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Decoherence, correlation, and entanglement in a pair of coupled quantum dissipative oscillators
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A pair of coupled quantum dissipative oscillators, serving as a model for a nanosystem, is described here by
the Lindblad equation. Its dynamic evolution is shown to exhibit the features of decohéspatal extent of
guantum behavigr correlation(spatial scale over which the system localizes to its physical dimensiamg
mixed-state entanglemeir inseparability, a special quantum feature in the case of pure states making its
appearance first in bipartite systenas a function of the coupling constants of the Lindblad equation. One
interesting feature of this calculation is that the mixed-state separable entanglement may exhibit revivals in
time. An initially inseparable entangled state need not remain so for all time and may exhibit regions of
separable entanglement. Interpreting the parameters of the Lindblad theory as environmental features in certain
experimental situations gives us clues as to the possible control of decoherence, correlation, and nature of
entanglement.
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[. INTRODUCTION for the density matrix of a pair of coupled dissipative oscil-
lators is set up and solved using this parametrized Gaussian
A prototypical model of many physical systems is often aform. The implications of such analysis for possible practical
pair of coupled quantum dissipative oscillators. This modehanometric systems are indicated.
embodies the physical ideas of decoherence, correlation, en- The Lindblad theory 3] gives a formally exact quantum
tanglement, etc. associated with quantum systems. In padynamical equation for the time-dependent density matrix,
ticular, quantum entanglemefihseparability shows up for possessing desirable properties of preserving hermiticity,
the first time when we consider a two-oscillator system. Thidrace-class propertjconservation of probabiliyy and posi-
is the continuous variable version of the two-qubit systemtivity of the underlying density matrix and including the pos-
The continuum version is of considerable interest both exsibility of passage from pure state to mixed state and vice
perimentally and theoretically. Only recently were its insepaversa. This formalism is most often used to describe the ef-
rability criteria worked out[1,2]. For systems in a mixed fects of environment on a system under investigation, and so
guantum state, described by a density matrix, the notion othe dissipative effects are considered to be due to the inter-
entanglement is differenseparable and inseparablieom  action of the system with its environment. The theory is,
the existence of pure entanglédseparablestates that pro- however, general enough for cases in which one may not be
duce nonclassical phenomena. This is especially pertinent iable to differentiate clearly between the system and the en-
discussing quantum nanometric systems here with an oscilironment, as may happen in nanometric systems embedded
latorlike model that are usually imbedded in other systemsin other similar nanosystem@®r as in cosmological situa-
so that a suitable description of the environmental effectsions, which do not concern us her&he theory has recently
may be described in terms of the parameters of such a moddieen applied to study practical applications in condensed-
The purpose of this paper is to exhibit this model in gen-matter physics and chemistry where one can clearly identify
eral terms of a Gaussian density matrix containing all thehe system and its environme(ften termed heat bathDe-
above elements. The “ambiguity function” defined as thescribing the dissipative mechanism in this manner gives the
Fourier transform in the center-of-mass coordinate of theémpression that one may be able to derive a Lindblad-type
density matrix is found to lead to solutions of the suitablyequation from such a starting point. This often entails ap-
constructed Lindblad quantum dissipative oscillators. We us@roximations such as the Markoff scheme, in which there is
the solution so obtained in estimating the various physicaho short time memory and weak interaction between the sys-
features mentioned above. An important feature of the Lindtem and the environment. This procedure gives one an ap-
blad theory is that we can obtain a mixed state from a pur@roximate measure of the interaction constants appearing in
state and vice versa. We restate this property finally, as the Lindblad formulation. In this paper, we take the Lindblad
conclusion about possible control of decoherence and erparameters as phenomenological, and we postpone a separate
tanglement in nanometric systems, by varying the couplingnvestigation of their basic interpretation to a later commu-
constants appearing in the Lindblad equafidh nication. It may be mentioned that master-equation-type for-
We begin by giving a brief account of the density matrix malisms are often considered for describing dissipative ef-
and its two associated functions—the Wigner and ambiguitffects, but they usually violate the basic principles by not
functions—and their salient properties. A quick survey of thepreserving positivity or probability conservation or both. A
Gaussian forms for these functions and the correspondingeneral framework for dealing with a single dissipative har-
interpretations and significance of the coefficients in terms omonic oscillator in this theory was given by Isar al. [4],
the concepts of decoherence, correlation, entanglement, afidm which they were able to derive several existing models
uncertainty relation are also given. The Lindblad equatiorof dissipation as special cases. In view of its importance and
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due to the lack of methods to solve the Lindblad equation, aexplicit solution of these equations in a simplified model
action principle was constructed recenfly] as a possible given in Sec. V.
avenue for obtaining approximate solutions. For a discussion
of some aspects of decoherence and dissipation using the Il. GENERAL THEORETICAL FRAMEWORK
Lindblad formalism, we may refer to several articles in the F imolicity of tati ider th i of
book by Giulini et al. [6], in particular the articles by Joos or simpiicity ol presentalion, we consider thé pair o
therein. The solution of the Lindblad equation for the densityoscm""to.rS as a single, wo-dimensional systemx Btands
matrix of a single dissipative oscillator has been studied be]ior the first systemA, andy fqr the §econdB, we denote
) . . _ em together by a two-dimensional vectoe=(X,y).

fore using the Gaussian ansatz for the Wigner function an%?le define the time-dependent density matrix in the usual
the density matrix[7,8]. These give rise to complicated way:
coupled equations for the coefficients appearing in the
Gaussian ansatz. We present here the solution for a two- (Flp(O)|F"Y=(F"|p(t)|F)* (hermiticity),
oscillator system in terms of the Gaussian ansatz for the am-
biguity function, which yields linear equations for the coef-
ficients, which are then solved in a straightforward way. A
similar analysis for the single-oscillator case has also been
examined recently by u9]. 20 1221 a2 SN 4

In the literature, we often fin(h) theoretical proposals for j J’ A d*F ™ (Tl (D]F) (7)) =0
future experiment§10—12 and(b) preliminary experiments
[13-15 on simple coherent systems such as quantum dots,
trapped ions, and nuclear spins using magnetic resonance ffere the asterisk stands for complex conjugate. We
examine issues of decoherence, entanglement, and their caflefine the center of mass and relative coordinates,
trol. There was also a recent experimental investigation of ;. F'=2R, F—i"=F, and define the density matrix in the
controlling the decoherence by coupling to engineered resefyrm
voirs[16]. This is done by laser fields, which can change the
interaction between a trapped ion and the reservoir. In this <I§+%F|p(t)| *_§F>Ep(|§,r;t)_ (2)
paper, we discuss some of these in the same exploratory
spirit. In view of the interpretation given for the Lindblad Throughout, we use units where the Planck constant.
equation as a way of understanding the effects of a reservoirhe “ambiguity function” A(Q,F;t) is defined as the Fou-
on a given system, the present paper is a contribution torer transform of the density matrix with respect R and
wards this understanding. It should be noted that decohegye “Wigner function” f(ﬁ,ﬁ;t) is defined as the Fourier
ence arises from mutual interactions within the system agansform with respect t6, as follows:
well as with reservoirs with which it may be in contact. In

Tr p(t)=f d?r{F|p(t)|F)=1 (trace clasp (1)

(positive semidefinitenegs

this paper, we study the latter aspect. Similarly, the quantum . d2Q - - .

entanglement is in general an intrinsic quantum property of p(R,F;t)=f (Zw)ze*'Q'RA(Q,F;t)
multiparticle systems and is not a feature of interaction.

However, this property can be affected by interaction with a g .. .

reservoir also. As will be demonstrated here, we exhibit this =) @m2® PR, Ps). )

aspect by explicitly examining the reservoir effects both

when the system is initially disentanglddeparable and  The properties listed in Eql) are reflected as the corre-

when it is entangledinseparabl It is in this sense that the sponding properties of the two functions defined above as
effects of environment on decoherence and entanglement llows:

the system are studied in this work.

In Sec. II, we give the general theoretical framework in-  A*(Q,F;t)=A(—Q,—F:t), f*(Rp;t)=Ff(Rp;t),
cluding the general Lindblad equation for the density matrix (33
as well as the corresponding equation for the ambiguity func-
tion. In Sec. Ill, we introduce the Gaussian ambiguity func-and the normalization condition
tion and the associated density matrix along with the deriva- 28 425
tion of physical quantities associated with correlation, =L P, - .
decoherence, and entanglement. In Sec. IV, we describe the A(Q:O,r=0,t)=1=J J (2m)? fRPY. D
simplified model of an entangled Gaussian due to Sifddn
but in our language. In Sec. V, we construct a dynamicallso
model based on a simplified form for the Lindblad equation
given in Sec. I, and we present and interpret its solution in NN 5
graphical form using the Gaussian ansatz. In Appendix A, f(R p,t)—f d Ff
we give the equations for the coefficients in the Gaussian
ansatz for the two-oscillator system in the most general We first observe that there are ten independent covari-
choice of the Lindblad equation. In Appendix B, we give theances(correlation$ among the variables of the two systems,

e 1QRPIA(G,T:t). (30)

d2Q
(2m)*
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which can all be expressed in terms of the various derivativesvolution governed by a suitably chosen set of Hermitian

of the amblgulty function. Here we express these ten Covarindblad Opera’[oril_n} and hnm are c-number Hermitian
riances of interest that make up the basic uncertainty relamatrix elements to be chosen appropriately to suit the phys-

tions that characterize the system as follows:

(RR))= H i )2 PRRf(RBD)

92
(9Qi¢9Qj

2

(pipy) = ff 2 )2 pp,f(Rpt)——ar‘&rJ

! 0
(4)
P

dQ;dr;

d’R d? .
<Ripj>:J J(ZT);jRipjf(R,ﬁ;t)=

(]

In the abovej,j go over the two system variablesy. Here
all the derivatives of the functioA(@,F’;t) are evaluated at

Q=0=F.

The Lindblad equation for the density matrix of a dissi-

pative quantum system is

i A A SR
E% Nam(Lmbnp+pLmbn—2LnpLgy).
©)

Here 9,= 4l dt is the time derivative operator. The first term

igp=[H,p]-

on the right-hand side is the commutator of the Hamiltonian

operator of the systentd representing the usual unitary

ics of the problem at hand. These properties guarantee the
hermiticity of the density matrix, and its positivity is assured

if the c-number matrix is positive semidefinite. For simplic-
ity of presentation, in this paper we choose the Hamiltonian
to be that of two noninteracting effective oscillators repre-
senting the system under consideration:

w w

5 (PR + = (B3 +97). (®)

The position and its conjugate momentum operators of each

system obey the usual canonical commutation rules, and be-
cause the two systems are independent, the operators belong-
ing to the separate systems commute between them. We
choose the four Hermitian operators, the position and mo-

mentum operators for the two oscillators for the sefiof}
operators, and the 16-number Hermitian coefficients are
left unspecified to keep the development general. We also
choose for simplicity of presentation the position and mo-
mentum variables in dimensionless form so that all the Lind-
blad parameters have dimensions of enefiggall that we
use units with the usual Planck constant chosen to be)unity
The time variable is similarly chosen to be dimensionless,
by introducing an energy variabla, They may be chosen
later to suit the specific problem at hand at a later stage.
Thus,

I:]_:

% L=9, Le=py, Li=py. (7)

And, we choose for the dissipative part the following most

Hamiltonian evolution, the second term is the nonunitarygeneral form:

m2n m(LmLnp+ pLml —2£n,3£m)zmzn N Ll np+ )
=hll(f(zf)+---)+h33(f))2([)+---)+h22(§/2f)+---)+h44(b§ﬁ+ )+ hy(Xyp+---)
+hi§%p+--)+hyg(KPyp+- ) +his(Pekp+--+) +hyy(XPyp+--)
+hIPyXp+ )+ hog(IPup+- ) + 3PP+ ) + hau(IPyp+- )
+h3(PyID+ )+ haa(PuPyp+- ) +h3(PyPup+- ). (€

Introducing the notations;; =h{?+ih{’ for i#]j, and fori=j h; are real,g,=d/dx, etc., the Lindblad equation in the
coordinate representation is found to (merdot denoting time derivatiye

- a1 2 _ 2 2_ 2 2
')\(77<r1|P|r2>:5{_wA(axl_f7x2)+wA(X1_Xz)_wB(f7yl—
+hoy(y;—
— 2h{3(1+Xdy +Xdy.) — 2ih (%
=233 (Y20y, + Y1dx,) — 2ih 5 (y1

+2ihg2((9x107y2 Y1 x2 }<rl|p|r2>

532,2)4‘0)8()’

¥2)2=haa( 9y +dy )+ 2010 (X, = X) (Y1~

—X)(dy, +dy,) = 2h{3(Xpdy, +X10y,) — 2i G (y

i
Ty Klplfa) - E{hn(xl_xz)z_ hag( 9y, + dx,)?

¥2) +2i (XY= Xoy1) — Zih(lg(xl_xz)(&xl"‘ dx,)

1™ yz)(axl"' &Xz)

~Y2)(y, +dy,) = 2h50(1+Y2dy +y1dy,) =205 (dy +dy,) (dy +y,)

C)
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In terms of the center of mass and relative coordinates introduced i(2Egve derive the equation obeyed by the ambiguity
function:

N - 1
N AQT) ={wa(—Tr1dq,+ Q1 )+ @(—T2dq,+ Q20 ) }A(Q,T) — §{h11r§+ hgsQi+ hoat 5+ hauQ5+ 2001,
+ 2h(1iz)(r10"Q2_ r2dq,)— 2h3riQ+ 2h(1i3),(Q107Q1+ r1de,)— 2hiriQo+ 2h(1i4),(Q25'Q1+ F1dp,)— 2hi3roQ;

—2h3)(r 20, — Q1dq,) — 2h5rQa+ 2h53(Qadq, * I2dr,) + 205/ Q1 Qa+ 2h54(Q20, — Q1 )FA(Q,T).

(10)
|
In the next section, we examine the Gaussian structure of thEhen we deduce the density matrix from E§):
ambiguity function and give in detail the various physical
implications of such a function.
. 1
RiN=———
. AMBIGUITY FUNCTION, DENSITY MATRIX, AND P(R, e~
THEIR SIGNIFICANCE 2m\de(C)
-1 s -

The most general Gaussian form for the density matrix is X exp— E[(F’éT FT)< ¢ ) IE) ( R)]
defined by choosing\((f),f’;t) in the following form with 2 —iE @ r
time-dependent coefficien{all dimensionless in our nota- (15)
tion) with zero mean valueR and p:

A(Q,F;t)=exp—3[riA; (1)r;+1B;; (1) Q whereE=C™'B" andg=A—-D=A—-BC 'B". Here
+QiB;i(t)r; +Q;iCi; (1) Q] c 5. B
1 (A B)( r ” 91=(det9)l( IS 12), E —(B“ B”)
_exp—z (r'Qh BT ¢/l (11 12 11 12 22(16)

Herei, j run from 1 to 2, and we use the convention that the

repeated indices are summed. The second expression in thds to be noted that the matri® is symmetric upon explicit
above is in terms of a convenient partitioned matrix notationcalculation.

and the superscrigt stands for transposition. In this section, = The Wigner function is found to be

we suppress the time dependence, but in the next section,

when we consider the solution of the Lindblad equation, we

exhibit this explicitly. R 1 p{ I
From Egs.(4) and(11), we obtain fW(R,p)=—————=exp, —=|(R',p")
as (@) and( ! Jde(C)Jdetg) | 2

(RiRj)=Cjj, (pipj)=Aj, (Ripj)=Bj, (12

and condition(3a) imposes the following requirements on
the coefficients in Eq(11), which are seen to be satisfied by
virtue of the above identification while conditigBb) is ful-
filled by construction: The reduced density matrices for the two subsystems
separately are obtained by the trace operation. We thus ob-
j»Cij are real, symmetric and;; (#Bj;) is real. tain the marginal density matrix of systef
(13

Ea 'ABT ' —Ego!

—a T ot

X

Ai
Aii’Cii>0! Sgr(Bii) nOnSpeCiﬁC.

p1(R,r;t)=(2wCyy)  ¥2Xexd —(2C;y) "
Introducing the matrix notation for the vector denoted now > 2. o
as a column vector and the coefficiedtsB, Cas matrices, X(R1=2iByRiry +(ACyy— BIyro .
Eqg. (11) may be expressed in a compact form: (18)

A(Q.T;t) =exp—3[FTA()T+7TB(1)Q
R R _ A similar calculation shows the reduced density matrix of the
+Q™B'F+QTC(1)Q]. (14  second system to be
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pa(Ry,ro:t)=(27Cy) " Y?Xexd — (2C,y) 1 ence, etc. It consists in the following choice of the correla-
tions:
X (R3—2iB pRor 3+ (ApCop— B3)r3)]. , )
(19) (x*)=ay, (p=by, (y)=a,, (py)=by,
(21)
It is worth pointing out that these marginal density matrices (xy)=aiz, (PxPy)=b1>.

of the subsystems do not contain remnants from the original
two-system density matrix. This aspect becomes even morgll others are zero.
transparent in subsequent discussion of the uncertainty prin- Some basic inequalities are obeyed by these quantities
ciple obeyed by the respective correlations of positions anéollowing from the Schwarz and Heisenberg inequalities:
their conjugate momenta.

Following the discussion given by us for the single dissi- a18,—af,=Ka=0, b;b,—b%,=Kg=0, Schwarz,

pative oscillator systerf], we deduce the length scales of (22
correlation and decoherence in the subsystems. The correla-
tion length defines the physical extent of the system, which is a;b;=03=%, a,b,=03=% Heisenberg. (23

therefore given by the spatial decay of the diagonal element

of the density matrix in coordinate space. This is obtained byrhe above are for the individual oscillator systems. The bi-
settingx=0 in Egs.(18) and (19). On the other hand, the partite Heisenberg inequality and the condition for separable
decoherence length is defined as the spatial decay of thentanglement derived from Simon’s work read as
off-diagonal part of the density matrix in coordinate space.

This is obtained by settinR=0 in Egs.(18) and(19). This ah,<2K,Kg—31, Heisenberg, (2439

is a measure of the persistence of quantum behavior on a

spatial scale. Thus, la; b ]<2K,Kg—3, entanglement/separabillity.
(24b)

(x?)p=Cy,=d}(corr.),
Without giving the details, it is straightforward to verify the

5 5 (1+£&p) following expression for the density matrix associated with
Qa=(AuCy—BiY= 4(1—_§A)>1/4, (208  the Simon model specified by E(R1):
d2(decoh) = (x2) o202, (Rt 3flpgR—37
1
and = Wexp{— 2[(X?by+ 2xy b+ y2by)
(y?*)g=Czo=dg(corr), +K 1 (XPa,—2X Y a+ Y2a,) ]} (25)
(1+&g) Here x=(X;—X5), Y=(Y1—V2), X=32(x;+Xx,), and Y
2_ _p2y_— - 17 X2), 17Y2), 2(X1TX3),
QB_ (A22C22 BZZ) 4(1_ éB) >1/4, (20b) — %(y1+y2)
From this we have the reduced density matrices aind
dé(decoh)z(yz)BIZQé. B subsystems, which are found to be both mixed-state den-

sity matrices:
éa g are the mixed-state parameters of the two single oscil-

L . 1 1 1
lator systems. We now employ a parametrization of a bipar- X X, )= eXpI’ _ _{ b, + —— | x2
tite Gaussian given by Simari] and construct the associ- (alpsabxa) (2may)'* 2|\t 44yt
ated ambiguity function and the density matrix of the system. 1 1
The equations obeyed by, B;;, andC;; in Eq. (11) +<b1+ da; X2 2XaXe| by~ _”]
when substituted in Eq10) are given in Appendix A. We 4a, 4a,
observe that all these coefficients are coupled, implying that (26)

correlation, decoherence, and entanglement are all dynami-
cally coupled and influence each other. In Sec. V, we intro- 1 1 1
duce a simplified model to illustrate the main features of (y;|psg|y2)= —mexp[ - —[(b2+ —
these couplings by means of numerical analysis of the solu- (2mby) 2 4a;
tions.

y3

J’_

I

(27)
We now consider a canonical parametrization of the two-
variable Gaussian density matrix derived from Simdri’s  The expressions for Eq$26) and (27) with x;=x, andy;
work, which has all the features of entanglement, decoher=y,, respectively, lead to the identification of correlation

b 1,2 2 b !
+——y3— -
2" Za, Yo 2Y1Y2| D2 4a,
IV. A SIMPLE MODEL BASED ON SIMON’S WORK
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lengths while those with;=—x, and y,=—y,, respec- hi, 1=1,2,3,4, real part ofhy, and both real

tively, lead to the identification of decoherence lengths in the ) )

subsystems: and imaginary parts ohiz,h,. (33
déA(corr.) —a,, d2,(decoh)=1/4b,, Theh;;'s and the real parts df,3,h,, Serve as driving forces

in the two systems, whereas the imaginary partb@fh,,

give rise to damping of the two oscillators. Amngg serves

as the driving force for the entanglement in the system. This
choice of the Lindblad parameters simplifies the coupled
I%uations in Eq(12) in such a way that the two oscillatofs
andB are not coupled to each other but are governed by their
own individual parameters. Thus their individual decoher-
ence and correlation features are preserved even in this
simple model. Also, the entanglement features appear here as
four coupled equations for the cross-correlation functions

- . . . . -with their own friction forces. The following set of coupled,
Similar analysis of the composite system density mamxlinear equations describes this simplified ?nodel: P

given by Eg. (25 leads to correlation and decoherence

(28)
dig(corr)=a,, d§g(decoh)=1/4p,.

The mixed-state lengths in these subsystems are identified
be the coefficients of the produckgx, andy,y,, respec-
tively, in Egs.(26) and (27):

d3 A(mix)=4a,/(405—-1), d3g(mix)=4a,/(405-1).
(29

lengths: N, A11= —2waB11— 2h{3A  +hyy,
d3 ag(A—corr)=Ka/a,=d3 s(corr) —aija,, N9,Bp=0aAy— 0aCy—2hBL—hl), (34
dg,AB(A_ deCOh) = 1/4bl: di(deCOh)! )\(97011: ZwABll— 2hg§cll+ h33;
(30)

2 _ _ _ 42 _ a2 )
dsas(B—corr)=Ka/a;=dgg(corr)—ajja;, NG Agp= — 20gBoy— 2h5)Agy+ hig,

d3 ag(B —decoh) = 1/4b,= d3(decoh). N9, Byy= wpAgr— 05Car—2NUIBr— NS}, (35)

The coefficients of the products and XY in Eq. (25) indi- N9,Cop=2wgBoy— 2h%)Copt hyy;
cate the entanglement features in the composite system, 7

which we define here as entanglement lengths: 0 "
N3, A12= — wpBo1— wB1o— (hiz+hy) At hyz,

EZag=1by, and E3ap=Kalas,. (31) o
A8 v SABT AT N0, B1o= wpA1s— waC1o— (h{J+h5))Byy,
Equation(24) representing the Heisenberg inequality for the 01wl (36)
bipartite system may be written then in the form N9 Ba1= wpA12— wpCio— (hyz+h3)Boy,
P 1 N9,C15= waB1s+ wgBai— (h{3+h%)) Cyy.
EsasEsas= (_4KA +2KB)- (32

Equations(34) and (35) are the respective equations for the

. . illatorsA andB, r tivel nd are th m th
In the next section, we develop a model of the two-oscillatoro-c" a10rs/ a dB, respectively, and are the same as those

N o solved in the RWR-AKR[9] paper for a single dissipative
ot o o Mciaor. Equatons3, on e oler hand. st e eia
Lindbad equation. This will exhibit how the Lindblad param- tions coupling the two oscillators, representing entangle-

; .~ .ment. These being coupled first-order differential equations
eters can influence the entanglement features of the blpartuﬁ time, we specify the initial conditions as in the Simon
system. ’

model:

V. A DYNAMICAL MODEL—SOLUTION OF THE Aj(t=0)=Db;, Byy(7=0)=0, Cyy(7=0)=a,,
LINDBLAD EQUATION
) ) ] A,(7=0)=b,, By (7=0)=0, C,y(7=0)=a,,
The dynamical model described here serves to illustrate 2 2 22 2 2 37)

how the solution of the Lindblad equation exhibits time evo- Ai(7=0)=Db1,, Bi(7=0)=0, By(7=0)=0,

lution in the initially specified correlation functions given by

the Simon model. This model indicates how one may control Ci(7=0)=ay,.

the parameters specifying the decoherence and entanglement

by a suitable choice of the interactions introduced in theThese equations are solved by the method of Laplace trans-
Lindblad equation. In the general equatidAd)—(A10), we  formation incorporating the initial conditions given by Egs.
define our model by keeping only the following Lindblad (37). The time dependences of the coefficiefis,B;, given
interaction constants and all others are set equal to zero: by Eqgs.(36) are of interest to us as they represent the evo-
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lution of entanglement of the two oscillators. In Appendix B, This result, it should be noted, is independent of the
we give the exact analytical solutions of these equations. Thmitial conditions. For finite times, however, a more
numerical display of these results will be described preseomplicated calculation needs to be made, which will be
ently. We should remark here that this simple model does ngtresented graphically in this paper. Corresponding to the
compromise the general features of the system, as will bgraphical presentations, we give here the results for two typi-
evident from the foregoing discussion. cal cases.

It may be worth noting that the above initial conditions  Case(i): r=1 (equivalent oscillatops We find from Eq.
and their time evolutions governed by E(34)—(36) may be  (44)
expressed neatly as the evolution of the covariance matrices

as follows: detCq(7=)<0. (453
a, O C B
Ag(T= o):( 01 b )—>AS( r)=( Bll All), (38 Case(ii): r#1 (inequivalent oscillatops In this case,
1 1 "1 depending on the values ofandI’, we may have
a, O C B
Bo(r— 0)=( 2 )—>Bs( T)=( * 22), (39) detCq(r=)>0 and deCq(r=2)<0. (45b)
0 b2 BZZ A22

a, O Ci, B These results show that irrespective of the initial conditions,
CS(TZO):< )HCS(T):( ) (40) for a suitable choice of Lindblad parameters we can
0 by Ba1 As get a separable entangled or an inseparable entangled

. . state.
me Appendlx B, we note how these evolutions come about We now present detailed calculations of the time evolu-
explicitly. tion of decoherence and entanglement with given initial con-

In this form, the Simon inequalities given in Eq24a

g . ditions. We choosa = and use position and momentum
and(24b) are now written in the form ©A P

variables in dimensionless form so that all Lindblad param-
N ) T eters have dimensions of energy and the dimensionless time
(detAg)(detBs) + (3 —detCs)”~ tr(AsICsIBsICsl) variables isT=wut. The choice of the parameters for the
-1 ; initial conditions must be consistent with EqR2), (23),
=a(detAgt detBs),  Heisenberg, (413 (24a and (24b). We choose here two special choices for
purposes of illustration with minimum uncertainty values
a;=b;=3, a,=b,=3%: (a) Initially separable entangled
state witha;,=0=Db,,, (b) initially inseparable entangled
state witha,,=3=—b,,. From Eqgs.(458 and (45b), we
(41b deduce that one may get a separable entangled or an insepa-
. . rable entangled state in both of these situations for a suitable
HereJ= —01 %) ar]d Cg IS the transposed matrix @s. The choice of th% Lindblad parameters, which are chosen to pre-
Schwarz and Heisenberg inequalities for fhandB systems (o6 the positive signs of the mean-square displacements
are and momenta of the two oscillators. We focus on the case of
2 2 _ inequivalent oscillators by choosing their frequencies to be
C11C22~ C1,=Ka=0, AsAzo— A1,=Kp=0, Schwa4r§, different (the frequency of oscillatoB is chosen here to be
(42) three times faster than that &) but all other parameters
were chosen to be the same for convenient presentation of
the results. Their values are given in the caption of Fig. 1,
and are kept the same in calculating all other system charac-
teristics.

As is pointed out by Simofi], it is sufficient to examine the tW(;nSEIg&; %s’thd:sp?);utrr:;i?ﬁ%?-fr?;%zaznosrigﬂ?ég? ﬁ(:;éhe
sign of the deCg to determine whether one has separable Y

entanglementif the sign is negativeor not (if the sign is ﬁ;r::((:e(art\;\liﬁtasgtuarpeid mg tv‘é%tohsﬂgati?]rzttiﬁ: ;r;tmhglrvmlnlmum
zero or positive In the numerical work presented here for . Y ' y 9 €

S : . initially and evolve according to the solution given in Ap-
the simplified model worked out in Appendix B, we deduce . ) .
analytically an important result for asymptotically large pendix B, Eq.(B3), and its counterpart. They approach their

: respective asymptotes for large times, #eoscillator ap-
times. In fact, we have proaching it much earlier than the This is due to the fact

(detAg)(detBg) + ( —detCg)?—tr(Ag) CsJBsJCLJ)

=;(detAg+detBg), entanglement/separability.

detAs=03=A.,Cy;—Bf,=1,

detBs=0Q3=A,,C,,— B3,>%, Heisenberg. (43

h(1r2> 2 that the decay constants are chosen to be the same for both
detCq(r=)= 5 e 5 the systems.
wp[ T2+ (1+0)7 ][I+ (1-1)7] In Fig. 2, we present the subsystem decoherence lengths
X{(r—1)T4+T2(r3—r2+2r—2) defined by Egs(20a and (20b) and the solutions given in
Appendix B. It is interesting to note that as in the case of
—(r2=r+1)}. (44 momenta in Fig. 1, the decoherence length crossesAthe
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FIG. 1. Subsystem mean-square momentyj) for oscillator
A and(p§> for oscillator B in dimensionless units, using the solu-
tions in Appendix B withhA=w, andI'y=1'3=0.25, r=wg/wa
=3, hy;=hg=h{)=1, h,,=2, hy.=4, anda;=b;=a,=b,=0.5.

system value for times of about 0.6, and approach thei
asymptotic values for large timéfor times larger than 5 in
this figure. This is because the decoherence length is a ratic
of similarly decaying quantities.
Figure 3 represents the oscillator pair correlations involv- .
ing positions and momenta of the two systems. These are T
important in determining the dynamic evolution of entangle-
ment. In Fig. 3a), the initial values for these are chosen to be FIG. 3. Oscillator pair correlations with the same parameters as
zero, which corresponds to ca@ above when the system is N Fig. 1 and(@) a,,=0=b, (separable entangled initial stateb)
initially separable entangled. Figuréb3, on the other hand, 212=0.5=—D1, (inseparable entangled initial state
is for the case when they are initially inseparable entangled.
They both oscillate in approximately opposite phase, the se@ntangled case, whereas curi is for the initially sepa-
ond case exhibiting more oscillations than the first. Theyrable entangled case. They both show oscillations about zero
change their signs a few times before reaching, albeit slowlyvalues, exhibiting “revival” of entanglement as time
their respective asymptotic values. progresses. This also clearly shows that the entanglement
Finally, Fig. 4 displays the time evolution of the determi- Property changes over time, a feature worth emphasizing.
nant constructed from the solutions given by E@sl)—(B7)

llator Pair Correlations

Osci

of Appendix B. This is a signature of “entanglement” of the bzr .
systemsA andB. The curve(a) is for the initially inseparable (a) :‘g/(b)

=
< 10§ g i
® S
@ [
— o8y Q
Q) P
2 £
o .l g
o 0 )

(O]
-g B ]
3
a 04y Wy
£ 03
Q9 0 1 2 3 4 5 6 7 8 9 10
g 0.2 T
2
5’) FIG. 4. Evolution of the determinant of the covariance matrix
0.0

C, [Eq. (40)], the sign of which determines whether the state is
inseparably entangle@<0) or separably entangle@0), with the
same parameters as in Fig. 1 af&l a;,=0=b;, (separable en-

FIG. 2. Subsystem decoherence lengths with the same paranangled initial statg (b) a;,=0.5= — b4, (inseparable entangled ini-
eters as in Fig. 1. tial state.

1 2 3 4 5 6 7 8 9 10
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What was initially separable entangled may become insepa-:\ g _A,,= —ZwABll—2h(1i§A11—2h<1i2)812—2h(12A12+ hyy,
rable entangled some time later and vice versa and this (A1)
characteristic may change several times over a period

of time. This implies that in actual experiment, such an ) B, =w,A;;— waCi1—2h{B1+h A, 2hB,,
oscillation in entanglement may provide windows where . _

such properties are either to be preferred or avoided. —h{)By—h{)Ci,—h{y, (A2)
It should be remarked that these features of the simplified

model are retained more or less in the forms presented N3,C11=2waB11— 2h{JC11+ 2h8)B 1 — 2hY)C oot hag;
here when one considers more general equations given in (A3)
Appendix A. The only point to be noted is that the decoher-

ence and entanglement influence each other in this more gen-

eral setting, which was not the case in the model discusseq\aTAzzz —2wBBzz—Zh(ziZAzzﬂLZh(zi%AlerZh(liz)Bzﬁ hay,

here. (A%)
VI CONCLUDING REMARKS N0, Bor=wgAzs— wCor— 2N31Boy+ hiiA o+ hiB 1
One of the important consequences of the Lindblad theor i i
’ N y —h{{Bar+hi3C1— 5y, (A5)

is that one can obtain a mixed state from an initial pure state

and vice versa. In this paper, in particular, we demonstrate _ (i) (i) 0 _
another aspect of this feature by showing that we can obtain N:Cap=2wgB2r~ 2N24Cap— 2N34B15— 201, Crat hay;
an inseparable entangled state from an initially separable en- (A6)
tangled state. This feature allows us to reinterpret it as a

manipulation of the entanglement by means of the param- _ _ _

eters of the theory, which in turn is a manifestation of the  Ad,.A12= —waBo1— wgB1o— (N{3+h5)AL+h5A,
environment or other elements of the system. Manipulation i i i

of decoherence is also possible, as is cleyar from our gxample. —h{3As+h{5By;—hiiBy+hiy (A7)
Interpreting the Lindblad parameters as the parameters asso- . . .

ciated with the environment, we note that the model calcu- A, B1= A1~ waCro— (h{3+h5))Bi,—h§)A,
lation given here implies that important features of decoher- CROB— hBose WG — b A8)
ence and entanglement may be manipulated by suitable 14211 ThaP2z 1222 T4

change in the environment. In the experimental situations _ . _
presented in Refs[13—15, for example, simple coherent N3, Bo1= wpA1— wgCro (h3+h5))By—h§iA,
systems such as quantum dots, trapped ions, and nuclear : ; ;

spins are studied in an attempt to realize these features and +h(2|3):Bll_ h(2|?2822_ h(1|2)Cll+h(2r3)' (A9)
their possible control. There is also a recent experimental , ) )
investigation[16] of controlling the decoherence of trapped ~ Ad,C1y= @aB 1o+ wgBy— (hi3+h5,)Cio—h§ By,
ions by laser fields that can change the interaction between - ; -

the trapped ion and the reservoir. The same technique may +hg£Bll_h(12C11_ h(2'§C22+ h(3r4)' (A10)
possibly be employed to investigate the control of entangle- , .
ment. We hope to investigate possible determinations of the We note that these equations are coupled to each other in

Lindblad parameters in terms of interactions between the erfn interesting way. The equations for th@ndB oscillators

vironment Hamiltonian and the system of interest, thus pror€ coupled to each other via their interactions introduced in

viding a microscopic picture of such phenomena in realistidn€ Lindblad evolution. This implies that in this model, the
situations. correlations and decoherence in the two oscillators are influ-

enced by the entanglement between the two due to the dis-
sipative processes contained in the Lindblad formulation.
ACKNOWLEDGMENTS The stationary solutions of these equations are obtained by
Both authors were supported in part by the Office of Na-setting to zero all the time derivatives in the left sides of
val Research. We also thank Dr. Peter Reynolds of the Officéese equations. They are also the solutions approached for

Naval Research for supporting this research. asymptotically large times. In a simplified model given in the
text, we consider a decoupled set of equations, which do not

APPENDIX A: DYNAMICAL EQUATIONS FOR THE compromise the final results but serve the purpose of illus-
MATRIX ELEMENTS trating how these influences come about and how one may

control these important features of the quantum oscillator
The equations for the coefficients in the Gaussian ansatpair. In Appendix B, explicit solutions of the equations are
Eq. (11), are obtained when substituted in Efj0). Here we  presented.
arrange them in three sets: the first corresponds to the

oscillator A, the second to the oscillatoB, while the APPENDIX B: SOLUTIONS OF EQS. (34)(36)
third set corresponds to the interaction between the two os-
cillators, The solution for theA-oscillator equation$Eq. (34)] is
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wp w
Au(7)=3bie” AN 1+ cos 27-( | |+ zawe” eA™MIA 1—cos 27'( AA”
(hlllwA) 2 e T(OAMTA (OFN wp
_ + + _a T(opaNTp + —1(wp/NT A i
—Q—FA(FA+4) ral1 5 1+cos2r ~ 2(1-e )+ e sin 27 ~
M l“2 —7(wp /N A 1—cos 2r| —= WA +4(1 e T(wA/)\)FA) ZF e T(wp/N) rASIﬂ 27 =2 @A
2T A(T5+4) N N
(hg_rS)/wA) wp (OFN
4+ _ o~ T(op/NTp _ —m(wpa/NT A i
214 2|1-e Cos 2r N I'pe sin 27 >~ (B1)
(bl_al) op\  [(hy—hgg)/wa] wp
== e mwa/Nlp e~ (@AM
Bii(7) 5 sin 27| — ~ (Ff\+4) 1- COSZT )\ + 3, Sin 27 — ~
(h(lrg)/wA) wp wp
= _ o~ m(op/NTp _9a—T(wpaNT A oj
2ra) |1 l1-e COs 27! X 2e sin 27 ~ 1 (B2)

Cyy(7)=3,8" 7@aMTA +1be T@aMlA

N

wa
1—cos 27( T) }

+4(1—e T@a™MTa) 2T e T(“’A’“FAsm%( Q;\A)]

w
1+cos 27( A

(h11/wa)

FZ —1(wp/NT A
ZFA(FA2 +4)

wp

1-cos 27( X
(has/wp)

2T A(T3+4)

(h /wA)
T r2va)

w
rijli-e T(‘”A’”FACOSZT( X +(T2+4)(1—e T@a™MTa) 4 2T e~ T<“’A’”FAsm27( )\A”

(OFN w
—2|1—e "@aMTlacos ZT(T +T e "@aMlagin 27( )\AH. (B3)
In the above expressions, we have Bgt= 2h(1i32/wA. The solution for theB oscillator[Eq. (37)] is obtained by the substitu-

tions 1—2, 3—4, andA— B in the above expressions.
We now give the solution to Eq36). Here we sel'=(I'4+rI'g)/2 andr=wg/wx:

m(wp/N)T

A7) =bye” AN cosr(wa/N)cosT(wg/N) +ae” sinT(wa/N)sinT(wg/\)

hg;)) (T2+1+r?)
N on L T (A (=07

h(lrz)) e~ @a™I [ cosT(wa+ wg)/N  cOST(wa— wg)/\

wp 2 [2+(1+71)2 [2+(1-r)?

(@) eT("’A’”F{(1+r)sin7-(w,pL wg)/\ (1—r)sinr(wA—wB)/)\]’ B4)

2 2+ (1+r1)2 B 2+ (1—r1)2

WA

blze—T(wA/)\)F . ' a ze—T(u)A/)\)F
Bio(7)= T{smf[wA(1+r)/)\]+sm~r[wA(1—r)/)\]}— 5

sinT wa(1+T1)/\]

(1+r)
h{% (IF2+1+r2-r)

‘wp [ [T2+(1+1)Z[T%+(1-1)7]

sinTfwa(1—r)/N]|+

L1
(1-r)
3eff(o)A/)\)F

s
“\wp | 4(1+1)[T2+(1+71)2]

hg-fz) e*‘r((uA/)\)F
B 4(1—r)[T2+(1-1)7]

{T'sinTwa(1+r)/N+(1+r)cosTwa(l+r)/N}

{T sintwa(1—r)/N+(1—r)cosToa(1—r)/\}, (B5)

wp
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wA/)\)F (2+r) 2_r

. )
a+n sinT wa(1+r1)/N]+ El—r) smT[wA(l—r)/)\]}

bye” ™
4(1+r)

Boi(7) =

(O

(T%2+1)
[T2+(1+r)2][T%+(1—r)?]

- alZe_ T(wp /NT
2

{sint wa(1+r)/IN]+sinT]wa(1—Tr)/N]}+

(2+r)e77(wA/)\)F
A(L+1)[T%+(1+1)?]

hr)
_( 12 {—IsinTwa(1+1)/N+(1+1)coSTOA(L+T)/N}

WA

hiy) (2-r)e el |
- {=T sinTwa(1—r)/N+(1-r)cosTwa(l—r)/\}, (B6)

‘wp | 4(1—1)[T2+(1-1)?]
Ci7)=ae” AT cosr(wp/N)cost(wg/N)+bie” AT sinr(wa/N)sinT(wg/\)

. hg-fz))r r (hgrz)) e*T(wA/}\)F

[F2+(1+r)2][1_,2+(1_r)2] + w—A W{F COSTwA(1+r)/)\—(l'f'r)SinTa)A(l"f'r)/)\}
(hg_rz)) e*T(wA/)\)F

wp

o {I" cosTwpa(l—r)/IN—(1—r)sinTwa(1l—r)/\}. (B7)

A

These expressions are numerically evaluated for a certain choice of parameters and are displayed in graphical form in the
figures. Their significance is then elucidated in terms of some of the experimental situations being examined that were
mentioned in the Introduction.
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