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Concentrating entanglement by local actions: Beyond mean values
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Suppose two distant observers Alice and Bob share a pure bipartite quantum state. By applying local
operations and communicating with each other using a classical channel, Alice and Bob can manipulate it into
some other states. Previous investigations of entanglement manipulations have been largely limited to a small
number of strategies and their average outcomes. Here we consider a general entanglement manipulation
strategy, and go beyond the average property. For apureentangled state shared between two separated persons
Alice and Bob, we show that themathematicalinterchange symmetry of the Schmidt decomposition can be
promoted into aphysicalsymmetry between the actions of Alice and Bob. Consequently, the most general
~multistep two-way-communications! strategy of entanglement manipulation of a pure state is, in fact, equiva-
lent to a strategy involving only a single~generalized! measurement by Alice followed by one-way commu-
nications of its result to Bob. We also prove that strategies with one-way communications are generally more
powerful than those without communications. In summary, one-way communications is necessary and suffi-
cient for entanglement manipulations of apure bipartite state. The supremum probability of obtaining a
maximally entangled state~of any dimension! from an arbitrary state is determined, and a strategy for achiev-
ing this probability is constructed explicitly. One important question is whether collective manipulations in
quantum mechanics can greatly enhance the probability of large deviations from the average behavior. We
answer this question in the negative by showing that, givenn pairs of identical partly entangledpure states
(uC&) with entropy of entanglementE(uC&), the probability of gettingnK @K.E(uC&)] singlets out of
entanglement concentration tends to zero asn tends to infinity.

DOI: 10.1103/PhysRevA.63.022301 PACS number~s!: 03.67.Dd, 03.65.Bz, 42.50.Dv, 89.70.1c
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I. INTRODUCTION AND SUMMARY OF KEY RESULTS

Entanglement—the nonlocality of entangled state—as
the Einstein-Podolsky-Rosen paradox@1#, discovered by Bell
@2# in 1964, has long been regarded a hallmark of quan
mechanics. In the past, entanglement was often regarded
qualitative property of a state. The last few years, howev
witnessed a dramatic change in the approach to entan
ment. Entanglement is now regarded as an important qua
tative and useful resource in achieving tasks of quantum
formation processing such as dense coding@3#, teleportation
@4#, and reduction of communication complexity@5#.

The study of quantum information processing has b
complicated by the fact that entanglement can appea
many nonstandard forms. Fortunately, we have learned
two distant parties sharing a bipartite pure state can ap
local operations and classical communication to ‘‘manip
late’’ entanglement, thus converting one form to another@6#.
To better understand quantum information processing,
important to discover the fundmental laws of a general
tanglement manipulation. Most previous investigations
cused on some particular types of entanglement manip
tions, namely, entanglement concentration and dilution o
ensemble of identical states, sayV5(au11&1bu22&)N,
which are collectively processed. Moreover, the main int
est was in the average properties, and little is known ab
the actual probability distribution of the outcomes of tho
manipulations.
1050-2947/2001/63~2!/022301~16!/$15.00 63 0223
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This paper concerns mainly the fundamental laws of
tanglement manipulations ofpure bipartite states. Unlike
previous investigations, here we allow the initial state to b
single copy of a general stateC. It is useful to note, how-
ever, that in fact all entanglement manipulation metho
both ‘‘single-pair’’ and ‘‘collective’’ ones can be reformu
lated as single-pair methods, by redefining the ‘‘particles
Indeed, suppose Alice and Bob sharen pairs of particles, and
intend to process them by some collective method. We
now regard alln particles in each side as a single partic
living in a higher-dimensional Hilbert space~equal to the
product of the Hilbert spaces of the originaln particles!. The
n original pairs can thus be regarded a single pair of t
~more complex! quantum particles, and the original ‘‘collec
tive’’ manipulation can be regarded as a single-pair type m
nipulation of this new pair. Consequently, all questions co
cerning collective manipulations can be answered
studying single-pair manipulations of a generic state of t
arbitrary particles. This is the path that we will follow in th
present paper. Our results are the following.

~i! First of all, we show that, rather surprisingly, gener
entanglement manipulations of a pure bipartite state w
only one-way communication are equally powerful as tho
with two-way communication, but are more powerful tha
those with no communication.

~ii ! Then we specialize in a class of entanglement mani
lations, namely, entanglement concentration, from a gen
©2001 The American Physical Society01-1
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pure bipartite initial stateC to am-dimensionally maximally
entangled state~which we shall call anm-ME state!, Fm

5(1/Am)( i 51
m u i &Au i &B , whereu i &A andu i &B are orthonormal

vectors in Alice’s and Bob’s Hilbert spacesHA and HB ,
respectively, andm is fixed but arbitrary.~Note thatF1 is a
direct product,F2 is a singlet, andF2q is equivalent toq
singlets. Therefore, anm-ME state can be regarded as a ge
eralization of singlets.! The main questions that we ask a
the following: What is the optimal probability of getting
Fm from C? What is the optimal strategy that will achiev
such a probability? In this paper, we give complete answ
to those questions.

~iii ! After this, we specialize in the entanglement manip
lation of a large number of identical pairs ofF, and derive a
bound to the probability of having a large deviation from t
average property. More specifically, suppose that two rem
observers, Alice and Bob, sharen pairs of spin-1/2 particles
each pair in a nonmaximally entangled pure stateuC&
5au1&u1&1bu2&u2&. Then, by local actions~which may in-
clude local unitary transformations, measurements, and
tachment of ancillary quantum systems! and classical com-
munications, Alice and Bob can convert these pairs int
~smaller! numberm of perfect singlets. It has been shown@6#
that in the limit of largen, Alice and Bob can perform a
reversibleconversion of then pairsC into singlets, obtain-

ing, on average, a numberm̄5nE(C) of singlets. ~Here,
E(C) is the ‘‘entropy of entanglement’’ of a pure bipartit
state consisting of subsystemsA andB, and is defined to be
the von Neumman entropy of subsystemA ~or B) @6#.! Fur-
thermore, as a consequence of this reversibility property,
gether with the fact that on average entanglement can
increase via local actions and classical communicati
@6,7#, this particular entanglement manipulation meth
yields the maximal possible average number of singlets
has been shown@8# thatE(C), the maximal average numbe
of singlets which can be extracted per original pairC, is up
to a constant multiplicative factor, theunique measure of
entanglement forC that is nonincreasing under local oper
tions and classical communication.

However, in all previous investigations of entangleme
manipulations, the focus was on theaverage values, such as
on the question ‘‘What is the average number of singl
which can be extracted from n pairsC?’’ Indeed, the whole
idea of reversibility refers only to the average properties. T
point is that, as in all asymptotic results, there is alway
very small but nonzero probability for an entanglement c
centration procedure to give a substantially smaller amo
of singlets than the expected number. Here we want to
beyond average values and ask about the actual distribut
For example, the same average number of singletsm̄
5nE(C) might, in principle, be obtained from very differ
ent distributions: In the reversible procedure described
Ref. @6#, out of n pairsC a number m of singlets is obtaine
with some probabilityPm , and the distribution is essentiall
Gaussian, peaked aroundm̄5nE(C). In particular, via this
procedure the probability to obtain a large number of s
glets,m'n is exponential small. However, one could env
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5nE(C) while having a non-negligible probability for ob
taining a large number of singlets—for example, a distrib
tion in which the probability of obtainingm5n singlets is
E(C), while in all other cases zero singlets are obtained. T
question is ‘‘Does there exist any entanglement manipula
procedure which realizes the latter distribution?’’

A main point of our investigation is to gain a better u
derstanding of thecollective propertiesinvolved in entangle-
ment manipulation. Indeed, if Alice and Bob were to extra
singlets by processing each of then pairsC separately, the
law of large numbers tells that the probability distribution
the number of singlets will~asymptotically! be Gaussian.
Deviations from this distribution can be obtained~if at all!
only if Alice and Bob process all then pairs together. But are
such deviations possible? And if so, how large can they
~To put things in the right perspective, we would like
mention that the reversible procedure@6# discussed above is
not a procedure in which each pair is processed separa
but a collective one; however, the distribution it yields
essentially Gaussian.!

In this paper, we show that, in the context of entang
ment manipulations of a large ensemble of identical p
bipartite states, collective manipulations cannot substanti
enhance the probability of large deviations from the aver
properties.

~iv! Afterward, we consider a subclass of entanglem
manipulation strategies in which the final state is always o
of the possibleFm’s. ~Say, the stateF1 appears with prob-
ability p1 , F2 with probability p2 , Fn with probability pn ,
etc.! We define a natural notion of a universal strategy
entanglement manipulations for all values ofm, and show
that such a universal strategy cannot possibly exist.

~v! Finally, we present open questions in the entang
ment manipulations of pure states and briefly discuss pr
lems in generalizing our results to mixed states.

In summary, on a conceptual level, the novelties of o
investigation are the following.

~1! Some of our results—particularly the statement th
manipulations with one-way communication are as powe
as those with two-way communication—apply to a gene
entanglement manipulation strategy. In contrast, all previ
investigations focused on either entanglement concentra
or dilution.

Incidentally, we clearly demonstrate the important role
symmetry in entanglement manipulations. Indeed, in
proof that manipulation strategies of a pure bipartite st
with only one-way communication are as powerful as tho
with two-way communication, we are essentially promoti
the mathematical interchange symmetry of the Schmidt
composition into a physical symmetry between the local
tions of Alice and Bob.~See Sec. II.!

~2! We allow the initial state to be a generalC. In con-
trast, almost all previous investigations restrictedC to beN
identical copies of some state, sayu5au11&1bu22&, and
were mainly concerned with properties in the large-N limit.

~3! We are concerned with the role of probability rath
than the average property in entanglement manipulations
1-2
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II. ONE-WAY COMMUNICATIONS IS NECESSARY AND
SUFFICIENT FOR ENTANGLEMENT MANIPULATIONS

OF BIPARTITE PURE STATES

A. Reduction from two-way to one-way communications

The most general scheme of entanglement manipulat
of a bipartite pure entangled state involves two-way comm
nications between Alice and Bob. It goes as follows: Ali
performs a measurement and tells Bob the outcome.
then performs a measurement~the type of measurement tha
Bob performs can depend on Alice’s measurement outcom!,
and tells Alice the outcome, etc., etc. The goal of this s
section is to prove that any strategy of entanglement man
lation of a pure bipartite state is equivalent to a strate
involving only asingle ~generalized! measurement by Alice
followed by theone-waycommunications of the result from
Alice to Bob ~and finally local unitary transformations b
Alice and Bob!.

Here we introduce some definition.
Definition 1. (ordered Schmidt coefficients):An arbitrary

pure stateC can be written in Schmidt decomposition@9#

C5(
i

N

Al i uai&ubi&, ~1!

where ^ai uaj&5^bi ubj&5d i j . We call Al i ’s the ordered
Schmidt coefficientsif the l i ’s are ordered decreasingly, i.e
l1>l2>•••>lN . Note that all phases have been absorb
in the definition of theuai& states, so that thel i ’s are positive
real numbers.

First of all, since it is more convenient to deal with pr
jection operators than positive-operator-valued measures
include any ancilla~measuring apparatus! in Alice and Bob’s
quantum systems. Therefore, without loss of generality,
regard Alice and Bob as sharing a pair of particles with
infinite ~or an arbitrarily large! dimensional Hilbert space
however initially onlyN of the coefficients of the Schmid
decomposition@9# are nonzero, i.e.,uC&5( i 51

N Al i uai&ubi&
where^ai uaj&5d i j and^bi ubj&5d i j . We further assume tha
the above form of the Schmidt decomposition ofuC& is
known to Alice and Bob.

Second, we consider only the most advantageous
tanglement manipulation scheme in each step of which A
keeps track of the results of all her measurements and
Bob about them, and vice versa. Alice and Bob then upd
their information on the state they share in each step. Sin
is a pure stateuC& that Alice and Bob start with, they alway
deal with apure statein each step. Any scheme in which
Alice and Bob choose to be sloppy or ignorant can be re
as a situation in which they fail to make full use of the
information. Therefore, there is no loss in generality in o
consideration@10#.

We now argue that any two-way entanglement manipu
tion strategy for the stateuC& can be recast into an equiva
lent strategy which involves only one-way communicatio
from Alice to Bob—that is to say, a strategy in which Alic
performs all the measurements and informs Bob of the o
comes afterwards. This is so because~i! in entanglement
manipulations we are mainly concerned with the coefficie
02230
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of the Schmidt decomposition; and~ii ! in eachstep of en-
tanglement manipulation, the Schmidt decomposition of
pure state involved is alwayssymmetricunder the inter-
change of Alice and Bob. With such symmetry, there is
advantage in having Bob perform the measurement ins
of Alice @11–16#.

More concretely, consider a round of communications
a two-way scheme of entanglement manipulation. Supp
Alice has performed a measurement onuC8&
5(kAlk8uak8&ubk8&, and obtained an outcomeo1. She can
work out the Schmidt decomposition Po1

uC8&

5(kAlk9uak9&ubk9& of the state that she now shares with Bo
Now Alice is supposed to tell Bob the outcomeo1 of her
measurement, and Bob then will perform a measurem
with a set of local projection operators, say$Pl

Bob%. How-
ever, it turns out that there exists a set of local project
operators$Pl

Alice% by Alice which will do essentially the
same trick, as far as entanglement manipulation is c
cerned. Mathematically, we claim the following propositio

Proposition 1: Given any pure bipartite stateuC&AB
shared by Alice and Bob and any complete set of project
operators$Pl

Bob% ’s by Bob, there exists a complete set
projection operators$Pl

Alice% ’s by Alice and, for each out-
come l, a direct product of local unitary transformation
Ul

A
^ Ul

B such that, for eachl,

~ I ^ Pl
Bob!uC&5~Ul

A
^ Ul

B!~Pl
Alice

^ I !uC&. ~2!

Idea of the proof: Consider a pure bipartite state in i
Schmidt decomposition

uC&5(
i

Ar i uei&Auei&B ~3!

shared between Alice and Bob. Note that, by the definition
the Schmidt decomposition, it is symmetric under the int
change ofuei&A anduei&B . This is a mathematical symmetry
Now, in proposition 1, we promote this mathematical sy
metry into a physical symmetry between the actions of Al
and Bob in the context of entanglement manipulations. M
precisely, if Bob applies a set of projection operators$Pl

Bob%
on his system and obtains an outcomel, the stateuC& will be
transformed into some state, say

uCB&5(
i

Am i uai8&Aubi8&B . ~4!

On the other hand, if Alice applies a corresponding set
projector operators$Pl

Alice% on her system~instead of Bob!,
then we show that the corresponding outcomel will give her
a state

uCA&5(
i

Am i uai9&Aubi9&B , ~5!

with exactly the same Schmidt coefficients asuCB&. Conse-
quently, there exists a bilocal unitary transformation that w
rotate the stateuCA& to uCB&. In this sense, the statesuCA&
1-3
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HOI-KWONG LO AND SANDU POPESCU PHYSICAL REVIEW A63 022301
and uCB& are equivalent. The upshot is that there is no
vantage for Bob to perform a measurement, in place of Al
In summary, as far as entanglement manipulation of a p
bipartite state is concerned, there is a total symmetry
tween the actions of Alice and Bob@17#.

Proof: See Appendix A.
One can repeat the above argument and prove that al

rounds of measurements can be performed by Alice alo
and Alice only needs to tell Bob her outcomes after
completion of all her measurements. What this means is t
for Alice and Bob manipulating a pure bipartite state, o
can, without loss of generality, restrict oneself to scheme
entanglement manipulations using only one-way commu
cations from Alice to Bob.

Finally, it is a well-known consequence of measurem
theory that the entire sequence of Alice’s measurements
be described as asinglegeneralized measurement.@One may
argue this well-known result as follows. Every measurem
consists of two steps—the interaction of a measuring de
with a system, and the ‘‘reading’’ of the measuring devic
i.e., a unitary transformation and a projection. Now, any
bitrary sequence of independent measurements can b
placed by an equivalent single measurement, by simply
ting all the interactions to be performed first, and reading
the measuring devices simultaneously at the end. In this
one can view all the independent measuring devices a
~more complicated! single measuring device, performing
single interaction with the measured system~the unitary
transformation describing this interaction being simply t
product of the unitary transformations describing the in
vidual measuring devices! and followed by asingle reading
stage. Furthermore, even if the measurements are not i
pendent of each other, i.e., some measurements depen
the results of previous measurements, we can still replace
sequence by a single measurement: In this case too, the
man observer can postpone ‘‘reading’’ the results obtai
by the different measuring devices until the end. Inde
there is no need for the observer to read the results of
measurements in order to tune the subsequent measurem
accordingly. The entire process can be realized by the m
suring devices interacting with each other as well as with
system under observation. Then, once again, we hav
single measuring device, performing a single interaction~ex-
cept that the interactions between the measuring device
the system contain also some internal interactions betw
the different parts of the measuring device—correspond
to one part reading the result of the other!, and a single
reading stage.#

In summary, the most general strategy of entanglem
manipulation of a pure bipartite state is equivalent to a st
egy involving only a single~generalized! measurement per
formed by Alice followed by the one-way communicatio
of the result from Alice to Bob~and finally local unitary
transformations by Alice and Bob!.

B. One-way communications are provably better than no
communications

We have shown above that two-way communications
not necessary for the entanglement manipulation of a p
02230
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bipartite state—the most general entanglement manipula
strategy can be realized with only one-way communicati
A natural question to ask is whether communication
needed at all. We show that, indeed, communication is n
essary. This is to say that entanglement manipulation str
gies without communication cannot achieve all that could
achieved with communication. The proof of relegated to A
pendix B.

In conclusion, more powerful strategies are generally
tained with one-way communications than without comm
nications. On the other hand, we proved in the above p
graphs that one-way communications are sufficient for a
strategy. Combining these two results, we conclude that o
way communications are necessary and sufficient for imp
menting a general strategy of entanglement manipulation
pure bipartite states.

III. OBTAINING A GIVEN MAXIMALLY ENTANGLED
STATE Fm FROM AN ARBITRARY STATE C

Definition 2(m-ME state:Fm): We shall denote byFm a
standardm-dimensional maximally entangled state

uFm&5
1

Am
(
i 51

m

u i &Au i &B , ~6!

whereu i &A’s (u i &B’s, respectively! form an orthonormal basis
for a Hilbert spaceHA (HB , respectively!. In particular,F1
is a direct product,F2 is ~equivalent to! a singlet, andF2q is
equivalent toq singlet pairs. In what follows, we shall ca
Fm an m-ME state.

We now come to one of the main results of our paper. W
consider the following particular problem. Suppose Ali
and Bob share a pair of particles in some arbitrary pure s
C. By different entanglement manipulations strategies
can transformC into a givenm-dimensional maximally en-
tangled stateFm . In general such a process does not succ
with certainty but only with some probabilitypm . Here we
enquire as to the maximal probability with which such
transformation could occur.

Incidentally, one can even obtain a maximally entang
state whose degree of entanglement isgreater than that of
the initial state. Since the average degree of entanglem
cannot increase, it is obvious that such a transformation
curs with a probability less than 1. To describe such a s
ation we sometime use the term ‘‘gambling wi
entanglement’’—indeed, Alice and Bob try to achieve a b
ter than average outcome while taking the risk of losing
tanglement if the result turns out to be unfavorable.

Definition 3 (pm
MAX): For any positive integerm, we de-

fine pm
MAX @18# to be the supremum over all manipulatio

strategies of the probabilitypm of obtaining anm stateFm
from a pair initially in the stateC.

We will prove the following theorem.
Main theorem: If we write the initial stateC in an ordered

Schmidt decomposition asC5( i 51
N Al i uai&ubi&, the supre-

mum probability pm
MAX of obtaining Fm over all possible

entanglement manipulation strategies is given by the follo
ing.
1-4
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~i! If m.N (N being the number of terms in the Schmi
decomposition ofC), thenpm

MAX50.
~ii ! If m<N, then

pm
MAX5 min

1<r<m

m

r
~lm2r 111lm2r 121•••1lN!. ~7!

The proof of this main theorem is divided into two par
In Sec. IV, we will derive an upper bound onpm

MAX ~see
theorem 1!. In Sec. V, we demonstrate an explicit strate
that saturates the bound and is, thus, optimal~see theorem 2!.

IV. UPPER BOUND ON PM
MAX : THEOREM 1

Theorem 1: If we write the initial stateC in an ordered
Schmidt decomposition asC5( i 51

N Al i uai&ubi&, the supre-
mum probability pm

MAX of obtaining Fm over all possible
entanglement manipulation strategies satisfies the follow

i! If m.N (N being the number of terms in the Schmi
decomposition ofC), thenpm

MAX50.
ii ! If m<N, then

pm
MAX< min

1<r<m

m

r
~lm2r 111lm2r 121•••1lN!. ~8!

A. The number of Schmidt decomposition terms can never
increase: Part „i… of theorem 1

The following lemma is useful.
Lemma 1: The number of terms in a Schmidt decompo

tion cannever increase under local measurements and c
sical communications@19#.

Proof: Let us suppose that the initial stateuF&
5( i 51

N Al i uai&ubi& has only N nonvanishing terms in its
Schmidt decomposition. For each measurement outcomel on
uF&, the resulting statePl

AliceuF&5( i 51
N Al i uai

l&ubi& ~where
uai

l& is the projected statePl
Aliceuai&) can be expressed as

sum of N terms. Consequently, its Schmidt decomposit
must have at mostN terms. QED.

Proof of part (i) of theorem 1: As a corollary of lemma 1,
for an initial stateuF&5( i 51

N Al i uai&ubi& with only N non-
vanishing terms in its Schmidt decomposition,pm

MAX50 if
m.N. QED.

This leads to the following apparent paradox. Supp
Alice and Bob shares standard singlets. What is the pro
ability that they can gamble successfully and obtainS
(.s) singlets? Naively, one might expect the probability
be nonzero: One may use quantum data dilution@6# to dilute
s standard singlets into sayS pairs of uF& each of entangle-
mentE(uF&)5s/S, and then apply the Procrustean~i.e., lo-
cal filtering! method@6# of entanglement gambling to each
Spairs ofuF&. For eachuF&, the Procrustean method gives
nonzero probability, sayp8, of obtaining a maximally en-
tangled pair out of it. Thus, it looks as if there would be
nonzero probability (p8)S of obtainingSsinglets froms sin-
glets. But, as we have seen above, this argumen
erroneous—the probability of obtainingS singlets out of
gambling withs singlets is strictly zero. The reason is th
02230
.
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quantum data dilution is aninexactprocess which is valid
only on average.

B. An upper bound on pm
MAX : Part „ii … of theorem 1

It remains to prove part~ii ! of theorem 1. It is convenien
to introduce the following notation.

Notation(Br
m): We denote ther th bound in theorem 1 by

Br
m . i.e.,

Br
m[

m

r
~lm2r 111lm2r 121•••1lN!. ~9!

Restatement of part (ii) of theorem 1: Given a stateuC&
with the ordered Schmidt decomposition uC&
5( i 51

N Al i uai&ubi&, the supremum probabilitypm
MAX of ob-

taining anm-ME state out of manipulatinguC& satisfies a set
of constraintspm

MAX<Br
m for 1<r<m.

Motivation for the proof of part~ii ! of theorem 1: For a
fixed r, if the right-hand side of Eq.~9! is zero, then there are
only m2r terms in the Schmidt decomposition ofuC&. From
lemma 1, Alice will definitely fail to obtain an
m-dimensional maximally entangled pair state because th
will be at mostm2r terms in the Schmidt decomposition o
the resulting state. In the proof, we would like to turn th
argument around to show the following. If Alice does su
ceed, the remainingr @i.e., from (m2r 11th to mth) terms
in the maximally entangled state must have come from
remaining @i.e., from (m2r 11th to Nth)] terms of the
Schmidt decomposition of the original stateuF&. ~Surpris-
ingly, classical reasoning is, in fact, valid here. This is b
cause when one considers the reduced density matrix of
ice, Bob’s system provides a ‘‘record’’ for its history
Therefore, no interference effect is possible. See below.! Let
us multiply both sides of the inequality and consider t
inequalityrpm

MAX/m<rBr
m/m. Now the left-hand side of the

new inequality is simply the probability that Alice’s state
projected into the remainingr terms.~There is a supremum
probabilitypm

MAX of successfully obtaining anm-dimensional
maximally entangled state. Now, such a state gives a tot
random density matrix for Alice’s subsystem, which has
support of m dimensions. Moreover, given a fixe
r-dimensional subspace of them-dimensional space in the
support of Alice’s system, consider the projection operat
into that subspace and into its complement, respectiv
There is a conditional probabilityr /m of the random state
being projected into ther-dimensional space, rather than in
its complement.! It must therefore be constrained by th
probability of Bob’s system being projected into the spa
spanned by the (m2r 11)th to Nth terms inuF&, which is
given by the right-hand side.

Proof of part (ii) of theorem 1: Given an initial stateuF&,
for 1<r<m, we decomposeuF&5uF1

r &1uF2
r & whereuF1

r &
5( i 51

m2rAl i uai&ubi&. @Define uF1
m&50.# Alice and Bob now

attempt to manipulateuF& into an m-ME state. Alice can
divide up the outcomes into two sets:$s1 ,s2 , . . . ,sp% ~suc-
cess! and $ f 1 , f 2 , . . . ,f q% ~failure!. Let us consider asuc-
cessfuloutcomesl . Then Psl

uF&5Psl
uF1

r &1Psl
uF2

r & is an
1-5
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m-ME state. Denoting byrA
sl ~similarly rA,i

r ,sl where i
51 or 2) the unnormalized density matrix
TrBPsl

uF&^FuPsl

† ~similarly TrBPsl
uF i

r&^F i
r uPsl

† where i

51 or 2, respectively!, we haverA
sl5rA,1

r ,sl1rA,2
r ,sl .

We emphasize that the interference term arising fr
TrBPsl

uF1&^F2uPsl

† is identically zero. This is because, whe
one considers the reduced density matrix of Alice, Bo
system provides a ‘‘record’’ of its history. In taking the pa
tial trace over Bob’s system, all the interference terms dis
pear. It is very interesting that classical intuition is va
here. This greatly simplifies our discussion.

The supports satisfy supp(rA,1
r ,sl),supp(rA

sl). Since

supp(rA,1
r ,sl) has a dimension of mostm2r and yet supp(rA

sl)
has a dimensionm (Psl

uF& is anm-ME state!, we can pickr

orthonormal vectorsuu1
sl&,uu2

sl&, . . . ,uur
sl& in supp(rA

sl) such

that ^ui
sluv&50 for all uv&Psupp(rA,1

r ,sl). Let us define the

projection operatorPusl

r
5( i 51

r uui
sl&^ui

slu. From its definition,

it is clear thatPusl

r rA,1
r ,slPusl

†r
50. For a fixed but arbitrary strat

egy of entanglement concentration, let us denote bypm
arb the

probability of successfully obtaining anm-ME state. There-
fore,

rpm
arb/m5TrAS (

sl

Pusl

r rA
slPusl

†r D
5TrAS (

sl

Pusl

r rA,1
r ,slPusl

†r D 1TrAS (
sl

Pusl

r rA,2
r ,slPusl

†r D
5TrAS (

sl

Pusl

r rA,2
r ,slPusl

†r D
5TrA TrBS (

sl

Pusl

r Psl
uF2

r &^F2
r uPsl

† Pusl

†r D
<TrA TrBuF2

r &^F2
r u5lm2r 111lm2r 121•••1lN

5rBr
m/m ~10!

for 1<r<m. The equality sign in the first line holds becau
rA

sl is proportional to the identity matrix in anm-dimensional
space, and its trace is proportional to its probability of o
curring. Since the total probability of success ispm

arb andPusl

r

projects anm-ME state into anr-dimensional subspace of th
m-dimensional space, the probability of this occurring
clearly rpm

arb/m. Now, one takes the supremum over all e
tanglement manipulation strategies in Eq.~10! to find that

pm
MAX<

m

r
(lm2r 111lm2r 121•••1lN)5Br

m for

1<r<m. QED.
Example: ConsiderN53 andm52 for part ~ii ! of theo-

rem 1. Theorem 1 now states thatp2
MAX<min$2(l21l3),1%.

V. OPTIMAL STRATEGY AND VALUE OF PM
MAX :

THEOREM 2

Theorem 1 gives an upper bound to the probabilitypm
MAX .

We now prove that an optimal strategy actually saturates
bound.
02230
s

p-

-

-

is

Theorem 2: Given a stateuC&5( i 51
N Al i uai&ubi& ~where

l1>l2>•••>lN) with only N nonvanishing terms in its
Schmidt decomposition. There exists a way to convertC
into an m-dimensional maximally entangled state with pro
ability minr P$1,2,•••,m%(m/r )(lm2r 111lm2r 121•••1lN)
5minrBr

m .
Proof of theorem 2: Let us separate the proof into tw

cases:~a! minrBr
m51 and~b! minrBr

m,1.

A. Case„a… of theorem 2

Case~a!: Let minrBr
m51. We shall prove that for an op

timal strategy, the probability of getting anm-ME state is 1.
It is convenient to start with a simple case, namely tra

forming maximally entangled states into maximally e
tangled states of lower dimension. We will prove the follow
ing.

Lemma 2: There is a way of transforming with probabilit
1 any maximally entangled state into a maximally entang
state of lower dimension. Consequently,pr

MAX<ps
MAX if r

>s>1.
Proof: First consider the casesr 53 ands52. ~Here we

omit the obvious normalization factors.! A maximally three-
dimensionally entangled state has a Schmidt decompos
uu&AB5u1&Au1&B1u2&Au2&B1u3&Au3&B . We now show that
it can be reduced with certainty to a standard sing
u1&Au1&B1u2&Au2&B . Suppose Alice prepares an ancilla
the stateu0&a , and evolves the system in such a way th
u0&au1&A→(u2&a1u3&a)u1&A , u0&au2&A→(u1&a1u3&a)u2&A ,
and u0&au3&A→(u1&a1u2&a)u3&A . The entire state will
evolve as follows:

u0&auu&AB5u0&a~ u1&Au1&B1u2&Au2&B1u3&Au3&B)

→u211&aAB1u311&aAB1u122&aAB1u322&aAB

1u133&aAB1u233&aAB

5u1&a~ u22&AB1u33&AB)1u2&a

3~ u11&AB1u33&AB)1u3&a~ u11&AB1u22&AB).

~11!

Now Alice measures the state of her ancilla, and obtain
singlet shared with Bob. The exact singlet which is obtain
depends on the result of Alice’s measurement, but it c
always be transformed into the standard one (1/A2)(u11&AB
1u22&AB). This can be realized by Alice communicating th
result of her measurement to Bob, such that both of th
know which singlet has been obtained, and then having b
of them perform the appropriate unitary rotations.

A similar proof can be constructed to show that, starti
with a k-ME state ~a maximally entangled pair ofk state
particles!, Alice and Bob can with probability 1 convert it to
a (k21)-ME state @a maximally entangled pair o
(k21)-state particles#. See Appendix C for details. QED.

We remark that, using lemma 2, one can convert w
probability 1 a maximally entangled state of dimensioni into
r standard singlets provided thati>2r . Just note that, as
mentioned above,r standard singlets are equivalent to
1-6
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single 2r-dimensional maximally entangled state, and use
above lemma. This simplifies a related discussion mad
Ref. @6#, and raises the probability of success from abou
2e to 1.

Now we turn to the general case. The first thing to note
that the condition minrBr

m51 is completely equivalent with
the constraint that the square of the largest normali
Schmidt coefficient is smaller or equal to 1/m. This is be-
cause

lm2r<•••<l1<1/m ~12!

implies that

l11l21•••1lm2r<
1

m
~m2r !. ~13!

Sincel11l21•••1lN51, we find that

lm2r 111•••1lN>12
1

m
~m2r !5

r

m
, ~14!

which is equivalent to

Br
m5

m

r
~lm2r 111•••1lN!>1. ~15!

Also recall thatBm
m51. Therefore, we conclude that, ifl1

<1/m, then minrBr
m51. Conversely, ifl1.1/m, Bm21

m ,1.
Combining these two results, we see that minrBr

m51 iff l1

<1/m.
Idea of the proof of case (a) of theorem 2: Naively, one

might proceed by extracting anm-ME state fromC itera-
tively. At each step we could decompose the stateC8 into
C85C181C28 such thatC18 is an ~unnormalized! m-ME
state andC28 is residual state that, when properly normalize
still satisfies minrBr

m51. One simple way to ensure tha
minrBr

m51 ~or l1<1/m) is always satisfied byC28 ~if prop-
erly normalized! is to allowonly the firstm Schmidt terms to
contribute toC18 and, therefore, thel1 term ofC28 decreases
fast enough.

However, this does not quite work as an iterative pro
dure. The reason is that, at some point of such a proced
the mth Schmidt coefficient of the stateC will becomede-
generatewith the (m11)th and possibly other coefficients
In other words,lm5lm11, etc. Dealing with this problem is
one of the major technicalities in the proof. Let us start
making the following definition.

Definition 5 (precursor state): Consider a state of the
form

uCpre
m,p,q&5

1

Am
F (

j 51

m2p

u j &u j &1 (
j 5m2p11

m1q S p

p1qD 1/2

u j &u j &G ,

~16!

wherep.0 andq>0. Let us call it a precursor state of a
m-ME state.

Remark: Note that the caseq50 corresponds to anm-ME
state. Forq.0, a precursor is a coherent sum of an (m
02230
e
in
1

s

d

,

-
re,

y

2p)-ME state and an (p1q)-ME-state. The factor@p/(p
1q)#1/2 in the definition ofuCpre

m,p,q& is needed for the fol-
lowing important result.

Lemma 3: A precursor state of anm-ME state can be
converted with certainty anm-ME state.

Proof of lemma 3: The proof is essentially a generaliza
tion of the proof of lemma 2. See Appendix D.

In our proof, it is convenient to make use of the followin
definition.

Definition 6 (mth Schmidt degeneracy number): For any
pure bipartite stateC in an ordered Schmidt decompositio
uC&5( i 51

N Al i u i &Au i &B , let us define themth (m,N)
Schmidt degeneracy number~or simply the degeneracy num
ber when there is no ambiguity! to be the number of Schmid
coefficients that are degenerate withlm .

Proof of case (a) of theorem 2: Consider the entanglemen
manipulation of a general stateuC&5( i 51

N Al i u i &u i & satisfy-
ing minrBr

m51. We construct a multistep procedure su
that in each step Alice and Bob either~i! obtain a precursor
state which, as shown in lemma 3, can readily be redu
with probability 1 to anm-dimensional maximally entangle
state; or~ii ! obtain a residual state whose (mth) Schmidt
degeneracy number is increased by 1, while still obeying
relation minrBr

m51 when properly normalized.
If Alice and Bob obtain anm-ME state, they have accom

plished their task. If they obtain a residual state, they rep
the procedure. Since with each step the residual state
creases its degeneracy number by 1, we are certain that
finite number of steps (<N) either Alice and Bob obtain an
m-ME state, or end up with a residual stateFN , which, by
lemma 2, can subsequently be converted with certainty
Fm .

We now describe each step in more detail.
Suppose the initial state in ordered Schmidt decomp

tion is

uC&5(
i 51

N

Al i u i &Au i &B . ~17!

Suppose further thatlm is (p1q)-fold degenerate, such tha

lm2p115•••5lm5•••5lm1q . ~18!

The decomposition ofuC& into a precursor and a residua
state is done by the attachment of an ancilla prepared in
state u0&a and a subsequent measurement by Alice. Fo
< i<m2p, the evolution goes as

Al i u0&au i &A→Aa

m
u1&au i &A1Al i2

a

m
u0&au i &A , ~19!

where u0&a and u1&a are orthonormal, anda is the minimal
value needed for a new degeneracy to occur in Schmidt
efficients of the residual stateuC res&. In fact,
1-7



i

ut
co
,
r

t

te
-

glet
w
ted

ird
s an
e

in-
to

ursor

m,

a
cer-
ate
ith
let

HOI-KWONG LO AND SANDU POPESCU PHYSICAL REVIEW A63 022301
a5minS m~p1q!

q
~lm2p2lm2p11!,

m~p1q!

p
~lm1q2lm1q11! D .

For m2p11< i<m1q, the evolution goes as:

Al i u0&au i &A→AS a

mD S p

p1qD u1&au i &A

1Al i2S a

mD S p

p1qD u0&au i &A . ~20!

For m1q11< i<N, the state is unchanged, i.e.,

u0&au i &A→u0&au i &A . ~21!

Hence we find that

u0&auC&→Aau1&auCpre
m,p,q&1A12au0&auC res&, ~22!

where

uCpre
m,p,q&5

1

Am
S (

i 51

m2p

u i &u i &1 (
i 5m2p11

m1q S p

p1qD 1/2

u i &u i & D
~23!

is the precursor and

uC res&5~12a!21/2F (
i 51

m2p Al i2
a

m
u i &u i &

1 (
i 5m2p11

m1q Al i2S a

mD S p

p1qD u i &u i &

1 (
i 5m1q11

N

Al i u i &u i &G ~24!

is the residual state. Now, since

a5minS m~p1q!

q
~lm2p2lm2p11!,

m~p1q!

p
~lm1q2lm1q11! D ,

we have either~1! lm2p8 5lm2p118 or ~2! lm1q8 5lm1q118 .
In other words, a new degeneracy occurs in the Schm
coefficients.

Now Alice measures the state of the ancilla. If the o
come is 1, she obtains a precursor state which can be
verted with certainty to anm-ME-state. If the outcome is 0
she obtains a residual state with its degeneracy numbe
creased by 1.

It is also easy to see that, just like the original stateC, the
intermediate residual stateuC res& also has the property tha
02230
dt

-
n-

in-

minrBr
m51. The final residual state will be totally degenera

and, hence, has the formFN . This multistep method estab
lishes our proof. QED.

Example: ConsiderN53 andm52 for case~a! of theo-
rem 2. The initial state isAl1u11&1Al2u22&1Al3u33&. The
requirement that minrBr

m51 is that l1<1/2. Case~a! of
theorem 2 asserts that Alice and Bob can obtain a sin
with certainty. The extraction procedure in the proof no
goes as follows. In the first step, a singlet state is extrac
from the first two Schmidt terms until the second and th
terms become degenerate. In other words, Alice attache
ancilla in the stateu0&a to the original system, and applies th
transformation

Al1u0&au1&→Al22l3u1&au1&1Al12~l22l3!u0&au1&,

Al2u0&au2&→Al22l3u1&au2&1Al3u0&au2& ~25!

Al3u0&au3&→Al3u0&au3&.

As a consequence, the combined system evolves as

u0&a~Al1u11&1Al2u22&1Al3u33&)

→Al22l3u1&a~ u11&1u22&)

1u0&a@Al12~l22l3!u11&1Al3u22&1Al3u33&].

~26!

Alice measures her ancilla. An outcome of 1 gives a s
glet, whereas an outcome of 0 will require Alice and Bob
execute the second step. In the second step, the prec
state u11&1(1/A2)(u22&1u33&) is extracted. To this end
Alice lets her ancilla interact again with her original syste
and implements the transformation

Al12~l22l3!u0&au1&→A2Al12l2u1&au1&

1Al32~l12l2!u0&au1&

Al3u0&au2&→Al12l2u1&au2&1Al32~l12l2!u0&au2&

Al3u0&au3&→Al12l2u1&au3&1Al32~l12l2!u0&au3&
~27!

so that the combined system evolves to

u0&a@Al12~l22l3!u11&1Al3u22&1Al3u33&]

→Al12l2u1&a@A2u11&1u22&1u33&]

1Al32~l12l2!u0&a@ u11&1u22&1u33&].

~28!

Alice now measures the ancilla. An outcome of 1 gives
precursor state which can be converted to a singlet with
tainty. On the other hand, an outcome of 0 will give a 3 st
which, by lemma 2, can also be converted to a singlet w
certainty. In summary, Alice and Bob can obtain a sing
with certainty in this example.
1-8
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B. Properties of Br
m

1. Lemma 4

Before moving to case~b!, let us prove some lemmas
For any initial stateuC&, the bounds in theorem 1,Br

m

5(m/r )(lm2r 111lm2r 121•••1lN), obey the following.
Lemma 4: If Br 11

m .Br
m , thenBr 12

m .Br 11
m .

Remark: In other words, for a fixedm, considerBr
m as a

function of r. Once it starts to increase, it will continue to d
so.

Proof: See Appendix E.

2. Lemma 5

By adding the condition@which is valid for case~b! of
theorem 2# that minrBr

m,1, the following lemma can be
proven.

Lemma 5: Given minrBr
m,1, there exists aunique r1

such thatB1
m>B2

m>•••>Br 1

m,Br 111
m ,•••,Bm

m51.

Proof: See Appendix F.
Remark: Since Br

m is defined to be (m/r )(lm2r 11

1lm2r 121•••1lN), in terms ofl i ’s, the conditions that
B1

m>B2
m>•••>Br 1

m,Br 111
m ,•••,Bm

m51 can be written as

the following set of equations:

lm21<lm1lm111•••1lN ,

lm22<
1

2
~lm211lm1•••1lN!

•••<•••,

lm2r 111<
1

~r 121!
~lm2r 1121lm2r 1131•••1lN!, ~29!

lm2r 1
.

1

~r 1!
~lm2r 1111lm2r 1121•••1lN!

•••.•••,

l1.
1

~m21!
~l21l31•••1lN!.

Inspired by the above discussion, let us consider the
lowing set of equations.

lm21<lm1lm111•••1lN ,

lm22<
1

2
~lm211lm1•••1lN!,

•••<•••, ~30!

lm2r<
1

r
~lm2r 111lm2r 121•••1lN!

•••<•••,
02230
l-

l1<
1

~m21!
~l21l31•••1lN!.

Consider puttinglm21 ,lm22 , . . . ,l1 into the left-hand side
of Eqs. ~30! one by one. We find from Eqs.~29! that
lm21 ,lm22 , . . . ,lm2r 111 satisfy Eqs. ~30!, whereas

lm2r 1
,lm2r 121 , . . . ,l1 violate Eqs.~30!. Let us focus on

the point of first violation, namely,lm2r 1
. We note that the

maximal value oflm2r 1

max that will still satisfy Eq.~30! is

lm2r 1

max [
1

r 1
~lm2r 1111•••1lN!5

Br 1

m

m
5minrBr

m .

~31!

With lemmas 4 and 5 proven, we now return to the pro
of case~b! of theorem 2.

C. Case„b… of theorem 2

Case~b!: minrBr
m,1.

Idea of our proof: We construct an explicit strategy whic
saturates the boundpm5minrBr

m as follows. By attaching an
ancilla prepared in the stateu0&a to the systemuC&, Alice
divides up uC& into two pieces—successful and failin
pieces—by the evolution

u0&auC&5u1&auCs&1u0&auC f&, ~32!

where u0&a and u1&a are orthonormal states of the ancill
uCs& @when properly normalized belongs to case~a!, i.e.,
minrBr

m51 and hence# gives a probability 1 of success, an
a stateuC f& ~has less thanm terms in its Schmidt decompo
sition and hence! gives a probability 0 of success. Alice no
reads off the state of the ancilla. A stateu1&a indicates a
success andu0&a a failure. One can then read off the pro
ability of success of this explicit strategy from the norm
uCs&. It turns out to be equal to minrBr

m .
Proof of case (b) of theorem 2: Recall from Eq.~31! that

the maximal acceptable value of the (m2r 1)th squared
Schmidt coefficient for it to satisfy Eq.~30! is

lm2r 1

max 5
Br 1

m

m
5minrBr

m . ~33!

Now the successful pieceuCs& in Eq. ~32! is obtained by
trimming the redundant contribution tol1 ,l2 , . . . ,lm2r 1

from uC&. This is done by the attachment of an ancilla pr
pared in the stateu0&a . The evolution goes as

Al i u0&au i &A→Alm2r 1

max u1&au i &A1Al i2lm2r 1

max u0&au i &A

~34!

for 1< i<m2r 1. For m2r 111< i<N, the evolution is

Al i u0&au i &A→Al i u1&au i &A . ~35!

Alice now reads off the state of her ancilla. We sh
argue in the following paragraph that an outcome 0 me
1-9
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that Alice has failed in obtaining anm-ME state, whereas an
outcome 1 means that she has succeeded in obtaining a
satisfying minrBr

m51, which by Sec. V B@i.e., case~a! of
theorum 2# can be reduced with certainty to anm-ME state.

If the outcome is 0, the resulting~failing! stateuC f& has
unnormalized squared Schmidt coefficientsl12lm2r 1

max ,l2

2lm2r 1

max , . . . ,lm2r 1
2lm2r 1

max ,0, . . . ,0.Since it has at mos

m2r 1 terms in its Schmidt decomposition, it follows from
lemma 1 that it gives a zero probability of obtaining
m-ME state. On the other hand, if the outcome is 1,
un-normalizedsquared Schmidt coefficients of the resulti
~successful! state uCs& are given by
lm2r 1

max , . . . ,lm2r 1

max ,lm2r 111 ,lm2r 112 , . . . ,lN . i.e., the

first (m2r 1)th squared Schmidt coefficients are all replac
by lm2r 1

max . By constructionuCs& belongs to case~a! of theo-

rem 2. Therefore, it always succeeds to give anm-ME state.
Moreover, using Eq.~31!, it has a norm

~m2r 1!lm2r 1

max 1lm2r 1111•••1lN

5
m

r 1
~lm2r 1111lm2r 1121•••1lN!

5Br 1

m5minrBr
m . ~36!

This proves that our explicit strategy saturates the bound
completes our proof for the case~b! of theorem 2. QED.

Example: ConsiderN53 andm52 for case~b! of theo-
rem 2. The initial state isAl1u11&1Al2u22&1Al3u33&. The
requirement minrBr

m,1 here corresponds tol21l3,1/2
~i.e., l1.1/2.! Now, according to theorem 2, the probabili
of obtaining a singlet successfully is 2(l21l3). The extrac-
tion is done by attaching an ancilla and applying the unit
transformation

Al1u0&au1&→Al21l3u1&au1&1Al12l22l3u0&au1&,

Al2u0&au2&→Al2u1&au2&, ~37!

Al3u0&au3&→Al3u1&au3&.

As a consequence, the evolution of the combined syste
as follows:

u0&a~Al1u11&1Al2u22&1Al3u33&)

→u1&a~Al21l3u11&1Al2u22&1Al3u33&)

1u0&aAl12l22l3u11&. ~38!

Alice can now measure the ancilla. If the outcome is
which occurs with a probability 2(l21l3), she has reduced
the problem to case~a! of theorem 2, and the resulting sta
can be reduced to a singlet with certainty. On the other ha
if the answer is 0, she now has a product state and has,
failed in getting a singlet.
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Recall that theorems 1 and 2 combined together
equivalent to our main theorem. Since we have by n
proven both theorems 1 and 2, our main theorem has b
established.

VI. LAW OF LARGE NUMBERS

In this section, we derive some constraint on the pro
abilities of having large deviations from the average prop
ties. Consider the question raised in the Abstract and in S
I: Can collective measurements defeat the law of large nu
bers? We now show that the answer is no. That is, supp
Alice and Bob sharen pairs of particles, each pair in a sta
uC& with an entropy of entanglementE(uC&). We shall
show in theorem 3 below that the maximal probability
obtainingnK singlets, withK.E(uC&), goes to zero asn
goes to infinity.

Once again, we want to emphasize that this resultdoes
not follow automatically from the fact thaton averagewe
cannot obtain more thannE singlets. Indeed, an average
nE singlets could conceivably be obtained if with anon-
negligibleprobability p5E/K we obtainnK singlets, while
with probability 12E/K we obtain no singlets at all.

Theorem 3: In the entanglement manipulation ofn pairs
C, the optimal probability~over all possible strategies! of
obtaining nK singlets,p2nK

MAX , tends to 1 (0, respectively!
whenK,E(uC&) @K.E(uC&), respectively# in the limit n
→`.

Remark: It can also be shown that, as a function ofK, the
jump from 0 to 1 in the value ofp2nK

MAX occurs in a region of
width O(n21/2) around E(uC&). We shall skip the proof
here.

Proof of theorem 3: That p2nK
MAX tends to 1 in the large-n

limit whenK,E(uC&) follows trivially from Bennettet al.’s
reversible strategy@6# and from lemma 2. Let us now con
sider the caseK.E(uC&). Here we view then pairsC as a
single pair in stateC̃5Cn, by considering alln Alice’s
~Bob’s! particles to form a single~more complex! quantum
system. Similarly, the finalnK singlet pairs can be viewed a
a single pair in a 2nK-dimensionally maximally entangled
state. Then the problem of extractingnK singlets from then
pairs C can be rephrased as the problem of extracting
2nK-dimensionally maximally entangled state fromC̃. The
maximal probability for success isp2nK

MAX , which can be
bounded by using theorem 1.

Let l̃ i ’s represent the squared Schmidt coefficients ofC̃;
they are also the eigenvalues of Alice’s reduced density
trix. Since Alice’s reduced density matrix has a produ
form, ~originating from then pairs uC&) its weight must be
concentrated on a ‘‘typical’’ space of dimension rough
2nE. @Here we simplify our notation and useE to denote
E(uC&). This is essentially the law of large numbers in cla
sical probability theory. Also see the quantum noisele
source coding theorem@20#.# Let us pick a value ofK0 such
that K.K0.E. SinceK0.E, given anyd.0, for a suffi-

ciently largen, we have that( i 52nK0

tn l̃ i,d where t is the
number of terms in the Schmidt decomposition ofuC&. ~An
1-10
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‘‘atypical’’ space has a small weight.! Let us apply theorem
1 to the casesN5tn, m52nK andm2r 1152nK0. Note that
r /m.1/2 for a sufficiently large n. Hence, pm

MAX/2

,rpm
MAX/m<( i 5m2r 11

tn l̃ i,d. Substitutingm52nK, back,
we obtainp2nK

MAX→0 asn→`. QED.
In fact, any particular strategy which transformsn copies

of the stateC into an average ofnE singlets gives a single
number probability distribution similar to that of reversib
strategy@6#. This follows immediately from the result in Se
VII.

VII. SPECIAL STRATEGIES

In the previous sections we were interested in the ques
of the maximal probability required to transform an arbitra
entangled stateC into a given maximally entangled stat
say Fm ~where m is some given fixed dimension!. What
happens to the original stateC in those cases in which th
transformation intoFm is not successful was not importan
to us. We will now consider special manipulation strategi
such that foreveryoutcome the initial state is transforme
into some maximally entangled state.~Note that, by exten-
sion, we denote direct product states as ‘‘maximally e
tangled states of dimension 1’’!. Such a strategyS can be
characterized by the probabilitiesp1(S), p2(S), . . . , with
which the initial stateC is transformed intoF1 , F2, . . . ,
respectively.

A convenient way to describe this probability distributio
is to use, instead of the probabilitiespm(S), the ‘‘cumulative
probability’’ pm

tot(S):

pm
tot~S!5 (

k>m
pk~S!. ~39!

In the present section we find an upper bound on
cumulative property for an arbitrary strategyS,

pm
tot~S!<pm

MAX , ~40!

where pm
MAX is the supremum probability over all possib

strategies to convertC into an m-dimensional maximally
entangled state~an m state!. Since pm(S) represents the
probability to convertC into anm state by using the particu
lar strategyS, while pm

MAX represents the supremum pro
ability ~over all possible strategies! to convertC into anm
state, it is obvious thatpm(S)<pm

MAX . But why should the
sumpm(S)1pm11(S)1••• be smaller thanpm

MAX?
The reason for the is that, as we showed in lemma 2

maximally entangled state of dimensionk can always be con
verted,with certainty, into a maximally entangled state o
smaller dimensionm (m,k). Then suppose that Alice an
Bob, using strategyS, convertC into a maximally entangled
state of dimensionk larger thanm. They can then, with cer
tainty convert, this state into a maximally entangled state
dimension equal tom. Consequently, by appending this r
duction strategy to strategyS, we obtain a new strategyS8
which convertsC into an m state with probabilitypm(S8)
5(k>mpm(S)5pm

tot(S) ~with a zero probability to conver
02230
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C into maximally entangled states of dimension larger th
m). Now, as pm

MAX is the supremum probability~over all
possible strategies! of convertingC into anm state, we must
have, in particular,pm

MAX>pm(S8)5pm
tot(S), which proves

the bound in Eq.~40!.

VIII. NONEXISTENCE OF UNIVERSAL STRATEGY

As shown in Sec. VII, for any strategyS which trans-
forms an arbitrary stateC into different maximally en-
tangled statesFm , the cumulative probabilitypm

tot of obtain-
ing some maximally entangled state of dimensionm or larger
is bounded by

pm
tot<pm

MAX . ~41!

We have also seen in Sec. V that for any particularm there
exists a strategy which saturates this bound~the strategy
which yields Fm with probability equal topm

MAX and Fk ,
k.m with zero probability!. The question is whether ther
exists a ‘‘universal’’ strategyS univ whose cumulative distri-
bution saturates this bound forall m’s. The reason we cal
such a strategy universal is that such a strategy, followed
the reduction of some of the final maximally entangled sta
into maximally entangled states of lower dimension, it cou
generate any possible distribution consistent with bou
~41!. However, we shall show that such a universal strate
does not exist.

Proof: We show that a universal strategy generally can
exist for the caseN53 andm52 or 3. Consider

uC&5Al1u11&1Al2u22&1Al3u33&, ~42!

with p2
MAX51 and l21l32l1>0. Assume, by means o

contradiction, that a universal strategy does exist. We s
use projection operators rather than positive-operator-va
measures in our discussion. As noted in Sec. II, there is
loss of generality. LetP1 ,P2 , . . . ,Pr be the set of all pro-
jection operators by Alice that give some 3-ME state in
particular universal entanglement manipulation strategy.
definition, (P11P21•••1Pr)uC& has a normp3

MAX . Note
that it follows from theorem 2 thatp3

MAX53l3. Since
p2

MAX51, it is necessary for a universal strategy that t
residual state uC r&5(12P12P22•••2Pr)uC& when
properly normalized hasp2

MAX51. But this requires the
squared eigenvalues of the reduced density matrix ofuC r& to
satisfy the constraintl281l382l18>0. We shall show that
this is generally impossible. The point of our argument
that, as shown by lemma 6 below, the extraction of a 3-M
state will lead to an equal decrease in all three squared
genvalues~of the reduced density matrix ofuC r&). i.e., l i8
5l i2p3

MAX/35l i2l3. Therefore, unlessl15l2, the re-
sidual stateuC r& hasl281l382l185l22l1,0, thus contra-
dicting the requirement thatp2

MAX(uC r&)51.
In the above proof, we have used the following lemma
Lemma 6: Consider a state

uC&5Al1u11&1Al2u22&1Al3u33& ~43!
1-11
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in Schmidt decomposition. Any strategy that extracts a 3-M
state with a probabilityp from C will lead to an equal de-
crease in all three eigenvalues of the reduced density m
of the unnormalizedresidual state. i.e.,l i85l i2p/3 where
thel i8’s are eigenvalues of the reduced density matrix of
un-normalized residual state.

Proof of lemma 6: See Appendix G.

IX. MIXED STATES

Let us now consider the case when Alice and Bob sha
mixed initial stater ini . Sincer ini is impure, one generally
cannot write it in terms of a Schmidt decomposition. Mo
importantly, even ifr ini happensto be symmetric under the
interchange of Alice and Bob, there is no guarantee that
intermediate states that they obtain during the entanglem
manipulation process will respect such a symmetry@21#.
Therefore, the symmetry argument emphasized in the ea
part of this paper will no longer be valid. Manipulations of
mixed state using two-way communications are gener
more advantageous than a one-way strategy. Indeed, Be
et al. showed that one-way and two-way capacities for pu
fication are provably different@7#.

We also proved in Sec. II that, for a pure bipartite sta
entanglement manipulation strategies with one-way com
nications are provably better than no communications. N
that one-way communications are useful for an entanglem
manipulation strategy that has a probability of succ
strictly between 0 and 1, but not for~deterministic! quantum
error correction@7#. The role of communications in entangle
ment manipulations deserves future investigations.

For a mixed state, there are generally four distinct sup
mum probabilities to consider:pm

2 , pm
A→B , pm

B→A , andpm
0 ,

corresponding to entanglement manipulation schemes
two-way communications, one-way communications fro
Alice, to Bob, one-way communications from Bob to Alic
and no communications, respectively. While simple bou
on the success probability for manipulating mixed states m
be derived, many interesting questions remain unanswe
For example, we do not know the value ofp2nA in the
asymptotic limit n→` in the region D0(r)<A<E(r),
whereD0(r) is the entanglement of distillation~without any
classical communications between Alice and Bob!. To con-
clude, we expect the subtle interplay of the concepts of pr
ability, classical communications, collective manipulatio
and symmetry in the case of mixed states to be even m
challenging than the pure state case considered in this pa

X. OPEN QUESTIONS ON PURE STATES

Even for the case of a pure initial state, many interest
questions remain unsolved. For instance, what is the su
mum probabilitypm

0 of obtaining anm-ME state without any
classical communications? Note that Bennettet al.’s revers-
ible strategy@6# ~but not the local filtering strategy@6#! is an
example of a strategy which does not require any class
communications. It is an open question whether one can
better than Bennettet al.’s strategy without any classica
communications.
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We emphasize that the symmetry that we have found h
applies not only to the entanglement concentration, but a
to all types of entanglement manipulations including e
tanglement dilution@6#. For instance, the usual procedure
entanglement dilution via teleportation falls inside our ge
eral framework of using a single generalized measurem
by Alice, followed by one-way communications of its resu
to Bob and a subsequent unitary transformation by Bob
more systematic investigation of our formalism in applic
tions other than the entanglement concentration may pr
rewarding.
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APPENDIX A: PROOF OF PROPOSITION 1

Let us writeC in its Schmidt decomposition:

uC&5(
k

Alkuak&ubk&. ~A1!

Consider any of Bob’s projection operator

Pl
Bob5(

i , j
mi j

l ubi&^bj u. ~A2!

After the projection, the state he shares with Alice becom

uCB&5~ I ^ Pl
Bob!uC&5(

i ,k
Alkmik

l uak&ubi&. ~A3!

On the other hand, if, instead of Bob, Alice performs a me
surement using the corresponding operator defined by

Pl
Alice5(

i , j
mi j

l uai&^aj u, ~A4!

an outcomel will give the state

uCA&5~Pl
Alice

^ I !uC&5(
i ,k

Alkmik
l uai&ubk&. ~A5!

Let us consider unitary transformationsU (uai&
→(puipuap&) andV (ubk&→(qvkqubq&) that will put CA in
a Schmidt decomposition. i.e.,
1-12
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~U ^ V!uCA&5(
p

Ampuap&ubp&. ~A6!

From the definitions ofU andV and Eqs.~A5! and~A6!, we
find that

(
ik

Alkmik
l uipvkq5Ampdpq . ~A7!

Now consider (V^ U)uCB&,

~V^ U !uCB&5(
ik

(
pq

Alkmik
l vkquipuaq&ubp&

5(
pq

Ampdpquaq&ubp&5(
p

Ampuap&ubp&,

~A8!

where Eq.~A7! is used in the second equality. From Eq
~A6! and ~A8!, we find that

~V^ U !uCB&5~U ^ V!uCA&,

uCB&5~V21U ^ U21V!uCA&, ~A9!

~ I ^ Pl
Bob!uC&5~Ul

A
^ Ul

B!~Pl
Alice

^ I !uC&,

whereUl
A5V21U andUl

B5U21V QED.

APPENDIX B: PROOF OF THE NECESSITY OF
ONE-WAY COMMUNICATION IN ENTANGLEMENT

MANIPULATIONS OF BIPARTITE PURE STATES

Definitions~2! and~3! in the main text are needed for th
proof. The basic reason for the necessity of classical c
munication is that, wheneverpm

MAX as defined in the text is
strictly less than 1, Bob generally needs Alice’s help to fi
ure out whether the entanglement manipulation is succes
or not.

Consider the example ofuC&5au11&1bu22& where a
.b.0. We shall first argue that the supremum probabi
of obtaining a singlet satisfies 0,p2

MAX ,1: Since the local
filtering strategy in Ref.@6# gives a nonzero probability o
getting a singlet, we havep2

MAX>p2
local filtering.0. Moreover,

since the entanglementE(C),1 and the average entangl
ment cannot increase upon entanglement manipulations
supremum probabilityp2

MAX of getting a singlet out of en
tanglement manipulations is less than 1.

Now consider any strategy that gives 0,p2,1. Let us
divide up its outcomes into two classes:$s1 ,s2 , . . . ,sp%
~success! and $ f 1 , f 2 , . . . ,f q% ~failure!, and denote theun-
normalizedreduced density matrix of Bob for an outcomesi

( f j ) by rsi

Bob (r f j

Bob). Since 0,p2,1, Bob needs to deter

mine the outcome of the entanglement manipulation by
tinguishing with certainty between the two density matric
rsuccess

Bob 5( irsi

Bob and r failure
Bob 5( jr f j

Bob. Now the distinguish-

ability of two density matrices can be described by the fid
ity @22#
02230
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FS rsuccess
Bob

Trrsuccess
Bob

,
r failure

Bob

Trr failure
Bob D .

The detailed definition and properties of the fidelity are irr
evant for our discussion. It suffices to note the followin
fact: In order to show that it is impossible for Bob to disti
guish with certainty between the two density matrices wi
out communications from Alice, all we need to prove is th

FS rsuccess
Bob

Trrsuccess
Bob

,
r failure

Bob

Trr failure
Bob D Þ0,

or, equivalently, the supports ofrsuccess
Bob and r failure

Bob are not
orthogonal to each other. The proof of this claim is simp
Owing to causality, the density matrix of Bob is conserv
throughout Alice’s measurement, i.e.,

rsuccess
Bob 1r failure

Bob 5r initial
Bob 5a2u1&^1u1b2u2&^2u. ~B1!

Since r initial
Bob has a two-dimensional support,rsuccess

Bob must
have a support of at most two dimensions. On the other ha
as rsi

Bob is the reduced density matrix for a singlet,rsuccess
Bob ,

being the sum ofrsi

Bob’s, must have a support of at least tw

dimensions. Combining these two statements,rsuccess
Bob has a

support of exactly two dimensions. Now that bothr initial
Bob and

rsuccess
Bob have two-dimensional supports, the support ofr failure

Bob

must be a subspace of the support ofrsuccess
Bob . Therefore, we

conclude thatrsuccess
Bob andr failure

Bob do not have orthogonal sup
ports and hence the fidelity

FS rsuccess
Bob

Trrsuccess
Bob

,
r failure

Bob

Trr failure
Bob D Þ0.

QED

APPENDIX C: SOME DETAILS OF PROOF OF LEMMA 2

As before Alice attaches an ancilla to her systemA and
the evolution needed now is

u0&au j &A→S 1

Ak21
(

i 51;iÞ j

k

u i &aD u j &A . ~C1!

That is, the stateu j &A of the particle remains unchanged, b
the ancilla is brought to an equal superposition of all sta
u1&a , . . . ,uk&a , with the exception ofu j &a . The evolution of
the state of the ancilla and the pair can, therefore, be s
marized as

u0&auFk&5u0&aS 1

Ak
(
j 51

k

u j &Au j &BD
→ 1

Ak
(
i 51

k

u i &aS 1

Ak21
(

j 51; j Þ i

k

u j &Au j &BD ,

~C2!
1-13
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i.e., each stateu i &a of the ancilla is correlated with a differen
(k21)-dimensional maximally entangled state.

Next, Alice measures the state of her ancilla. No ma
what result she obtains, the pair of particles is left in ak
21)-dimensional maximally entangled state. Which partic
lar state is obtained will depend on Alice’s result. Suppo
Alice finds the ancilla in the stateu i 0&a . Then the pair is in
the state (1/Ak21)( j 51; j Þ i 0

k u j &Au j &B . If they wish, Alice

and Bob can now convert this state into the standardk
21)-dimensional maximally entangled sta
(1/Ak21)( j 51

k21u j &Au j &B . This can be realized by Alice com
municating to Bob the result of her measurement, such
both of them know which (k21)-dimensional maximally
entangled state has been obtained, and then having bo
them perform appropriate local unitary transformations
their particles.

Now, starting with a maximally entangledr-dimensional
state, one can repeat our argument to reduce it to a m
mally entangled (r 21)-dimensional state, a
(r 22)-dimensional state, etc., until we obtain a
s-dimensional state. This shows that any maximally e
tangled state can be reduced to one with a lower dimens

APPENDIX D: PROOF OF LEMMA 3

SinceuCpre
m,p,0& is anm-ME state, all we need to show i

the reduction with certainty fromuCpre
m,p,q& to uCpre

m,p,q21&
wheneverq>1. The proof here is analogous to that
lemma 2.

Suppose Alice attaches an ancilla to her system
evolves them in the following manner:

u0&au j &A→S 1

Ap1q
(
i 51

p1q

u i &aD u j &A , for 1< j <m2p,

~D1!

u0&au j &A→S 1

Ap1q21
(

i 51;iÞ j 2(m2p)

p1q

u i &aD u j &A ,

for m2p11< j <m1q.

In words, the ancilla is brought to an equal superposition
all statesu1&a , . . . ,up1q&a if the state of Alice’s system is
u j &A where 1< j <m2p. However, when Alice’s system i
in u j &A wherem2p11< j <m1q, the ancilla is brought to
an equal superposition of all statesu1&a , . . . ,up1q&a with
the exception ofu j 2(m2p)&a . Upon measuring the state o
the ancilla and applying local unitary transformations to th
respective systems, Alice and Bob end up in a new precu
uCpre

m,p,q21&. This proves the reduction fromuCpre
m,p,q& to

uCpre
m,p,q21&. By repeating this reduction process, one c

with certainty, reachuCpre
m,p,0& which is anm-ME state.

APPENDIX E: PROOF OF LEMMA 4

It is convenient here to defineSm2r 115( i 5m2r 11
N l i .

Then,
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,

Br 11
m .Br

m

m

r 11
@Sm2r 111lm2r #.

m

r
Sm2r 11

~E1!
rSm2r 111rlm2r.~r 11!Sm2r 11

rlm2r.Sm2r 11 .

Now,

Br 12
m 5

m

~r 12!
@Sm2r 111lm2r1lm2r 21#

>
m

~r 12!
@Sm2r 1112lm2r #

5
m

~r 12!~r 11!
@~r 11!Sm2r 1112~r 11!lm2r #

5
m

~r 12!~r 11!
@~r 11!Sm2r 111rlm2r

1~r 12!lm2r #

.
m

~r 12!~r 11!
@~r 11!Sm2r 111Sm2r 11

1~r 12!lm2r #

5
m

~r 12!~r 11!
@~r 12!Sm2r 111~r 12!lm2r #

5
m

~r 11!
@Sm2r 111lm2r #5Br 11

m , ~E2!

where Eq.~E1! is used in obtaining the fifth line. QED.

APPENDIX F: PROOF OF LEMMA 5

Let us consider the list of values ofB1
m,B2

m,•••,Bm
m .

SinceBm
m51.minrBr

m , as a function ofr, Br
m must start to

increase at some point. i.e., there existsr 0 such thatBr 011
m

.Br 0

m . But then, by lemma 4,Br 012
m .Br 011

m , Br 013
m

.Br 012
m , etc. In words, onceBr

m starts to increase, it will

continue to do so. Let us focus on thelast minimal point of
the function Br

m . i.e., the largest value r 1 such thatBr 1

m

5minrBr
m . By definition,Br 111

m .Br 1

m which, from lemma 4,

implies thatBr 1

m,Br 111
m ,•••,Bm

m51. This completes the

first part of the proof.
Moreover, we claim thatB1

m>B2
m>•••>Br 1

m . We prove

this by contradiction. Assuming the contrary, there exists
a<r 1 such thatBa21

m ,Ba
m . Then lemma 4 implies tha

Br 121
m ,Br 1

m , which is impossible because it contradicts t

fact thatBr 1

m5minrBr
m . Combining the results of the abov

two paragraphs, we conclude thatB1
m>B2

m>•••>Br 1

m

,Br 111
m ,•••,Bm

m51. QED.
1-14
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APPENDIX G: PROOF OF LEMMA 6

The following proves the claim in lemma 6 thatl i85l i

2p/3. For simplicity, we shall use projection operato
rather than POVMs. As noted in Sec. II, there is no loss
generality. LetP1 ,P2 , . . . ,Pr be the set of projection opera
tors for extracting some 3-ME state fromC.

Now supposeP gives a 3-ME state with a probabilitya,

uC&5PuC&1~12P!uC&, ~G1!

with

PuC&5~Al1Pu1&)u1&1~Al2Pu2&)u2&1~Al3Pu3&)u3&.
~G2!

SincePuC& is 3-ME state with a norma, its reduced density
matrix for B is

rB5(
i 51

3
a

3
u i &^ i u. ~G3!

Equating this with the partial trace ofPuC&^CuP over HA ,
we find that the (Al i /Aa/3)Pu i & ’s form an orthonormal set
The residual state is
v.
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~12P!uC&5Al12
a

3
u191&1Al22

a

3
u292&

1Al32
a

3
u393&. ~G4!

Notice that theu i 9& ’s are orthonormal because

^ j u~12P!~12P!u i &5^ j u~122P1PP!u i &5^ j u~122PP

1PP!u i &5^ j u~12PP!u i &50. ~G5!

Here the last equality follows from the fact that thePu i & ’s
are orthogonal to one another. This shows that an extrac
of a 3-ME state of probabilitya leads to a decrease of eac
l ’s by a/3. The same argument can be applied to each
P5P1 ,P2 , . . . ,Pr . This shows that after the extractio
with a probabilityp of a 3-ME state fromC, the eigenvalues
of the reduced density matrix of the unnormalized resid
state satisfyl i85l i2p/3. QED.
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