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Conceptual inadequacy of the Shannon information in quantum measurements
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In a classical measurement the Shannon information is a natural measure of our ignorance about properties
of a system. There, observation removes that ignorance in revealing properties of the system which can be
considered to preexist prior to and independent of observation. Because of the completely different root of a
guantum measurement as compared to a classical measurement, conceptual difficulties arise when we try to
define the information gain in a quantum measurement using the notion of Shannon information. The reason is
that, in contrast to classical measurements, quantum measurements, with very few exceptions, cannot be
claimed to reveal a property of the individual quantum system existing before the measurement is performed.
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[. INTRODUCTION even in principlé be considered in any way to be defined
before the measurements are performed. The nonexistence of
In classical physics information is represented as a binaryell-defined bit values prior to and independent of observa-
sequence, i.e., a sequence of bit values, each of which can bien suggests that the Shannon measure, as defined by the
either 1 or 0. When we read out information that is carried bynumber of binary questions needed to determine the particu-
a classical system we reveal a certain bit value that existi&r observedsequence 0’s and 1's, becomes problematic and
even before the reading of information is performed. Foreven untenable in defining our uncertainty as gibefore
example, when we read out a bit value encoded as a pit onthe measurements are performed.
compact disk, we reveal a property of the disk existing be- Here we will critically analyze the applicability of the
fore the reading process. axiomatic derivation of the Shannon measure for the case of
This means that in a classical measurement the particulajuantum measurement. We will also show that Shannon in-
sequence of bit values obtained can be considered to Hermation is not useful in defining the information content in
physically defined by the properties of the classical systena quantum system. In fact we will see that when we try to
measured. The information read is then measured by theapply Shannon’s postulate in quantum measurements or
Shannon measure of informatiph] which can operationally when we try to define the information content by the Shan-
be defined as the number of binary questi@sestions with  non information a certain element emerges that escapes com-
“yes” or “no” answers only) needed to determine the ac- plete and full description in quantum mechanics. This ele-
tual sequence of 0's and 1's. ment is always associated with the objective randomness of
In quantum physics information is represented by a seindividual quantum events and with quantum complementa-
guence of C]UbitS, each of which is defined in a two-rily. In the end we will brlefly discuss a novel and more
dimensional Hilbert space. If we read out the informationsuitable measure of informatidd]. Yet at first we will re-
carried by the qubit, we have to project the state of the qubit
onto the measurement bagi®),|1)} which will give us a
bit value of either 0 or 1. Only in the exceptional case of the 2As theorems like those of Kochen and Speck&rshow, it is
qubit in an eigenstate of the measurement apparatus does tluadamentally not possible to assign to a quantum systemcon-
bit value observed reveal a property already carried by théextua) properties corresponding to all possible measurements. The
gubit. Yet in general the value obtained by the measuremeribeorems assert that for a quantum system described in a Hilbert
has an element of irreducible randomness and therefore capace of dimension equal to or larger than 3, it is possible to find a
not be assumed to reveal the bit value or even a hiddefet ofn projection operators which represent the yes-no questions
property of the system existing before the measurement igbout an individual system, such that none of tAgassible sets of
performed. answers is compatible with the sum rule of quantum mechanics for
This implies that in a sequence of measurements on qubi@thogonal decomposition of identig] (i.e., if the sum of a subset
in a superposition Staw 0)+ b|l> (|a| |b| +{0,1}) the par- of mutually commuting projection operators is the identity one and

ticular sequence of bit values 0 and 1 obtained cannot, ndtnly one of .th_e correspo_ndmg answers OUth. o be. yedhis
means that it is not possible to assign a definite unique answer to

every single yes-no question represented by a projection operator
independent of which subset of mutually commuting projection op-
!Even in these cases where classical physics instead of definitrators one might consider it with together. If there are no definite
measurement results predicts these results with certain probabilitie&ontext-independenainswers to all possible yes-no questions that
it is still possible, at least in principle, to consider an ensemble ofcan be asked about the system, then the operational concept of the
statistically distributed measurement results as revealing correShannon measure of information itself, defined as the number of
sponding statistically distributed properties of the ensemble of clasyes-no questions needed to determine the particular answers the
sical systems. system gives, becomes highly problematic.
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turn to a discussion in more detail of the operational defini- NH"M question
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tion of Shannon information to quantum measurements.
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For classical observations Shannon’s measure of informa " questio coece ...

tion can conceptually be motivated through an operational

. ‘ ' ) 000008 ... | NH sequences
approach to the question. Consider an urn filled with N col- <

00080 ... \ WithpN

ored balls. There arp;, n,, ... n, balls with various dif- ®0®®8 ... [ occurences
ferent colors: black, white,. ., red. Now the urn is shaken, oooes... gi:;’;:c'z"
and we draw one after the other all balls from the urn. To 00000... | oo
what extent can we predict the particular color sequence 0088® -.e
drawn? 00008® ...

Certainly, if all the balls in the urn are of the same color, 000600 ...
we can completely predict the color sequence. On the othe CO8®® ..
hand, if the various colors are present in equal proportions < 00080 ...
and if we have no knowledge about the arrangement of the N

balls after shaking the urn, we are maximally uncertain about
the color sequence drawn. One can think of these situations FIG. 1. Binary question tree to determine the specific sequence
as extreme cases on a varying scale of predictability. Foef outcomes(color of the drawn ballsin a sufficiently large num-
example, for N=4, there is only one color sequence berN of experimental trial§number of drawings An urn is filled
OOQO if all balls are white and four possible color se- with black and white balls in proportions, and p,, respectively.
quences® OO0, 000, OOOO, O00®, if there The expected number (_)f guestions needed to determine the actual
are three black and one white ball in the urn, yet six possibl§eduence of outcomes iH, whereH = —p, log p,—p;logp,.
color sequence® @O0, @000, €000, 0000,
OC00®, OO®® if there are two black and two white
balls in the urn. This suggests that the uncertainty we hav e possibilities
before drawing about the particular color sequence that wil Since there ’ areW=2NH possible different color se-
be drawn is defined by the total number of different possible uencesall of them have equal probability to be drawthe
color sequences that are in accordance with the given numi-€! qualp! yto?b
ber of balls with their respective colors in the urn. m|n|_mal number of yes-no questions needed is N’Bt. or,
The total number of different color sequences can be ob(_aquwe_llt_ently, the Shannon mformatpn expressed in bits is
tained as the number of distinguishable permutation#l of the minimal number of yes-no questions necessary to deter-

b . mine which particular sequence of outcomes occurs, divided
alls made up oim groups of black, white, ... red balls by N [5—7]. A particular color sequence is specified by writ-
indistinguishable within each group: oy AP ; d , b s
ing down, in order, the yes’s and no’s encountered in travel-
N! ing from the root to the specific leaf of the tree as schemati-
cally depicted in Fig. 1 for an explicit example with an urn
containing black and white balls only.
For N sufficiently large, If instead of balls with preassigned colors we consider
guantum systems whose individual properties are not defined
W==2NH (1)  before the measurements are performed, does the Shannon
measure of information still define the information gain in
where the measurements appropriately? More precisely, we ask
N here the question whether the total numidés 2N of dif-
H=— p,logp, 2 ferent possible sequences of outcomes is suitable as a mea-
= ! sure of our uncertainty before the sequence of quantum mea-
surements is performed.
is the Shannon information expressed in bits when the loga- In classical physics the behavior of the whole ensemble

information from each yes-or-no question, we evidently have
to ask questions whose answers will strike out always half of

Cnginy!-ng!

rithm is taken to base 2 angh=n;/N, p,=n,/N, ... pny follows from the behavior of its intrinsically different indi-
=ny,/N are the proportions of balls with different colors in vidual constituents which can be thought to be defined to any
the urn. precision. This is not the case in quantum mechanics. The

Suppose now that one wishes to identify a specific coloindefiniteness in principle in the sense of the fundamental
sequence of the drawn balls from the complete set of posaonexistence of a detailed description of and prediction for
sible color sequences by asking questions to which onlyhe individual quantum event resulting in a specific measure-
“yes” or “no” can be given as an answer. Of course, the ment result, implies that the particular sequence of outcomes
number of questions needed will depend on the questioningpecified by writing down, in order, the yes’s and no’s en-
strategy adopted. In order to make this strategy the mostountered in a row of yes-no questions asked is not defined
optimal, that is, in order that we can expect to gain maximabefore the measurements are performed. No definite out-
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the same probabilities as before. We require, in this special

case, that
H 111 H 11 1H 21
2'3'6) "M22) 23 3)

The coefficient; is the weighing factor introduced because
this second choice occurs half the time.”
FIG. 2. Decomposition of a choice from three possibilities. Fig- ~ Shannon then shows that only the functi@ satisfies all
ure taken fron1]. three postulates. It is the third postulate which determines the
logarithm form of the function and, as we will argue, it is
comes exists before measurements are performed and thefBis postulate which leads to problems when quantum mea-
fore the number of different possible sequence of outcomegurements are involved.
does not characterize our uncertainty about the individual We now turn to the discussion of Shannon’s postulates.
system before measurements are performed. While the first two postulates are natural for every meaning-
However, once the sequence of guantum measurementsf[,g measure of information, the last postulate mlght deserve
performed and the measurement results are obtained, tfeore justification. The third Shannon postulate originally
measure of information needed to specify the particular seformulated as an example was reformulated as an exact rule
quence of outcomes realized is defined appropriately by thBy Faddee\9]: For everyn=2,
Shannon measure. In the sense that an individual quantum

N|=

w|—

= wil— NI—

1 1
3 6

event manifests itself only in the measurement process and is H(P1, - .- Pn-1,01,02) =H(P1, - . Pn-1,Pn)
not precisely defined before the measurement is performed,
o o . . qi Q2
we may speak of “generation” of that specific information +p,Hl —,—], (©)]
in the measurement. Pn Pn
wherep,=(,+Js.
IIl. INAPPLICABILITY OF SHANNON'S POSTULATES Without physical interpretation the recursion postul&e
IN QUANTUM MEASUREMENTS is merely a mathematical expression which is certainly nec-

_ _ essary for the uniqueness of the functi@ but has no im-

An important reason for preferring the Shannon measurenediate physical significance. We adopt the following well-
of information lies in the fact that it is uniquely characterizedknown interpretatiori6,10]. Assume the possible outcomes
by Shannon’s intuitively reasonable postulates. This hagf the experiment to ba,, ...,a, andH(p;, ... .p,) to
been expressed strongly by Jayfi@k “One ... important represent the amount of information that is gained by the
reason for preferring the Shannon measure is that it is thgerformance of the experiment. Now, decompose ewgnt
only one that satisfies ..[Shannon’s postulat¢sTherefore into two distinct events,/\b; anda,/\b, (“/\" denotes
one expects that any deduction made from other informationand”; thus a/\b denotes a joint evehtDenote the prob-
measures, if carried far enough, will eventually lead to conapilities of outcomes,,/\b; anda,/\b, by g; andqs, re-
tradiction.” A good way to continue our discussion is by spectively. Then the left-hand sidé(p;, . .. .Pn_1.01.05)
reviewing how Shannon, using his postulates, arrived at higf Eq. (3) represents the amount of information that is gained
famous expression. He writes the followifi] by the performance of the experiment with outcomes

“Suppose we have a set of possible events whose proby, | ... a,_;,a,/\b;,a,/\b,.
abilities of occurrence arp;,p,, ... ,p,. These probabili- When the outcoma,, occurs, the conditional probabilities
ties are -knOWn but that is a” we know Concel’nlng Wh|Chf0r bl and b2 are qllpn and qz/pn' respective'y, and the
event will occur. Can we find a measure of how muchamount of information gained by the performance of the con-
‘choice’ is involved in the selection of the event or how gitional experiment isH(q,/p,,d,/p,). Hence the recur-

uncertain we are of the outcome? sion requirement states that the information gained in the
If there is such a measure, say(p;,pz, ... .Pn), itiS  experiment with outcomesa,, ....an 1,8,/ \b;,a,/\b,

reasonable to require of it the following properties: equals thesumof the information gained in the experiment
1. H should be continuous in thg, . with outcomesa,, . . . ,a, and the information gained in the

2. If all the p; are equalp;=1/n, thenH should be a ¢onditional experiment with outcomds or b,, given that
monotonically increasing function of. With equally likely  the outcomen,, occurred with probabilityp,, .
events there is more choice, or uncertainty, when there are Thjs interpretation implies that the third postulate can be

more possible events. rewritten as
3. If a choice is broken down into two successive choices,
the originalH should be the weighted sum of the individual H(p(ay), ....p(as_1),p(a,/\by),p(a,/\b,))
values ofH. The meaning of this is illustrated in Fig. 2. At
the left we have three possibilitigs;=3, p,=3, and ps =H(p(ay), . ...p(a-1),p(an))
=5. On the right we first choose between two possibilities +p(an)H(p(by)an),p(bylay)), (4)

each with probability; and, if the second occurs, make an-
other choice with probabilitie, 1. The final results have where
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p(a,) =p(a,/\b;)+p(a,/\b,), of properties to substantiate thatis a reasonable measure of
information. He writes, “It is easily shown that
p(an/\by)=p(a,)p(bylay,). with equality only if the events are independéhe., p(a;

/\bj)=p(a;)p(b;)). The uncertainty of a joint event is less

Here p(bj|a,) i1=1,2, denotes the conditional probability 51 o equal to the sum of the individual uncertainties.” He
for outcomea,, given the outcomd; occurs ando(a,/\b;) continues further in the text' ¢ . . we have

denotes the joint probability that the outcomg\b; occurs.
If we analyze the generalized situation witloutcomesg; H(A)+H(B)=H(AAB)=H(A)+H(B|A).
of the first experimenf, m outcomesb; of the conditional
experimentB, andmn outcomesa;/\b; of the joint experi- Hence,
mentA/AB, we may then rewrite the recursion postulate in

short form as H(B)=H(BJ|A). (7)

The uncertainty oB is never increased by knowledge Af
It will be decreased unles& andB are independent events,
in which case it is not changed{we have changed Shan-
non’s notation to coincide with that of our work
(2) Information is irrespective of the order of acquisition
The total amount of information gained in successive mea-
j . i . ._.surements is independent of the order in which it is acquired,
It is essential to note that the recursion postulate is ineViyq, hat the amount of information gained by the observation
tably related to the manner in which we gain information N6 A followed by the observation 0B is equivalent to the

a classical measurement. In fact, in classical measurementsgf,ount of information gained from the observatiorBaol-
is always possible to assign to a system simultaneously ajg\yeq by the observation d&:

tributes corresponding to all possible measurements,dere
b; anda;/\b;. Also, the interaction between measuring ap- H(A)+H(B|A)=H(B)+H(A|B). (8)
paratus and classical system can be thought to be made ar-
bitrarily small so that the experimental determinationfof This is an immediate consequence of the recursion postulate
has no influence on our possibility to predict the outcomes ofvhich can be obtained when we write the recursion postulate
the possible future experimeBt In conclusion, the informa- in two different ways depending on whether the observation
tion expected in a classical experiment from the joint experiof A is followed by the observation d or vice versa. An
ment A/AB is simply the sum of the information expected explicit example for a sequence of classical measurements is
from the first experimenA and the conditional information given in Fig. 3.
of the second experimeif with respect to the first, as ex-  Are these two requirements satisfied by the information
pressed in Eq(6). gained in quantum measurements? Consider a beam of ran-
Therefore, only for the special case of commuting, i.e..domly polarized photons. Filtefs;, F4s-, andF_, are ori-
simultaneously definite observables, is the axiomatic derivaented vertically, at- 45°, and horizontally, respectively, and
tion of the Shannon measure of information applicable ang¢an be placed so as to intersect the beam of phdteigs4).
the use of the Shannon information justified to define thdf we insert filterF;, the number of photons observed at the
uncertainty given before quantum measurements are pedetection plate will be approximately half of the number in
formed. However, in general, & andB are noncommuting the incoming beam. The outgoing photons now all have ver-
observables, the joint probabilities on the left-hand side ofical polarization. Notice that the function of filtér; cannot
Eg. (4) cannot in principle be assigned to a system simultabe explained as a “sieve” that only lets those photons pass
neously, and consequently Shannon’s crucial third postulatthat are already of vertical polarization in the incoming
which is necessary for the uniqueness of Shannon’s measubeam. If that were the case, only a certain small number of
of information ceases to be well defined. the randomly polarized incoming photons would have verti-
Having seen that the third Shannon postulate in general igal polarization, so we would expect a much larger attenua-
not applicable in quantum measurements we next introducéon of the beam of photons as they pass the filter.
two requirements that are immediate consequences of Shan- Denote byA and B the properties of the photon to have
non’s postulates and in which all the probabilities that appeapolarization at+45° and horizontal polarization, respec-
are well defined in quantum mechanics. We will show thattively. If F_, is inserted behind the filtef,, we are certain
the two requirements are violated by the information gainedhat none of the photons will pass throuldtig. 4@)]. For a
in quantum measurements, implying that the Shannon meghoton with vertical polarization we have complete knowl-
sure loses its preferential status with respect to alternativedge of the propert, i.e.,H(B)=0. Notice that a “sieve”
expressions when applied to define information gain in quanmodel could explain this behavior. If we now inséffs.
tum measurements. betweenFI andF_, , we observe an effect which cannot be
(1) Every new observation reduces our ignorance and in-explained by a sieve model where the filter does not change
creases our knowledgén his work Shannofil] offers a list  the object. In contrast, we now observe a certain number of

H(AAB)=H(A)+H(B|A), (6)

where H(B|A)=27p(aj)H(b4|a;, ... byla)) is the aver-
age information gained by observatiBngiven that the con-
ditional outcomea; occurred weighted by probability(a;)
for a; to occur.
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FIG. 3. Indifference of information to the order of its acquisition
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FIG. 4. The gain of knowledge in a new observation reduces our
knowledge at hand from a previous observation. Filers Fz:,
andF_, are oriented vertically, at-45° and horizontally, respec-

in classical measurements. A box is filled with balls of different ively- If filter F_ is inserted behind the filteff; , no photons are

compositiongplastic and wooden ba)lsnd different colorgblack
and white balls Then the box is shaken. [ we first draw a ball
asking about the color of the drawn ball and gkifcolor)=1 bit

observed at the detector pla®®. In this case our knowledge about
horizontal polarizationproperty B) of a photon passing through
filter F{ is complete. If filterF 45. is inserted betweeR; andF_ ,

of information. Subsequently, we put the black and white balls in@ Certain number of photor{d/4 of the number of photon passing
separate boxes, draw a ball from each box separately, and ask abd(}foughF ) will be observed at the detection plat®. Now acqui-

the composition of the drawn ball. We gath, (comp)=0 bits for
the black balls andf,,,(comp)=1 bit for the white balls. Inb) we

sition of information about the polarization at45° (property A)
leads to the decrease of our previous knowledge about horizontal

pose the two questions in the opposite order. We first ask about tHRPlarization of the photon.

composition of the drawn ball and galih(comp)=0.81 bits. Then
we ask about the color of the drawn ball and gHiig,(color)=0

bits for wooden balls andH,(color)=0.92 bits for plastic balls.

classes of knowledge. This originates from the distinction
between “total” and “complete” information in quantum

The total information gained is independent of the particular ordePhysics. In classical physics the total information about a

the two questions are posed, i.eH(color)+1/2H(comp)
+1/2H,,n(comp)=H(comp)+1/4H,,,(color)+3/4H ; (color)=1.5.

photons at the detection platabout 3 of the number of
photons in the beam passed throug}) as shown in Fig.
4(b). In this case our knowledge of the propeiyis not
complete anymore.

The acquisition of information about properytherefore
leads to a decrease of our knowledge about profriye.,

system is complete. In quantum physics the total information
of a system, represented by the state vector, is never com-
plete in the sense that all possible future measurement results
are precisely definetl.in fact, the total information of a
quantum system suffices to specify the eigenstate of one non-
degeneratéwith one-dimensional eigenspaces gniypserv-

able only.

H(B|A)>0. Note that on the photons absorbed by the filter 3Yet we do not hesitate to emphasize that the information cer-
F 45- We cannot measure propeiysubsequently. However tainly is complete in the sense that it is not possible to have more

already for the subensemble of the photons passing throu
the filter our uncertainty about properf becomes larger

than 0, implying G=H(B)<H(B|A), which clearly violates

requirement(7). Another example of sequence of quantum

measurements where requiremé)tis violated is shown in
Fig. 5. Clearly, violation of the requirement¥) and (8)
occurs when the corresponding operatérand B do not
commute.

What is the origin of the violation of the requiremex(¥s

Hformation about a system than what can be specified in its quan-
um state. In fact, the state vector represents that part of our knowl-
edge about the history of a system which is necessary to arrive at
the maximum possible set of probabilistic predictions for all pos-
sible future observations of the system. For example, a set of com-
plex amplitudes of ag-function is a specific representation of the
catalog of our knowledge of the system. This view was assumed by
Schralinger [11] who wrote, “Sie (die -Funktion ist jetzt das
Instrument zur Vorausage der Wahrscheinlichkeit von MalRzahlen.
In ihr ist die jeweils erreichte Summe theoretisch begleter

and(8) in quantum measurements? In contrast to a classicaykunfterwartungen verkpert, gleichsam wie in eineratalog
measurement which just adds some new knowledge to Olfiedergelegt.” Translated: “I{the ¢ function) is now the instru-
knowledge at hand from the previous measurements, in gent for predicting the probability of measured numbers. In it is
guantum measurement the gain of the new knowledge is abmbodied the momentarily attained sum of theoretically based fu-
ways at the expense of irrecoverable loss of complementanyire expectations, somewhat as laid out in a catalog.”
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For example, the state of a photon passing through filtepermit pathinformationto be obtained, in principle, indepen-
F, is fully specified by the complete knowledge about thedent of whether the experimenter cares to read it out or not.
propertyA of vertical polarization. If we let a photon in this One line of such research considers the use of micromasers
state pass through filté,s. as given in Fig. 4), our knowl-  in atomic beam experimen{45]; another one concerns ex-
edge of the photon changes, and therefore its representatiapgriments on correlated photon states emerging from nonlin-
the quantum state, also changes. The total information of &ar crystals through the process of parametric-down conver-
photon in the new state is completely exhausted in specifyingion [16].
propertyB of polarization at 45° and no further information ~ The view that complementarity must be based on the
is left to also specify propertd, thus implying unavoidable much more fundamental property of mutual exclusiveness of
loss of the previous knowledge about this property. This furdifferent classes of information of a quantum system was
ther implies that the set of future probabilistic predictionsemphasized by Paulil2] in the analysis of the uncertainty
specified by the new projected state is indifferent to therelations® . .. diese Relationen enthalten die Aussage, daR
knowledge collected from the previous measurements in thigde genaue Kenntnis des Teilchenortes zugleich eine prin-
whole history of the system. Such a view was assumed bgipielle Unbestimmtheit, nicht nur Unbekanntheit des Im-
Pauli [12] who writes* “Bei Unbestimmtheit einer Eigen- pulses zur Folge hat und umgekehrt. Die Unterscheidung
schaft eines Systems bei einer bestimmten Anordriilegy  zwischen(prinzipiellen Unbestimmtheitind Unbekanntheit
einem bestimmten Zustand des Systemernichtet jeder und der Zusammenhang beider Begriffe sind die ganze
Versuch, die betreffende Eigenschaft zu mesgenndes- Quantentheorie entscheidend.”
tend teilweisg¢ den EinfluR der frberen Kenntnisse vom
System auf digeventuell statistischermiussagen ber spa
tere magliche Messungsergebnisse.” This clearly makes it
possible to violate requiremen({s) and(8) in quantum mea-
surements. To define the information content of a physical system

Here a certain misconception might be put forward thatone might consider different measures of information. How-
arises from a certain practical point of view. According to ever, only those measures of information have physical sig-
that view, for example, complementarily between interfer-nificance according to which the defined information content
ence pattern and information about the path of the particle if the system possesses properties which naturally follow
the double-slit experiment is considered to arise from the faclrom the physical situation considered. These properties are,
that any attempt to observe the particle path would be assder example, invariance under changes of the modes of ob-
ciated with an uncontrollable disturbance of the particle.servation of the system and conservation in time if there is
Such a disturbance in itself would then be the reason for theo information exchange with an environment. We show
loss of the interference pattern. In such a view, it would benow that the information content of a quantum system, if it is
possible to define Shannon’s information for all attributes ofassumed to be measured by the Shannon measure of infor-
the system simultaneously, and the third Shannon postulatejation, cannot be defined in any way to have these proper-
as well as the requiremen(g) and (8), would just be vio- ties.
lated because of the unavoidable disturbance of the system The classical world appears to be composed of particles
occurring whenever the subsequently measured propagy  and fields, and the properties of each one of these constitu-
incompatible with the previous on& Yet this is a miscon- ents can be specified quite independently of the particular
ception for two reasons. phenomenon discussed or of the experimental procedure a

First, as theorems like those of B¢ll3] or Greenberger, physicist chooses to determine these properties. In other
Horne, and Zeilingef14] show, it is not possible, not even words the properties of constituents of the classical world are
in principle, to assign to a quantum system simultaneouslynoncontextual.
observation-independent properties which in order to be in In particular, the total lack of information about a classi-
agreement with special relativity have to be local. We there<¢al pointlike systen{with no rotational and internal degrees
fore cannot speak of a “disturbance” in the measuremenbf freedom defined as Shannon’s information associated
process if there are no objective properties to disturb. with the probability distribution over the phase space is in-

Second, over the last few years experiments were considtependent of the specific set of variables chosen to describe
ered and some already performed where the reason why ribe system completelgsuch as position and momentum, or
interference pattern arises is not due to any uncontrollableijective functions of themand conserved in time if there is
disturbance of the quantum system or the clumsiness of theo information exchange with an environment, i.e., if the
apparatus. Rather the lack of interference is due to the fadystem is dynamically independent of the environment and
that the quantum state is prepared in such a way so as to

IV. DIFFICULTIES IN DEFINING THE INFORMATION
CONTENT OF A QUANTUM SYSTEM

SIn translation:* . . . these relations contain the statement that any
“4In translation: “In the case of undefinedness of a property of aprecise knowledge of the position of a particle implies a fundamen-
system for a certain arrangeméniith a certain state of the syst¢m tal undefinedness, not just an unknownness, of the momentum for a
any attempt to measure that specific property destfatkast par- consequence and vice versa. The distinction betwigramental
tially) the influence of earlier knowledge of the system(possibly  indefinitenesandunknownnessand the relation between these two
statistica) statements about later possible measurement results.” notions is decisive for the whole quantum theory.”
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not exposed to a measuremé@perationally the total infor- spin along x up7
mation content of a classical system can be obtained in the spin along a up?

joint measurement of position and momentum or in succes- ZI}, cosz(a/z)

sive measurements in which the observation of position is

E@

/4-ar/2)

followed by the observation of momentum or vice vefsa.
Contrary to the classical concepts most quantum-

mechanical concepts are limited to the description of phe-

nomena within some well-defined experimental context, that

is, always restricted to a specific experimental procedure the (2

physicist chooses. In particular the amount of information /4-a/2)

gained in an individual quantum measurement depends

strongly on the specific experimental context. In the optimal spin a|°nzaUP’

experiment when the measurement bdgiscoincides with

the eigenbasis of the density matgixof the system:p|i) spin =|°n8XUP’
=w;l|i), the amount of information gained is minimaee,

for example,[3]). Since in the basis corresponding to the initial state
optimal experiment the density operator is represented by ¢ [z+)

diagonal matrix with elements; , the information gain de- gg 2(7:/4«:/2)

|z+) sm’(fr/4-a/2)

sm1(7r/4-a/2)
sm’(a/Z)

5|n2(nl4-a/2)

1r/4-al2)

fined by the Shannon measure equals the von Neumann et
tropy s(p) as given b§
® s|n2(1rl4-a/2)
- 2. wi logw;=—Tr(plogp)=s(p). 11 FIG. 5. Dependence of information on the order of its acquisi-
tion in successive quantum measurements. A spin-1/2 particle is in

This h h b d the statglz+) spin up along the axis. Spin along thex axis and
is has the important property of being invariant under uni- spin along the direction in the-z plane tilted at an angle from

tary transformatlonsp—>UpU+ The invariance under uni- thez axes are successively measured, in one ordéiand in the

tary transformations implies invariance under the change ofpposite order in(b). Whereas we obtain an equal portion

the representatiolbasig of p and conservation in time if H(coS(@/4— al2),sirf(m/4— al2)) of information in the condi-
tional (subsequentmeasurement both if@) and in(b), the amounts
of information H(coga/2,sirfa/2) andH(3,3)=1 we gain in the

B L . first measurement ife) and in the first measurement h), respec-
Given the probability distributiom(r,p,t) over the phase space ey can be significantly different. Specifically far—0 we have

the total lack of information of a classical system is definefild$ complete knowledge about spin along the direction at the angte

oo oo p(F,f),t) (a) but absolutely no knowledge about the spin alongxtais in
H = drd® | 9
ota()=— [ &°rd"pp(r,p,t)log ) 9 (b). We emphasize that we do not assume any specific functional

- - ) ) dependence for the measure of informatidn
where a background measyeér,p) is an additional ingredient that

has to be added to the formalism to ensure invariance under chan
of variables when we consider continuous probability distributions
The conservation dfl,4 in time for a system with no information
exchange with an environment is implied by the Hamiltonian evo-.
lution of a point in phase space.

‘In full analogy with Eq. (8) we may write Hyoq=H(r)
+H(pIr)=H(p) + H(r|p).

8For agivendensity matrixp the von Neumann entropy H(t)=— 2 w;(t)logw;(t)=— 2 w; logw;=H(tg).

| I

S(p)=—"Tr(p log p) (10 (12)
is widely accepted as a suitable definition for the information con-
tent of a quantum system. For a system described-dimensional ~ Here, the eigenvalues of the density matrix at timare
Hilbert space this ranges from for a completely mixed state to  w;(t) =w; .
0 for a pure state. The von Neumann entropy has the important However, without theadditional knowledge of the eigen-

property to be invariant under unitary transformations. Howeverpgsis of the density matrl)o we cannot find the optimal

we observe that any function of the form[T¢p)] [the operator experiment and therefore we cannot obtain directly the
f(p) is identified by having the same eigenstatepand the ei-  Shannon information associated. Also, all the statistical pre-
genvalued (w;), equal to the function values taken at the eigenval-dictions that can be made for the optimal measurement are
uesw; of p] possesses this invariance property. We also observéhe same as if we had an ordinaiglassical mixture, with

that the von Neumann entropy is a property of the quantum state dgactionsw; of the systems each giving with certainty results

a whole without explicit reference to information contained in indi- that are associated with the eigenvectofs In this sense the
vidual measurements. optimal measurement is a classical type measurement and

Yiere is no information exchange with an environment. The
latter precisely means that if we perform the optimal experi-
ments both at time, and at some future timg Shannon’s
information measures associated with the optimal experi-
ments at the two times will be the same, i.e.,
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therefore in this particular case, and only then, does Shanddual outcome is completely randofall measurement re-
non's measure define the information gain in a measuremersults are equally probabte
appropriately’ Considering also our previous discussion it is
therefore not surprising that Shannon’s measure is useful 2_1 -

| - [(aylbp)[*=="Vi,j. (13
only when applied to measurements which can be under- n
stood as classical measurements.

Which set of individual measurements should we perform It was shown ir{19] that the density matrix of the system
and how to combine individual measures of information ob-can fully be reconstructed if one performs a complete set of
tained in the set in order to arrive at the information contenimutually complementary observations. This suggest that the
of a quantum system if we do not know the eigenbasis of théotal information content of a quantum system represented
density matrix? Quantum complementarity implies that theby a density matrix is all obtainable from a complete set of
total information content of the system might be partially mutually complementary measurements. To obtain the total
encoded in different mutually exclusiveeomplementary information one, however, cannot perform the set of mea-
observables. These have the property that complete knowsurements successively because, unlike the classical case, the
edge of the eigenvalue of any one of the observables exnformation obtained in successive quantum measurements
cludesany knowledge about the eigenvalues of all other ob-depends on the order of its acquisiticsee Fig. 5 and dis-
servables. Such a set of observables for a spin-1/2 particleussion above Instead it seems that any attempt to obtain
can for example be spin components along orthogonal direahe total information content of a quantum system has to be
tions. related to the complete set of mutually complementary ex-

We consider now a quantum system described iperiments performed on systems that are all in the same
n-dimensional Hilbert space and we denote a complete set @uantum state.

m mutually complementary observabll%sby {A,B, St Concluding this discussion, we therefore suggest that it is

The property of mutual expansiveness implies that if the syshatural to require that the total information content in a sys-

tem is in an eigenstate of one of the observables, for extem in the case of quantum systems is shenof the indi-

ample, in the eigenstaﬂaj) of the observabléd, and we vidual amounts of information over a complete sem)fnu.—
tually complementary observables. As already mentioned

above, for a spin-1/2 particle these are three spin projections

along orthogonal directions. If we define the information

gain in an individual measurement by the Shannon measure,

the total information encoded in the three spin components is

Consider a situation where instead of using single systems tgiven by

send information to the receiver a sender uses a sequenbk of

systems where each individual system is drawn from an ensemble  Hyqq:=H1(py Py ) +Ha(py .y ) +Ha(p, .p, ).

of pure states{|#y), ... ,|¢n)}, with frequency of occurrence (14)

{wy, ... Wy}, respectively. It was shown ifil8] that for suffi-

ciently largeN there are %) highly distinguishable sequences of Here, e.g.p, is the probability to find a particle with spin

pure states which become mutually orthogonalNas:». Here  up along the directior.

S(p)=—Tr(plogp) is the von Neumann entropy ang Considering now an explicit example we will show that

=3"w;|4;){&;]. This means that if the sender uses a sequence corthe total informatiorH ., based on the Shannon measure is

sisting of a choice of states that respects a@hpriori frequencies in generalnot invariant under unitary transformations. We

w;, and the receiver distinguishes whole sequences rather than icalculate Eq.(14) for a spin-1/2 particle in the state))

dividual states, then théShanno information transmitted per sys- = cos#/2|z+ )+ sin#/2|z—) and we find that

tem can be made arbitrarily close 8{p). Here again the total

density matrixp™ of N systems can be made arbitrarily close to the 1-sing 1-sing 1+sind 1+sing

measure any other observable from the set, %aprojecting
the system onto statdsb,), ... ,|b;), ... |b,)}, the indi-

. . . Hiota= — lo - lo
one for a classical mixture of theé"&*) sequences of states. total 2 9 2 2 9 2
070 specify a system described bynan density matrix com-
2_q indivi 6 0 0 0
pletely one needs“—1 independent real numbers. Any individual, —co§—|og cod — —sinz—log siP—|+1 (15)
complete measuremefitve consider here only complete measure- 2 2 2 2

ments, i.e., where operators associated with the measurements are

without degeneragywith n possible outcomes defines-1 inde-  depends on the parameter thus being not invariant under
pendent probability valueghe sum of all probabilities for all pos- unitary transformations. This associates a number of highly
sible outcomes in an individual experiment s Therefore, just on  counterintuitive properties tbl,y5: (1) it can be different
the basis of counting the number of independent variables, we exor states of the same purite.qg., it takes its maximal value
pect that the number of different measurements we need in order @f 2 bits of information for#=0 and it takes its minimal
determine the density matrix completely i®?¢1)/(n—1)=n value of 1.36 bits ford==/4), (2) it changes in time even
+1. Ivanovic[19] and Wootters and Field20] demonstrated the for a system completely isolated from the environment
existence of exactly+ 1 mutually complementary observables by where no information can be exchanged with environment,
an explicit construction in the cases wheres a power of a prime  and (3) it can take different values for different sets of the
number. three orthogonal spin projections. These unnatural properties
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we see as another strong indication of the inadequacy of theyr a system described by the density matpix Here p!
Shannon measure to define the information gain in an indigenotes the probability to observe tite outcome of theth

vidual quantum measurement. observable. The total information content of the system
therefore might all be encoded in one single observable or,
V. SUGGESTED ALTERNATIVE MEASURE alternatively, it might be partially encoded in atl mutually
OF INFORMATION complementary observables. For a composite system in a

L . _product state the total information can all be encoded in in-
Generalizing our above suggestion, we propose that it igjiyidual systems constituting the composite system or, alter-
natural to require that the information content of the quantunhagively, in the extreme case of maximally entangled states it

system defined as a sum of individual measures over a coman all be encoded in joint properties of the systems with no
plete set of mutually complementary measurements is invarinformation left in individual systemg4].

ant under unitary transformations. Having shown that this |ngependent of the various possibilities to encode infor-
cannot be achieved with the Shannon measure of informatiogyation the total information content of the system cannot
we now introduce a new measure of information that differsqyngamentally exceed the maximal possible amount of infor-
both mathematically and conceptually from Shannon’s meamation that can be encoded in an individual observable
sure of information and according to which the |nf0rmat|on[:(n_ 1)/n]. This upper limit is reached when the system
content has the required invariance property. is in the pure state. When the system is in a completely

The new measure of information for an individual mea-mixed state the total information takes its minimal value of
surement witm possible outcomes is a quadratic function of 5

T 1
probabilities The property of invariance under unitary transformations

. implies that the total information content of the system does

2 not depend on the particular set of mutually complementary
1Py, - Pn) = 21 (pi - ﬁ) , (17 observables chosen; it is a characterization of the state of the
system alone, not of the specific reference set of complemen-

tary observables. Furthermore, since evolution in time is de-

?enaq[ultet:klfrfow;o t?;%orgn;rfh:; fg:ir?]%ir:t?sm Zﬁ; fmm: dtg?eo't}l]%cribed by a unitary operation, the total information of the
P b ystem is conserved in time if there is no information ex-

probabities o vaous evets lo oelasel) for ASCL change with e eruronment
' P P We would like to note that the total informatidh8) was

\c/)vl?tiourizg’ ;ﬁissuglgv% Qeggjiz?tﬁiﬁétssgnrﬁgﬁs pg:&ﬁ)ﬁe 1used in[25] to study the transfer of entanglement and infor-
and is in agreement with 2. considering that the ?ernm ity mation for quantum teleportation of an unknown entangled
9 ' 9 state through noisy quantum channels. The total information

Eq. (17) is just ann-dependent zero offset. But it is in con- )
flict with postulate 3, whose inadequacy we showed above(lB) belongs to the set of quantum counterparts of nonexten

. : : : Sive entropies finding its application in an increasing number
In partlculqr, the r_neasurle(pl, - - Pn) 1S continuous Di of problems in quantum physics, e.g., the description and
and ta_kes |_ts_ maximal value oh¢-1)/n if one p;=1 and it controlling of laser cooling26], a nonextensive approach to
takes Its minimal value of O when g are equal. . the decoherence probldr@7], description and quantifying of
. The Important property OT the neéw measure of 'nform?'entanglement, and deducing criteria for separability of den-
tion is that the total information defined with respect to it is

. ) . . . sity matriceq28,29.
invariant under unitary transformations. Using Ed.3) one y s 3
obtains that the sum over individual measures of information

of mutually complementary observations result$24] VI. CONCLUSIONS
" m N ) In this work we have stressed some conceptual difficulties
L=, 1(p) H=3 3 ,—_1 Tro2 E arising when Shannon’s notion of information is applied to
total™ & (P2 - - ’p“)_j=1 “~ Pi—p] == define information gain in a quantum measurement. In par-

(18)  ticular we find that the axiomatic derivation of Shannon’s
measure of information is not applicable in quantum mea-
surements in general. We also show that the information
content of a quantum system defined according to Shannon’s
measure possesses some strongly nonphysical properties. We
argue that these difficulties in defining the information gain
in quantum measurement by the Shannon measure of infor-
mation arise whenever it is not possible, not ewerprin-

ciple, to assume that attributes observed are assigned to the
that from the point of view of information theory all can be as- quantum system before the observation is performed.

sumed to quantify information properly. These expressions are also Having critized Shannon’s measure of information as be-
closely related to Tsallis'§22] nonextensive entropg,=[1/(1  ing not appropriate for identifying the information gain in
—a)]=",(p—1) and Rayi's [23] entropy H,=[1/(1 quantum measurement we proposed a measure of informa-
—a)In3Lpf. tion in quantum mechanics that both mathematically and

Expressions of the general type of E{.7) were studied in
detail by Hardy, Littlewood, and ya [21]. They introduced a
general class of mathematical expressions

M.,=

n a=1
2 pi“) for Osasw (16)
=1
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conceptually differs from Shannon’s measure of informationthe system is invariant under transformation from one com-
While Shannon’s information is applicable when the mea-plete set of complementary variables to another and is con-
surement reveals a preexisting property, our measure of irserved in time if there is no information exchange with an

formation takes into account that for quantum systems thenvironment.

only features known before an experiment is performed are

the_ probab_ll!tles for various events to occur. In general, ACKNOWLEDGMENTS

which specific event occurs is objectively random.
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