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Characterizing mixing and measurement in quantum mechanics
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What fundamental constraints characterize the relationship between a mixtQig;p; of quantum states,
the statep; being mixed, and the probabilitigs? What fundamental constraints characterize the relationship
between prior and posterior states in a quantum measurement? In this paper we show that there are many
surprisingly strong constraints on these mixing and measurement processes that can be expressed simply in
terms of the eigenvalues of the quantum states involved. These constraints capture in a succinct fashion what
it means to say that a quantum measurensaguiresinformation about the system being measured, and
considerably simplify the proofs of many results about entanglement transformation.
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[. INTRODUCTION In these equations the notati@m denotes a direct sum of
vectors\ (X) denotes the vector of eigenvalues of the matrix
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Quantum mechanics harbors a rich structure whose inves< arranged so the components appear in non-increasing order
tigation and explication is the goal of quantum information (this ordering is imposed for later conveniejcand the re-
science 1,2). At present only a limited understanding of the lation < is themajorizationrelation! As an example of the
fundamental static and dynamic properties of quantum infornotation used in Eq.(2), supposep;=1/3,p,=2/3,p;
mation has been obtained, and many major problems remaia diag(3/4,1/4), andp,=diag(1/5,4/5). Then Eq(2) be-
open. In particular, we would like a detailed ontology andcomes
guantitative methods of description for the different types of
information and dynamical processes possible within quan-
tum mechanics. An example of the pursuit of these goals 1
along a specific line of thought is the partial development of 3 <A )
a theory of entangled quantum states; see, for example, the
work in Refs.[3-12].
The purpose of the present paper is to pose and partiallwhich is equivalent to
solve two fundamental problems about the static and dy-
namic properties of quantum information. The first of these
problems is to characterize the processnuking quantum
states. More precisely, = X;p;p; is a mixture of quantum
statesp; with probabilitiesp;, what constraints relate the <
properties ofp to the probability distributionp; and the
guantum stateg;? The second problem is to characterize the
relationship between the prior and posterior states in a quan-
tum measurement. The result of our investigations is a set of o o )
two static constraintson mixtures of quantum states, two A formal definition of majorization appears in Sec. IIB,
dynamic constraint®n the quantum measurement process’howgver, for now the essential intuition to grasp is that the
and two partiaconverseesults, one to the static constraints, relationx<y means that the vectoris more “mixed” (or
and the other to the dynamic constraints. The statement ofdisordered”) thany. Thus Eq.(1) captures the intuition that
each of these results is rather easily understood, so we réiPipi iS more mixed, on average, than the stateappear-
view the statements now, before proceeding to the proof#1d in the ensemble. The intuition behind E@) is a little
and consequences in the main body of the paper. more complex. Imagine that we prepare the sfatey ran-
Suppose we mix a set of quantum stagesaccording to  domly choosing a value for according to the probability
the probability distributiorp; . Then we will show that this distribution p;, and then preparing the corresponding state
mixing process must satisfy the constraint equations: pi . Our quantum state, including a descriptioni ofnay be
written asX;p;|i)(i|®p;. We then discard statg) repre-
senting our random choice df leaving only the state

)\(EI Pipi><2i PiN(pi) 1

INote that the vectors on the left and right hand sides in(Ex.
may be of different dimensions; in such cases we extend whichever
@ pi)\(pi)<)\< 2 pipi). (2 vector is of lesser dimension by padding it with zero entries, to
i : enable a comparison using the majorization relation.
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2ipip;i - Relation(2) expresses the fact that when we throw come satisfy=;p;;=p;. Unfortunately, this result is not a
awayi, the state of the quantum system becomes less disotight converse to Eqg5) and(6), due to the introduction of
dered. the extra indeX; however, for many purposes it is a suffi-
Suppose we perform a measurement on a quantumiently strong converse. We will show that even E@s.and
mechanical system initially in the staieobtaining measure- (g) tqgether do not completely characterize the quantum
ment resu!u with probability p; , and corresponding poste- eaqrement process; however, | believe it likely that there
rior statep; . What constraints are placed on the relatlonshlpIS a simple characterization of the measurement process

betweerp, p; andp;? We wil Sh?’v that the following WO 56ng similar lines that may be expressed entirely in terms of
dynamic constraintsnust be satisfied: the eigenvalues of the prior and posterior states, and the
probabilities of the different measurement outcomes. Of

provide far more explicit information, and as such, are likely

to be more useful in practice. We will demonstrate the utility
The intuition behind Eq(5) is that quantum measurements of this approach by application to the problem of entangle-
acquire information about the state of the system being meament transformation, simplifying the proofs of several
sured, and thus after measurement the state of the systemkisown results about entanglement transformatieh7—
less mixed, on average, than before. The intuition behind ER,15].
(6) is a little more complex, but can be understood using There is a striking level of symmetry in Eqdl) and (2)
Zurek’s approacti13,14 to decoherence and quantum mea-and (5) and (6), which we will also see in the partial con-
surement. Recall that in this approach a measurement irverse results. It is obviously tempting to suggest that this
volves three systems: the system being measured, whidieflects some deeper underlying principle, much as Max-
starts in the state, and ends in the stai@ ; a measuring Well's equations may be derived from a deeper action prin-
device, which starts in some standard state, and finishes in@ple based on the Faraday tensor, or the still deeper prin-
“pointer state” |i) recording the result of the measurement;ciples of gauge invariance and relativity. Unfortunately, |
and an environment which “decoheres” the measuring dehave not yet succeeded in obtaining a satisfactory form for
vice, ensuring that it behaves in an essentially classical fastpuch a deeper principle. Presumably, such a deeper principle
ion. The system and measuring device interact unitarily durmight assist in tightening the partial converse results, or per-
ing the measurement, ensuring that there is no change in tH&ps tightening the partial converses may shed light on the
amount of disorder present in the system. The subsequeffigin of Egs.(1) and(2) and(5) and (6).
environmental decoherence process can also be thought of asIn explaining the intuitive meanings of Eqgél) and (2)
a type of measurement, in which the different outcomes ar@nd(5) and(6), we have used language such as the “disor-
averaged over. In this view, the environment continuallyder” present in a quantum state. One might wonder if it is
measures the state of the measuring apparatus, resulting irP@ssible to write down entropic statements capturing these
final stateX;p;|i)(i|®p; for the measuring apparatus and intuitions. We W|Il_show that each of these equations in fact
system being measured. This decoherence process causes™RIi€S an entropic statement whose content corresponds to
increase in the disorder present in the system, which is thé€ intuition we have described. Of course, entropic state-
intuition behind Eq.(6). More succinctly, Eq(6) may be ~ments should really only be interpreted in the asymptotic
thought of as capturing the notion that the total ensemble ofmit, where we have a large number of identical copies, of a
possible quantum states is more disordered after a measu@Stem available; the advantage of E@s.and (2) and (5)

)\(p)<2 piN(p]) (5  course, it is true that the quantum measurement formalism
! already provides such a characterization, in the form of a
@ PN ) <\ (p). 6) matrix equation; however, equations such as G&fand(6)
i

ment than it is before. and (6) is that they are stronger forms of these asymptotic
The importance of the static constrairi®y and (2) and  Statements which may be applied to single quantum systems.
the dynamics constraint§) and (6) is further reinforced by This paper contains six fundamental resuitgyether with

the fact that in each case there is a type of converse to the§enumber of applicationsexpressed in the four constraint
equations. In this introduction we focus only on the moreequations(l) and(2) and (5) and (6), and the partial con-
interesting case of the converse to the dynamic constraini4erses to Eqstl) and(2) and(5) and (6). We now review

(5) and(6), however rather similar remarks hold also for the @ntecedents of these results in the existing literature. Equa-
static constraintg1) and (2). Supposep; is a probability ~ tlon (1) is an elementary consequence of classic results in the

distribution, andp andp/ are quantum states such that theory of majorization. Equat.io(r.?) foIIow; as a corollary of
work of Uhlmann[16], Ruskai[17], and Nielser{18] on the

, relationship between mixed states and probability distribu-
7\(p)<2i Pir(pi)- ™ tions. Equationg5) and(6) are implicit in the work of Vidal
[8] on entanglement transformation, and the partial converse

Then we will show that there exists a quantum measuremenb (5)-(6) is implicit in the work of Jonathan and Plen|i8]
whose measurement outcomes may be labeled pgiraof  on entanglement transformation, building on earlier work by
indices (,j), such that for any fixed and for allj the pos- Nielsen[4]. A proof of Eq.(5) in the context of entangle-
terior state of the quantum system after measurement is ment transformation has also been previously obtained by
and the probabilitieg;; for the (i,j)th measurement out- Jonathan, Nielsen, Schumacher and Vifie8]. There are
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several advantages to the point of view taken in the presemhents. The theory of generalized quantum measurements is
paper. First, measurement is, in some sense, a more fundar extension of the projective measurements described in
mental process than entanglement transformation, and Egsost quantum mechanics textbooks. The reason the general-
(5) and (6) highlight the fundamental connection betweenized measurement formalism is adopted is because it is better
measurement and majorization, incidentally explaining whyadapted to a description of many realistic quantum measure-
there is a connection between entanglement transformatiofient schemes. However, it is important to appreciate that the
and majorization: this arises as a result of a deeper connegmneralized measurement formalism follows from standard
tion be_tween measurement and majorization. Second, thg,antum mechanics, in the sense that any generalized mea-
proofs in the present paper are novel, to our knowledge, and;.ement can be understood as arising from the combination
have the advantage of proceeding from a more unified point¢ nitary evolution and a projective measurement, a corre-
of view than earlier work. As a result they are, perhaps, morg, 5 qence made explicit below. Nevertheless, the formalism
elegant and mfo_rmatlve than earlier proofs, espem_ally theys generalized measurements is in many ways more useful
proof of the partial converse to Eq®) and(6), which is a 54 mathematically elegant than the standard formulation of

substantial improvement of and extension to existing CO”QUantum measurement in terms of projectors. More detailed

structions. Several other items of related work are also worth,qyctions to the theory of generalized measurements may
pointing out. There is a substantial mathematical literature ofq tound in Refs[24,25,1,26.
the problem of characterizing the properties of SURSB of Mathematically, a generalized measurement is specified

Hermitian matricesA and B, and Fulton[20] wrote a nice by a set{E;} of measurement matricesatisfying thecom-
review of recent progress on this problem, which is closely

- . . leteness relatior®,E/E;=1. The indexi on the measure-
related to the problem of mixing of density matrices. Hardyp N

[15] introduced techni in th text of entanal ent matrices is in one-to-one correspondence with the pos-
Introduced techniques in the context of entangiemeny, o o, icomes that may occur in the measurement. The rule
transformation that can be used to prove E5). and the

partial converse to Eqs5) and (6). Fuchs and Jacot@1] used to connect the measurement matrices to physics is that

(unpublished, 2000have obtained a beautiful and quite dif- || ¢ Prior State of the guantum systenpishen the outcome

ferent proof of(5), after hearing of the result from Nielsen. ' °¢CUrs with prolbab|lltypTi—tr(Eip5 ), and the posterior
Finally, the procedure described in this paper to prove thetate Is given by =EipE;/tr(EipE;). .

partial converse td5)-(6) is a generalization of the proce- Generallze_d measurements are ObV'O.US|y more general
dures for entanglement transformation for pure states founE1an the projective measurements described in most text-
by Nielsen in[4], and subsequently improved in independent®COKS- Projective measurements have the feature that they
work by Hardy, Jonathan and Nielsétescribed in Chapter arerepeatablein _the sense that if one performs a projective
12 of [1]), by Jensen and SchafR?], and by Wernef23]. measurement twice in a row on a quantum system, then one

The paper is structured as follows. We begin in Sec. Il b))Ni” obtain the same result both times. By contrast, most real
reviewing the two main tools that will be used in this paper:measurements do not have this feature of being repeatable,

the theory of generalized measurements in quantum mechaW—hiCh tips us off to the need for the formalism of generalized

ics and the mathematical theory of majorization. Section [T€asurements. Nevertheless, even the generalized measure-

contains proofs of the static constraif® and (2) on the ment formalism can be understood in terms of projective
mixing of quantum states, and the dynamic constraifis measurements as follows: the effect of a generalized mea-

and (6) on quantum measurement, and explores some efurement on a quantum systemeguivalentto a unitary

ementary consequences of these results. In Sec. IV we proyateraction between the system being measured and another

the partial converses to Eq&l) and (2) and (5) and (6). “ancilla” system, followed by a projective measurement on

Section V explains how the results of the present paper ma§j'® ancilla system. More precisely, suppq&g} is a set of
be used to obtain simplified proofs of known results aboufMéasurement matrices satisfying the completeness relation
entanglement transformation. Finally, Sec. VI concludes the*iEi Ei=1. We introduce an ancilla system with orthonor-

paper with a discussion of some open problems and futurB'al basis elements) indexed by the possible measurement
directions. outcomes. Define a matrik) acting on the joint quantum

system ancilla by the action
Il. GENERALIZED MEASUREMENTS

AND MAJORIZATION Ulg)|0y=> E|li), 8

Before proceeding to the main results of the paper, it is
useful to first review some background material on general-
ized measurements and the mathematical theory of majorizavhere|0) is some standard state of the ancilla, &l is an
tion. All discussion in this and succeeding sections is to bearbitrary state of the quantum system being measured. It is
understood in the context of finite-dimensional vectoreasy to show using the completeness relaligh/E; =1 that
spaces, although infinite-dimensional modifications seeny can be extended to a unitary matrix acting on the entire
likely to hold, perhaps with some technical modifications. state space of the joint system. Suppose we perform the uni-
_ tary transformatiorlJ on the joint quantum system and an-
A. Generalized measurements cilla, and then do a projective measurement of the ancilla in
In this paper we use thgeneralized measurement formal- the li) basis. It is then easily checked that the result of the
ismas our basic tool for a description of quantum measuremeasurement i$ with probability pi=tr(E;pE/), and the
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corresponding post-measurement state of the systepd is  As an elementary consequence of Horn's lemma we have
=E;pE//tr(E;pE). Thus the effect on the quantum system KY Fan's maximum principlewhich states that for any Her-

is exactly as we have described above for a generalize@itian matrixA, the sum of thek largest eigenvalues @ is
quantum measurement. Conversely, it is not difficult toth® maximum value of tAP), where the maximum is taken
verify that the effect of a unitary interaction between systenfVer allk-dimensional projector®,

and ancilla followed by a projective measurement on the k

ancilla can always be understood in terms of a generalized > \;(A)=maxtr(AP). (10)
measurementsee, for example, Chap. 8 of R¢L]). j=1 P

o To see this, note that choosiRgto be the projector onto the
B. Majorization space spanned by theeigenvectors ofA with the k largest
Our primary tool in the study of mixing and measurementeigenvalues, results in #(P) =E}‘:1)\1(A). The proof of Ky
in quantum mechanics is the theory of majorization, whosd~an’s maximum principle will be completed if we can show
basic elements we now review. The following review only that tr(AP)sE}‘:l)\j(A) for any k-dimensional projectoP.

covers elementary aspects of the theory of majorization, anto see this, lete,), ... ,|e;) be an orthonormal basis cho-
the reader is referred to Chaps. 2 and 32¥], [28] or [29]  sen such thaP=3¥_,|e,)(ey. Let|fy), ... [f4) be an or-
for more extensive background. thonormal set of eigenvectors fdy, ordered so the corre-

The basic motivation for majorization is to capture what it sponding eigenvalues are in nonincreasing order. Then
means to say that one probability distribution is “more

mixed” than another. Suppos&=(Xi, ... Xq) and y )
=(y1,....Yq) are twod-dimensional real vectors; we usu- (ej|A|ej)=k21 Ui “Ni(A), (11
ally suppose in addition thatandy are probability distribu-

tions, that is, the components are non-negative and sum to {here ujk5<ej|fk> is unitary. By Horn’s lemma it follows
but the following definitions apply in the case of genexal that ((ejIAIej>)<7\(A), which implies that

andy as well. The relatiox<y, read “x is majorized byy,”

d

is intended to capture the notion thats more mixed(i.e., K «

disordered thany. To make the formal definition, we intro- tr(AP):JZl <ej|A|ej>sj§l Aj(A), (12)
duce the notationi to denote the components of a vector

rearranged into non-increasing order, o= (xi, ... x}),  as required.

wherex{=x5=- - - =x}. We say thak is majorized byy and Ky Fan’s maximum principle gives rise to a useful con-
write x<vy, if straint on the eigenvalues ofsamof two Hermitian matri-

ces, thatA\(A+B)<\X(A)+A(B). To see this, choose a
K K k-dimensional projectoP such that
> =2 vy} )
== k
> \j(A+B)=tr[(A+B)P] (13
j=1
for k=1,...,d-1, and with the inequality holding with :
equality wherk=d. =tr(AP)+tr(BP) (14
It is perhaps not so clear how this definition connects with

any natural notion of comparative disorder. We will state but K K
not prove a remarkable result connecting majorization to a ng 7\j(A)+Zl Aj(B),
natural notion of mixing. It can be showsee Chap. 2 of = = (15

Ref. [27]) that x<y if and only if x=3;p;P;y, where the

pi's form a probability distribution and thB;’s are permu- where the last line also follows from Ky Fan’'s maximum

tation matrices. Thus, whex<y, we can imagine thag is  principle.

the input probability distribution to a noisy channel which  Another consequence of Horn’s lemma is that given a

randomly permutes the symbols sent through the channetlensity matrixp and a probability distributiom; there exist

inducing an output probability distribution From this char-  pure statedy;) such thatp=3;p;|#;)(¢;| if and only if

acterization many other important results follow with mini- (p;)<\(p) (see Refs[18,16]; this result was also obtained

mal effort; for example, it can easily be shown thak#y, by Ruskai in 199317]), where it is understood that if the

then the Shannon entropy of the distributiermust be at vector (p;) contains more terms than the vectofp) then

least as great as that gf the vector\(p) is to be “padded” with extra zero terms.
The connection between majorization and quantum meThe proof of this result is simply to combine Horn’s lemma

chanics arises primarily as a resultlébrn’s lemma(proved  with the classification of ensemblép; ,| )} consistent with

in Ref.[30]; for a simple proof, see Ref18]), which states a given density matrixp, as discovered independently by

that x<y if and only if there exists a unitary matriy  Schralinger [31], Jaynes[32], and Hughston, Jozsa and

= (uj;;) such thatx;==;|u;;|%; . This fundamental relation- Wootters[33]. See Ref[18] for the details of the proof.

ship between majorization and unitarity ensures many close This notion of “padding” vectors of unequal dimension

connections between majorization and quantum mechanicsso they can be compared by the majorization relation is sur-
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prisingly useful, and we adopt the general convention that

whenx andy are of different dimension ther<y means )\(P)<2i PiX(pi) (18)

thatx<Y, wherex andy are padded with extra zero compo-

nents to ensure that they have the same dimension. For ex- D pir(p)<\(p). (19
i

ample, (1/3,1/3,1/3¥(1/2,1/2), since  (1/3,1/3,1/3)
<(1/2,1/2,0). Itis easy to check that this extended notion of p.oo¢ of Eq. (18) This is an immediate consequence of

majorization is well defined, provided andy both have ihe fact that\ (A+B) <\ (A)+\(B) for any two Hermitian
non-negative components, and this will be the case for all the,atricesa andB, as proved in Sec. II B.

applications in this paper. Similarly, it is often useful to write pygof of Eq. (19) As noted in Sec. II B, if a density ma-
x=y provided the padded versionsxtndy are equal; that  trix p can be written as a convex combination of pure states
is, the non-zero entries of andy are equal. With these |41y, p==ipil i) (i, then it follows that p;)<\(p),
conventions, it is easy to see that algebraic manipulationghere (;) denotes the vector whose entries are the prob-
proceed exactly as one would expect. For example, for nonabilities p; . Equation(19) is a corollary of this result. To see
negative real vectorsv, x, y, and z if w<x, x=y, y<z this, note that ifr;; are the eigenvalues gf; andli,j) the
then obviouslyw<z, even if all four vectors have different corresponding orthonormal eigenvectors, then Ed@) is
dimensionalities. We occasionally make use of such elemerequivalent to the equation
tary observations in proofs, without explicit comment.

The final result about majorization we shall need is that if (Pirip) <A (p), (20
P; are a set of orthogonal projectors such tig®;=1, andp  which follows from the results of Sec. II B and the observa-
is a density matrix, thef27] tion that

P:E_ pipi:Z pirij|i!j><i!j|- (21)
A(EDHpR)<Am» (16) ' I

This completes the proof of Theorem 1.

Intuitively, if a projective measurement of a quantum system B. Dynamical constraints on quantum measurement

is performed, but we do not learn the result of the measure- Theorem 2:Suppose(E;} is a set of measurement matri-
- I

ment, then the state of the system after measurement is moge . satisfying the completeness relafyi|E, =1 . Then the
mixed than it was before. One way of proving this relation is SO

: ; ) . quantum measurement described by these matrices must sat-
via Horn’s lemma; a sketch follows. First, note that it suf-

i isfy the following four constraints:
fices to prove thah (PpP+QpQ)<A\(p), whereP andQ

=|—P are two orthogonal projectors satisfyirg+Q=1. T +
Once this is proved, the general relatidfyg. (16)] follows A Z EipE; <Ei MEipEy) (22)
by a simple induction. However, if we define a unitary ma-

trix U=P—Q, then it is easy to verify that - )\(E-pE-T)<)\( > E-pE-T) (23
p+UpuUT |
PpP+QpQ="——7—. 1n Np)<2 N(EipE]) (24)

;
Applying Horn’s lemma and the easily proved fact that if @ M(EipE{)<\(p). (25
I

x1<y andx,<y then (;+X,)/2<y, it follows with a little

simple linear algebra that(PpP+QpQ) <X (p). A slightly different way of stating Theorem 2 is to define

p; to be the probability of obtaining outcomewhen the

measurement defined by the matrit{ﬂ:’s} is performed on

the system, and lgt = EipEiT/tr(EipEi) be the correspond-

ing posterior states. Then the following four equations are
In this section we prove the four constrairify and (2)  €quivalent to Eqs(22)—(25):

and(5) and(6). The first and second of these are static con-

straints on the mixing of quantum states, proved in Sec. )\(E pipi’)<2 PiN(pi) (26)

[IIA. The third and fourth constraint equations are dynamic i i

constraints on the quantum measurement process, proved in

Sec. Il B. Finally, some simple consequences of these re- EB pi)\(pi’)<)\(z pipi’> 27

sults are discussed in Sec. IlIC. i :

Ill. PROOF OF CONSTRAINTS ON MIXING AND
MEASUREMENT IN QUANTUM MECHANICS

. . - Mp)<2 PiN(p) (28)
A. Static constraints on mixing quantum states i

Theorem 1 Supposep==;p;p; is a convex combination B pin(p))<A\(p). (29
of quantum statep; with probabilitiesp;. Then i
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Theorem 2 is a fundamental constraint on the dynamicshere must exist a matri® =[D,|D,] such thatp=D'D,
that may occur during a quantum measurement. Equationshere the matrice®, and D, have the same number of
(26) and (27) are, of course, merely the dynamical expres-columns asA and B, respectively, and both have the same
sion of the static constraints found earlier in Theorem 1number of rows ag. Thus we have
Equations(28) and (29) represent constraints of an essen- A X 0'D. DD
tially dynamical nature, connecting as they do the prior and [ }: tho| +°1 1=2
posterior states of the quantum measurement. Intuitively, Eq. x" B D;D1 D;D2
(28) captures the notion that a quantum measurement “gains ) t t i
information” (on average about a quantum state, since it from which we read ofA=D;D, andB=D;D,. Using the
says that the eigenvalues of the initial statare, on average, results of Sec. B and the fact that the e|genvalue_s of a
more disordered than the eigenvalues of the posterior stat@CdUctEF of matricesE andF are the same as the eigen-
p! . Intuitively, the second dynamic constraifq. (29)]  Values ofFE, up to padding by zeros, we see that

: (33

captures the notion that thetal ensemblef possible quan- Mp)=\(D'D) (34)

tum states is more disordered after the measurement than

before. Thus, Eq(28) and (29) represent complementary =\(DD") (35

constraints on the evolution of a quantum system during a

quantum measurement process. =\(D;D]+D,D}) (36)
Constraints(26)—(29) are applicable even for very com- + +

plex measurement processes. For example, a single mode <\(D1D1)+N(D2Dy) (37)

cavity undergoing direct photodetection by an ideal photode-
tecto)r/ can bg degscribed IE)y a special cas{e of the gepneralized :)‘(DIDlH)‘(DZDZ) (38)
measurements formalism known as theantum trajectories _

or stochastic Schdinger equatiorpicture(see Refs[34,35 =MA)+MB), (39

for a review and referenciedn this picture, if the system is and thus\ (p)<X(A)+\(B), as claimed. This method for
started in the statg then the final state of the systemgg,  eliminating off-diagonal block terms was introduced by
where “h” is used here to denote not just a single measureWielandt to connect the Weyl and Aronszajn inequalities
ment outcome, but rather the complete history recorded bycited in Chap. 3 of Ref[27]) [36].

the photodetector, that is, all the times at which photocounts As a straightforward consequence we see by induction

occurred. Then Eq$28) and(29) may be written as that for any positive matriy and complete set of orthogonal
projectors{P;}:
Mp)<f du(h)N(pp) (30
N(p)<2 M(PipPy). (40)
@D du(hX(pn)<\(p), (3D) '
h Extending even further, suppo$E;} is any set of measure-

ment matrices defining a generalized measurementpand

a positive matrix. As in Sec. Il A we can introduce an ancilla
system with an orthonormal basjs in one-to-one corre-
spondence with the indices on the measurement mattces
and define a unitary matrii) which has the action

where the integral is a functional integral over all possible
photodetection histories, andw(h) is the corresponding
measure on histories.

Proof of Theorem 2The first two equations of Theorem 2
[Egs. (22) and (23)] are immediate consequences of the
deeperstatic constraints on quantum mechanics introduced ,
in Theorem 1; here we are merely enumerating the implica- U|'/’>|O>:§i: Eil)li), (41)
tions these static constraints have for dynamics. The remain-
ing constraints|Eqs. (24) and (25)] are genuine quantum where|0) is some standard state of the ancilla. Then we have
dynamical constraints relating the prior and posterior states (p)=X\(p®|0)(0|), since the nonzero eigenvaluespodnd
of a quantum measurement. p®|0){0| are the same. Simple algebra and Etf)) imply

Proof of Eq. (24):Supposep is a positive matrix which  that
can be written in the block form

N(p)=A[U(p@[0)(0)HU] (42)
A X @2
Pt oB) <3 Maeli)ihDueelo)ohutelixi)]
For our purposep will most often be a density matripand (43
thus satisfy trp)=1], but the results we prove hold for a
general positive matrix. We will show that(p)<A(A) => MEipE]®]i)i]) (44)
i

+X(B). (Recall our conventions on padding, which imply

that the vectors of eigenvalues faandB are to be extended

by zeroes in such a way that they contain as many entries as _ E M(E;pE]) (45)
the vector of eigenvalues ¢f.) p is a positive matrix, so i H
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where in the last line we used\(EipE ®[i)i|)
=\(EipE]), since the nonzero entries agree. This completes S(P)EEi PiS(pi)- (52)
the proof of Eq.(24).

Proof of Eg. (25):Again, let U be the unitary matrix Applying the Schur concavity dfi(-) to Eq.(19), and doing
constructed in Sec. Il A to implement the measurement desome simple algebra, gives
scribed by the measurement matri¢&s}, namely, any uni-

tary matrix having the action
Y J S piS(p)+H(p)=S(p). (52

U|w>|0>=2i Eil)li). (46)

This result was obtained previously by Lanford and Robin-
son[37] using different techniques. Applying the Schur con-
cavity of H(-) to Eq.(28), followed by the concavity of the
Shannon entropy, gives

Again, we have\ (p) =\ (p®|0)(0]), since the nonzero ei-
genvalues op are the same as those @& |0)(0|, and thus
M(p)=\[U(p®]0){0[)U™]. It follows from Eq.(16) that

x(Z <|®|i><i|>U<p®|0><0|>uT<|®|i><il>)<x<p>, S(p)= 2. piS(pl). >3
I

(47) Essentially the same result was obtained previously in the
and thus context of entanglement transformati¢8], where it ex-
presses the fact that local processes cannot increase the
amount of entanglement present in a system. Finally, apply-
ing the Schur concavity dfi(-) to Eq.(29) gives the beau-
tiful inequality
This last equation is obviously equivalent to the statement
we set out to prove,

A(E EipEr®|i><i|)<Mp>. (48)

H(p)+ 2 piS(p{)=S(p), (54
D NEPED<N(p), (49 |
! which implies that in order to lower the entropy of a system
which concludes the proof of Theorem 2. by an amount\, on average, the informatidt(p;) collected
by the measurement must be at least as largk. &his fact
C. Consequences of the constraint equations can be seen as a quantum mechanical expression of the prin-

The constraints proved in Theorems 1 and 2 are ver(fple' expressed by Landau@g] and fieshed out by Bennett

strong and, not surprisingly, have many interesting cons 39) and Zurek40], that measurement of a physical system

. rries with it a thermodynami when the m remen
guences. We now elucidate a few of these consequences gearnes th it a thermodynamic cost when the measurement

ing the notions ofSchur concavityand Schur convexityA record is erased, and proper accounting of this cost enables
Schur convex functiori(-) is a real-valued function which ?g:et?zei?LVE ffreacr(;r\'/lij:\z)rum posed by Maxwell's demon.
preserves the majorization relation, in the sense that if Applying the Schur convexity of the functions(x)

<y thenf(x)<f(y). Simple necessary and sufficient condi- pEy 9 y .
tions for a function to be Schur convex are knof@3], and =2;x; for k=1 to the results of Theorems 1 and 2 also give

many interesting functions are Schur convex. These includé* humber of interesting constraints. The arguments used are

for example, the functiorx—>f(x)EZ‘-’=lx'-‘ for any k=1. analogogs to those given above for the Shannon entropy, §o
- . 1=17 .. the details will be omitted, and we merely state the results:
Similarly, a Schur concavéunction f(-) is one such that if

x<y, thenf(x)=f(y). Equivalently,f(-) is Schur concave

if —f(-) is Schur convex. Perhaps the canonical example of > pir(pH)=tr(p)=<> pitr(p) . (55)
a Schur concave function is the Shannon entrdpgx) ' '

=—ZjXjlogy(X), so that whenevex<y it follows that

H(x)=H(y), giving further justification to the intuitive no- > pktr((p)=tr(p¥) =2, p;tr((p))"). (56)
tion thatx<y means thak is more disordered than Ap- i i

plying the Schur concavity of Shannon’s entropy to the re-

sults of Theorems 1 and 2, we obtain an attractive suite of IV. PARTIAL CONVERSES TO CONSTRAINTS
results. First, applying the Schur concavity tdf-) to Eq. ON MIXING AND MEASUREMENT

(18) gives ) , .
Given the constraints on mixing and measurement de-

scribed in Theorems 1 and 2, it is natural to ask if these

S(P)ZH(Z pi)‘(Pi))- (50) constraints completelgharacterizethe processes of mixing
and measurement, respectively. We will show below that the

Applying the concavity of the Shannon entropy to the right-answer to this question iso. However, partial progress to-
hand side, we obtain, as a corollary the concavity of the vorward achieving simple characterizations of mixing and mea-
Neumann entropy, surement may be reported in the form of a partial converse to
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Theorem 1, described below in Sec. IV A, and a partial condistribution on just one outcome, the trivial distributipp

verse to Theorem 2, described in Sec. IVB. =1, with corresponding vectok,=(1,0). Clearly, A(p)
<Z;pi\;, yet it is not possible to find a stajg such that
A. Partial converse to the constraints on mixing p=p1p1 andA(p;) =\;. Thus, in this example, it is neces-

Given the constraints Theorem 1 imposes on mixing, it i sary to introduce extra indices, just as was done in Theorem

natural to ask whether these constraints completely charac-
terize the mixing process. That is, given a density mairix
probabilities p; and vectors\; with non-negative, non-
increasing components which sum to 1, and such that

Might it be that conditiong57) and (58) together com-
pletely characterize the mixing process? The following ex-
ample, due to Julia Kempgt2], shows that this is not the
case. Suppose we consider a qubit system, and cheose
=diag(5/12,7/12) p,=p,=1/2, and  N;=(1,0), N,
Np)<2 PiN; (57  =(1/2,1/2). It is easy to verify that conditiori§7) and (58)
: are satisfied with these choices. Unfortunately, it is not pos-

sible to find statep, andp, with vectors of eigenvalues,
and )\, such thatp=p,p1+p,p,, Since with these choices
for A4 and \, it follows that p; must be a pure state and
does it follow that there exist density matricessuch that ~p2=1/2 the completely mixed state; thusp;+pop, has
Mp))=\; andp=3;p;p;? eigenvalues 3/4 and 1/4, which are not equal to 5/12 and

We will show below that the answer to this questiondﬁ 7/12. DeSpite this example, | believe it ||ke|y that conditions
however, | suspect that some characterization along similz#long the lines of Eqs(57) and (58) may be used to com-
lines is possible. Progress toward such a characterization c&etely characterize the process of mixing in quantum me-
be reported in the form of a partial converse to Theorem 1¢hanics.
which states that provided E@57) holds then there exist
statesp;; and a probability distributiomp;; such that\ (pj;) B. Partial converse to the constraints on measurement
=\;, independent of the value of the indgx and p;
=3,pj; for eachi, as well asp==3;pj;p;; . That is, in order

D phi<np), (58)

Given the constraints Theorem 2 imposes on the quantum
to obtain a converse to Eq57) we need to introduce an measurement process, it is natural to ask whether these con-
straints completely characterize the possible posterior states

extra indexj. We will show below that it is necessary to i . .
introduce the extra index if only Eq57) is assumed as a and probabilities which may occur in such a measurement?
Ihat is, supposing is a density matrixp; is a probability

hypothesis for the converse. Let us state and prove the partig o , . .
converse as Theorem 3. Istribution, andp; are density matrices such that

Theorem 3:Supposep is a density matrix and\; are
vectors with non-negative, nonincreasing components sum- Ap)<>, piN(p) (61)
ming to 1. Suppos@; are probabilities such that i

Mp)<2 Pk (59) D M) <\ p), (62

Then there exist density matricpg and a probability distri- _ . .
bution p; such that p=3p;, A(pi)=\;, and p does it follow that there exist measurement matri¢Eg

= piipi; - satisfying the completeness reIatidhEiTEizl and giving
To prove Theorem 3 we need the result stated in Sec. || e Statep; as posterior states, with probabilitips, when
thatx<y if and only if there exist probabilitieg; and per- the measurement is performed on a system initially prepared
mutation matrices®; such thatx==,q;P;y. Applying this N the statep? _ o
result with assumptiof59), we obtain We will show below that the answer to this questionés
however, | suspect that some characterization along similar
lines is possible. Progress toward such a characterization can
)‘(P):iz PigjPjA; - (60) be reported in the form of a partial converse to Theorem 2,
. which states that provided relatigl) holds, then there is a
Working in the basis in whiclp is diagonal, and defining; quantum measurement described by measurement matrices
to be the diagonal matrix with diagonal entries, we may  {Ej;} such that the corresponding posterior statgssatisfy
set p;j=p;q; and pijEPinPjT, obtaining pj=X;p;; and  pj;=p; for everyj, and the measurement probabilitipg
N(pij)=\;. Finally, the equatiorp=ZX;p;;p;; follows im-  satisfy>;p;;=p;. Thus, in order to obtain a converse to Eq.
mediately from these definition and E§Q0), completing the (61) we need to introduce an extra indgxjust as we did
proof. earlier in the partial converse to Theorem 1. Also analo-
What of a tight converse to Theorem 17? It is easy to segously to that case, we show below that it is necessary to
that it is not possible to obtain a tight converse to Exy) introduce the extra index with only E(61) as hypothesis for
alone, as follows. Suppose we chogsel/2 to be the com- the converse. Let us state and prove the partial converse as
pletely mixed state of a single qubit, and define a probabilityTheorem 4.
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Theorem 4:Supposep is a density matrix with vector of EijpEiTj =pig;o; (72)
eigenvalues\, and o; are density matrices with vectors of
eigenvalues\; . Suppose; are probabilities such that and thus, upon performing a measurement defined by the

measurement matricegE;;}, the result {,j) occurs with
)\<2 PN . (63 probability p;; = p;q; , 2;p;;=p;i, and the post-measurement
i state iso;. This completes the proof of Theorem 4.
Theorem 4 is not a sharp converse to the condition of Eq.
Then there exist matricg&;;} and a probability distribution  (61) because of the extra indgx Introducing some such
pij such that index is certainly necessary with the present hypotheses, as
may be seen by considering an example with (1/2,1/2),
z = E =1, (64) and the trivial probability distribution on one outcome,
TR =1, with \;=(1,0). Then\<p;\, but it is clear that there
does not exist arE; such thatElpEI=p1, where \(p)
EijpEl=pijoi. (65 =\, N(p1)=\; andE!E;=1, because the last equation im-
plies thatE; must be unitary. It is not difficult to construct
E L 66) more complex examples to convince oneself that this behav-
j Pij = Pi- ior is generic.
Might it be that conditiong61) and(62) together charac-

To prove Theorem 4, we again use the result thay if terize the posterior states and probabilities achievable
and only if there exist probabilitieg; and permutation ma- through a quantum measurement? The following argument,
trices P; such thatx==,q;P,y. By assumption we havk due to Julia Kemp@42] and the author, shows that this is not
<3ipi\; and thus there exist permutation matridgsand ~ the case. Suppose we consider a qubit system, and choose
probabilitiesq; such that p=diag(5/12,7/12) p;=p,=1/2, and p,=diag(1,0),p,

=diag(1/2,1/2). It is easy to verify that conditio&l) and

(62) are satisfied with these choices. Unfortunately, it is not

}‘:iEj Pid;PiA; . (67) possible to find measurement matriégsandE, satisfying

>.E'E;=1 and giving posterior statgs; and p; with equal
Without loss of generality we may assume tpaando; are  probabilities 1/2, when the stateis measured. This can be
all diagonal in the same basis, with nonincreasing diagona$een in a variety of ways. A simple direct way is to note that
entries, since if this is not the case then it is an easy matter the purity of p; implies thatE; must have the fornE,
prepend or append unitary matrices to the measurement ma=«|a)(b| for normalized state¢a) and |b), and somea
trices to obtain the correct transformation. With this conven->0. Thus
tion, we define matriceg;; by

EJE,=1—EIE, (72)
Eij Vp=\pigjoiP] . (68)
=1—a?[b)(b| (73)
In order forE;; to be well defined by this formula alone, it is
necessary thai be invertible. If this is not the case then the —(1—a?)|b)(b|+|c){c|, (74)

Ej; are defined on the support pfby formula(68), and to
act as the zero operator on the orthocomplement of the SURghere |c) is orthonormal to|b). The polar decomposition
port of p. It is convenient to leP be the projector onto the givesE,=U \/@E for some unitary, so

support ofp. Note that we have
E,=+1—a?U|b)(b|+U|c){c|. (75

\/E(E EiJrjEij)\/;:Z pig;P;oiP] . (69) B _
1 1 We are requiring thaE,pE}=1/4, so it must be the case that
E, is nonsingular, and thug<<1. Premultiplying byEz’l

Comparing with Eq(67), we see that the right-hand side of and postmultiplying by E;)fl gives

the last equation is jugt, and thus

1 1
fp(EJ E;Eij) Vo=, (70 P 2o PN+ glexel. (76)

from which we deduce that;;E];E;;=P, the projector onto  Since|b) and|c) are orthonormal it follows that such @

the support op. Letting Q=1—P be the projector onto the cannot be equal to diag(5/12,7/12), which is the desired con-
orthocomplement of the support, we can append an addiradiction. Despite this example, | believe it likely that con-
tional measurement matri,,=Q to the collectionk;;, to ditions along the lines of Eq$61) and(62) may be used to
ensure that the completeness reIatE)imE;rj Eij=1 is satis- characterize the process of measurement in quantum me-
fied. Furthermore, from definitio(68), it follows that chanics.
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V. ENTANGLEMENT TRANSFORMATION
Ny <2 Piko, (79
The problem ofentanglement transformatias a natural '
context in which the results of the present paper may bgyhich is equivalent to Eq(78). To prove the converse, sup-
applied. The problem of entanglement transformation arisegose Eq(78) holds. Then by Theorem 4 there exists a quan-

as a consequence of the fundamental question of how mayim measurement described by measurement matBges
we convert one type of physical resource into another, angdng probabilitiesp;; such that

there has been considerable effort devoted to determining

when it is possible to convert one type of entanglement to

another. In Ref[4] a connection was noted between en- EijPEiTj=DijUi7 > Pi=pi (80)
tanglement transformation and majorization, namely, that if ]

|y and|¢) are pure states of a bipartite quantum syste
with components belonging to Alid®) and Bob(B) respec-
tively, then Alice and Bob can transform the sta#e into
the statel¢) using local operations on their respective sys-
tems and classical communication between Alice and Bob, i
and only if

mI'he procedure for Alice and Bob to produce the ensemble is
for Alice to perform the measurement described by the set
Ej; . The post-measurement stettt;ej) is then a purification

El] of the states;, and it can be showiksee Ref[33], or
Sec. 2.5 of Ref[1]) that by performing an appropriate uni-
tary transformation Bob can convert the stpfg;) into the
state | ¢;), with total probability p; of obtaining the state
|#i). Thus Eq(78) represents a necessary and sufficient con-
dition for it to be possible to transform the state) into the
ensemblelp;,| ¢;)} by local operations and classical com-

where\ , (respectively\ ;) is the vector of eigenvalues of munication.

the reduced density matrix for Alice’s system when the joint

system is in the state) (|¢)). As usual, the components of VI. CONCLUSION
such vectors are ordered into nonincreasing order. This result
was subsequently generalized by Vidal to the case of We have shown that there ar_e_strong fundamental con-
conclusive transformation, and even further by Jonathan angi@ints on the processes of mixing and measurement in

Plenio[9] to the problem where Alice and Bob are supplied duantum mechanics that may be naturally expressed in the
with a state|#), and wish to transform this state into an language of majorization. Although the results in the present

ensemblef states in which the stafe);) occurs with prob- paper do not completely _charagterize these Processes, t_hey
ability p; . (Also see Hardy15] for an instructive alternative suggest .that there.may exist a simple set of .condmons which
approach to results of this typehe necessary and sufficient substantially simplify the usual characterization of these pro-

condition for such a transformation to be possible is 8t cesses via operator_equations. Another interes’ging direction
for further research is to generalize the constraints on mea-

surements obtained in this paper to better understand how
two or more states may transform simultaneously under a
)\¢<2 Pk g (79) measurement. Once again, although this problem is in prin-
i ' ciple already “solved,” in the sense that there is an operator
equation specifying exactly what transformations may occur,
results such as those in the present paper and in[Ré&f.

We now explain how this result can be seen as an easy cor)- .. . L
0 P 0 € Y €O dicate that much more explicit characterizations may be

sequence of the results proved in the present paper, and th(?ﬂassible. Such explicit conditions are likely to have applica-

the connection between majorization and gntanglement 'S jons to fundamental problems such as the problem of trans-
ally a consequence of a deeper connection between majoy;

ization and measurement. By a result of Lo and Popesc prmation of mixed state entanglemdsy, and to the prob-

o . . Bm of determining to what extent the acquisition of
[43], it is possible to .transfomi ) mto the ensgmple _.information about the identity of a quantum state disturbs the
{pi,|#i)} by local operations and classical communication if ;
T ; . . system being measurgd5|.
and only if it is possible to make the transformation via the
following simplified procedure: first, Alice performs a gen-
eralized measurement on her state, then sends the result to

Bob, who performs a unitary operation on his system condi- Thanks to Dave Beckman, Sumit Daftuar, Julia Kempe,
tional on the outcome of the measurement Alice made. Legeth Ruskai and Armin Uhlmann for discussions about ma-
p=trg(|#)(¢]) be the initial state of Alice’s system, and jorization. Thanks also to Manny Knill for encouragement
suppose Alice performs a quantum measurement describeghd bringing Ref[20] to my attention, and to Chris Fuchs,
by measurement matric€s, so that outcome occurs with  Kurt Jacobs, and Reinhard Werner for bringing their unpub-
probability p; and €;®U;)|#)=/pi|#:), for some unitary  lished work to my attention. This work was supported by a
operatorU; acting on Bob’s system. Considering Alice’s Tolman Fellowship, and by DARPA through the Quantum
system alone and observing thElipEiT=0'i, where o Information and Computing InstitutéQUIC) administered
=p; tr(| ¢;){#i|), we deduce from Theorem 2 that through the ARO.

Ny<Ng, (77)
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