefficients|ds®). Conse-
comes afterwards. This is so becaugein entanglement quently, there exists a bilocal unitary transformation that will
manipulations we are mainly concerned with the coefficientsotate the stat¢¥”) to |WB). In this sense, the stat¢d”)

Idea of the proaf Consider a pure bipartite state in its
Schmidt decomposition

022301-3



HOI-KWONG LO AND SANDU POPESCU PHYSICAL REVIEW 463 022301

and|¥®B) are equivalent. The upshot is that there is no adbipartite state—the most general entanglement manipulation

vantage for Bob to perform a measurement, in place of Alicestrategy can be realized with only one-way communication.

In summary, as far as entanglement manipulation of a purd natural question to ask is whether communication is

bipartite state is concerned, there is a total symmetry beneeded at all. We show that, indeed, communication is nec-

tween the actions of Alice and Bdh.7]. essary. This is to say that entanglement manipulation strate-
Proof. See Appendix A. gies without communication cannot achieve all that could be
One can repeat the above argument and prove that all trechieved with communication. The proof of relegated to Ap-

rounds of measurements can be performed by Alice alonggendix B.

and Alice only needs to tell Bob her outcomes after the In conclusion, more powerful strategies are generally ob-

completion of all her measurements. What this means is thatained with one-way communications than without commu-

for Alice and Bob manipulating a pure bipartite state, onenications. On the other hand, we proved in the above para-

can, without loss of generality, restrict oneself to schemes offraphs that one-way communications are sufficient for any

entanglement manipulations using only one-way communistrategy. Combining these two results, we conclude that one-

cations from Alice to Bob. way communications are necessary and sufficient for imple-
Finally, it is a well-known consequence of measuremenimenting a general strategy of entanglement manipulations of

theory that the entire sequence of Alice’s measurements cguure bipartite states.

be described as singlegeneralized measuremefBne may

argue this well-known result as follows. Every measurement ||| OBTAINING A GIVEN MAXIMALLY ENTANGLED

consists of two steps—the interaction of a measuring devise STATE ®,, FROM AN ARBITRARY STATE W

with a system, and the “reading” of the measuring device, o

i.e., a unitary transformation and a projection. Now, any ar- Definition 2(m-ME state:®r,): We shall denote by>, a

bitrary sequence of independent measurements can be ré@ndardn-dimensional maximally entangled state

placed by an equivalent single measurement, by simply let- m

ting all the interactions to be performed first, and reading all D)= i D [iYali) (6)

the measuring devices simultaneously at the end. In this case m m iy AR

one can view all the independent measuring devices as a

(more complicated single measuring device, performing a Whereli)a’s (|i)g’s, respectively form an orthonormal basis

single interaction with the measured systefthe unitary for a Hilbert spacéd, (Hg, respectively. In particular,®,

transformation describing this interaction being simply theis a direct productp, is (equivalent tg a singlet, andb,q is

product of the unitary transformations describing the indi-equivalent tog singlet pairs. In what follows, we shall call

vidual measuring devicgsind followed by asinglereading ®, anm-ME state

stage. Furthermore, even if the measurements are not inde- We now come to one of the main results of our paper. We

pendent of each other, i.e., some measurements depend eansider the following particular problem. Suppose Alice

the results of previous measurements, we can still replace tr@nd Bob share a pair of particles in some arbitrary pure state

sequence by a single measurement: In this case too, the h¥-. By different entanglement manipulations strategies we

man observer can postpone “reading” the results obtaine¢an transform¥ into a givenm-dimensional maximally en-

by the different measuring devices until the end. Indeedtangled stateb,,. In general such a process does not succeed

there is no need for the observer to read the results of theith certainty but only with some probability,,. Here we

measurements in order to tune the subsequent measuremeargjuire as to the maximal probability with which such a

accordingly. The entire process can be realized by the medransformation could occur.

suring devices interacting with each other as well as with the Incidentally, one can even obtain a maximally entangled

system under observation. Then, once again, we have state whose degree of entanglemengisater than that of

single measuring device, performing a single interactio  the initial state. Since the average degree of entanglement

cept that the interactions between the measuring device ar@hnnot increase, it is obvious that such a transformation oc-

the system contain also some internal interactions betweegurs with a probability less than 1. To describe such a situ-

the different parts of the measuring device—correspondingtion we sometime use the term ‘“gambling with

to one part reading the result of the otheand a single entanglement”—indeed, Alice and Bob try to achieve a bet-

reading stage. ter than average outcome while taking the risk of losing en-
In summary, the most general strategy of entanglemertanglement if the result turns out to be unfavorable.

manipulation of a pure bipartite state is equivalent to a strat- Definition 3(pmAx): For any positive integem, we de-

egy involving only a singl€generalizefi measurement per- fine pM** [18] to be the supremum over all manipulation

formed by Alice followed by the one-way communications strategies of the probabilitp,, of obtaining anm state®,,,

of the result from Alice to Bob(and finally local unitary  from a pair initially in the statep.

transformations by Alice and Bob We will prove the following theorem.
o Main theoremIf we write the initial state?” in an ordered
B. One-way communications are provably better than no Schmidt decomposition aw:zi’\lzl\/)\—i|ai>|bi>! the supre-

communications MAX

mum probability p,,”” of obtaining ®,, over all possible
We have shown above that two-way communications ar@ntanglement manipulation strategies is given by the follow-
not necessary for the entanglement manipulation of a puring.
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(i) If m>N (N being the number of terms in the Schmidt quantum data dilution is amexactprocess which is valid
decomposition ofP’), thenpMA*=0. only on average.
(ii) If m=N, then
B. An upper bound on pMA*: Part (i) of theorem 1

m . . . .
mAX: MmN —(Amere1+t Amors2t - +An).  (7) It remains to prove paiii) of theorem 1. It is convenient
1=r=m ' to introduce the following notation.

) ) o ) Notation(B]"): We denote theth bound in theorem 1 by
The proof of this main theorem is divided into two parts. gm ; o
r.e.,

In Sec. IV, we will derive an upper bound gufi** (see
theorem 1 In Sec. V, we demonstrate an explicit strategy m_ M
that saturates the bound and is, thus, optifeaé theorem)2 Br= 1 (\m—rs1tNmorszt -+ Ay). 9

IV. UPPER BOUND ON P}**: THEOREM 1

] o ) Restatement of part (ii) of theorem Given a statd V)
Theorem 1If we write the initial state¥ in an ordered with  the ordered Schmidt decomposition|\l’>

Schmidt decgrnpoaiAti)?n aw:z_il\'_:l\/)\—ﬂaiﬂbi)v the supre-  _sN /\i|a)|b;), the supremum probabilitp"** of ob-
mum probability pr, ™" of obtaining &, over all possible  taining anm-ME state out of manipulatinfj¥’) satisfies a set

ent_anglement manipulation strategies satisfigs the foIIOV\_/ingof constraintspmAX$ B™ for 1<r<m.
i) If m>N (N being the rh}ll/J&]ber of terms in the Schmidt  \iativation for the proof of partii) of theorem 1: For a
decomposition of¥’), thenpp,,™"=0. fixedr, if the right-hand side of Eq9) is zero, then there are
i) If m<N, then only m—r terms in the Schmidt decomposition|af ). From
lemma 1, Alice will definitely fail to obtain an
pmAxs min rT()\mfr+l+)\m7r+2+ Ay, (8 m_dimensional maximally gntangled pe_xir state becag;e there
l<r=m will be at mostm—r terms in the Schmidt decomposition of
the resulting state. In the proof, we would like to turn this
argument around to show the following. If Alice does suc-
ceed, the remaining [i.e., from (m—r+1th to mth) terms
in the maximally entangled state must have come from the
The following lemma is useful. remaining [i.e., from (m—r+1th to Nth)] terms of the
Lemma 1The number of terms in a Schmidt decomposi- Schmidt decomposition of the original std@). (Surpris-
tion canneverincrease under local measurements and clasingly, classical reasoning is, in fact, valid here. This is be-
sical communication§19]. cause when one considers the reduced density matrix of Al-
Proof Let us suppose that the initial statgD) ice, Bob’s system provides a “record” for its history.
=N \ila))|b;) has only N nonvanishing terms in its Therefore, no interference effect is possible. See belbet.
Schmidt decomposition. For each measurement outé@ne us multiply both sides of the inequality and consider the
|®), the resulting stat®{"°®|®)y=3N |\ j|al)|b;) (where inequalityrpi**/m=<rB"/m. Now the left-hand side of the
|a:) is the projected statE’lA”ce|ai>) can be expressed as a new inequality is simply the probability that Alice’s state is
sum of N terms. Consequently, its Schmidt decompositionprojected into the remainingterms.(There is a supremum
must have at mos¥l terms. QED. probability pM** of successfully obtaining am-dimensional
Proof of part (i) of theorem 1As a corollary of lemma 1, maximally entangled state. Now, such a state gives a totally
for an initial state|®)==" ,\/\;|a;)|b;) with only N non-  random density matrix for Alice’s subsystem, which has a
vanishing terms in its Schmidt decompositigp}i**=0 if ~ support of m dimensions. Moreover, given a fixed
m>N. QED. r-dimensional subspace of the-dimensional space in the
This leads to the following apparent paradox. Suppos&upport of Alice’s system, consider the projection operators
Alice and Bob share standard singlets. What is the prob- into that subspace and into its complement, respectively.
ability that they can gamble successfully and obt&in There is a conditional probability/m of the random state
(>s) singlets? Naively, one might expect the probability to Peing projected into the-dimensional space, rather than into
be nonzero: One may use quantum data diluf@rto dilute IS complemen). It must therefore be constrained by the
s standard singlets into sa&ypairs of|®) each of entangle- Probability of Bob's system being projected into the space
mentE(|®))=s/S, and then apply the Procrustefire., lo- ~ sPanned by thenj—r +1)th to Nth terms in|®), which is
cal filtering method[6] of entanglement gambling to each of given by the right-hand side. o
Spairs of|®). For eacH®), the Procrustean method gives a Proof of part (ii) of theorem 1Given an initial statéd),
nonzero probability, sap’, of obtaining a maximally en- for 1<r<m, we decomposed)=|®})+|®3) where|d7)
tangled pair out of it. Thus, it looks as if there would be a=={""V\i|a;)|b;). [Define [®])=0.] Alice and Bob now
nonzero probability ') of obtainingS singlets fromssin-  attempt to manipulat¢®) into an m-ME state. Alice can
glets. But, as we have seen above, this argument igivide up the outcomes into two se{s;,s,, ... Sp} (suc-
erroneous—the probability of obtaining singlets out of ces$ and{f,,f,, ... f,} (failure). Let us consider suc-
gambling withs singlets is strictly zero. The reason is that cessfuloutcomes; . ThenPg|d)=Pg[®1)+ P |®5) is an

A. The number of Schmidt decomposition terms can never
increase: Part (i) of theorem 1
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mME state. Denoting byp, (similarly p, where i Theorem 2Given a statdW)=3{L, \\;|a))|b;) (where

=1 or 2) the  unnormalized densit matrix )\127\.22- S =N\p) vyi.th only N nonyanishing terms in its

TrBPSI|<I>>(CI>|PZI (similarly TrBPS||<1)i’)<cI>i’|F>SI where i Schmidt decomposition. There exists a way to convirt

_ : Si_ TSy TS into an m-dimensional maximally entangled state with prob-
L or 2, respectively we havep, =p.;+ pys - ability  min (2. ... (M0 (A 1+ A2 -+ )

We emphasizTe that the interference term arising from:min BM
o . o B
TrBPSI|q)1_><q)2|PSI is identically zer_o. This I_S becaqse, wher,1 Proof of theorem 2Let us separate the proof into two
one considers the“reduce,(,j density matrix of Alice, Bob Scases{(a) min,B™=1 and(b) min,B"<1.
system provides a “record” of its history. In taking the par- ' '
tial trace over Bob'’s system, all the interference terms disap-
pear. It is very interesting that classical intuition is valid A. Case(a) of theorem 2
here. This greatly simplifies our discussion.

X e s ) Case(a): Let min.B"=1. We shall prove that for an op-
The supports satisfy supp(;) Csuppp,). Since

timal strategy, the probability of getting an-ME state is 1.

SUDD(ORSD has a dimension of most—r and yet suppt;) It is convenient to start with a simple case, namely trans-
has a dimensiom(Ps||<I>> is anm-ME statg, we can pickk  forming maximally entangled states into maximally en-
orthonormal vector$ui‘) |u§'> lu™) in supp(o,i') such tangled states of lower dimension. We will prove the follow-

that (u?|v)=0 for all [v) esuppf,?). Let us define the N9

projection operatoPys = ={_y|u)(u}'|. From its definition, 1 any maximally entangled state into a maximally entangled

it is clear thaﬂDLSIpil'PI;:O. For a fixed but arbitrary strat- state of lower dimension. Consequentm\,’mxg pg/le ifr

egy of entanglement concentration, let us denot@ﬁjf} the =s=1.

probability of successfully obtaining an-ME state. There- Proof: First consider the cases=3 ands=2. (Here we

fore, omit the obvious normalization factoysA maximally three-
dimensionally entangled state has a Schmidt decomposition

rpf}{b/m=TrA(2 PLs,ping) |Was=11)al1)8+12)al2)s+[3)al3)s. We now show that

S| it can be reduced with certainty to a standard singlet

|1)al1)g+|2)a|2)g. Suppose Alice prepares an ancilla in

> PlepZ’SZ'PEI) the state|0),, and evolves the system in such a way that

* 10)a|)a—(12)a+(3)a)[L)a, 10)a]2)a—(|1)a+(3)a)[2)a,

) and |0),]3)a—(]1)a+]2)2)[3)a. The entire state will

Lemma 2There is a way of transforming with probability

+Try

:TrA(g PLopL 3P
|

= TrA( > PLSkaSZ'PIQ, evolve as follows:
S| !
10)alu)ae=10)a(|1)al1)s+12)al2)s+[3)al3)B)

_ r r rptpfr
Tra Trs( 2 Pus.Ps||¢z><¢z|Ps|Pusl) — 210005+ 31D anet 122 a5t 1322008

sTrA TrB|q>f2><q>f2| :)\mfr+1+7\mfr+2+ e +)\N +|133>aAB+ |233>aAB
=rB{"/m (10) =11)a(|22pg+[33)ap) +12)a
for 1<r=<m. The equality sign in the first line holds because X(|1Daet[33)a8) +13)a(|1D) as+ 22 ap)-
p/i' is proportional to the identity matrix in am-dimensional (11
space, and its trace is proportional to its probability of oc-
curring. Since the total probability of succespfs® and Pls Now Alice measures the state of her ancilla, and obtains a

projects am-ME state into an’_dimensiona' subspace Of the Singlet Shared with BOb The .eXaCt Singlet Wh|Ch iS Obt.ained
m-dimensional space, the probability of this occurring isdepends on the result of Alice’s measurement, but it can
clearly rp2™®/m. Now, one takes the supremum over all en-always be transformed into the standard oney@)|11) g

tanglement manipulation strategies in E40) to find that  +|22as). This can be realized by Alice communicating the
result of her measurement to Bob, such that both of them

m
p X< T()\m—r+1+ Nm—r+2t -+ +Ay)=B[" for  know which singlet has been obtained, and then having both
1<r=m. QED of them perform the appropriate unitary rotations.

Examble Co.nsiderN=3 andm=2 for part(ii) of theo- A similar proof can be constructed to show that, starting

AX with a k-ME state (a maximally entangled pair df state
rem 1. Theorem 1 now states th# =minf2(\z+Ag), 1 particleg, Alice and Bob can with probability 1 convert it to

V. OPTIMAL STRATEGY AND VALUE OF PMAX a (k—1)-ME state [a maximally entangled pair of
THEOREM 2 (k—1)-state particlels See Appendix C for details. QED.
We remark that, using lemma 2, one can convert with
Theorem 1 gives an upper bound to the probabﬂﬁfy*x. probability 1 a maximally entangled state of dimensianto
We now prove that an optimal strategy actually saturates this standard singlets provided thae2". Just note that, as
bound. mentioned abover standard singlets are equivalent to a
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single Z-dimensional maximally entangled state, and use the-p)-ME state and an g+ q)-ME-state. The factof p/(p
above lemma. This simplifies a related discussion made ir-q)]%? in the definition of| ¥ ™% is needed for the fol-
Ref. [6], and raises the probability of success from about llowing important result.

—etol.

pre

Lemma 3 A precursor state of am-ME state can be

Now we turn to the general case. The first thing to note isconverted with certainty am-ME state.

that the condition mifB"=1 is completely equivalent with

Proof of lemma 8The proof is essentially a generaliza-

the constraint that the square of the largest normalizetion of the proof of lemma 2. See Appendix D.

Schmidt coefficient is smaller or equal tomi/ This is be-
cause

Anor<---<\;<1/m (12
implies that
1
)\1+)\2+'-~+7\m,r$a(m—r). (13)
SinceN;+Ay+ - +Ay=1, we find that
A + +A=1 ! ' 14
=1— — —r)= —
m—r+1 N m(m r m’ (14
which is equivalent to
m
BP:T()\m—r+1+"'+}\N)>1- (15)

Also recall thatB=1. Therefore, we conclude that, Xf;
<1/m, then minB"=1. Conversely, if\;>1/m, Bj_,<1.
Combining these two results, we see that M= 1 iff A,
<1/m.

Idea of the proof of case (a) of theorem Raively, one
might proceed by extracting am-ME state fromV itera-
tively. At each step we could decompose the stteinto
¥'=¥;+W¥, such that¥; is an (unnormalized m-ME

In our proof, it is convenient to make use of the following
definition.

Definition 6 (mth Schmidt degeneracy numbeRor any
pure bipartite stat& in an ordered Schmidt decomposition
|W)y=3=N \i|i)ali)g, let us define themth (M<N)
Schmidt degeneracy numb@nr simply the degeneracy num-
ber when there is no ambigujtio be the number of Schmidt
coefficients that are degenerate with .

Proof of case (a) of theorem Zonsider the entanglement
manipulation of a general staf@)=3N , \|i)]i) satisfy-
ing minB"=1. We construct a multistep procedure such
that in each step Alice and Bob eith@y obtain a precursor
state which, as shown in lemma 3, can readily be reduced
with probability 1 to anm-dimensional maximally entangled
state; or(ii) obtain a residual state whosenth) Schmidt
degeneracy number is increased by 1, while still obeying the
relation minB;"=1 when properly normalized.

If Alice and Bob obtain am-ME state, they have accom-
plished their task. If they obtain a residual state, they repeat
the procedure. Since with each step the residual state in-
creases its degeneracy number by 1, we are certain that in a
finite number of steps<N) either Alice and Bob obtain an
m-ME state, or end up with a residual stabg,, which, by
lemma 2, can subsequently be converted with certainty to
D,,.

We now describe each step in more detail.

Suppose the initial state in ordered Schmidt decomposi-

state andV'} is residual state that, when properly normalized,tion is

still satisfies mipB"=1. One simple way to ensure that

min,B"=1 (or A\;<1/m) is always satisfied by} (if prop-

erly normalizedlis to allowonly the firstm Schmidt terms to

[w)=2 Wili)alie.- (17

contribute to¥; and, therefore, the, term of ¥, decreases
fast enough.

However, this does not quite work as an iterative procesyppose further that,, is (p+ q)-fold degenerate, such that
dure. The reason is that, at some point of such a procedure,
the mth Schmidt coefficient of the stat& will becomede-
generatewith the (m+ 1)th and possibly other coefficients.
In other words\ ,=\p,+ 1, €tc. Dealing with this problem is
one of the major technicalities in the proof. Let us start by
making the following definition.

Definition 5 (precursor state)Consider a state of the

)\m—p+1: (18

The decomposition df¥") into a precursor and a residual
state is done by the attachment of an ancilla prepared in the
state|0), and a subsequent measurement by Alice. For 1

form : :
<i=m-p, the evolution goes as
1 [m=p m+q 1/2
Ppmpay— M)+ —— 1 1idMlid ],
g == X i+ 3|5 |J>|J>}

\/A—i|0>a|i>A_’ \/%|1>a|i>A+ \ Ai— %|O>a|i>Ar (19

where|0), and|1), are orthonormal, and is the minimal
value needed for a new degeneracy to occur in Schmidt co-
efficients of the residual stat& ¢. In fact,

(16)

wherep>0 andg=0. Let us call it a precursor state of an
m-ME state.

Remark Note that the casg=0 corresponds to am-ME
state. Forq>0, a precursor is a coherent sum of am (
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S (m(p+q) min,B"=1. The final residual state will be totally degenerate
a:m'”(—()‘mp_)‘mpﬂ)' and, hence, has the fordy . This multistep method estab-
lishes our proof. QED.
m(p+q) N Example ConsiderN=3 andm=2 for case(a) of theo-
p (Ameq™Ameqea) |- rem 2. The initial state i§\1|11)+ VA,|22)+ VA 5|33). The

Form—p+1=<i<m+q, the evolution goes as:

Koyl | p+q)|1>a||>A

requirement that miB"=1 is that\;<1/2. Case(a) of
theorem 2 asserts that Alice and Bob can obtain a singlet
with certainty. The extraction procedure in the proof now
goes as follows. In the first step, a singlet state is extracted
from the first two Schmidt terms until the second and third
terms become degenerate. In other words, Alice attaches an

a ancilla in the stat¢0), to the original system, and applies the
TVNT [0)ali)a- (20 transformation
p+q
For m+q+1<i<N, the state is unchanged, i.e., VN 1]0)al 1)—= VAo = N3 1)al 1)+ VA1 = (N2 = N3)[0)a] 1),
10)ali)a—10)ali)a- (21) \/)\—2|0>a|2>_> VA2—N\3[1)42)+ \/)\—3|O>a|2> (25)
Hence we find that VA3/0)4]3)— VA3|0)43).
|0>a|q,>_,\/g| 1>a|\pir3nrép,q>+ \/ﬁ|0>a|‘1'res>, (22) As a consequence, the combined system evolves as
where |0)a(VA1| 1)+ VN,[22) + VA5|33))
e » = o Nel1)a(|12) +]22)
W)= J—( 2, lijli)+ EH brq |i>|i>) +10)al V1= (Na— Na) |1 1)+ Vg 22) + VNa|33)].
(23 (26)
is the precursor and Alice measures her ancilla. An outcome of 1 gives a sin-
glet, whereas an outcome of 0 will require Alice and Bob to
m-p a execute the second step. In the second step, the precursor
|\If,es)=(1—a)l’2{ > AN =D state |11)+(1/4/2)(|22)+|33)) is extracted. To this end
=1 m Alice lets her ancilla interact again with her original system,
m+q a and implements the transformation
+ > \/)\-—( i
i=m-p+1 I p+q i) VA 1= (A= X3)[0)al1)— V24/A 1= 5[ 1)a]1)
N
L + VA= (N1=15)[0)4[1)
+im§qﬂmu>m} (24 o
VN3l0)al2) = VN1 = N5l 1)al2) + Vha— (N1 =X,)|0)]2)
is the residual state. Now, since
\/)\—3|0>a|3>H \/)\1_)\2|1>a|3>+ \/)\3_()\1_7\2)|0>a|3>
_(m(p+q) (27)
a=min —()\mfp_)\mprrl)a .
so that the combined system evolves to
m(p+q)
T(Amm—xmﬂ)), |0)al VA 1= (Xa=Ng)| 11)+ k5|22 + VA5[33)]
— N =Nl 1)a[V2|11) +[22) +(33)]
we have eithel) Ny, ,=N\j_p. 1 0N (2) Npyq=Nmeger-

In other words, a new degeneracy occurs in the Schmidt + V3= (A= N2)|0)4[[11) +]22) +(33)].

coefficients. (28)
Now Alice measures the state of the ancilla. If the out-

come is 1, she obtains a precursor state which can be coilice now measures the ancilla. An outcome of 1 gives a

verted with certainty to am-ME-state. If the outcome is 0, precursor state which can be converted to a singlet with cer-

she obtains a residual state with its degeneracy number itainty. On the other hand, an outcome of 0 will give a 3 state

creased by 1. which, by lemma 2, can also be converted to a singlet with
It is also easy to see that, just like the original stiitethe  certainty. In summary, Alice and Bob can obtain a singlet

intermediate residual staté’ .9 also has the property that with certainty in this example.
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B. Properties of B"
1. Lemma 4

Before moving to caséb), let us prove some lemmas.
For any initial state|¥), the bounds in theorem 1B
=(M/IN)(Np—r+1F Am_r+2F - - +\\), obey the following.

Lemma 41If B]", ,>B/", thenB", ,>B/", ;.

Remark In other words, for a fixedn, considerB;" as a
function ofr. Once it starts to increase, it will continue to do
Sso.

Proof. See Appendix E.

2. Lemmab5

By adding the conditiorjwhich is valid for casgb) of
theorem 2 that minB"<1, the following lemma can be
proven.

Lemma 5 Given minB"<1, there exists ainique r,
such thaBy'>B3'=- .- =Bl <B ,;<---<Bp=1.

Proof. See Appendix F.

Remark Since B]" is defined to be M/r)(Ay_;i1
+Am_ra2t -+ Ny), in terms of\;’s, the conditions that
B'=BJ=... zBf‘l< B?‘l+1<~ --<Bp=1 can be written as
the following set of equations:

A 1SN FApe1t - H AN,

1
PP E()\m_l—l— At - +AN)

=

1
()\mfr1+2+)\mfr1+3+'"+)\N), (29)

(ry=1)

M- +1=

1
_()\mfr1+l+)\mfrl+2+ to +7\N)

(ry)

N

o>

1

7\1>(m_1)

PHYSICAL REVIEW A 63 022301

Y (Ag+Na+ - +Ap).

=)

Consider putting\,,—1,Am—2, - - - ;A1 into the left-hand side
of Egs. (30) one by one. We find from Eqs(29) that

Am-r,+1 satisfy Egs. (30), whereas
M-t Amer =10 -« - N1 violate EQs.(30). Let us focus on
the point of first violation, namerAm,rl. We note that the
maximal value of\n®, that will still satisfy Eq.(30) is

M- 1:Am_2s - - -

1 I
r_l()\m—r1+1+'"+7\N):W:m|nr8r .

(31)

max _
)\m—rl_

With lemmas 4 and 5 proven, we now return to the proof
of case(b) of theorem 2.

C. Case(b) of theorem 2

Case(b): min,B"<1.

Idea of our proof We construct an explicit strategy which
saturates the boungl,,=min,B" as follows. By attaching an
ancilla prepared in the stat@), to the systen|V), Alice
divides up |¥) into two pieces—successful and failing
pieces—hy the evolution

|0>a|qf>:|1>a|q,s>+|0>a|q,f>a (32
where |0), and |1), are orthonormal states of the ancilla,
|W) [when properly normalized belongs to cas®, i.e.,
min,B"=1 and henckgives a probability 1 of success, and
a statg¥;) (has less tham terms in its Schmidt decompo-
sition and hencegives a probability 0 of success. Alice now
reads off the state of the ancilla. A stgte), indicates a
success an¢D), a failure. One can then read off the prob-
ability of success of this explicit strategy from the norm of
| W), It turns out to be equal to miB;".

Proof of case (b) of theorem Recall from Eq.(31) that
the maximal acceptable value of then{r;)th squared
Schmidt coefficient for it to satisfy Eq30) is

Bm

1 .
Aoy, = Wzmlan?‘. (33

Inspired by the above discussion, let us consider the fol-

lowing set of equations.
Am—1SAptApegt -+ Ay,
1
Am—2= E()\m—1+)\m+ <A,
=< (30

1
)\merF()\mfr+l+)\mfr+2+ <o FAN)

=...

Now the successful piecels) in Eq. (32) is obtained by
trimming the redundant contribution A5, ... Ay—r,

from |W). This is done by the attachment of an ancilla pre-
pared in the statf)),. The evolution goes as

VN0 ali)a— VN2 [ L)ali) At (N = AR [0)ali) A
(34)

for 1<si=m-r,. Form—r;+1<i=<N, the evolution is
WNil0)ali)a— Vil 1)ali)a-

Alice now reads off the state of her ancilla. We shall
argue in the following paragraph that an outcome 0 means

(39
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that Alice has failed in obtaining am-ME state, whereas an Recall that theorems 1 and 2 combined together are

outcome 1 means that she has succeeded in obtaining a staguivalent to our main theorem. Since we have by now

satisfying minB;"=1, which by Sec. V Hli.e., case(@ of  proven both theorems 1 and 2, our main theorem has been

theorum 2 can be reduced with certainty to aRME state.  established.
If the outcome is 0, the resultindailing) state|¥;) has

unnormalized squared Schmidt coefficients— A1 |\,

m-ry
—Am —An2y,.0,...,0.Since it has at most

m-—r, terms in its Schmidt decomposition, it follows from
lemma 1 that it gives a zero probability of obtaining an
m-ME state. On the other hand, if the outcome is 1, th
un-normalizedsquared Schmidt coefficients of the resultin

VI. LAW OF LARGE NUMBERS

c Ao _ . _ .
M In this section, we derive some constraint on the prob-

abilities of having large deviations from the average proper-

ties. Consider the question raised in the Abstract and in Sec.
&: can collective measurements defeat the law of large num-
Ybers? We now show that the answer is no. That is, suppose

(successfl _ state Vs are . given by  ajice and Bob share pairs of particles, each pair in a state
Nn=rpo oo Amor Mmoo hmor 420 AN 1€ the |¥) with an entropy of entanglemeri(|¥)). We shall

first (m—r,)th squared Schmidt coefficients are all replacedshow in theorem 3 below that the maximal probability of
by )\mixrl. By construction| W) belongs to caség) of theo-  obtainingnK singlets, withkK>E(|¥)), goes to zero as
rem 2. Therefore, it always succeeds to givenaME state. ~ 90es to infinity.
Moreover, using Eq(31), it has a norm Once again, we want to emphasize that this redaks
not follow automatically from the fact thabn averagewe
cannot obtain more thanE singlets. Indeed, an average of
nE singlets could conceivably be obtained if withnan-
negligible probability p=E/K we obtainnK singlets, while
with probability 1— E/K we obtain no singlets at all.
Theorem 3In the entanglement manipulation ofpairs
¥, the optimal probability(over all possible strategip®f

obtaining nK singlets,pg"nﬁx, tends to 1 (0, respectively

This proves that our explicit strategy saturates the bound an§fnenK<E(|'¥)) [K>E(|¥)), respectively in the limit n

completes our proof for the cagb) of theorem 2. QED. -
E)Izample Corrl)siderN=3 andfn)=2 for case(b) c(ﬁtheo- Remark It can also be shown that, as a functionkofthe

rem 2. The initial state ishg|11)+ VA3 22) + \Ag|33). The  Jump from Pl/to 1 in the value gbyu . occurs in  region of
requirement miB™<1 here corresponds th,+\z<1/2 ~ Width O(n ?) around E(|¥)). We shall skip the proof
(i.e.,\,>1/2) Now, according to theorem 2, the probability Nere: VAX .

of obtaining a singlet successfully is 2{+\3). The extrac- Proof of theorem 3That p,nk” tends to 1 in the large-
tion is done by attaching an ancilla and applying the unitarylimit whenK<E(|¥')) follows trivially from Bennettet al’s

(m_ rl))\mixrl"")\mfrfrl'l' e +)\N

m
:E()\mfr1+1+)\mfr1+2+ “o AN

= Bﬁ“lz min,B;". (36)

transformation reversible strategy6] and from lemma 2. Let us now con-
sider the cas&>E(|V')). Here we view then pairs¥ as a
VA 1[0Ya 1) = VA o+ N g 1)al 1)+ VA1 — N = A5|0Y4] 1), single pair in stateV=w¥", by considering alln Alice’s
(Bob’s) particles to form a singlémore complex quantum
system. Similarly, the finalK singlet pairs can be viewed as
VA2l0)o]2) = \h2[1)a]2), 87 a single pair in a 2¢-dimensionally maximally entangled
state. Then the problem of extractingk singlets from then
VN3 0)a3)— Vh3[1)4[3). pairs ¥ can be rephrased as the problem of extracting an

_ . 2"¥-dimensionally maximally entangled state frofn The
As a consequence, the evolution of the combined system igaximal probability for success ipg"nﬁx, which can be

as follows: bounded by using theorem 1.

Let'\;'s represent the squared Schmidt coefficient&of
they are also the eigenvalues of Alice’s reduced density ma-
trix. Since Alice’s reduced density matrix has a product
form, (originating from then pairs|¥)) its weight must be
concentrated on a “typical” space of dimension roughly
2"E. [Here we simplify our notation and ude to denote
E(]W)). This is essentially the law of large numbers in clas-
'sical probability theory. Also see the quantum noiseless

0)a(VA 1| 11)+ VA, 22) + A 5[33))
—[1)a(VN 2+ N3l 11)+ V5[ 22) + V5] 33))
+|0)a VA1 —Ny—N\3|11).

Alice can now measure the ancilla. If the outcome is 1
which occurs with a probability 2(;+\3), she has reduced

(38)

the problem to casé) of theorem 2, and the resulting state
can be reduced to a singlet with certainty. On the other han

if the answer is 0, she now has a product state and has, thugiently largen, we have that>

failed in getting a singlet.

source coding theoref20].] Let us pick a value oK, such

&hatK> Ko>E. SinceKy>E, given any5>0, for a suffi-

" Ni<8 wheret is the
number of terms in the Schmidt decomposition|'®f). (An
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“atypical” space has a small weightLet us apply theorem W into maximally entangled states of dimension larger than
1 to the casebl=t", m=2"“ andm—r+1=2"¥o. Note that m). Now, asph”* is the supremum probabilityover all

r/m>1/2 for a sufficiently largen. Hence, p¥**/2  possible strategi¢®f converting® into anm state, we must

<rpMAXm<3st" . ;<. Substitutingm=2"%, back, have, in particularph**=pn(S')=pis'(S), which proves

we obtainpiik —0 asn—o. QED. the bound in Eq(40).

In fact, any particular strategy which transformsopies
of the state¥ into an average ofi E singlets gives a singlet VIIl. NONEXISTENCE OF UNIVERSAL STRATEGY
number probability distribution similar to that of reversible
strategy[ 6]. This follows immediately from the result in Sec.
VII.

As shown in Sec. VII, for any strateg§ which trans-
forms an arbitrary statel into different maximally en-
tangled stated ,,, the cumulative probabilitp!°* of obtain-
ing some maximally entangled state of dimengioor larger

is bounded by

In the previous sections we were interested in the question
of the maximal probability required to transform an arbitrary

entangled statel into a given maximally entangled state, _ .
say @, (wherem is some given fixed dimensipnWhat We have also seen in Sec. V that for any particuafethere

happens to the original statk in those cases in which the €XIStS @ strategy which saturates this bouftie strategy

transformation intab,, is not successful was not important Which yields @, with probability equal tOPmAX and @y,

to us. We will now consider special manipulation strategiesk>M Wwith zero probability. The question is whether there
such that forevery outcome the initial state is transformed €Xists a “universal” strategys""" whose cumulative distri-
into some maximally entangled stat@lote that, by exten- bution saturates this bound fail m’'s. The reason we call
Sion, we denote direct product states as “maxima”y en.SUCh a Strgtegy universal is that SUCh.a Strategy, followed by
tangled states of dimension 1”Such a strategys can be the reduction of some of the final maximally entangled states

VIl. SPECIAL STRATEGIES

Pm <P (41)

characterized by the probabilitigs,(S), p,(S), ..., with into maximally entaqgled states qf lower d.imensior), it could

which the initial state¥ is transformed intob,, ®,, ..., 9enerate any possible distribution consistent with bound

respectively. (41). However, we shall show that such a universal strategy
A convenient way to describe this probability distribution d0€S not exist. _

is to use, instead of the probabilitips,(S), the “cumulative 'Prooﬁ We show that a universal strategy 'generally cannot

probability” pS(S): exist for the casé&l=3 andm=2 or 3. Consider

W)= 1|10+ VA;[22)+ Vk4[33), (42
P(S)=2 Pl (39
k=m with p¥**=1 and\,+X\3—\;=0. Assume, by means of
Lgontradiction, that a universal strategy does exist. We shall
use projection operators rather than positive-operator-valued
measures in our discussion. As noted in Sec. Il, there is no

tot, oy — MAX loss of generality. LeP,,P,, ... ,P, be the set of all pro-
Pm (S)<Pm"", 40 2 . ; :

jection operators by Alice that give some 3-ME state in a
particular universal entanglement manipulation strategy. By

In the present section we find an upper bound on th
cumulative property for an arbitrary strategy

where pM** is the supremum probability over all possible

strategies to conver’ into an m-dimensional maximally def|n|-t|on, (Py+Pyt---+P)|W) has a'\;g[npg’”*x. Note
entangled statéan m statd. Since p,,(S) represents the tha£x|t follows from theorem 2 thapz™"=3\s. Since
probability to convertl into anm state by using the particu- Pz =1, it is necessary for a universal strategy that the
lar strategyS, while pMX represents the supremum prob- residual  state |_‘I’r>:(1—MF;1X_ Po—---—Pp)|¥) when
ability (over all possible strategipso convert¥ into anm  Properly normalized hap;™"=1. But this requires the
state, it is obvious thap,(S)<p"“**. But why should the sqgared elgenvalue_s of the redyced density matrj¥ef to
SUMPm(S) + Pm1(S) + - - - be smaller thapM”*? satisfy the constraink,+\;—A;=0. We shall show that

The reason for the is that, as we showed in lemma 2, s is generally impossible. The point of our argument is
maximally entangled state of dimensikian always be con- that, as shown by lemma 6 below, the extraction of a 3-ME
verted, with certainty into a maximally entangled state of State will lead to an equal decr_ease in all three _squared ei-
smaller dimensionm (m<k). Then suppose that Alice and 9envaluesiof the reduced density matrix ¢f)). i.e., \{

Bob, using strateg, convert¥ into a maximally entangled =\i—P3 " /3=X\;—\3. Therefore, unlesa;=\,, the re-
state of dimensioik larger thanm. They can then, with cer- sidual statdW¥,) hask;+\3—\;=\,—\;<0, thus contra-

tainty convert, this state into a maximally entangled state oflicting the requirement thaty ~*(|¥,))=1.

dimension equal tan. Consequently, by appending this re-  In the above proof, we have used the following lemma.
duction strategy to strategy, we obtain a new strateg§’ Lemma 6 Consider a state

which converts¥ into an m state with probabilityp,(S")

=3 =mPm(S) =pYS) (with a zero probability to convert | W)= YN 1|12)+ VN5 22) + VA 5[33) (43)
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in Schmidt decomposition. Any strategy that extracts a 3-ME We emphasize that the symmetry that we have found here
state with a probabilityp from W will lead to an equal de- applies not only to the entanglement concentration, but also
crease in all three eigenvalues of the reduced density matrito all types of entanglement manipulations including en-
of the unnormalizedresidual state. i.e)/=\;—p/3 where tanglement dilutiorj6]. For instance, the usual procedure of
the\/’s are eigenvalues of the reduced density matrix of theentanglement dilution via teleportation falls inside our gen-
un-normalized residual state. eral framework of using a single generalized measurement
Proof of lemma 6See Appendix G. by Alice, followed by one-way communications of its result
to Bob and a subsequent unitary transformation by Bob. A
more systematic investigation of our formalism in applica-
tions other than the entanglement concentration may prove
Let us now consider the case when Alice and Bob share egwarding.
mixed initial statep;, . Sincep;, IS impure, one generally
cannot write it in terms of a Schmidt decomposition. More ACKNOWLEDGMENTS
importantly, even ifp;,, happengo be symmetric under the . . . .
intgrchangye of AIicglgnd Epc))b, there isyno guarantee that the H'.'K'L' partl.cullarly thgnks_ P. Sh.or for enlightening dis-
intermediate states that they obtain during the en'[anglemeﬁfjss'OnS that indirectly mspwgd this Im? of res_,garch. Our
manipulation process will respect such a symmédyg]. proof of Theorem 1 was simplified following a critical com- .
Therefore, the symmetry argument emphasized in the earli ent by R. Jozsa. S P.‘ thanks C. _H._Bennett and J. Smolin
part of this paper will no longer be valid. Manipulations of a or_helpful communications on _thelr independent proof of
mixed state using two-way communications are generall);emma 1. Useful d.|scu55|ons with R. Qleve, D. Gottesman,
more advantageous than a one-way strategy. Indeed, Bennilt L€und. M. A. Nielson, and J. Preskill are greatly appre-

et al. showed that one-wav and two-way capacities for puri-c'ated. Part of this paper was.written during a visit of H.-
fication are provably diffeE/er[ﬂ]. ycap PUT L. to the Quantum Information and Computif@UIC)

We also proved in Sec. Il that, for a pure bipartite state,InSt'tUte at Caltech, whose hospitality is gratefully acknowl-

entanglement manipulation strategies with one-wa commu@dged' This research was done while H"K‘L' was at
g i g 4 ewlett-Packard Labs, Bristol, UK and while S. Popescu

nications are provably better than no communications. Not&! ) .
that one-way communications are useful for an entangleme?{as at the Isaac Newton_lnstltute, Cambridge and BRIMS,
manipulation strategy that has a probability of succes ewlett-Packard Labs, Bristol, UK.
strictly between 0 and 1, but not fédeterministi¢ quantum
error correctiori 7]. The role of communications in entangle- APPENDIX A: PROOF OF PROPOSITION 1
ment manipulations deserves future investigations. Let us writeW in its Schmidt decomposition:

For a mixed state, there are generally four distinct supre-
mum probabilities to considep?,, p4 B, p&~A, andp?,
corresponding to entanglement manipulation schemes with |‘I’>:; \/N—k|ak>|bk>- (A1)
two-way communications, one-way communications from
Alice, to Bob, one-way communications from Bob to Alice Consider any of Bob’s projection operator
and no communications, respectively. While simple bounds
on the success probability for manipulating mixed states may
be derived, many interesting questions remain unanswered.
For example, we do not know the value pfna in the
asymptotic limit n—co in the region Do(p)<A<E(p), After the projection, the state he shares with Alice becomes
whereD(p) is the entanglement of distillatiofwithout any
classical communications between Alice and Boko con-
clude, we expect the subtle interplay of the concepts of prob- wE=(e PIBOb)l‘m: % \/)‘_kmgk|ak>|bi>' (A3)
ability, classical communications, collective manipulations '
and symmetry in the case of mixed states to be even mor@n the other hand, if, instead of Bob, Alice performs a mea-
challenging than the pure state case considered in this pap&urement using the corresponding operator defined by

IX. MIXED STATES

PP°= > mi;|b;)(b;]. (A2)

1]

X. OPEN QUESTIONS ON PURE STATES plAlice:iEj mi|as)(a, (A%)

Even for the case of a pure initial state, many interesting
questions remain unsolved. For instance, what is the supren outcomd will give the state
mum probabilitypﬁ1 of obtaining amm-ME state without any
classical communications? Note that Benratttl's revers- A\ _ ; pAlice _ [
ible strategy[6] (but not the local filtering stratedip]) is an W5 =(Pi ®I)|\P>_% Wmifai) by (AS)
example of a strategy which does not require any classical
communications. It is an open question whether one can do Let us consider unitary transformation&) (|a;)
better than Bennetet al’s strategy without any classical — = u;p|a,)) andV ([by)—Zqvigbg)) that will put ¥ in
communications. a Schmidt decomposition. i.e.,

022301-12
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Bob Bob
UaVIPH=3 Viglagly.  (A6) ( Poems Dot )
P TrpsuccessTrpfallure

From the definitions o) andV and Eqs(A5) and(A6), we The detailed definition and properties of the fidelity are irrel-

find that evant for our discussion. It suffices to note the following
fact: In order to show that it is impossible for Bob to distin-
E \/)\—km!kuipvkq= VMpSpq- (A7) guish with cortainty betweeo the two density matriceo with-
ik out communications from Alice, all we need to prove is that
Now consider Y@ U)|W8), pEob pEob
( success, fallurbe ) 0,
TrpsuccessTrpfanure

(V®U)|\PB>:% % \/)\—km!kvkquip|aq>|bp>
or, equivalently, the supports gf£%>__and p2% _ are not

_ _ orthogonal to each other. The proof of this claim is simple:
2 \/M_pap“'a‘*>|bp> 2 \/M—p|ap>|bp>’ Owing to causality, the density matrix of Bob is conserved

throughout Alice’s measurement, i.e.,

(A8)
Bob _ 2 2
where Eq.(A7) is used in the second equality. From Egs. Psiccesd Plature= Piniar = 87| 1(1| +b%2)(2].  (B1)
(A6) and(A8), we find that Since pB, has a two-dimensional suppomZS2. . .must
(Ve U)|¥B)=(UaV)|Ph), have a support of at most two dimensions. On the other hand,
as pS ®is the reduced density matrix for a singlp€o...
W) =(V IUeU IV)|¥4), (A9) belng the sum obB"“s must have a support of at least two

; dimensions. Combming these two statemepf&’ .. has a

Bol — A B Alice ccess

(18 PP)|W)=(Ufo UP) (P o) W), support of exactly two dimensions. Now that batff>, and
Bob

whereU”=V~1U andUB=U"1V QED. pB% have two-dimensional supports, the supporpi’.

must be a subspace of the supporp§f’.... Therefore, we
conclude thap2%°._ andpES°  do not have orthogonal sup-

APPENDIX B: PROOF OF THE NECESSITY OF ports and hence the fidelity

ONE-WAY COMMUNICATION IN ENTANGLEMENT
MANIPULATIONS OF BIPARTITE PURE STATES ( Bob Bob

o
Psuccess  Ptailure

Definitions(2) and(3) in the main text are needed for this #0.

proof. The basic reason for the necessity of classical com-

munication is that, whenevga"* as defined in the text is

strictly less than 1, Bob generally needs Alice’s help to fig-

ure out whether the entanglement manipulation is successfu

or not. APPENDIX C: SOME DETAILS OF PROOF OF LEMMA 2
Consider the example df¥)=a|11)+b|22) where a As before Alice attaches an ancilla to her systanand

>b>0. We shall first argue that the supremum probabilitythe evolution needed now is

of obtaining a singlet satisfies<Opy”** <1: Since the local

filtering strategy in Ref[6] gives a nonzero probability of . 1 . .

getting a singlet, we havgy"*=plocafitering~ g - Moreover, |O>a|J>A_’<\/k—T i_;;&_ ||>a) [i)a- (C1)

since the entanglemefi(V)<1 and the average entangle- -

ment cannot increase upon entanglement manipulations, t

Bob '’ Bob
Trpsuccess T"Prailure

k

Rehat is, the statéj ) of the particle remains unchanged, but

supremum probab|l|t3pMAx.of getting a singlet out of en-  he ancilla is brought to an equal superposition of all states

tanglement manipulations is less than 1. |1)a, ... ,|K)a, with the exception ofj),. The evolution of
Now consider any strategy that gives<@,<1. Let Us  the state of the ancilla and the pair can, therefore, be sum-

divide up its outcomes into two classes;,S;, ... .Sy} marized as

(succespand{fq,f,, ... ,fq} (failure), and denote thein-

normalizedreduced density matrix of Bob for an outcose k

(f;) by pBOIO (pf"b) Since 0<p,<1, Bob needs to deter- |0)a| P )=]0), (— E A|j>B>

mine the outcome of the entanglement manipulation by dis- V=

tinguishing With certainty between the two density matrices 1 kK k

Psuccess E|ps and pfallure_szfOb Now the distinguish- _’W Z ' (\/— z |J>A|J>B),

ability of two density matrices can be described by the fidel- =t -

ity [22] (C2

022301-13
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i.e., each statfi ), of the ancilla is correlated with a different BM ,>BM"
(k—1)-dimensional maximally entangled state.

Next, Alice measures the state of her ancilla. No matter m
what result she obtains, the pair of particles is left inka ( St A ]> S
—1)-dimensional maximally entangled state. Which particu-
lar state is obtained will depend on Alice’s result. Suppose
Alice finds the ancilla in the staté),. Then the pair is in MSn-re1F M-y >+ DSn-r1
the state (Wk—1)2f_ 1, |i)ali)s- If they wish, Alice A >Se i1,
and Bob can now convert this state into the standdd (
—1)-dimensional maximally entangled state Now,
(k- 1)2}:%|j>A|j )g . This can be realized by Alice com-
municating to Bob the result of her measurement, such that gm _ m [S., e 4 ]
both of them know which K—1)-dimensional maximally 2 ()Mot Amer  Amerd
entangled state has been obtained, and then having both of
them perform appropriate local unitary transformations of = ——[S, 11+ 2]
their particles. (r+2)

Now, starting with a maximally entangleddimensional

(ED)

state, one can repeat our argument to reduce it to a maxi- = + L 42(r+ B
mally  entangled  (—1)-dimensional  state, a (r+2)(r+1)[(r DSn-r+1+ 2+ DAm-]
(r—2)-dimensional state, etc., untii we obtain an m
s-dimensional state. This shows that any maximally en- = ——————[(r+1)Sy_r41+N\p_r
tangled state can be reduced to one with a lower dimension. (r+2)(r+1)
+(r+2)\m—(]
APPENDIX D: PROOF OF LEMMA 3 m
Since|\If§rg’*°) is anm-ME state, all we need to show is >(r+2)(r+1) [+ 1)Sm—r+1+ Sn-r+1
the reduction with certainty fromfw %) to [WiP 97t
wheneverq=1. The proof here is analogous to that of H(r+2)hm-]
lemma 2. m
Suppose Alice attaches an ancilla to her system and =————[(r+2)Sy— 141+ (r+2)A -]
evolves them in the following manner: (r+2)(r+1)
pta :(r+1)[srn—r+l+)\m—r]:B|r'n+11 (E2)

|0>a|j>A—>(\/:Z |i>a)|i>A, for 1<j<m-p,
pra DD where Eq.(E1) is used in obtaining the fifth line. QED.

+
o APPENDIX F: PROOF OF LEMMA 5

|0>aIJ>A—><—_ P> |i>a)|j>A,
Vptg—1i=tizj=(m-p) Let us consider the list of values @7 ,BJ, --,B].

SinceBp=1>min,B", as a function of, B]" must start to

m

for m—p+1l<j<=m+q. : S .
P J g increase at some point. i.e., there exiggssuch thatB, .,

m m m m
In words, the ancilla is brought to an equal superposition of” Bry- But then, by lemma 4B/ . ,>B; .1, By .3
all states|1),, ... |p+0)a if the state of Alice’s system is >B;",,, etc. In words, oncd" starts to increase, it will
li)a where I=j<m-—p. However, when Alice’s system is continue to do so. Let us focus on thaest minimal point of

in [j)» wherem—p+1<j<m+q, the ancilla is brought to  the function B™. i.e., thelargest value r, such thatB"
an equal superposition of all statEk),, ... ,|p+q), with !

the exception ofj —(m—p)),. Upon measuring the state of - m .
the ancilla and applying local unitary transformations to theirimplies thatB, <B, .;<---<Byp=1. This completes the
respective systems, Alice and Bob end up in a new precursdirst part of the proof.

=min,B/". By definition,Bfl+l> B{Tl which, from lemma 4,

| W91y, This proves the reduction from¥ [P %) to Moreover, we claim thaB'=BI'=-..=B™. We prove
| W91, By repeating this reduction process, one canpjs by contradiction. Assuming the contraryl, there exists an
with certainty, reach¥ ") which is anm-ME state. a<r, such thatBT ;<B™. Then lemma 4 implies that
B["l_l< B{”l, which is impossible because it contradicts the
APPENDIX E: PROOF OF LEMMA 4 fact thatB;" =min.B". Combining the results of the above
It is convenient here to defin€,_,.,=SN . ,,,\,. two paragraphs, we conclude th&'=B5'>--- =B
Then, <Bf,;<---<Bp=1. QED.
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APPENDIX G: PROOF OF LEMMA 6

The following proves the claim in lemma 6 thaf =\;
—p/3. For simplicity, we shall use projection operators
rather than POVMs. As noted in Sec. I, there is no loss in
generality. LetP,,P,, ... ,P, be the set of projection opera-
tors for extracting some 3-ME state frown.

Now supposeP gives a 3-ME state with a probability,

PHYSICAL REVIEW A 63 022301

/ a / a
(1—P)|\If>= )\1—§|1"1>+ No— §|2"2>

+ v/ ha— %|3"3>. (G4

Notice that thegi”)’'s are orthonormal because

(V) =P|¥)+(1-P)|¥), (GY)
with
P|W)=

(VAPI1)[1)+ (VAoP[2))[2) +( \/7\_3P|3>)|3(>G-2)

SinceP|W¥) is 3-ME state with a norna, its reduced density
matrix for B is

(Il(1=P)(1=P)[i)=(j[(1-2P+PP)|i)=(j[(1-2PP

+PP)[i)=(jl(1-PP)[i)=0. (G5

Here the last equality follows from the fact that tRéi)’'s

are orthogonal to one another. This shows that an extraction

3

C(
pa= 2, 3liXl. (G3
Equating this with the partial trace &|¥)(W|P overHa,

we find that the (\;/\/a/3)P[i)’s form an orthonormal set.
The residual state is

of a 3-ME state of probabilityr leads to a decrease of each
\’s by a/3. The same argument can be applied to each of
P:Pl,Pz, ey
with a probabilityp of a 3-ME state from¥’, the eigenvalues

of the reduced density matrix of the unnormalized residual
state satisfi\{ =\;—p/3. QED.

P,. This shows that after the extraction
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Bob’s experiment, Alice’s experiment also gives equiprobable
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On the contrary, suppose that Alice, but not Bob, shares some
initial entanglement with Charles. Alice can then teleport
states to and from with Charles, whereas Bob cannot. It is then
clear that Alice’s local experimeni®lus classical communi-
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clusion, entanglement with a third party generally destroys the
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