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Characterizing mixing and measurement in quantum mechanics
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What fundamental constraints characterize the relationship between a mixturer5( i pir i of quantum states,
the statesr i being mixed, and the probabilitiespi? What fundamental constraints characterize the relationship
between prior and posterior states in a quantum measurement? In this paper we show that there are many
surprisingly strong constraints on these mixing and measurement processes that can be expressed simply in
terms of the eigenvalues of the quantum states involved. These constraints capture in a succinct fashion what
it means to say that a quantum measurementacquires information about the system being measured, and
considerably simplify the proofs of many results about entanglement transformation.
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I. INTRODUCTION

Quantum mechanics harbors a rich structure whose in
tigation and explication is the goal of quantum informati
science@1,2#. At present only a limited understanding of th
fundamental static and dynamic properties of quantum in
mation has been obtained, and many major problems rem
open. In particular, we would like a detailed ontology a
quantitative methods of description for the different types
information and dynamical processes possible within qu
tum mechanics. An example of the pursuit of these go
along a specific line of thought is the partial development
a theory of entangled quantum states; see, for example
work in Refs.@3–12#.

The purpose of the present paper is to pose and part
solve two fundamental problems about the static and
namic properties of quantum information. The first of the
problems is to characterize the process ofmixing quantum
states. More precisely, ifr5( i pir i is a mixture of quantum
statesr i with probabilities pi , what constraints relate th
properties ofr to the probability distributionpi and the
quantum statesr i? The second problem is to characterize
relationship between the prior and posterior states in a qu
tum measurement. The result of our investigations is a se
two static constraintson mixtures of quantum states, tw
dynamic constraintson the quantum measurement proce
and two partialconverseresults, one to the static constrain
and the other to the dynamic constraints. The statemen
each of these results is rather easily understood, so we
view the statements now, before proceeding to the pro
and consequences in the main body of the paper.

Suppose we mix a set of quantum statesr i according to
the probability distributionpi . Then we will show that this
mixing process must satisfy the constraint equations:

lS (
i

pir i D a(
i

pil~r i ! ~1!

%
i

pil~r i !alS (
i

pir i D . ~2!
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In these equations the notation% denotes a direct sum o
vectors,l(X) denotes the vector of eigenvalues of the mat
X arranged so the components appear in non-increasing o
~this ordering is imposed for later convenience!, and the re-
lation a is themajorizationrelation.1 As an example of the
notation used in Eq.~2!, supposep151/3, p252/3, r1
5diag(3/4,1/4), andr25diag(1/5,4/5). Then Eq.~2! be-
comes

1

3 F 3
4

1
4

G %
2

3F 4
5

1
5

GalS 1

3 F 3
4 0

0 1
4

G1
2

3 F 1
5 0

0 4
5

G D , ~3!

which is equivalent to

F 1
4

1
12

8
15

1
15

G aF 37
60

23
60

0

0

G . ~4!

A formal definition of majorization appears in Sec. II B
however, for now the essential intuition to grasp is that
relationxay means that the vectorx is more ‘‘mixed’’ ~or
‘‘disordered’’! thany. Thus Eq.~1! captures the intuition tha
( i pir i is more mixed, on average, than the statesr i appear-
ing in the ensemble. The intuition behind Eq.~2! is a little
more complex. Imagine that we prepare the stater by ran-
domly choosing a value fori according to the probability
distribution pi , and then preparing the corresponding st
r i . Our quantum state, including a description ofi, may be
written as( i pi u i &^ i u ^ r i . We then discard stateu i & repre-
senting our random choice ofi, leaving only the state

1Note that the vectors on the left and right hand sides in Eq.~2!
may be of different dimensions; in such cases we extend which
vector is of lesser dimension by padding it with zero entries,
enable a comparison using the majorization relation.
©2001 The American Physical Society14-1
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( i pir i . Relation~2! expresses the fact that when we thro
away i, the state of the quantum system becomes less d
dered.

Suppose we perform a measurement on a quant
mechanical system initially in the stater, obtaining measure
ment resulti with probability pi , and corresponding poste
rior stater i8 . What constraints are placed on the relations
betweenr, pi andr i8? We will show that the following two
dynamic constraintsmust be satisfied:

l~r!a(
i

pil~r i8! ~5!

%
i

pil~r i8!al~r!. ~6!

The intuition behind Eq.~5! is that quantum measuremen
acquire information about the state of the system being m
sured, and thus after measurement the state of the syste
less mixed, on average, than before. The intuition behind
~6! is a little more complex, but can be understood us
Zurek’s approach@13,14# to decoherence and quantum me
surement. Recall that in this approach a measuremen
volves three systems: the system being measured, w
starts in the stater, and ends in the stater i8 ; a measuring
device, which starts in some standard state, and finishes
‘‘pointer state’’ u i & recording the result of the measureme
and an environment which ‘‘decoheres’’ the measuring
vice, ensuring that it behaves in an essentially classical fa
ion. The system and measuring device interact unitarily d
ing the measurement, ensuring that there is no change in
amount of disorder present in the system. The subseq
environmental decoherence process can also be thought
a type of measurement, in which the different outcomes
averaged over. In this view, the environment continua
measures the state of the measuring apparatus, resulting
final state( i pi u i &^ i u ^ r i8 for the measuring apparatus an
system being measured. This decoherence process caus
increase in the disorder present in the system, which is
intuition behind Eq.~6!. More succinctly, Eq.~6! may be
thought of as capturing the notion that the total ensemble
possible quantum states is more disordered after a mea
ment than it is before.

The importance of the static constraints~1! and ~2! and
the dynamics constraints~5! and ~6! is further reinforced by
the fact that in each case there is a type of converse to t
equations. In this introduction we focus only on the mo
interesting case of the converse to the dynamic constra
~5! and~6!, however rather similar remarks hold also for t
static constraints~1! and ~2!. Supposepi is a probability
distribution, andr andr i8 are quantum states such that

l~r!a(
i

pil~r i8!. ~7!

Then we will show that there exists a quantum measurem
whose measurement outcomes may be labeled by apair of
indices (i , j ), such that for any fixedi and for all j the pos-
terior state of the quantum system after measurement isr i8 ,
and the probabilitiespi j for the (i , j )th measurement out
02211
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come satisfy( j pi j 5pi . Unfortunately, this result is not a
tight converse to Eqs.~5! and~6!, due to the introduction of
the extra indexj; however, for many purposes it is a suffi
ciently strong converse. We will show that even Eqs.~5! and
~6! together do not completely characterize the quant
measurement process; however, I believe it likely that th
is a simple characterization of the measurement proc
along similar lines that may be expressed entirely in terms
the eigenvalues of the prior and posterior states, and
probabilities of the different measurement outcomes.
course, it is true that the quantum measurement formal
already provides such a characterization, in the form o
matrix equation; however, equations such as Eq.~5! and ~6!
provide far more explicit information, and as such, are like
to be more useful in practice. We will demonstrate the util
of this approach by application to the problem of entang
ment transformation, simplifying the proofs of sever
known results about entanglement transformation@4,7–
9,15#.

There is a striking level of symmetry in Eqs.~1! and ~2!
and ~5! and ~6!, which we will also see in the partial con
verse results. It is obviously tempting to suggest that t
reflects some deeper underlying principle, much as M
well’s equations may be derived from a deeper action p
ciple based on the Faraday tensor, or the still deeper p
ciples of gauge invariance and relativity. Unfortunately
have not yet succeeded in obtaining a satisfactory form
such a deeper principle. Presumably, such a deeper prin
might assist in tightening the partial converse results, or p
haps tightening the partial converses may shed light on
origin of Eqs.~1! and ~2! and ~5! and ~6!.

In explaining the intuitive meanings of Eqs.~1! and ~2!
and ~5! and ~6!, we have used language such as the ‘‘dis
der’’ present in a quantum state. One might wonder if it
possible to write down entropic statements capturing th
intuitions. We will show that each of these equations in fa
implies an entropic statement whose content correspond
the intuition we have described. Of course, entropic sta
ments should really only be interpreted in the asympto
limit, where we have a large number of identical copies, o
system available; the advantage of Eqs.~1! and ~2! and ~5!
and ~6! is that they are stronger forms of these asympto
statements which may be applied to single quantum syste

This paper contains six fundamental results~together with
a number of applications!, expressed in the four constrain
equations~1! and ~2! and ~5! and ~6!, and the partial con-
verses to Eqs.~1! and ~2! and ~5! and ~6!. We now review
antecedents of these results in the existing literature. Eq
tion ~1! is an elementary consequence of classic results in
theory of majorization. Equation~2! follows as a corollary of
work of Uhlmann@16#, Ruskai@17#, and Nielsen@18# on the
relationship between mixed states and probability distri
tions. Equations~5! and~6! are implicit in the work of Vidal
@8# on entanglement transformation, and the partial conve
to ~5!-~6! is implicit in the work of Jonathan and Plenio@9#
on entanglement transformation, building on earlier work
Nielsen @4#. A proof of Eq. ~5! in the context of entangle
ment transformation has also been previously obtained
Jonathan, Nielsen, Schumacher and Vidal@19#. There are
4-2
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CHARACTERIZING MIXING AND MEASUREMENT IN . . . PHYSICAL REVIEW A 63 022114
several advantages to the point of view taken in the pre
paper. First, measurement is, in some sense, a more fu
mental process than entanglement transformation, and
~5! and ~6! highlight the fundamental connection betwe
measurement and majorization, incidentally explaining w
there is a connection between entanglement transforma
and majorization: this arises as a result of a deeper con
tion between measurement and majorization. Second,
proofs in the present paper are novel, to our knowledge,
have the advantage of proceeding from a more unified p
of view than earlier work. As a result they are, perhaps, m
elegant and informative than earlier proofs, especially
proof of the partial converse to Eqs.~5! and ~6!, which is a
substantial improvement of and extension to existing c
structions. Several other items of related work are also wo
pointing out. There is a substantial mathematical literature
the problem of characterizing the properties of sumsA1B of
Hermitian matricesA and B, and Fulton@20# wrote a nice
review of recent progress on this problem, which is clos
related to the problem of mixing of density matrices. Har
@15# introduced techniques in the context of entanglem
transformation that can be used to prove Eq.~5! and the
partial converse to Eqs.~5! and ~6!. Fuchs and Jacobs@21#
~unpublished, 2000! have obtained a beautiful and quite d
ferent proof of~5!, after hearing of the result from Nielsen
Finally, the procedure described in this paper to prove
partial converse to~5!-~6! is a generalization of the proce
dures for entanglement transformation for pure states fo
by Nielsen in@4#, and subsequently improved in independe
work by Hardy, Jonathan and Nielsen~described in Chapte
12 of @1#!, by Jensen and Schack@22#, and by Werner@23#.

The paper is structured as follows. We begin in Sec. II
reviewing the two main tools that will be used in this pap
the theory of generalized measurements in quantum mec
ics and the mathematical theory of majorization. Section
contains proofs of the static constraints~1! and ~2! on the
mixing of quantum states, and the dynamic constraints~5!
and ~6! on quantum measurement, and explores some
ementary consequences of these results. In Sec. IV we p
the partial converses to Eqs.~1! and ~2! and ~5! and ~6!.
Section V explains how the results of the present paper m
be used to obtain simplified proofs of known results ab
entanglement transformation. Finally, Sec. VI concludes
paper with a discussion of some open problems and fu
directions.

II. GENERALIZED MEASUREMENTS
AND MAJORIZATION

Before proceeding to the main results of the paper, i
useful to first review some background material on gene
ized measurements and the mathematical theory of majo
tion. All discussion in this and succeeding sections is to
understood in the context of finite-dimensional vec
spaces, although infinite-dimensional modifications se
likely to hold, perhaps with some technical modifications

A. Generalized measurements

In this paper we use thegeneralized measurement forma
ism as our basic tool for a description of quantum measu
02211
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ments. The theory of generalized quantum measuremen
an extension of the projective measurements describe
most quantum mechanics textbooks. The reason the gen
ized measurement formalism is adopted is because it is b
adapted to a description of many realistic quantum meas
ment schemes. However, it is important to appreciate that
generalized measurement formalism follows from stand
quantum mechanics, in the sense that any generalized m
surement can be understood as arising from the combina
of unitary evolution and a projective measurement, a co
spondence made explicit below. Nevertheless, the forma
of generalized measurements is in many ways more us
and mathematically elegant than the standard formulation
quantum measurement in terms of projectors. More deta
introductions to the theory of generalized measurements
be found in Refs.@24,25,1,26#.

Mathematically, a generalized measurement is speci
by a set$Ei% of measurement matricessatisfying thecom-
pleteness relation( iEi

†Ei5I . The indexi on the measure-
ment matrices is in one-to-one correspondence with the p
sible outcomes that may occur in the measurement. The
used to connect the measurement matrices to physics is
if the prior state of the quantum system isr then the outcome
i occurs with probabilitypi5tr(EirEi

†), and the posterior
state is given byr i85EirEi

†/tr(EirEi
†).

Generalized measurements are obviously more gen
than the projective measurements described in most t
books. Projective measurements have the feature that
arerepeatable, in the sense that if one performs a projecti
measurement twice in a row on a quantum system, then
will obtain the same result both times. By contrast, most r
measurements do not have this feature of being repeata
which tips us off to the need for the formalism of generaliz
measurements. Nevertheless, even the generalized mea
ment formalism can be understood in terms of project
measurements as follows: the effect of a generalized m
surement on a quantum system isequivalent to a unitary
interaction between the system being measured and ano
‘‘ancilla’’ system, followed by a projective measurement o
the ancilla system. More precisely, suppose$Ei% is a set of
measurement matrices satisfying the completeness rela
( iEi

†Ei5I . We introduce an ancilla system with orthono
mal basis elementsu i & indexed by the possible measureme
outcomes. Define a matrixU acting on the joint quantum
system ancilla by the action

Uuc&u0&[(
i

Ei uc&u i &, ~8!

whereu0& is some standard state of the ancilla, anduc& is an
arbitrary state of the quantum system being measured.
easy to show using the completeness relation( iEi

†Ei5I that
U can be extended to a unitary matrix acting on the en
state space of the joint system. Suppose we perform the
tary transformationU on the joint quantum system and a
cilla, and then do a projective measurement of the ancilla
the u i & basis. It is then easily checked that the result of
measurement isi with probability pi5tr(EirEi

†), and the
4-3



s
m
ize
to

em
th
ize

n
s
ly
an

t i
re

-

to
l

-
or

it
u

o

h
n

i-

e

-
los
ic

ave
-

w

-

-

n-

a

m

a

d

.
a

y
d

n
ur-

M. A. NIELSEN PHYSICAL REVIEW A 63 022114
corresponding post-measurement state of the system ir i8
5EirEi

†/tr(EirEi
†). Thus the effect on the quantum syste

is exactly as we have described above for a general
quantum measurement. Conversely, it is not difficult
verify that the effect of a unitary interaction between syst
and ancilla followed by a projective measurement on
ancilla can always be understood in terms of a general
measurement~see, for example, Chap. 8 of Ref.@1#!.

B. Majorization

Our primary tool in the study of mixing and measureme
in quantum mechanics is the theory of majorization, who
basic elements we now review. The following review on
covers elementary aspects of the theory of majorization,
the reader is referred to Chaps. 2 and 3 of@27#, @28# or @29#
for more extensive background.

The basic motivation for majorization is to capture wha
means to say that one probability distribution is ‘‘mo
mixed’’ than another. Supposex5(x1 , . . . ,xd) and y
5(y1 , . . . ,yd) are twod-dimensional real vectors; we usu
ally suppose in addition thatx andy are probability distribu-
tions, that is, the components are non-negative and sum
but the following definitions apply in the case of generax
andy as well. The relationxay, read ‘‘x is majorized byy,’’
is intended to capture the notion thatx is more mixed~i.e.,
disordered! thany. To make the formal definition, we intro
duce the notation↓ to denote the components of a vect
rearranged into non-increasing order, sox↓5(x1

↓ , . . . ,xd
↓),

wherex1
↓>x2

↓>•••>xd
↓ . We say thatx is majorized byy and

write xay, if

(
j 51

k

xj
↓<(

j 51

k

yj
↓ ~9!

for k51, . . . ,d21, and with the inequality holding with
equality whenk5d.

It is perhaps not so clear how this definition connects w
any natural notion of comparative disorder. We will state b
not prove a remarkable result connecting majorization t
natural notion of mixing. It can be shown~see Chap. 2 of
Ref. @27#! that xay if and only if x5( i pi Piy, where the
pi ’s form a probability distribution and thePi ’s are permu-
tation matrices. Thus, whenxay, we can imagine thaty is
the input probability distribution to a noisy channel whic
randomly permutes the symbols sent through the chan
inducing an output probability distributionx. From this char-
acterization many other important results follow with min
mal effort; for example, it can easily be shown that ifxay,
then the Shannon entropy of the distributionx must be at
least as great as that ofy.

The connection between majorization and quantum m
chanics arises primarily as a result ofHorn’s lemma~proved
in Ref. @30#; for a simple proof, see Ref.@18#!, which states
that xay if and only if there exists a unitary matrixu
5(ui j ) such thatxi5( j uui j u2yj . This fundamental relation
ship between majorization and unitarity ensures many c
connections between majorization and quantum mechan
02211
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As an elementary consequence of Horn’s lemma we h
Ky Fan’s maximum principle, which states that for any Her
mitian matrixA, the sum of thek largest eigenvalues ofA is
the maximum value of tr(AP), where the maximum is taken
over all k-dimensional projectorsP,

(
j 51

k

l j~A!5max
P

tr~AP!. ~10!

To see this, note that choosingP to be the projector onto the
space spanned by thek eigenvectors ofA with the k largest
eigenvalues, results in tr(AP)5( j 51

k l j (A). The proof of Ky
Fan’s maximum principle will be completed if we can sho
that tr(AP)<( j 51

k l j (A) for any k-dimensional projectorP.
To see this, letue1&, . . . ,ued& be an orthonormal basis cho
sen such thatP5( j 51

k uek&^eku. Let u f 1&, . . . ,u f d& be an or-
thonormal set of eigenvectors forA, ordered so the corre
sponding eigenvalues are in nonincreasing order. Then

^ej uAuej&5 (
k51

d

uujku2lk~A!, ~11!

whereujk[^ej u f k& is unitary. By Horn’s lemma it follows
that (̂ ej uAuej&)al(A), which implies that

tr~AP!5(
j 51

k

^ej uAuej&<(
j 51

k

l j~A!, ~12!

as required.
Ky Fan’s maximum principle gives rise to a useful co

straint on the eigenvalues of asumof two Hermitian matri-
ces, thatl(A1B)al(A)1l(B). To see this, choose
k-dimensional projectorP such that

(
j 51

k

l j~A1B!5tr@~A1B!P# ~13!

5tr~AP!1tr~BP! ~14!

<(
j 51

k

l j~A!1(
j 51

k

l j~B!,

~15!

where the last line also follows from Ky Fan’s maximu
principle.

Another consequence of Horn’s lemma is that given
density matrixr and a probability distributionpi there exist
pure statesuc i& such thatr5( i pi uc i&^c i u if and only if
(pi)al(r) ~see Refs.@18,16#; this result was also obtaine
by Ruskai in 1993@17#!, where it is understood that if the
vector (pi) contains more terms than the vectorl(r) then
the vectorl(r) is to be ‘‘padded’’ with extra zero terms
The proof of this result is simply to combine Horn’s lemm
with the classification of ensembles$pi ,uc&% consistent with
a given density matrixr, as discovered independently b
Schrödinger @31#, Jaynes@32#, and Hughston, Jozsa an
Wootters@33#. See Ref.@18# for the details of the proof.

This notion of ‘‘padding’’ vectors of unequal dimensio
so they can be compared by the majorization relation is s
4-4
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CHARACTERIZING MIXING AND MEASUREMENT IN . . . PHYSICAL REVIEW A 63 022114
prisingly useful, and we adopt the general convention t
when x and y are of different dimension thenxay means
that x̃a ỹ, wherex̃ and ỹ are padded with extra zero comp
nents to ensure that they have the same dimension. Fo
ample, (1/3,1/3,1/3)a(1/2,1/2), since (1/3,1/3,1/3
a(1/2,1/2,0). It is easy to check that this extended notion
majorization is well defined, providedx and y both have
non-negative components, and this will be the case for all
applications in this paper. Similarly, it is often useful to wri
x5y provided the padded versions ofx andy are equal; that
is, the non-zero entries ofx and y are equal. With these
conventions, it is easy to see that algebraic manipulati
proceed exactly as one would expect. For example, for n
negative real vectorsw, x, y, and z if wax, x5y, yaz
then obviouslywaz, even if all four vectors have differen
dimensionalities. We occasionally make use of such elem
tary observations in proofs, without explicit comment.

The final result about majorization we shall need is tha
Pi are a set of orthogonal projectors such that( i Pi5I , andr
is a density matrix, then@27#

lS (
i

PirPi D al~r!. ~16!

Intuitively, if a projective measurement of a quantum syst
is performed, but we do not learn the result of the measu
ment, then the state of the system after measurement is m
mixed than it was before. One way of proving this relation
via Horn’s lemma; a sketch follows. First, note that it su
fices to prove thatl(PrP1QrQ)al(r), whereP and Q
5I 2P are two orthogonal projectors satisfyingP1Q5I .
Once this is proved, the general relation@Eq. ~16!# follows
by a simple induction. However, if we define a unitary m
trix U[P2Q, then it is easy to verify that

PrP1QrQ5
r1UrU†

2
. ~17!

Applying Horn’s lemma and the easily proved fact that
x1ay andx2ay then (x11x2)/2ay, it follows with a little
simple linear algebra thatl(PrP1QrQ)al(r).

III. PROOF OF CONSTRAINTS ON MIXING AND
MEASUREMENT IN QUANTUM MECHANICS

In this section we prove the four constraints~1! and ~2!
and~5! and~6!. The first and second of these are static co
straints on the mixing of quantum states, proved in S
III A. The third and fourth constraint equations are dynam
constraints on the quantum measurement process, prov
Sec. III B. Finally, some simple consequences of these
sults are discussed in Sec. III C.

A. Static constraints on mixing quantum states

Theorem 1: Supposer5( i pir i is a convex combination
of quantum statesr i with probabilitiespi . Then
02211
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l~r!a(
i

pil~r i ! ~18!

%
i

pil~r i !al~r!. ~19!

Proof of Eq. (18): This is an immediate consequence
the fact thatl(A1B)al(A)1l(B) for any two Hermitian
matricesA andB, as proved in Sec. II B.

Proof of Eq. (19): As noted in Sec. II B, if a density ma
trix r can be written as a convex combination of pure sta
uc i&, r5( i pi uc i&^c i u, then it follows that (pi)al(r),
where (pi) denotes the vector whose entries are the pr
abilitiespi . Equation~19! is a corollary of this result. To see
this, note that ifr i j are the eigenvalues ofr i and u i , j & the
corresponding orthonormal eigenvectors, then Eq.~19! is
equivalent to the equation

~pir i j !al~r!, ~20!

which follows from the results of Sec. II B and the observ
tion that

r5(
i

pir i5(
i j

pi r i j u i , j &^ i , j u. ~21!

This completes the proof of Theorem 1.

B. Dynamical constraints on quantum measurement

Theorem 2:Suppose$Ei% is a set of measurement matr
ces satisfying the completeness relation( iEi

†Ei5I . Then the
quantum measurement described by these matrices mus
isfy the following four constraints:

lS (
i

EirEi
†D a(

i
l~EirEi

†! ~22!

%
i

l~EirEi
†!alS (

i
EirEi

†D ~23!

l~r!a(
i

l~EirEi
†! ~24!

%
i

l~EirEi
†!al~r!. ~25!

A slightly different way of stating Theorem 2 is to defin
pi to be the probability of obtaining outcomei when the
measurement defined by the matrices$Ei% is performed on
the system, and letr i85EirEi

†/tr(EirEi
†) be the correspond

ing posterior states. Then the following four equations
equivalent to Eqs.~22!–~25!:

lS (
i

pir i8D a(
i

pil~r i8! ~26!

%
i

pil~r i8!alS (
i

pir i8D ~27!

l~r!a(
i

pil~r i8! ~28!

%
i

pil~r i8!al~r!. ~29!
4-5
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Theorem 2 is a fundamental constraint on the dynam
that may occur during a quantum measurement. Equat
~26! and ~27! are, of course, merely the dynamical expre
sion of the static constraints found earlier in Theorem
Equations~28! and ~29! represent constraints of an esse
tially dynamical nature, connecting as they do the prior a
posterior states of the quantum measurement. Intuitively,
~28! captures the notion that a quantum measurement ‘‘g
information’’ ~on average! about a quantum state, since
says that the eigenvalues of the initial stater are, on average
more disordered than the eigenvalues of the posterior s
r i8 . Intuitively, the second dynamic constraint@Eq. ~29!#
captures the notion that thetotal ensembleof possible quan-
tum states is more disordered after the measurement
before. Thus, Eq.~28! and ~29! represent complementar
constraints on the evolution of a quantum system durin
quantum measurement process.

Constraints~26!–~29! are applicable even for very com
plex measurement processes. For example, a single m
cavity undergoing direct photodetection by an ideal photo
tector can be described by a special case of the genera
measurements formalism known as thequantum trajectories
or stochastic Schro¨dinger equationpicture~see Refs.@34,35#
for a review and references!. In this picture, if the system is
started in the stater then the final state of the system isrh ,
where ‘‘h’’ is used here to denote not just a single measu
ment outcome, but rather the complete history recorded
the photodetector, that is, all the times at which photocou
occurred. Then Eqs.~28! and ~29! may be written as

l~r!aE dm~h!l~rh! ~30!

%
h

dm~h!l~rh!al~r!, ~31!

where the integral is a functional integral over all possi
photodetection histories, anddm(h) is the corresponding
measure on histories.

Proof of Theorem 2:The first two equations of Theorem
@Eqs. ~22! and ~23!# are immediate consequences of t
deeperstatic constraints on quantum mechanics introduc
in Theorem 1; here we are merely enumerating the impl
tions these static constraints have for dynamics. The rem
ing constraints@Eqs. ~24! and ~25!# are genuine quantum
dynamical constraints relating the prior and posterior sta
of a quantum measurement.

Proof of Eq. (24):Supposer is a positive matrix which
can be written in the block form

r5F A X

X† BG . ~32!

For our purposesr will most often be a density matrix@and
thus satisfy tr(r)51#, but the results we prove hold for
general positive matrix. We will show thatl(r)al(A)
1l(B). ~Recall our conventions on padding, which imp
that the vectors of eigenvalues forA andB are to be extended
by zeroes in such a way that they contain as many entrie
the vector of eigenvalues ofr.) r is a positive matrix, so
02211
s
ns
-
.
-
d
q.
s

tes

an

a

de
-
ed

-
y

ts

d
-

in-

s

as

there must exist a matrixD5@D1uD2# such thatr5D†D,
where the matricesD1 and D2 have the same number o
columns asA and B, respectively, and both have the sam
number of rows asr. Thus we have

F A X

X† BG5D†D5FD1
†D1 D1

†D2

D2
†D1 D2

†D2
G , ~33!

from which we read offA5D1
†D1 andB5D2

†D2. Using the
results of Sec. II B and the fact that the eigenvalues o
productEF of matricesE andF are the same as the eige
values ofFE, up to padding by zeros, we see that

l~r!5l~D†D ! ~34!

5l~DD†! ~35!

5l~D1D1
†1D2D2

†! ~36!

al~D1D1
†!1l~D2D2

†! ~37!

5l~D1
†D1!1l~D2

†D2! ~38!

5l~A!1l~B!, ~39!

and thusl(r)al(A)1l(B), as claimed. This method fo
eliminating off-diagonal block terms was introduced b
Wielandt to connect the Weyl and Aronszajn inequalit
~cited in Chap. 3 of Ref.@27#! @36#.

As a straightforward consequence we see by induc
that for any positive matrixr and complete set of orthogona
projectors$Pi%:

l~r!a(
i

l~PirPi ! . ~40!

Extending even further, suppose$Ei% is any set of measure
ment matrices defining a generalized measurement, andr is
a positive matrix. As in Sec. II A we can introduce an anci
system with an orthonormal basisu i & in one-to-one corre-
spondence with the indices on the measurement matriceEi
and define a unitary matrixU which has the action

Uuc&u0&5(
i

Ei uc&u i &, ~41!

whereu0& is some standard state of the ancilla. Then we h
l(r)5l(r ^ u0&^0u), since the nonzero eigenvalues ofr and
r ^ u0&^0u are the same. Simple algebra and Eq.~40! imply
that

l~r!5l@U~r ^ u0&^0u!U†# ~42!

a(
i

l@~ I ^ u i &^ i u!U~r ^ u0&^0u!U†~ I ^ u i &^ i u!#

~43!

5(
i

l~EirEi
†

^ u i &^ i u! ~44!

5(
i

l~EirEi
†!, ~45!
4-6
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where in the last line we usedl(EirEi
†

^ u i &^ i u)
5l(EirEi

†), since the nonzero entries agree. This comple
the proof of Eq.~24!.

Proof of Eq. (25):Again, let U be the unitary matrix
constructed in Sec. II A to implement the measurement
scribed by the measurement matrices$Ei%, namely, any uni-
tary matrix having the action

Uuc&u0&5(
i

Ei uc&u i &. ~46!

Again, we havel(r)5l(r ^ u0&^0u), since the nonzero ei
genvalues ofr are the same as those ofr ^ u0&^0u, and thus
l(r)5l@U(r ^ u0&^0u)U†#. It follows from Eq. ~16! that

lS (
i

~ I ^ u i &^ i u!U~r ^ u0&^0u!U†~ I ^ u i &^ i u! D al~r!,

~47!

and thus

lS (
i

EirEi
†

^ u i &^ i u D al~r!. ~48!

This last equation is obviously equivalent to the statem
we set out to prove,

%
i

l~EirEi
†!al~r!, ~49!

which concludes the proof of Theorem 2.

C. Consequences of the constraint equations

The constraints proved in Theorems 1 and 2 are v
strong and, not surprisingly, have many interesting con
quences. We now elucidate a few of these consequence
ing the notions ofSchur concavityand Schur convexity. A
Schur convex functionf (•) is a real-valued function which
preserves the majorization relation, in the sense thatx
ay then f (x)< f (y). Simple necessary and sufficient cond
tions for a function to be Schur convex are known@23#, and
many interesting functions are Schur convex. These inclu
for example, the functionx→ f (x)[( j 51

d xj
k for any k>1.

Similarly, a Schur concavefunction f (•) is one such that if
xay, then f (x)> f (y). Equivalently,f (•) is Schur concave
if 2 f (•) is Schur convex. Perhaps the canonical example
a Schur concave function is the Shannon entropyH(x)
52( j xj log2(xj), so that wheneverxay it follows that
H(x)>H(y), giving further justification to the intuitive no
tion that xay means thatx is more disordered thany. Ap-
plying the Schur concavity of Shannon’s entropy to the
sults of Theorems 1 and 2, we obtain an attractive suite
results. First, applying the Schur concavity ofH(•) to Eq.
~18! gives

S~r!>HS (
i

pil~r i ! D . ~50!

Applying the concavity of the Shannon entropy to the rig
hand side, we obtain, as a corollary the concavity of the
Neumann entropy,
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S~r!>(
i

piS~r i !. ~51!

Applying the Schur concavity ofH(•) to Eq.~19!, and doing
some simple algebra, gives

(
i

piS~r i !1H~pi !>S~r!. ~52!

This result was obtained previously by Lanford and Rob
son@37# using different techniques. Applying the Schur co
cavity of H(•) to Eq. ~28!, followed by the concavity of the
Shannon entropy, gives

S~r!>(
i

piS~r i8!. ~53!

Essentially the same result was obtained previously in
context of entanglement transformation@3#, where it ex-
presses the fact that local processes cannot increase
amount of entanglement present in a system. Finally, ap
ing the Schur concavity ofH(•) to Eq. ~29! gives the beau-
tiful inequality

H~pi !1(
i

piS~r i8!>S~r!, ~54!

which implies that in order to lower the entropy of a syste
by an amountD, on average, the informationH(pi) collected
by the measurement must be at least as large asD. This fact
can be seen as a quantum mechanical expression of the
ciple, expressed by Landauer@38# and fleshed out by Benne
@39# and Zurek@40#, that measurement of a physical syste
carries with it a thermodynamic cost when the measurem
record is erased, and proper accounting of this cost ena
one to solve the conundrum posed by Maxwell’s dem
~See Ref.@41# for a review.!

Applying the Schur convexity of the functionsf (x)
5( ixi

k for k>1 to the results of Theorems 1 and 2 also gi
a number of interesting constraints. The arguments used
analogous to those given above for the Shannon entropy
the details will be omitted, and we merely state the resul

(
i

pi
k tr~r i

k!<tr~rk!<(
i

pi tr~r i
k! , ~55!

(
i

pi
k tr„~r i8!k

…<tr~rk!<(
i

pi tr„~r i8!k
…. ~56!

IV. PARTIAL CONVERSES TO CONSTRAINTS
ON MIXING AND MEASUREMENT

Given the constraints on mixing and measurement
scribed in Theorems 1 and 2, it is natural to ask if the
constraints completelycharacterizethe processes of mixing
and measurement, respectively. We will show below that
answer to this question isno. However, partial progress to
ward achieving simple characterizations of mixing and m
surement may be reported in the form of a partial convers
4-7
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Theorem 1, described below in Sec. IV A, and a partial c
verse to Theorem 2, described in Sec. IV B.

A. Partial converse to the constraints on mixing

Given the constraints Theorem 1 imposes on mixing, i
natural to ask whether these constraints completely cha
terize the mixing process. That is, given a density matrixr,
probabilities pi and vectorsl i with non-negative, non-
increasing components which sum to 1, and such that

l~r!a(
i

pil i ~57!

%
i

pil ial~r!, ~58!

does it follow that there exist density matricesr i such that
l(r i)5l i andr5( i pir i?

We will show below that the answer to this question isno;
however, I suspect that some characterization along sim
lines is possible. Progress toward such a characterization
be reported in the form of a partial converse to Theorem
which states that provided Eq.~57! holds then there exis
statesr i j and a probability distributionpi j such thatl(r i j )
5l i , independent of the value of the indexj, and pi
5( j pi j for eachi, as well asr5( i j pi j r i j . That is, in order
to obtain a converse to Eq.~57! we need to introduce an
extra indexj. We will show below that it is necessary t
introduce the extra index if only Eq.~57! is assumed as a
hypothesis for the converse. Let us state and prove the pa
converse as Theorem 3.

Theorem 3:Supposer is a density matrix andl i are
vectors with non-negative, nonincreasing components s
ming to 1. Supposepi are probabilities such that

l~r!a(
i

pil i . ~59!

Then there exist density matricesr i j and a probability distri-
bution pi j such that pi5( j pi j , l(r i j )5l i , and r
5( i j pi j r i j .

To prove Theorem 3 we need the result stated in Sec.
that xay if and only if there exist probabilitiesqj and per-
mutation matricesPj such thatx5( jqj Pjy. Applying this
result with assumption~59!, we obtain

l~r!5(
i j

piqj Pjl i . ~60!

Working in the basis in whichr is diagonal, and definingL i
to be the diagonal matrix with diagonal entriesl i , we may
set pi j [piqj and r i j [PjL i Pj

† , obtaining pi5( j pi j and
l(r i j )5l i . Finally, the equationr5( i j pi j r i j follows im-
mediately from these definition and Eq.~60!, completing the
proof.

What of a tight converse to Theorem 1? It is easy to
that it is not possible to obtain a tight converse to Eq.~57!
alone, as follows. Suppose we chooser5I /2 to be the com-
pletely mixed state of a single qubit, and define a probabi
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distribution on just one outcome, the trivial distributionp1
51, with corresponding vectorl15(1,0). Clearly, l(r)
a( i pil i , yet it is not possible to find a stater1 such that
r5p1r1 andl(r1)5l1. Thus, in this example, it is neces
sary to introduce extra indices, just as was done in Theo
3.

Might it be that conditions~57! and ~58! together com-
pletely characterize the mixing process? The following e
ample, due to Julia Kempe@42#, shows that this is not the
case. Suppose we consider a qubit system, and choor
5diag(5/12,7/12),p15p251/2, and l15(1,0), l2
5(1/2,1/2). It is easy to verify that conditions~57! and~58!
are satisfied with these choices. Unfortunately, it is not p
sible to find statesr1 andr2 with vectors of eigenvaluesl1
and l2 such thatr5p1r11p2r2, since with these choice
for l1 and l2 it follows that r1 must be a pure state an
r25I /2 the completely mixed state; thusp1r11p2r2 has
eigenvalues 3/4 and 1/4, which are not equal to 5/12
7/12. Despite this example, I believe it likely that conditio
along the lines of Eqs.~57! and ~58! may be used to com
pletely characterize the process of mixing in quantum m
chanics.

B. Partial converse to the constraints on measurement

Given the constraints Theorem 2 imposes on the quan
measurement process, it is natural to ask whether these
straints completely characterize the possible posterior st
and probabilities which may occur in such a measureme
That is, supposingr is a density matrix,pi is a probability
distribution, andr i8 are density matrices such that

l~r!a(
i

pil~r i8! ~61!

%
i

pil~r i8!al~r!, ~62!

does it follow that there exist measurement matrices$Ei%
satisfying the completeness relation( iEi

†Ei5I and giving
the statesr i8 as posterior states, with probabilitiespi , when
the measurement is performed on a system initially prepa
in the stater?

We will show below that the answer to this question isno;
however, I suspect that some characterization along sim
lines is possible. Progress toward such a characterization
be reported in the form of a partial converse to Theorem
which states that provided relation~61! holds, then there is a
quantum measurement described by measurement mat
$Ei j % such that the corresponding posterior statesr i j8 satisfy
r i j8 5r i for every j, and the measurement probabilitiespi j

satisfy( j pi j 5pi . Thus, in order to obtain a converse to E
~61! we need to introduce an extra indexj, just as we did
earlier in the partial converse to Theorem 1. Also ana
gously to that case, we show below that it is necessary
introduce the extra index with only Eq.~61! as hypothesis for
the converse. Let us state and prove the partial convers
Theorem 4.
4-8
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Theorem 4:Supposer is a density matrix with vector o
eigenvaluesl, and s i are density matrices with vectors o
eigenvaluesl i . Supposepi are probabilities such that

la(
i

pil i . ~63!

Then there exist matrices$Ei j % and a probability distribution
pi j such that

(
i j

Ei j
† Ei j 5I , ~64!

Ei j rEi j
† 5pi j s i , ~65!

(
j

pi j 5pi . ~66!

To prove Theorem 4, we again use the result thatxay if
and only if there exist probabilitiesqj and permutation ma
trices Pj such thatx5( jqj Pjy. By assumption we havel
a( i pil i and thus there exist permutation matricesPj and
probabilitiesqj such that

l5(
i j

piqj Pjl i . ~67!

Without loss of generality we may assume thatr ands i are
all diagonal in the same basis, with nonincreasing diago
entries, since if this is not the case then it is an easy matte
prepend or append unitary matrices to the measurement
trices to obtain the correct transformation. With this conve
tion, we define matricesEi j by

Ei jAr[ApiqjAs i Pj
† . ~68!

In order forEi j to be well defined by this formula alone, it i
necessary thatr be invertible. If this is not the case then th
Ei j are defined on the support ofr by formula ~68!, and to
act as the zero operator on the orthocomplement of the
port of r. It is convenient to letP be the projector onto the
support ofr. Note that we have

ArS (
i j

Ei j
† Ei j DAr5(

i j
piqj Pjs i Pj

† . ~69!

Comparing with Eq.~67!, we see that the right-hand side
the last equation is justr, and thus

ArS (
i j

Ei j
† Ei j DAr5r, ~70!

from which we deduce that( i j Ei j
† Ei j 5P, the projector onto

the support ofr. Letting Q[I 2P be the projector onto the
orthocomplement of the support, we can append an a
tional measurement matrixE00[Q to the collectionEi j , to
ensure that the completeness relation( i j Ei j

† Ei j 5I is satis-
fied. Furthermore, from definition~68!, it follows that
02211
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Ei j rEi j
† 5piqjs i , ~71!

and thus, upon performing a measurement defined by
measurement matrices$Ei j %, the result (i , j ) occurs with
probability pi j 5piqj , ( j pi j 5pi , and the post-measureme
state iss i . This completes the proof of Theorem 4.

Theorem 4 is not a sharp converse to the condition of
~61! because of the extra indexj. Introducing some such
index is certainly necessary with the present hypotheses
may be seen by considering an example withl5(1/2,1/2),
and the trivial probability distribution on one outcome,p1
51, with l15(1,0). Thenlap1l1, but it is clear that there
does not exist anE1 such thatE1rE1

†5r1, where l(r)
5l, l(r1)5l1 andE1

†E15I , because the last equation im
plies thatE1 must be unitary. It is not difficult to construc
more complex examples to convince oneself that this beh
ior is generic.

Might it be that conditions~61! and~62! together charac-
terize the posterior states and probabilities achieva
through a quantum measurement? The following argum
due to Julia Kempe@42# and the author, shows that this is n
the case. Suppose we consider a qubit system, and ch
r5diag(5/12,7/12),p15p251/2, and r185diag(1,0),r28
5diag(1/2,1/2). It is easy to verify that conditions~61! and
~62! are satisfied with these choices. Unfortunately, it is n
possible to find measurement matricesE1 andE2 satisfying
( iEi

†Ei5I and giving posterior statesr18 andr28 with equal
probabilities 1/2, when the stater is measured. This can b
seen in a variety of ways. A simple direct way is to note th
the purity of r18 implies that E1 must have the formE1

5aua&^bu for normalized statesua& and ub&, and somea
.0. Thus

E2
†E25I 2E1

†E1 ~72!

5I 2a2ub&^bu ~73!

5~12a2!ub&^bu1uc&^cu, ~74!

where uc& is orthonormal toub&. The polar decomposition
givesE25UAE2

†E2 for some unitaryU, so

E25A12a2Uub&^bu1Uuc&^cu. ~75!

We are requiring thatE2rE2
†5I /4, so it must be the case tha

E2 is nonsingular, and thusa,1. Premultiplying byE2
21

and postmultiplying by (E2
†)21 gives

r5
1

4~12a2!
ub&^bu1

1

4
uc&^cu. ~76!

Since ub& and uc& are orthonormal it follows that such ar
cannot be equal to diag(5/12,7/12), which is the desired c
tradiction. Despite this example, I believe it likely that co
ditions along the lines of Eqs.~61! and ~62! may be used to
characterize the process of measurement in quantum
chanics.
4-9
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V. ENTANGLEMENT TRANSFORMATION

The problem ofentanglement transformationis a natural
context in which the results of the present paper may
applied. The problem of entanglement transformation ar
as a consequence of the fundamental question of how
we convert one type of physical resource into another,
there has been considerable effort devoted to determi
when it is possible to convert one type of entanglemen
another. In Ref.@4# a connection was noted between e
tanglement transformation and majorization, namely, tha
uc& and uf& are pure states of a bipartite quantum syst
with components belonging to Alice~A! and Bob~B! respec-
tively, then Alice and Bob can transform the stateuc& into
the stateuf& using local operations on their respective sy
tems and classical communication between Alice and Bob
and only if

lcalf , ~77!

wherelc ~respectivelylf) is the vector of eigenvalues o
the reduced density matrix for Alice’s system when the jo
system is in the stateuc& (uf&). As usual, the components o
such vectors are ordered into nonincreasing order. This re
was subsequently generalized by Vidal@7# to the case of
conclusive transformation, and even further by Jonathan
Plenio@9# to the problem where Alice and Bob are suppli
with a stateuc&, and wish to transform this state into a
ensembleof states in which the stateuf i& occurs with prob-
ability pi . ~Also see Hardy@15# for an instructive alternative
approach to results of this type.! The necessary and sufficien
condition for such a transformation to be possible is that@9#

lca(
i

pilf i
. ~78!

We now explain how this result can be seen as an easy
sequence of the results proved in the present paper, and
the connection between majorization and entanglement is
ally a consequence of a deeper connection between m
ization and measurement. By a result of Lo and Pope
@43#, it is possible to transformuc& into the ensemble
$pi ,uf i&% by local operations and classical communication
and only if it is possible to make the transformation via t
following simplified procedure: first, Alice performs a ge
eralized measurement on her state, then sends the res
Bob, who performs a unitary operation on his system con
tional on the outcome of the measurement Alice made.
r5trB(uc&^cu) be the initial state of Alice’s system, an
suppose Alice performs a quantum measurement descr
by measurement matricesEi , so that outcomei occurs with
probability pi and (Ei ^ Ui)uc&5Api uf i&, for some unitary
operatorUi acting on Bob’s system. Considering Alice
system alone and observing thatEirEi

†5s i , where s i

5pi tr(uf i&^f i u), we deduce from Theorem 2 that
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i

pils i
, ~79!

which is equivalent to Eq.~78!. To prove the converse, sup
pose Eq.~78! holds. Then by Theorem 4 there exists a qua
tum measurement described by measurement matricesEi j ,
and probabilitiespi j such that

Ei j rEi j
† 5pi j s i , (

j
pi j 5pi . ~80!

The procedure for Alice and Bob to produce the ensembl
for Alice to perform the measurement described by the
Ei j . The post-measurement stateuf i j & is then a purification
@1# of the states i , and it can be shown~see Ref.@33#, or
Sec. 2.5 of Ref.@1#! that by performing an appropriate un
tary transformation Bob can convert the stateuf i j & into the
state uf i&, with total probability pi of obtaining the state
uf i&. Thus Eq.~78! represents a necessary and sufficient c
dition for it to be possible to transform the stateuc& into the
ensemble$pi ,uf i&% by local operations and classical com
munication.

VI. CONCLUSION

We have shown that there are strong fundamental c
straints on the processes of mixing and measuremen
quantum mechanics that may be naturally expressed in
language of majorization. Although the results in the pres
paper do not completely characterize these processes,
suggest that there may exist a simple set of conditions wh
substantially simplify the usual characterization of these p
cesses via operator equations. Another interesting direc
for further research is to generalize the constraints on m
surements obtained in this paper to better understand
two or more states may transform simultaneously unde
measurement. Once again, although this problem is in p
ciple already ‘‘solved,’’ in the sense that there is an opera
equation specifying exactly what transformations may occ
results such as those in the present paper and in Ref.@44#
indicate that much more explicit characterizations may
possible. Such explicit conditions are likely to have applic
tions to fundamental problems such as the problem of tra
formation of mixed state entanglement@3#, and to the prob-
lem of determining to what extent the acquisition
information about the identity of a quantum state disturbs
system being measured@45#.
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