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Decoherence, correlation, and entanglement in a pair of coupled quantum dissipative oscillators
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A pair of coupled quantum dissipative oscillators, serving as a model for a nanosystem, is described here by
the Lindblad equation. Its dynamic evolution is shown to exhibit the features of decoherence~spatial extent of
quantum behavior!, correlation~spatial scale over which the system localizes to its physical dimensions!, and
mixed-state entanglement~or inseparability, a special quantum feature in the case of pure states making its
appearance first in bipartite systems! as a function of the coupling constants of the Lindblad equation. One
interesting feature of this calculation is that the mixed-state separable entanglement may exhibit revivals in
time. An initially inseparable entangled state need not remain so for all time and may exhibit regions of
separable entanglement. Interpreting the parameters of the Lindblad theory as environmental features in certain
experimental situations gives us clues as to the possible control of decoherence, correlation, and nature of
entanglement.
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I. INTRODUCTION

A prototypical model of many physical systems is often
pair of coupled quantum dissipative oscillators. This mo
embodies the physical ideas of decoherence, correlation
tanglement, etc. associated with quantum systems. In
ticular, quantum entanglement~inseparability! shows up for
the first time when we consider a two-oscillator system. T
is the continuous variable version of the two-qubit syste
The continuum version is of considerable interest both
perimentally and theoretically. Only recently were its insep
rability criteria worked out@1,2#. For systems in a mixed
quantum state, described by a density matrix, the notion
entanglement is different~separable and inseparable! from
the existence of pure entangled~inseparable! states that pro-
duce nonclassical phenomena. This is especially pertine
discussing quantum nanometric systems here with an o
latorlike model that are usually imbedded in other syste
so that a suitable description of the environmental effe
may be described in terms of the parameters of such a mo

The purpose of this paper is to exhibit this model in ge
eral terms of a Gaussian density matrix containing all
above elements. The ‘‘ambiguity function’’ defined as t
Fourier transform in the center-of-mass coordinate of
density matrix is found to lead to solutions of the suitab
constructed Lindblad quantum dissipative oscillators. We
the solution so obtained in estimating the various phys
features mentioned above. An important feature of the Li
blad theory is that we can obtain a mixed state from a p
state and vice versa. We restate this property finally, a
conclusion about possible control of decoherence and
tanglement in nanometric systems, by varying the coup
constants appearing in the Lindblad equation@3#.

We begin by giving a brief account of the density mat
and its two associated functions—the Wigner and ambig
functions—and their salient properties. A quick survey of t
Gaussian forms for these functions and the correspon
interpretations and significance of the coefficients in terms
the concepts of decoherence, correlation, entanglement,
uncertainty relation are also given. The Lindblad equat
1050-2947/2001/63~2!/022116~11!/$15.00 63 0221
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for the density matrix of a pair of coupled dissipative osc
lators is set up and solved using this parametrized Gaus
form. The implications of such analysis for possible practi
nanometric systems are indicated.

The Lindblad theory@3# gives a formally exact quantum
dynamical equation for the time-dependent density mat
possessing desirable properties of preserving hermitic
trace-class property~conservation of probability!, and posi-
tivity of the underlying density matrix and including the po
sibility of passage from pure state to mixed state and v
versa. This formalism is most often used to describe the
fects of environment on a system under investigation, and
the dissipative effects are considered to be due to the in
action of the system with its environment. The theory
however, general enough for cases in which one may no
able to differentiate clearly between the system and the
vironment, as may happen in nanometric systems embed
in other similar nanosystems~or as in cosmological situa
tions, which do not concern us here!. The theory has recently
been applied to study practical applications in condens
matter physics and chemistry where one can clearly iden
the system and its environment~often termed heat bath!. De-
scribing the dissipative mechanism in this manner gives
impression that one may be able to derive a Lindblad-ty
equation from such a starting point. This often entails a
proximations such as the Markoff scheme, in which there
no short time memory and weak interaction between the s
tem and the environment. This procedure gives one an
proximate measure of the interaction constants appearin
the Lindblad formulation. In this paper, we take the Lindbl
parameters as phenomenological, and we postpone a sep
investigation of their basic interpretation to a later comm
nication. It may be mentioned that master-equation-type
malisms are often considered for describing dissipative
fects, but they usually violate the basic principles by n
preserving positivity or probability conservation or both.
general framework for dealing with a single dissipative h
monic oscillator in this theory was given by Isaret al. @4#,
from which they were able to derive several existing mod
of dissipation as special cases. In view of its importance
©2001 The American Physical Society16-1
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due to the lack of methods to solve the Lindblad equation
action principle was constructed recently@5# as a possible
avenue for obtaining approximate solutions. For a discuss
of some aspects of decoherence and dissipation using
Lindblad formalism, we may refer to several articles in t
book by Giulini et al. @6#, in particular the articles by Joo
therein. The solution of the Lindblad equation for the dens
matrix of a single dissipative oscillator has been studied
fore using the Gaussian ansatz for the Wigner function
the density matrix@7,8#. These give rise to complicate
coupled equations for the coefficients appearing in
Gaussian ansatz. We present here the solution for a
oscillator system in terms of the Gaussian ansatz for the
biguity function, which yields linear equations for the coe
ficients, which are then solved in a straightforward way.
similar analysis for the single-oscillator case has also b
examined recently by us@9#.

In the literature, we often find~a! theoretical proposals fo
future experiments@10–12# and~b! preliminary experiments
@13–15# on simple coherent systems such as quantum d
trapped ions, and nuclear spins using magnetic resonan
examine issues of decoherence, entanglement, and their
trol. There was also a recent experimental investigation
controlling the decoherence by coupling to engineered re
voirs @16#. This is done by laser fields, which can change
interaction between a trapped ion and the reservoir. In
paper, we discuss some of these in the same explora
spirit. In view of the interpretation given for the Lindbla
equation as a way of understanding the effects of a reser
on a given system, the present paper is a contribution
wards this understanding. It should be noted that deco
ence arises from mutual interactions within the system
well as with reservoirs with which it may be in contact.
this paper, we study the latter aspect. Similarly, the quan
entanglement is in general an intrinsic quantum property
multiparticle systems and is not a feature of interacti
However, this property can be affected by interaction wit
reservoir also. As will be demonstrated here, we exhibit t
aspect by explicitly examining the reservoir effects bo
when the system is initially disentangled~separable! and
when it is entangled~inseparable!. It is in this sense that the
effects of environment on decoherence and entangleme
the system are studied in this work.

In Sec. II, we give the general theoretical framework
cluding the general Lindblad equation for the density ma
as well as the corresponding equation for the ambiguity fu
tion. In Sec. III, we introduce the Gaussian ambiguity fun
tion and the associated density matrix along with the der
tion of physical quantities associated with correlatio
decoherence, and entanglement. In Sec. IV, we describe
simplified model of an entangled Gaussian due to Simon@1#,
but in our language. In Sec. V, we construct a dynami
model based on a simplified form for the Lindblad equat
given in Sec. II, and we present and interpret its solution
graphical form using the Gaussian ansatz. In Appendix
we give the equations for the coefficients in the Gauss
ansatz for the two-oscillator system in the most gene
choice of the Lindblad equation. In Appendix B, we give t
02211
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explicit solution of these equations in a simplified mod
given in Sec. V.

II. GENERAL THEORETICAL FRAMEWORK

For simplicity of presentation, we consider the pair
oscillators as a single, two-dimensional system. Ifx stands
for the first system,A, and y for the second,B, we denote
them together by a two-dimensional vectorrW[(x,y).
We define the time-dependent density matrix in the us
way:

^rWur~ t !urW8&5^rW8ur~ t !urW&* ~hermiticity!,

Tr r~ t !5E d2rW^rWur~ t !urW&51 ~ trace class!, ~1!

E E d2rW d2rW8f* ~rW !^rWur~ t !urW8&f~rW8!>0

~positive semidefiniteness!.

Here the asterisk stands for complex conjugate.
define the center of mass and relative coordina
rW1rW852RW , rW2rW85r¢, and define the density matrix in th
form

^RW 1 1
2 r¢ur~ t !uRW 2 1

2 r¢&[r~RW ,r¢;t !. ~2!

Throughout, we use units where the Planck constant\51.
The ‘‘ambiguity function’’ A(QW ,r¢;t) is defined as the Fou
rier transform of the density matrix with respect toRW , and
the ‘‘Wigner function’’ f (RW ,pW ;t) is defined as the Fourie
transform with respect tor¢, as follows:

r~RW ,r¢;t !5E d2QW

~2p!2 e2 iQW •RW A~QW ,r¢;t !

5E d2pW

~2p!2 e2 ipW •r¢f ~RW ,pW ;t !. ~3!

The properties listed in Eq.~1! are reflected as the corre
sponding properties of the two functions defined above
follows:

A* ~QW ,r¢;t !5A~2QW ,2r¢;t !, f * ~RW ,pW ;t !5 f ~RW ,pW ;t !,
~3a!

and the normalization condition

A~QW 50,r¢50;t !515E E d2RW d2pW

~2p!2 f ~RW ,pW ;t !. ~3b!

Also

f ~RW ,pW ;t !5E d2r¢E d2QW

~2p!2 e2 iQW •RW eipW •r¢A~QW ,r¢;t !. ~3c!

We first observe that there are ten independent cov
ances~correlations! among the variables of the two system
6-2
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which can all be expressed in terms of the various derivat
of the ambiguity function. Here we express these ten co
riances of interest that make up the basic uncertainty r
tions that characterize the system as follows:

^RiRj&5E E d2RW d2pW

~2p!2 RiRj f ~RW ,pW ;t !

52
]2

]Qi]Qj
A~QW ,r¢;t !U

0

,

^pipj&5E E d2RW d2pW

~2p!2 pipj f ~RW ,pW ;t !52
]2

]r i]r j
A~QW ,r¢;t !U

0

,

~4!

^Ripj&5E E d2RW d2pW

~2p!2 Ripj f ~RW ,pW ;t !5
]2

]Qi]r j
A~QW ,r¢;t !U

0

.

In the above,i,j go over the two system variables,x,y. Here
all the derivatives of the functionA(QW ,r¢;t) are evaluated a
QW 505r¢.

The Lindblad equation for the density matrix of a dis
pative quantum system is

i ] tr̂5@Ĥ,r̂ #2
i

2 (
m,n

hnm~ L̂mL̂nr̂1 r̂L̂mL̂n22L̂nr̂L̂m!.

~5!

Here] t5]/]t is the time derivative operator. The first ter
on the right-hand side is the commutator of the Hamilton
operator of the systemĤ representing the usual unitar
Hamiltonian evolution, the second term is the nonunita
02211
s
a-
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evolution governed by a suitably chosen set of Hermit
Lindblad operators$L̂n%, and hnm are c-number Hermitian
matrix elements to be chosen appropriately to suit the ph
ics of the problem at hand. These properties guarantee
hermiticity of the density matrix, and its positivity is assure
if the c-number matrix is positive semidefinite. For simpli
ity of presentation, in this paper we choose the Hamilton
to be that of two noninteracting effective oscillators rep
senting the system under consideration:

H5
vA

2
~ p̂x

21 x̂2!1
vB

2
~ p̂y

21 ŷ2!. ~6!

The position and its conjugate momentum operators of e
system obey the usual canonical commutation rules, and
cause the two systems are independent, the operators be
ing to the separate systems commute between them.
choose the four Hermitian operators, the position and m
mentum operators for the two oscillators for the set of$L̂n%
operators, and the 16c-number Hermitian coefficients ar
left unspecified to keep the development general. We a
choose for simplicity of presentation the position and m
mentum variables in dimensionless form so that all the Lin
blad parameters have dimensions of energy~recall that we
use units with the usual Planck constant chosen to be un!.
The time variable is similarly chosen to be dimensionlesst,
by introducing an energy variable,l. They may be chosen
later to suit the specific problem at hand at a later sta
Thus,

L̂15 x̂, L̂25 ŷ, L̂35 p̂x , L̂45 p̂y . ~7!

And, we choose for the dissipative part the following mo
general form:
e

(
m,n

hnm~ L̂mL̂nr̂1 r̂L̂mL̂n22L̂nr̂L̂m![(
m,n

hnm~ L̂mL̂nr̂1¯ !

5h11~ x̂2r̂1¯ !1h33~ p̂x
2r̂1¯ !1h22~ ŷ2r̂1¯ !1h44~ p̂y

2r̂1¯ !1h12~ x̂ŷr̂1¯ !

1h12* ~ ŷx̂r̂1¯ !1h13~ x̂p̂xr̂1¯ !1h13* ~ p̂xx̂r̂1¯ !1h14~ x̂p̂yr̂1¯ !

1h14* ~ p̂yx̂r̂1¯ !1h23~ ŷp̂xr̂1¯ !1h23* ~ p̂xŷr̂1¯ !1h24~ ŷp̂yr̂1¯ !

1h24* ~ p̂yŷr̂1¯ !1h34~ p̂xp̂yr̂1¯ !1h34* ~ p̂yp̂xr̂1¯ !. ~8!

Introducing the notationshi j 5hi j
(r )1 ihi j

( i ) for iÞ j , and for i 5 j hii are real,]x5]/]x, etc., the Lindblad equation in th
coordinate representation is found to be~overdot denoting time derivative!

il]t^rW1ur̂urW2&5
1

2
$2vA~]x1

2 2]x2

2 !1vA~x1
22x2

2!2vB~]y1

2 2]y2

2 !1vB~y1
22y2

2!%^rW1ur̂urW2&2
i

2
$h11~x12x2!22h33~]x1

1]x2
!2

1h22~y12y2!22h44~]y1
1]y2

!212h12
~r !~x12x2!~y12y2!12ih12

~ i !~x1y22x2y1!22ih13
~r !~x12x2!~]x1

1]x2
!

22h13
~ i !~11x2]x1

1x1]x2
!22ih14

~r !~x12x2!~]y1
1]y2

!22h14
~ i !~x2]y1

1x1]y2
!22ih23

~r !~y12y2!~]x1
1]x2

!

22h23
~ i !~y2]x1

1y1]x2
!22ih24

~r !~y12y2!~]y1
1]y2

!22h24
~ i !~11y2]y1

1y1]y2
!22h34

~r !~]x1
1]x2

!~]y1
1]y2

!

12ih34
~ i !~]x1

]y2
2]y1

]x2
!%^rW1ur̂urW2&. ~9!
6-3
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In terms of the center of mass and relative coordinates introduced in Eq.~2!, we derive the equation obeyed by the ambigu
function:

l]tA~QW ,r¢!5$vA~2r1]Q1
1Q1] r 1

!1v~2r2]Q2
1Q2] r 2

!%A~QW ,r¢!2
1

2
$h11r1

21h33Q1
21h22r2

21h44Q2
212h12

~r !r1r2

12h12
~ i !~r1]Q2

2r2]Q1
!22h13

~r !r1Q112h13
~ i !~Q1]Q1

1r1] r1
!22h14

~r !r1Q212h14
~ i !~Q2]Q1

1r1] r2
!22h23

~r !r2Q1

22h23
~ i !~r2] r1

2Q1]Q2
!22h24

~r !r2Q212h24
~ i !~Q2]Q2

1r2] r2
!12h34

~r !Q1Q212h34
~ i !~Q2] r1

2Q1] r2
!%A~QW ,r¢!.

~10!
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In the next section, we examine the Gaussian structure o
ambiguity function and give in detail the various physic
implications of such a function.

III. AMBIGUITY FUNCTION, DENSITY MATRIX, AND
THEIR SIGNIFICANCE

The most general Gaussian form for the density matrix
defined by choosingA(QW ,r¢;t) in the following form with
time-dependent coefficients~all dimensionless in our nota
tion! with zero mean valuesRW andpW :

A~QW ,r¢;t !5exp2 1
2 @r iAi j ~ t !r j1r iBi j ~ t !Qj

1QiBji ~ t !r j1QiCi j ~ t !Qj #

5exp2
1

2 H ~rTQT!S AI BI

BI T CI D S r
QD J . ~11!

Here i, j run from 1 to 2, and we use the convention that t
repeated indices are summed. The second expression i
above is in terms of a convenient partitioned matrix notati
and the superscriptT stands for transposition. In this sectio
we suppress the time dependence, but in the next sec
when we consider the solution of the Lindblad equation,
exhibit this explicitly.

From Eqs.~4! and ~11!, we obtain

^RiRj&5Ci j , ^pipj&5Ai j , ^Ripj&5Bji , ~12!

and condition~3a! imposes the following requirements o
the coefficients in Eq.~11!, which are seen to be satisfied b
virtue of the above identification while condition~3b! is ful-
filled by construction:

Ai j ,Ci j are real, symmetric andBi j ~ÞBji ! is real.
~13!

Aii ,Cii .0, sgn~Bii ! nonspecific.

Introducing the matrix notation for the vector denoted n
as a column vector and the coefficientsA, B, Cas matrices,
Eq. ~11! may be expressed in a compact form:

A~QW ,r¢;t !5exp2 1
2 @r¢TA~ t !r¢1r¢TBI ~ t !QW

1QW TBI Tr¢1QW TCI ~ t !QW #. ~14!
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Then we deduce the density matrix from Eq.~3!:

r~RW ,rW !5
1

2pAdet~C!

3exp2
1

2
H ~RW T,r¢T!S CI 21 2 iEI

2 iEI T aI D S RW

r¢ D J ,

~15!

whereEI 5CI 21BI T andaI [AI 2DI 5AI 2BI CI 21BI T. Here

CI 215~detCI !21S C22 2C12

2C12 C11
D , BI T5S B11 B21

B12 B22
D .

~16!

It is to be noted that the matrixDI is symmetric upon explicit
calculation.

The Wigner function is found to be

f w~RW ,pW !5
1

Adet~CI !Adet~aI !
expH 2

1

2
F ~RW T,pW T!

3S EI aI 21AI BI T21
2EI aI 21

2aI 21EI T aI 21 D S RW

pW D G J . ~17!

The reduced density matrices for the two subsyste
separately are obtained by the trace operation. We thus
tain the marginal density matrix of systemA:

r1~Rt ,r1 ;t !5~2pC11!
21/23exp@2~2C11!

21

3~R1
222iB11R1r11~A11C112B11

2 !r1
2!#.

~18!

A similar calculation shows the reduced density matrix of t
second system to be
6-4
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r2~R2 ,r2 ;t !5~2pC22!
21/23exp@2~2C22!

21

3„R2
222iB22R2r21~A22C222B22

2 !r2
2
…#.

~19!

It is worth pointing out that these marginal density matric
of the subsystems do not contain remnants from the orig
two-system density matrix. This aspect becomes even m
transparent in subsequent discussion of the uncertainty p
ciple obeyed by the respective correlations of positions
their conjugate momenta.

Following the discussion given by us for the single dis
pative oscillator system@9#, we deduce the length scales
correlation and decoherence in the subsystems. The cor
tion length defines the physical extent of the system, whic
therefore given by the spatial decay of the diagonal elem
of the density matrix in coordinate space. This is obtained
settingx50 in Eqs.~18! and ~19!. On the other hand, the
decoherence length is defined as the spatial decay of
off-diagonal part of the density matrix in coordinate spa
This is obtained by settingR50 in Eqs.~18! and~19!. This
is a measure of the persistence of quantum behavior o
spatial scale. Thus,

^x2&A5C115dA
2~corr.!,

VA
25~A11C112B11

2 !5
~11jA!

4~12jA!
>1/4, ~20a!

dA
2~decoh.!5^x2&A/2VA

2,

and

^y2&B5C225dB
2~corr.!,

VB
25~A22C222B22

2 !5
~11jB!

4~12jB!
>1/4, ~20b!

dB
2~decoh.!5^y2&B/2VB

2.

jA,B are the mixed-state parameters of the two single os
lator systems. We now employ a parametrization of a bip
tite Gaussian given by Simon@1# and construct the assoc
ated ambiguity function and the density matrix of the syste

The equations obeyed byAi j , Bi j , and Ci j in Eq. ~11!
when substituted in Eq.~10! are given in Appendix A. We
observe that all these coefficients are coupled, implying
correlation, decoherence, and entanglement are all dyn
cally coupled and influence each other. In Sec. V, we int
duce a simplified model to illustrate the main features
these couplings by means of numerical analysis of the s
tions.

IV. A SIMPLE MODEL BASED ON SIMON’S WORK

We now consider a canonical parametrization of the tw
variable Gaussian density matrix derived from Simon’s@1#
work, which has all the features of entanglement, decoh
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ence, etc. It consists in the following choice of the corre
tions:

^x2&5a1 , ^px
2&5b1 , ^y2&5a2 , ^py

2&5b2 ,
~21!

^xy&5a12, ^pxpy&5b12.

All others are zero.
Some basic inequalities are obeyed by these quant

following from the Schwarz and Heisenberg inequalities:

a1a22a12
2 [KA>0, b1b22b12

2 [KB>0, Schwarz,
~22!

a1b1[VA
2> 1

4 , a2b2[VB
2> 1

4 , Heisenberg. ~23!

The above are for the individual oscillator systems. The
partite Heisenberg inequality and the condition for separa
entanglement derived from Simon’s work read as

a12b12<2KAKB2 1
8 , Heisenberg, ~24a!

ua12b12u<2KAKB2 1
8 , entanglement/separabillity.

~24b!

Without giving the details, it is straightforward to verify th
following expression for the density matrix associated w
the Simon model specified by Eq.~21!:

^RW 1 1
2 rWurSuRW 2 1

2 rW&

5
1

2p~KA!1/2exp$2 1
2 @~x2b112xyb121y2b2!

1KA
21~X2a222XYa121Y2a1!#%. ~25!

Here x5(x12x2), y5(y12y2), X5 1
2 (x11x2), and Y

5 1
2 (y11y2).
From this we have the reduced density matrices ofA and

B subsystems, which are found to be both mixed-state d
sity matrices:

^x1urS,Aux2&5
1

~2pa1!1/2expH 2
1

2 F S b11
1

4a1
D x1

2

1S b11
1

4a1
D x2

222x1x2S b12
1

4a1
D G J ,

~26!

^y1urS,Buy2&5
1

~2pb2!1/2expH 2
1

2 F S b21
1

4a2
D y1

2

1S b21
1

4a2
D y2

222y1y2S b22
1

4a2
D G J .

~27!

The expressions for Eqs.~26! and ~27! with x15x2 and y1
5y2 , respectively, lead to the identification of correlatio
6-5
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lengths while those withx152x2 and y152y2 , respec-
tively, lead to the identification of decoherence lengths in
subsystems:

dS,A
2 ~corr.!5a1 , dS,A

2 ~decoh.!51/4b1 ,
~28!

dS,B
2 ~corr.!5a2 , dS,B

2 ~decoh.!51/4b2 .

The mixed-state lengths in these subsystems are identifie
be the coefficients of the productsx1x2 and y1y2 , respec-
tively, in Eqs.~26! and ~27!:

dS,A
2 ~mix!54a1 /~4VA

221!, dS,B
2 ~mix!54a2 /~4VB

221!.
~29!

Similar analysis of the composite system density ma
given by Eq. ~25! leads to correlation and decoheren
lengths:

dS,AB
2 ~A2corr.!5KA /a25dS,A

2 ~corr.!2a12
2 /a2 ,

dS,AB
2 ~A2decoh.!51/4b15dA

2~decoh.!,
~30!

dS,AB
2 ~B2corr.!5KA /a15dS,B

2 ~corr.!2a12
2 /a1 ,

dS,AB
2 ~B2decoh.!51/4b25dB

2~decoh.!.

The coefficients of the productsxy andXY in Eq. ~25! indi-
cate the entanglement features in the composite sys
which we define here as entanglement lengths:

ES,AB
2 51/b12 and ẼS,AB

2 5KA /a12. ~31!

Equation~24! representing the Heisenberg inequality for t
bipartite system may be written then in the form

ES,AB
22 ẼS,AB

22 <S 1

4KA
12KBD . ~32!

In the next section, we develop a model of the two-oscilla
system based on the above-simplified parametrization of
Simon model as the given input at initial time in solving t
Lindbad equation. This will exhibit how the Lindblad param
eters can influence the entanglement features of the bipa
system.

V. A DYNAMICAL MODEL—SOLUTION OF THE
LINDBLAD EQUATION

The dynamical model described here serves to illust
how the solution of the Lindblad equation exhibits time ev
lution in the initially specified correlation functions given b
the Simon model. This model indicates how one may con
the parameters specifying the decoherence and entangle
by a suitable choice of the interactions introduced in
Lindblad equation. In the general equations~A1!–~A10!, we
define our model by keeping only the following Lindbla
interaction constants and all others are set equal to zero
02211
e

to

x
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r
e

ite

te
-

l
ent
e

hii , i 51,2,3,4, real part ofh12 and both real

and imaginary parts ofh13,h24. ~33!

Thehii ’s and the real parts ofh13,h24 serve as driving forces
in the two systems, whereas the imaginary parts ofh13,h24

give rise to damping of the two oscillators. Andh12
(r ) serves

as the driving force for the entanglement in the system. T
choice of the Lindblad parameters simplifies the coup
equations in Eq.~12! in such a way that the two oscillatorsA
andB are not coupled to each other but are governed by t
own individual parameters. Thus their individual decoh
ence and correlation features are preserved even in
simple model. Also, the entanglement features appear he
four coupled equations for the cross-correlation functio
with their own friction forces. The following set of coupled
linear equations describes this simplified model:

l]t A11522vAB1122h13
~ i !A111h11,

l]t B115vAA112vAC1122h13
~ i !B112h13

~r ! , ~34!

l]tC1152vAB1122h13
~ i !C111h33;

l]t A22522vBB2222h24
~ i !A221h22,

l]t B225vBA222vBC2222h24
~ i !B222h24

~r ! , ~35!

l]tC2252vBB2222h24
~ i !C221h44;

l]t A1252vAB212vBB122~h13
~ i !1h24

~ i !!A121h12
~r ! ,

l]t B125vBA122vAC122~h13
~ i !1h24

~ i !!B12,
~36!

l]t B215vAA122vBC122~h13
~ i !1h24

~ i !!B21,

l]tC125vAB121vBB212~h13
~ i !1h24

~ i !!C12.

Equations~34! and ~35! are the respective equations for th
oscillatorsA andB, respectively, and are the same as tho
solved in the RWR-AKR@9# paper for a single dissipative
oscillator. Equations~36!, on the other hand, are the equ
tions coupling the two oscillators, representing entang
ment. These being coupled first-order differential equatio
in time, we specify the initial conditions as in the Simo
model:

A11~t50!5b1 , B11~t50!50, C11~t50!5a1 ,

A22~t50!5b2 , B22~t50!50, C22~t50!5a2 ,
~37!

A12~t50!5b12, B12~t50!50, B21~t50!50,

C12~t50!5a12.

These equations are solved by the method of Laplace tr
formation incorporating the initial conditions given by Eq
~37!. The time dependences of the coefficientsA12,B12 given
by Eqs.~36! are of interest to us as they represent the e
6-6
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lution of entanglement of the two oscillators. In Appendix
we give the exact analytical solutions of these equations.
numerical display of these results will be described pr
ently. We should remark here that this simple model does
compromise the general features of the system, as wil
evident from the foregoing discussion.

It may be worth noting that the above initial condition
and their time evolutions governed by Eqs.~34!–~36! may be
expressed neatly as the evolution of the covariance matr
as follows:

AS~t50!5S a1 0

0 b1
D→AS~t!5S C11 B11

B11 A11
D , ~38!

BS~t50!5S a2 0

0 b2
D→BS~t!5S C22 B22

B22 A22
D , ~39!

CS~t50!5S a12 0

0 b12
D→CS~t!5S C12 B12

B21 A12
D . ~40!

From Appendix B, we note how these evolutions come ab
explicitly.

In this form, the Simon inequalities given in Eqs.~24a!
and ~24b! are now written in the form

~detAS!~detBS!1~ 1
4 2detCS!22tr~ASJCSJBSJCS

TJ!

> 1
4 ~detAS1detBS!, Heisenberg, ~41a!

~detAS!~detBS!1~ 1
4 2detCS!22tr~ASJCSJBSJCS

TJ!

> 1
4 ~detAS1detBS!, entanglement/separability.

~41b!

HereJ5(21 0
0 1) andCS

T is the transposed matrix ofCS . The
Schwarz and Heisenberg inequalities for theA andB systems
are

C11C222C12
2 [KA>0, A11A222A12

2 [KB>0, Schwarz,
~42!

detAS[VA
25A11C112B11

2 > 1
4 ,

detBS[VB
25A22C222B22

2 > 1
4 , Heisenberg. ~43!

As is pointed out by Simon@1#, it is sufficient to examine the
sign of the detCS to determine whether one has separa
entanglement~if the sign is negative! or not ~if the sign is
zero or positive!. In the numerical work presented here f
the simplified model worked out in Appendix B, we dedu
analytically an important result for asymptotically larg
times. In fact, we have

detCS~t5`!5S h12
~r !

vA@G21~11r !2#@G21~12r !2#
D 2

3$~r 21!G41G2~r 32r 212r 22!

2~r 22r 11!%. ~44!
02211
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This result, it should be noted, is independent of t
initial conditions. For finite times, however, a mor
complicated calculation needs to be made, which will
presented graphically in this paper. Corresponding to
graphical presentations, we give here the results for two ty
cal cases.

Case~i!: r 51 ~equivalent oscillators!. We find from Eq.
~44!

detCS~t5`!,0. ~45a!

Case~ii !: rÞ1 ~inequivalent oscillators!. In this case,
depending on the values ofr andG, we may have

detCS~t5`!.0 and detCS~t5`!,0. ~45b!

These results show that irrespective of the initial conditio
for a suitable choice of Lindblad parameters we c
get a separable entangled or an inseparable entan
state.

We now present detailed calculations of the time evo
tion of decoherence and entanglement with given initial c
ditions. We choosel5vA and use position and momentu
variables in dimensionless form so that all Lindblad para
eters have dimensions of energy and the dimensionless
variables ist5vAt. The choice of the parameters for th
initial conditions must be consistent with Eqs.~22!, ~23!,
~24a! and ~24b!. We choose here two special choices f
purposes of illustration with minimum uncertainty valu
a15b15 1

2 , a25b25 1
2 : ~a! Initially separable entangled

state witha12505b12, ~b! initially inseparable entangled
state witha125

1
2 52b12. From Eqs.~45a! and ~45b!, we

deduce that one may get a separable entangled or an ins
rable entangled state in both of these situations for a suit
choice of the Lindblad parameters, which are chosen to p
serve the positive signs of the mean-square displacem
and momenta of the two oscillators. We focus on the cas
inequivalent oscillators by choosing their frequencies to
different ~the frequency of oscillatorB is chosen here to be
three times faster than that ofA! but all other parameters
were chosen to be the same for convenient presentatio
the results. Their values are given in the caption of Fig.
and are kept the same in calculating all other system cha
teristics.

In Fig. 1, we display the mean-square momentum of
two subsystems as a function of the dimensionless timt.
Since we assumed the two oscillators to be in their minim
uncertainty states, they both begin at the same value~0.5!
initially and evolve according to the solution given in Ap
pendix B, Eq.~B3!, and its counterpart. They approach the
respective asymptotes for large times, theB oscillator ap-
proaching it much earlier than theA. This is due to the fact
that the decay constants are chosen to be the same for
the systems.

In Fig. 2, we present the subsystem decoherence len
defined by Eqs.~20a! and ~20b! and the solutions given in
Appendix B. It is interesting to note that as in the case
momenta in Fig. 1, the decoherence length crosses thA
6-7
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system value for times of about 0.6, and approach th
asymptotic values for large times~for times larger than 5 in
this figure!. This is because the decoherence length is a r
of similarly decaying quantities.

Figure 3 represents the oscillator pair correlations invo
ing positions and momenta of the two systems. These
important in determining the dynamic evolution of entang
ment. In Fig. 3~a!, the initial values for these are chosen to
zero, which corresponds to case~a! above when the system i
initially separable entangled. Figure 3~b!, on the other hand
is for the case when they are initially inseparable entang
They both oscillate in approximately opposite phase, the s
ond case exhibiting more oscillations than the first. Th
change their signs a few times before reaching, albeit slow
their respective asymptotic values.

Finally, Fig. 4 displays the time evolution of the determ
nant constructed from the solutions given by Eqs.~B4!–~B7!
of Appendix B. This is a signature of ‘‘entanglement’’ of th
systemsA andB. The curve~a! is for the initially inseparable

FIG. 1. Subsystem mean-square momentum^px
2& for oscillator

A and ^py
2& for oscillatorB in dimensionless units, using the solu

tions in Appendix B withl5vA and GA5GB50.25, r 5vB /vA

53, h115h335h13
(r )51, h2252, h4454, anda15b15a25b250.5.

FIG. 2. Subsystem decoherence lengths with the same pa
eters as in Fig. 1.
02211
ir

io

-
re
-

d.
c-
y
y,

entangled case, whereas curve~b! is for the initially sepa-
rable entangled case. They both show oscillations about
values, exhibiting ‘‘revival’’ of entanglement as tim
progresses. This also clearly shows that the entanglem
property changes over time, a feature worth emphasiz

m-

FIG. 3. Oscillator pair correlations with the same parameters
in Fig. 1 and~a! a12505b12 ~separable entangled initial state!; ~b!
a1250.552b12 ~inseparable entangled initial state!.

FIG. 4. Evolution of the determinant of the covariance mat
Cs @Eq. ~40!#, the sign of which determines whether the state
inseparably entangled~,0! or separably entangled~>0!, with the
same parameters as in Fig. 1 and~a! a12505b12 ~separable en-
tangled initial state!; ~b! a1250.552b12 ~inseparable entangled ini
tial state!.
6-8



p
th
rio
an
re
e
fie
te
n
er
ge
s

o
ta
ra
ta
e

s
am
he
io
p
s
cu
e

ab
on
t
cl
a

nt
d
e
m
le
th
e
ro
ti

a
fic

a

th

o

er in

in
e
flu-
dis-
on.

by
of

d for
he
not
us-

ay
tor
re

DECOHERENCE, CORRELATION, AND ENTANGLEMENT . . . PHYSICAL REVIEW A 63 022116
What was initially separable entangled may become inse
rable entangled some time later and vice versa and
characteristic may change several times over a pe
of time. This implies that in actual experiment, such
oscillation in entanglement may provide windows whe
such properties are either to be preferred or avoid
It should be remarked that these features of the simpli
model are retained more or less in the forms presen
here when one considers more general equations give
Appendix A. The only point to be noted is that the decoh
ence and entanglement influence each other in this more
eral setting, which was not the case in the model discus
here.

VI. CONCLUDING REMARKS

One of the important consequences of the Lindblad the
is that one can obtain a mixed state from an initial pure s
and vice versa. In this paper, in particular, we demonst
another aspect of this feature by showing that we can ob
an inseparable entangled state from an initially separable
tangled state. This feature allows us to reinterpret it a
manipulation of the entanglement by means of the par
eters of the theory, which in turn is a manifestation of t
environment or other elements of the system. Manipulat
of decoherence is also possible, as is clear from our exam
Interpreting the Lindblad parameters as the parameters a
ciated with the environment, we note that the model cal
lation given here implies that important features of decoh
ence and entanglement may be manipulated by suit
change in the environment. In the experimental situati
presented in Refs.@13–15#, for example, simple coheren
systems such as quantum dots, trapped ions, and nu
spins are studied in an attempt to realize these features
their possible control. There is also a recent experime
investigation@16# of controlling the decoherence of trappe
ions by laser fields that can change the interaction betw
the trapped ion and the reservoir. The same technique
possibly be employed to investigate the control of entang
ment. We hope to investigate possible determinations of
Lindblad parameters in terms of interactions between the
vironment Hamiltonian and the system of interest, thus p
viding a microscopic picture of such phenomena in realis
situations.
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APPENDIX A: DYNAMICAL EQUATIONS FOR THE
MATRIX ELEMENTS

The equations for the coefficients in the Gaussian ans
Eq. ~11!, are obtained when substituted in Eq.~10!. Here we
arrange them in three sets: the first corresponds to
oscillator A, the second to the oscillatorB, while the
third set corresponds to the interaction between the two
cillators,
02211
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l]t A11522vAB1122h13
~ i !A1122h12

~ i !B1222h14
~ i !A121h11,

~A1!

l]t B115vAA112vAC1122h13
~ i !B111h34

~ i !A1222h23
~ i !B12

2h14
~ i !B212h12

~ i !C122h13
~r ! , ~A2!

l]tC1152vAB1122h13
~ i !C1112h34

~ i !B2122h23
~ i !C121h33;

~A3!

l]t A22522vBB2222h24
~ i !A2212h23

~ i !A1212h12
~ i !B211h22,

~A4!

l]t B225vBA222vBC2222h24
~ i !B221h34

~ i !A121h23
~ i !B12

2h14
~ i !B211h12

~ i !C122h24
~r ! , ~A5!

l]tC2252vBB2222h24
~ i !C2222h34

~ i !B1222h14
~ i !C121h44;

~A6!

l]t A1252vAB212vBB122~h13
~ i !1h24

~ i !!A121h23
~ i !A11

2h14
~ i !A221h12

~ i !B112h12
~ i !B221h12

~r ! , ~A7!

l]t B125vBA122vAC122~h13
~ i !1h24

~ i !!B122h34
~ i !A11

2h14
~ i !B112h14

~ i !B222h12
~ i !C222h14

~r ! , ~A8!

l]t B215vAA122vBC122~h13
~ i !1h24

~ i !!B212h34
~ i !A22

1h23
~ i !B112h23

~ i !B222h12
~ i !C111h23

~r ! , ~A9!

l]tC125vAB121vBB212~h13
~ i !1h24

~ i !!C122h34
~ i !B11

1h34
~ i !B112h14

~ i !C112h23
~ i !C221h34

~r ! . ~A10!

We note that these equations are coupled to each oth
an interesting way. The equations for theA andB oscillators
are coupled to each other via their interactions introduced
the Lindblad evolution. This implies that in this model, th
correlations and decoherence in the two oscillators are in
enced by the entanglement between the two due to the
sipative processes contained in the Lindblad formulati
The stationary solutions of these equations are obtained
setting to zero all the time derivatives in the left sides
these equations. They are also the solutions approache
asymptotically large times. In a simplified model given in t
text, we consider a decoupled set of equations, which do
compromise the final results but serve the purpose of ill
trating how these influences come about and how one m
control these important features of the quantum oscilla
pair. In Appendix B, explicit solutions of the equations a
presented.

APPENDIX B: SOLUTIONS OF EQS. „34…–„36…

The solution for theA-oscillator equations@Eq. ~34!# is
6-9
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A11~t!5 1
2 b1e2t~vA /l!GAF11cos 2tS vA

l D G1 1
2 a1e2t~vA /l!GAF12cos 2tS vA

l D G
1

~h11/vA!

GA~GA
214!

H GA
2 S 12

e2t~vA /l!GA

2 F11cos 2tS vA

l D G D 12~12e2t~vA /l!GA!1GAe2t~vA /l!GA sin 2tS vA

l D J
1

~h33/vA!

2GA~GA
214!

H 2GA
2e2t~vA /l!GAF12cos 2tS vA

l D G14~12e2t~vA /l!GA!22GAe2t~vA /l!GA sin 2tS vA

l D J
1

~h13
~r !/vA!

~GA
214!

H 2F12e2t~vA /l!GA cos 2tS vA

l D G2GAe2t~vA /l!GA sin 2tS vA

l D J , ~B1!

B11~t!5
~b12a1!

2
e2t~vA /l!GA sin 2tS vA

l D1
@~h112h33!/vA#

~GA
214!

H 12e2t~vA /l!GAFcos 2tS vA

l D1 1
2 GA sin 2tS vA

l D G J
2

~h13
~r !/vA!

~GA
214!

H GAF12e2t~vA /l!GA cos 2tS vA

l D G22e2t~vA /l!GA sin 2tS vA

l D J , ~B2!

C11~t!5 1
2 a1e2t~vA /l!GAF11cos 2tS vA

l D G1 1
2 b1e2t~vA /l!GAF12cos 2tS vA

l D G
1

~h11/vA!

2GA~GA
214!

H 2GA
2e2t~vA /l!GAF12cos 2tS vA

l D G14~12e2t~vA /l!GA!22GAe2t~vA /l!GA sin 2tS vA

l D J
1

~h33/vA!

2GA~GA
214!

H GA
2F12e2t~vA /l!GA cos 2tS vA

l D G1~GA
214!~12e2t~vA /l!GA!12GAe2t~vA /l!GA sin 2tS vA

l D J
1

~h13
~r !/vA!

~GA
214!

H 22F12e2t~vA /l!GA cos 2tS vA

l D G1GAe2t~vA /l!GA sin 2tS vA

l D J . ~B3!

In the above expressions, we have setGA52h13
( i )/vA . The solution for theB oscillator@Eq. ~37!# is obtained by the substitu

tions 1→2, 3→4, andA→B in the above expressions.
We now give the solution to Eq.~36!. Here we setG5(GA1rGB)/2 andr 5vB /vA :

A12~t!5b12e
2t~vA /l!G cost~vA /l!cost~vB /l!1a12e

2t~vA /l!G sint~vA /l!sint~vB /l!

1S h12
~r !

vA
DG

~G2111r 2!

@G21~11r !2#@G21~12r !2#
2S h12

~r !

vA
D Ge2t~vA /l!G

2 H cost~vA1vB!/l

G21~11r !2 1
cost~vA2vB!/l

G21~12r !2 J
1S h12

~r !

vA
D e2t~vA /l!G

2 H ~11r !sint~vA1vB!/l

G21~11r !2 2
~12r !sint~vA2vB!/l

G21~12r !2 J , ~B4!

B12~t!5
b12e

2t~vA /l!G

4
$sint@vA~11r !/l#1sint@vA~12r !/l#%2

a12e
2t~vA /l!G

2 F 3

~11r !
sint@vA~11r !/l#

1
1

~12r !
sint@vA~12r !/l#G1S h12

~r !

vA
D ~G2111r 22r !

@G21~11r !2#@G21~12r !2#

2S h12
~r !

vA
D 3e2t~vA /l!G

4~11r !@G21~11r !2#
$G sintvA~11r !/l1~11r !costvA~11r !/l%

2S h12
~r !

vA
D e2t~vA /l!G

4~12r !@G21~12r !2#
$G sintvA~12r !/l1~12r !costvA~12r !/l%, ~B5!
022116-10
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B21~t!5
b12e

2t~vA /l!G

4~11r ! F ~21r !

~11r !
sint@vA~11r !/l#1

~22r !

~12r !
sint@vA~12r !/l#G

2
a12e

2t~vA /l!G

2
$sint@vA~11r !/l#1sint@vA~12r !/l#%1S h12

~r !

vA
D ~G211!

@G21~11r !2#@G21~12r !2#

2S h12
~r !

vA
D ~21r !e2t~vA /l!G

4~11r !@G21~11r !2#
$2G sintvA~11r !/l1~11r !costvA~11r !/l%

2S h12
~r !

vA
D ~22r !e2t~vA /l!G

4~12r !@G21~12r !2#
$2G sintvA~12r !/l1~12r !costvA~12r !/l%, ~B6!

C12~t!5a12e
2t~vA /l!G cost~vA /l!cost~vB /l!1b12e

2t~vA /l!G sint~vA /l!sint~vB /l!

1S h12
~r !

vA
DG

r

@G21~11r !2#@G21~12r !2#
1S h12

~r !

vA
D e2t~vA /l!G

4@G21~11r !2#
$G costvA~11r !/l2~11r !sintvA~11r !/l%

2S h12
~r !

vA
D e2t~vA /l!G

4@G21~12r !2#
$G costvA~12r !/l2~12r !sintvA~12r !/l%. ~B7!

These expressions are numerically evaluated for a certain choice of parameters and are displayed in graphical fo
figures. Their significance is then elucidated in terms of some of the experimental situations being examined th
mentioned in the Introduction.
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