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Conceptual inadequacy of the Shannon information in quantum measurements

Časlav Brukner and Anton Zeilinger
Institute for Experimentalphysics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria

~Received 26 January 2000; published 18 January 2001!

In a classical measurement the Shannon information is a natural measure of our ignorance about properties
of a system. There, observation removes that ignorance in revealing properties of the system which can be
considered to preexist prior to and independent of observation. Because of the completely different root of a
quantum measurement as compared to a classical measurement, conceptual difficulties arise when we try to
define the information gain in a quantum measurement using the notion of Shannon information. The reason is
that, in contrast to classical measurements, quantum measurements, with very few exceptions, cannot be
claimed to reveal a property of the individual quantum system existing before the measurement is performed.
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I. INTRODUCTION

In classical physics information is represented as a bin
sequence, i.e., a sequence of bit values, each of which ca
either 1 or 0. When we read out information that is carried
a classical system we reveal a certain bit value that ex
even before the reading of information is performed. F
example, when we read out a bit value encoded as a pit
compact disk, we reveal a property of the disk existing
fore the reading process.

This means that in a classical measurement the partic
sequence of bit values obtained can be considered to
physically defined by the properties of the classical sys
measured.1 The information read is then measured by t
Shannon measure of information@1# which can operationally
be defined as the number of binary questions~questions with
‘‘yes’’ or ‘‘no’’ answers only! needed to determine the a
tual sequence of 0’s and 1’s.

In quantum physics information is represented by a
quence of qubits, each of which is defined in a tw
dimensional Hilbert space. If we read out the informati
carried by the qubit, we have to project the state of the qu
onto the measurement basis$u0&,u1&% which will give us a
bit value of either 0 or 1. Only in the exceptional case of t
qubit in an eigenstate of the measurement apparatus doe
bit value observed reveal a property already carried by
qubit. Yet in general the value obtained by the measurem
has an element of irreducible randomness and therefore
not be assumed to reveal the bit value or even a hid
property of the system existing before the measuremen
performed.

This implies that in a sequence of measurements on qu
in a superposition stateau0&1bu1& (uau,ubuÞ$0,1%) the par-
ticular sequence of bit values 0 and 1 obtained cannot,

1Even in these cases where classical physics instead of de
measurement results predicts these results with certain probabil
it is still possible, at least in principle, to consider an ensemble
statistically distributed measurement results as revealing co
sponding statistically distributed properties of the ensemble of c
sical systems.
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even in principle2 be considered in any way to be define
before the measurements are performed. The nonexisten
well-defined bit values prior to and independent of obser
tion suggests that the Shannon measure, as defined b
number of binary questions needed to determine the part
lar observedsequence 0’s and 1’s, becomes problematic a
even untenable in defining our uncertainty as givenbefore
the measurements are performed.

Here we will critically analyze the applicability of the
axiomatic derivation of the Shannon measure for the cas
quantum measurement. We will also show that Shannon
formation is not useful in defining the information content
a quantum system. In fact we will see that when we try
apply Shannon’s postulate in quantum measurements
when we try to define the information content by the Sha
non information a certain element emerges that escapes c
plete and full description in quantum mechanics. This e
ment is always associated with the objective randomnes
individual quantum events and with quantum complemen
rily. In the end we will briefly discuss a novel and mo
suitable measure of information@4#. Yet at first we will re-

ite
es,
f
e-
s-

2As theorems like those of Kochen and Specker@2# show, it is
fundamentally not possible to assign to a quantum system~noncon-
textual! properties corresponding to all possible measurements.
theorems assert that for a quantum system described in a Hi
space of dimension equal to or larger than 3, it is possible to fin
set of n projection operators which represent the yes-no quest
about an individual system, such that none of the 2n possible sets of
answers is compatible with the sum rule of quantum mechanics
orthogonal decomposition of identity@3# ~i.e., if the sum of a subse
of mutually commuting projection operators is the identity one a
only one of the corresponding answers ought to be ‘‘yes’’!. This
means that it is not possible to assign a definite unique answe
every single yes-no question represented by a projection ope
independent of which subset of mutually commuting projection
erators one might consider it with together. If there are no defin
~context-independent! answers to all possible yes-no questions th
can be asked about the system, then the operational concept o
Shannon measure of information itself, defined as the numbe
yes-no questions needed to determine the particular answers
system gives, becomes highly problematic.
©2001 The American Physical Society13-1
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turn to a discussion in more detail of the operational defi
tion of Shannon information to quantum measurements.

II. DISCUSSION OF THE OPERATIONAL DEFINITION
FOR A SEQUENCE OF MEASUREMENTS

For classical observations Shannon’s measure of infor
tion can conceptually be motivated through an operatio
approach to the question. Consider an urn filled with N c
ored balls. There aren1 , n2 , . . . ,nm balls with various dif-
ferent colors: black, white,. . . , red. Now the urn is shaken
and we draw one after the other all balls from the urn.
what extent can we predict the particular color seque
drawn?

Certainly, if all the balls in the urn are of the same col
we can completely predict the color sequence. On the o
hand, if the various colors are present in equal proporti
and if we have no knowledge about the arrangement of
balls after shaking the urn, we are maximally uncertain ab
the color sequence drawn. One can think of these situat
as extreme cases on a varying scale of predictability.
example, for N54, there is only one color sequenc
ssss if all balls are white and four possible color s
quencesdsss, sdss, ssds, sssd, if there
are three black and one white ball in the urn, yet six poss
color sequencesddss, dsds, dssd, sdds,
sdsd, ssdd if there are two black and two white
balls in the urn. This suggests that the uncertainty we h
before drawing about the particular color sequence that
be drawn is defined by the total number of different possi
color sequences that are in accordance with the given n
ber of balls with their respective colors in the urn.

The total number of different color sequences can be
tained as the number of distinguishable permutations oN
balls made up ofm groups of black, white, . . . red ball
indistinguishable within each group:

W5
N!

n1!n2! •••nm!
.

For N sufficiently large,

W.2NH, ~1!

where

H52(
i 51

n

pi log pi ~2!

is the Shannon information expressed in bits when the lo
rithm is taken to base 2 andp15n1 /N, p25n2 /N, . . . ,pm
5nm /N are the proportions of balls with different colors
the urn.

Suppose now that one wishes to identify a specific co
sequence of the drawn balls from the complete set of p
sible color sequences by asking questions to which o
‘‘yes’’ or ‘‘no’’ can be given as an answer. Of course, th
number of questions needed will depend on the question
strategy adopted. In order to make this strategy the m
optimal, that is, in order that we can expect to gain maxim
02211
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information from each yes-or-no question, we evidently ha
to ask questions whose answers will strike out always hal
the possibilities.

Since there areW52NH possible different color se
quences~all of them have equal probability to be drawn!, the
minimal number of yes-no questions needed is justNH. Or,
equivalently, the Shannon information expressed in bits
the minimal number of yes-no questions necessary to de
mine which particular sequence of outcomes occurs, divi
by N @5–7#. A particular color sequence is specified by wr
ing down, in order, the yes’s and no’s encountered in trav
ing from the root to the specific leaf of the tree as schem
cally depicted in Fig. 1 for an explicit example with an u
containing black and white balls only.

If instead of balls with preassigned colors we consid
quantum systems whose individual properties are not defi
before the measurements are performed, does the Sha
measure of information still define the information gain
the measurements appropriately? More precisely, we
here the question whether the total numberW52NH of dif-
ferent possible sequences of outcomes is suitable as a
sure of our uncertainty before the sequence of quantum m
surements is performed.

In classical physics the behavior of the whole ensem
follows from the behavior of its intrinsically different indi
vidual constituents which can be thought to be defined to
precision. This is not the case in quantum mechanics.
indefiniteness in principle in the sense of the fundamen
nonexistence of a detailed description of and prediction
the individual quantum event resulting in a specific measu
ment result, implies that the particular sequence of outcom
specified by writing down, in order, the yes’s and no’s e
countered in a row of yes-no questions asked is not defi
before the measurements are performed. No definite

FIG. 1. Binary question tree to determine the specific seque
of outcomes~color of the drawn balls! in a sufficiently large num-
ber N of experimental trials~number of drawings!. An urn is filled
with black and white balls in proportionsp1 and p2, respectively.
The expected number of questions needed to determine the a
sequence of outcomes isNH, whereH52p1 log p12p2 log p2.
3-2
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CONCEPTUAL INADEQUACY OF THE SHANNON . . . PHYSICAL REVIEW A63 022113
comes exists before measurements are performed and t
fore the number of different possible sequence of outcom
does not characterize our uncertainty about the individ
system before measurements are performed.

However, once the sequence of quantum measuremen
performed and the measurement results are obtained
measure of information needed to specify the particular
quence of outcomes realized is defined appropriately by
Shannon measure. In the sense that an individual quan
event manifests itself only in the measurement process an
not precisely defined before the measurement is perform
we may speak of ‘‘generation’’ of that specific informatio
in the measurement.

III. INAPPLICABILITY OF SHANNON’S POSTULATES
IN QUANTUM MEASUREMENTS

An important reason for preferring the Shannon meas
of information lies in the fact that it is uniquely characteriz
by Shannon’s intuitively reasonable postulates. This
been expressed strongly by Jaynes@8#: ‘‘One . . . important
reason for preferring the Shannon measure is that it is
only one that satisfies . . .@Shannon’s postulates#. Therefore
one expects that any deduction made from other informa
measures, if carried far enough, will eventually lead to c
tradiction.’’ A good way to continue our discussion is b
reviewing how Shannon, using his postulates, arrived at
famous expression. He writes the following@1#

‘‘Suppose we have a set of possible events whose p
abilities of occurrence arep1 ,p2 , . . . ,pn . These probabili-
ties are known but that is all we know concerning whi
event will occur. Can we find a measure of how mu
‘choice’ is involved in the selection of the event or ho
uncertain we are of the outcome?

If there is such a measure, say,H(p1 ,p2 , . . . ,pn), it is
reasonable to require of it the following properties:

1. H should be continuous in thepi .
2. If all the pi are equal,pi51/n, then H should be a

monotonically increasing function ofn. With equally likely
events there is more choice, or uncertainty, when there
more possible events.

3. If a choice is broken down into two successive choic
the originalH should be the weighted sum of the individu
values ofH. The meaning of this is illustrated in Fig. 2. A
the left we have three possibilitiesp15 1

2 , p25 1
3 , and p3

5 1
6 . On the right we first choose between two possibilit

each with probability1
2 and, if the second occurs, make a

other choice with probabilities23 , 1
3 . The final results have

FIG. 2. Decomposition of a choice from three possibilities. F
ure taken from@1#.
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the same probabilities as before. We require, in this spe
case, that

HS 1

2
,
1

3
,
1

6D5HS 1

2
,
1

2D1
1

2
HS 2

3
,
1

3D .

The coefficient1
2 is the weighing factor introduced becau

this second choice occurs half the time.’’
Shannon then shows that only the function~2! satisfies all

three postulates. It is the third postulate which determines
logarithm form of the function and, as we will argue, it
this postulate which leads to problems when quantum m
surements are involved.

We now turn to the discussion of Shannon’s postulat
While the first two postulates are natural for every meani
ful measure of information, the last postulate might dese
more justification. The third Shannon postulate origina
formulated as an example was reformulated as an exact
by Faddeev@9#: For everyn>2,

H~p1 , . . . ,pn21 ,q1 ,q2!5H~p1 , . . . ,pn21 ,pn!

1pnHS q1

pn
,
q2

pn
D , ~3!

wherepn5q11q2.
Without physical interpretation the recursion postulate~3!

is merely a mathematical expression which is certainly n
essary for the uniqueness of the function~2! but has no im-
mediate physical significance. We adopt the following we
known interpretation@6,10#. Assume the possible outcome
of the experiment to bea1 , . . . ,an and H(p1 , . . . ,pn) to
represent the amount of information that is gained by
performance of the experiment. Now, decompose evenan
into two distinct eventsan`b1 and an`b2 ~‘‘ ` ’’ denotes
‘‘and’’; thus a`b denotes a joint event!. Denote the prob-
abilities of outcomesan`b1 and an`b2 by q1 and q2, re-
spectively. Then the left-hand sideH(p1 , . . . ,pn21 ,q1 ,q2)
of Eq. ~3! represents the amount of information that is gain
by the performance of the experiment with outcom
a1 , . . . ,an21 ,an`b1 ,an`b2.

When the outcomean occurs, the conditional probabilitie
for b1 and b2 are q1 /pn and q2 /pn, respectively, and the
amount of information gained by the performance of the c
ditional experiment isH(q1 /pn ,q2 /pn). Hence the recur-
sion requirement states that the information gained in
experiment with outcomesa1 , . . . ,an21 ,an`b1 ,an`b2
equals thesumof the information gained in the experimen
with outcomesa1 , . . . ,an and the information gained in th
conditional experiment with outcomesb1 or b2, given that
the outcomean occurred with probabilitypn .

This interpretation implies that the third postulate can
rewritten as

H„p~a1!, . . . ,p~an21!,p~an`b1!,p~an`b2!…

5H„p~a1!, . . . ,p~an21!,p~an!…

1p~an!H„p~b1uan!,p~b2uan!…, ~4!

where

-

3-3
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p~an!5p~an`b1!1p~an`b2!,

p~an`b1!5p~an!p~b1uan!, ~5!

p~an`b2!5p~an!p~b2uan!.

Here p(bi uan) i 51,2, denotes the conditional probabili
for outcomean given the outcomebi occurs andp(an`bi)
denotes the joint probability that the outcomean`bi occurs.

If we analyze the generalized situation withn outcomesai
of the first experimentA, m outcomesbj of the conditional
experimentB, andmn outcomesai`bj of the joint experi-
mentA`B, we may then rewrite the recursion postulate
short form as

H~A`B!5H~A!1H~BuA!, ~6!

where H(BuA)5( j
np(aj )H(b1uaj , . . . ,bmuaj ) is the aver-

age information gained by observationB given that the con-
ditional outcomeaj occurred weighted by probabilityp(aj )
for aj to occur.

It is essential to note that the recursion postulate is ine
tably related to the manner in which we gain information
a classical measurement. In fact, in classical measureme
is always possible to assign to a system simultaneously
tributes corresponding to all possible measurements, hereai ,
bj andai`bj . Also, the interaction between measuring a
paratus and classical system can be thought to be mad
bitrarily small so that the experimental determination ofA
has no influence on our possibility to predict the outcomes
the possible future experimentB. In conclusion, the informa-
tion expected in a classical experiment from the joint exp
ment A`B is simply the sum of the information expecte
from the first experimentA and the conditional information
of the second experimentB with respect to the first, as ex
pressed in Eq.~6!.

Therefore, only for the special case of commuting, i.
simultaneously definite observables, is the axiomatic der
tion of the Shannon measure of information applicable a
the use of the Shannon information justified to define
uncertainty given before quantum measurements are
formed. However, in general, ifA andB are noncommuting
observables, the joint probabilities on the left-hand side
Eq. ~4! cannot in principle be assigned to a system simu
neously, and consequently Shannon’s crucial third postu
which is necessary for the uniqueness of Shannon’s mea
of information ceases to be well defined.

Having seen that the third Shannon postulate in gener
not applicable in quantum measurements we next introd
two requirements that are immediate consequences of S
non’s postulates and in which all the probabilities that app
are well defined in quantum mechanics. We will show th
the two requirements are violated by the information gain
in quantum measurements, implying that the Shannon m
sure loses its preferential status with respect to alterna
expressions when applied to define information gain in qu
tum measurements.

~1! Every new observation reduces our ignorance and
creases our knowledge. In his work Shannon@1# offers a list
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of properties to substantiate thatH is a reasonable measure
information. He writes, ‘‘It is easily shown that

H~A`B!<H~A!1H~B!

with equality only if the events are independent~i.e., p(ai
`bj )5p(ai)p(bj )). The uncertainty of a joint event is les
than or equal to the sum of the individual uncertainties.’’ H
continues further in the text: ‘‘ . . . we have

H~A!1H~B!>H~A`B!5H~A!1H~BuA!.

Hence,

H~B!>H~BuA!. ~7!

The uncertainty ofB is never increased by knowledge ofA.
It will be decreased unlessA andB are independent events
in which case it is not changed’’~we have changed Shan
non’s notation to coincide with that of our work!.

~2! Information is irrespective of the order of acquisition.
The total amount of information gained in successive m
surements is independent of the order in which it is acquir
so that the amount of information gained by the observat
of A followed by the observation ofB is equivalent to the
amount of information gained from the observation ofB fol-
lowed by the observation ofA:

H~A!1H~BuA!5H~B!1H~AuB!. ~8!

This is an immediate consequence of the recursion postu
which can be obtained when we write the recursion postu
in two different ways depending on whether the observat
of A is followed by the observation ofB or vice versa. An
explicit example for a sequence of classical measuremen
given in Fig. 3.

Are these two requirements satisfied by the informat
gained in quantum measurements? Consider a beam of
domly polarized photons. FiltersFl , F45° , andF↔ are ori-
ented vertically, at145°, and horizontally, respectively, an
can be placed so as to intersect the beam of photons~Fig. 4!.
If we insert filterFl , the number of photons observed at t
detection plate will be approximately half of the number
the incoming beam. The outgoing photons now all have v
tical polarization. Notice that the function of filterFl cannot
be explained as a ‘‘sieve’’ that only lets those photons p
that are already of vertical polarization in the incoming
beam. If that were the case, only a certain small numbe
the randomly polarized incoming photons would have ve
cal polarization, so we would expect a much larger atten
tion of the beam of photons as they pass the filter.

Denote byA and B the properties of the photon to hav
polarization at145° and horizontal polarization, respe
tively. If F↔ is inserted behind the filterFl , we are certain
that none of the photons will pass through@Fig. 4~a!#. For a
photon with vertical polarization we have complete know
edge of the propertyB, i.e.,H(B)50. Notice that a ‘‘sieve’’
model could explain this behavior. If we now insertF45°
betweenFl andF↔ , we observe an effect which cannot b
explained by a sieve model where the filter does not cha
the object. In contrast, we now observe a certain numbe
3-4
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CONCEPTUAL INADEQUACY OF THE SHANNON . . . PHYSICAL REVIEW A63 022113
photons at the detection plate~about 1
4 of the number of

photons in the beam passed throughFl) as shown in Fig.
4~b!. In this case our knowledge of the propertyB is not
complete anymore.

The acquisition of information about propertyA therefore
leads to a decrease of our knowledge about propertyB, i.e.,
H(BuA).0. Note that on the photons absorbed by the fil
F45° we cannot measure propertyB subsequently. However
already for the subensemble of the photons passing thro
the filter our uncertainty about propertyB becomes larger
than 0, implying 05H(B),H(BuA), which clearly violates
requirement~7!. Another example of sequence of quantu
measurements where requirement~8! is violated is shown in
Fig. 5. Clearly, violation of the requirements~7! and ~8!
occurs when the corresponding operatorsA and B do not
commute.

What is the origin of the violation of the requirements~7!
and ~8! in quantum measurements? In contrast to a class
measurement which just adds some new knowledge to
knowledge at hand from the previous measurements,
quantum measurement the gain of the new knowledge is
ways at the expense of irrecoverable loss of complemen

FIG. 3. Indifference of information to the order of its acquisitio
in classical measurements. A box is filled with balls of differe
compositions~plastic and wooden balls! and different colors~black
and white balls!. Then the box is shaken. In~a! we first draw a ball
asking about the color of the drawn ball and gainH(color)51 bit
of information. Subsequently, we put the black and white balls
separate boxes, draw a ball from each box separately, and ask
the composition of the drawn ball. We gainHbl(comp)50 bits for
the black balls andHwh(comp)51 bit for the white balls. In~b! we
pose the two questions in the opposite order. We first ask abou
composition of the drawn ball and gainH(comp)50.81 bits. Then
we ask about the color of the drawn ball and gainHwo(color)50
bits for wooden balls andHpl(color)50.92 bits for plastic balls.
The total information gained is independent of the particular or
the two questions are posed, i.e.,H(color)11/2Hbl(comp)
11/2Hwh(comp)5H(comp)11/4Hwo(color)13/4Hpl(color)51.5.
02211
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classes of knowledge. This originates from the distinct
between ‘‘total’’ and ‘‘complete’’ information in quantum
physics. In classical physics the total information abou
system is complete. In quantum physics the total informat
of a system, represented by the state vector, is never c
plete in the sense that all possible future measurement re
are precisely defined.3 In fact, the total information of a
quantum system suffices to specify the eigenstate of one
degenerate~with one-dimensional eigenspaces only! observ-
able only.

3Yet we do not hesitate to emphasize that the information c
tainly is complete in the sense that it is not possible to have m
information about a system than what can be specified in its qu
tum state. In fact, the state vector represents that part of our kn
edge about the history of a system which is necessary to arriv
the maximum possible set of probabilistic predictions for all po
sible future observations of the system. For example, a set of c
plex amplitudes of ac-function is a specific representation of th
catalog of our knowledge of the system. This view was assumed
Schrödinger @11# who wrote, ‘‘Sie ~die c-Funktion! ist jetzt das
Instrument zur Vorausage der Wahrscheinlichkeit von Maßzah
In ihr ist die jeweils erreichte Summe theoretisch begru¨ndeter
Zukunfterwartungen verko¨rpert, gleichsam wie in einemKatalog
niedergelegt.’’ Translated: ‘‘It~the c function! is now the instru-
ment for predicting the probability of measured numbers. In it
embodied the momentarily attained sum of theoretically based
ture expectations, somewhat as laid out in a catalog.’’

t

n
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r

FIG. 4. The gain of knowledge in a new observation reduces
knowledge at hand from a previous observation. FiltersFl , F45° ,
and F↔ are oriented vertically, at145° and horizontally, respec
tively. If filter F↔ is inserted behind the filterFl , no photons are
observed at the detector plate~a!. In this case our knowledge abou
horizontal polarization~property B) of a photon passing through
filter Fl is complete. If filterF45° is inserted betweenFl andF↔ ,
a certain number of photons~1/4 of the number of photon passin
throughFl) will be observed at the detection plate~b!. Now acqui-
sition of information about the polarization at145° ~propertyA)
leads to the decrease of our previous knowledge about horizo
polarization of the photon.
3-5
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For example, the state of a photon passing through fi
Fl is fully specified by the complete knowledge about t
propertyA of vertical polarization. If we let a photon in thi
state pass through filterF45° as given in Fig. 4~b!, our knowl-
edge of the photon changes, and therefore its representa
the quantum state, also changes. The total information
photon in the new state is completely exhausted in specify
propertyB of polarization at 45° and no further informatio
is left to also specify propertyA, thus implying unavoidable
loss of the previous knowledge about this property. This f
ther implies that the set of future probabilistic predictio
specified by the new projected state is indifferent to
knowledge collected from the previous measurements in
whole history of the system. Such a view was assumed
Pauli @12# who writes,4 ‘‘Bei Unbestimmtheit einer Eigen-
schaft eines Systems bei einer bestimmten Anordnung~bei
einem bestimmten Zustand des Systems! vernichtet jeder
Versuch, die betreffende Eigenschaft zu messen,~mindes-
tend teilweise! den Einfluß der fru¨heren Kenntnisse vom
System auf die~eventuell statistischen! Aussagen u¨ber spa¨-
tere mögliche Messungsergebnisse.’’ This clearly makes
possible to violate requirements~7! and~8! in quantum mea-
surements.

Here a certain misconception might be put forward t
arises from a certain practical point of view. According
that view, for example, complementarily between interf
ence pattern and information about the path of the particl
the double-slit experiment is considered to arise from the
that any attempt to observe the particle path would be a
ciated with an uncontrollable disturbance of the partic
Such a disturbance in itself would then be the reason for
loss of the interference pattern. In such a view, it would
possible to define Shannon’s information for all attributes
the system simultaneously, and the third Shannon postu
as well as the requirements~7! and ~8!, would just be vio-
lated because of the unavoidable disturbance of the sys
occurring whenever the subsequently measured propertyB is
incompatible with the previous oneA. Yet this is a miscon-
ception for two reasons.

First, as theorems like those of Bell@13# or Greenberger,
Horne, and Zeilinger@14# show, it is not possible, not eve
in principle, to assign to a quantum system simultaneou
observation-independent properties which in order to be
agreement with special relativity have to be local. We the
fore cannot speak of a ‘‘disturbance’’ in the measurem
process if there are no objective properties to disturb.

Second, over the last few years experiments were con
ered and some already performed where the reason wh
interference pattern arises is not due to any uncontrolla
disturbance of the quantum system or the clumsiness of
apparatus. Rather the lack of interference is due to the
that the quantum state is prepared in such a way so a

4In translation: ‘‘In the case of undefinedness of a property o
system for a certain arrangement~with a certain state of the system!
any attempt to measure that specific property destroys~at least par-
tially! the influence of earlier knowledge of the system on~possibly
statistical! statements about later possible measurement results
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permit pathinformationto be obtained, in principle, indepen
dent of whether the experimenter cares to read it out or
One line of such research considers the use of microma
in atomic beam experiments@15#; another one concerns ex
periments on correlated photon states emerging from non
ear crystals through the process of parametric-down con
sion @16#.

The view that complementarity must be based on
much more fundamental property of mutual exclusivenes
different classes of information of a quantum system w
emphasized by Pauli@12# in the analysis of the uncertaint
relations:5 ‘‘ . . . diese Relationen enthalten die Aussage, d
jede genaue Kenntnis des Teilchenortes zugleich eine p
zipielle Unbestimmtheit, nicht nur Unbekanntheit des Im
pulses zur Folge hat und umgekehrt. Die Unterscheid
zwischen~prinzipieller! Unbestimmtheitund Unbekanntheit
und der Zusammenhang beider Begriffe sind fu¨r die ganze
Quantentheorie entscheidend.’’

IV. DIFFICULTIES IN DEFINING THE INFORMATION
CONTENT OF A QUANTUM SYSTEM

To define the information content of a physical syste
one might consider different measures of information. Ho
ever, only those measures of information have physical
nificance according to which the defined information cont
of the system possesses properties which naturally fol
from the physical situation considered. These properties
for example, invariance under changes of the modes of
servation of the system and conservation in time if there
no information exchange with an environment. We sh
now that the information content of a quantum system, if i
assumed to be measured by the Shannon measure of i
mation, cannot be defined in any way to have these pro
ties.

The classical world appears to be composed of partic
and fields, and the properties of each one of these cons
ents can be specified quite independently of the partic
phenomenon discussed or of the experimental procedu
physicist chooses to determine these properties. In o
words the properties of constituents of the classical world
noncontextual.

In particular, the total lack of information about a class
cal pointlike system~with no rotational and internal degree
of freedom! defined as Shannon’s information associa
with the probability distribution over the phase space is
dependent of the specific set of variables chosen to desc
the system completely~such as position and momentum,
bijective functions of them! and conserved in time if there i
no information exchange with an environment, i.e., if t
system is dynamically independent of the environment a

a

5In translation:‘‘ . . . these relations contain the statement that a
precise knowledge of the position of a particle implies a fundam
tal undefinedness, not just an unknownness, of the momentum
consequence and vice versa. The distinction between~fundamental!
indefinitenessandunknownness, and the relation between these tw
notions is decisive for the whole quantum theory.’’
3-6
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CONCEPTUAL INADEQUACY OF THE SHANNON . . . PHYSICAL REVIEW A63 022113
not exposed to a measurement.6 Operationally the total infor-
mation content of a classical system can be obtained in
joint measurement of position and momentum or in succ
sive measurements in which the observation of position
followed by the observation of momentum or vice versa.7

Contrary to the classical concepts most quantu
mechanical concepts are limited to the description of p
nomena within some well-defined experimental context, t
is, always restricted to a specific experimental procedure
physicist chooses. In particular the amount of informat
gained in an individual quantum measurement depe
strongly on the specific experimental context. In the optim
experiment when the measurement basisu i & coincides with
the eigenbasis of the density matrixr̂ of the system:r̂u i &
5wi u i &, the amount of information gained is minimal~see,
for example,@3#!. Since in the basis corresponding to t
optimal experiment the density operator is represented b
diagonal matrix with elementswi , the information gain de-
fined by the Shannon measure equals the von Neumann
tropy s( r̂) as given by8

H52(
i

wi logwi52Tr~ r̂ log r̂ ![s~ r̂ !. ~11!

This has the important property of being invariant under u
tary transformationsr̂→Û r̂Û1. The invariance under uni
tary transformations implies invariance under the change
the representation~basis! of r̂ and conservation in time i

6Given the probability distributionr(rW,pW ,t) over the phase spac
the total lack of information of a classical system is defined as@17#

Htotal~t!52Ed3rWd3pWr~rW,pW,t!log
r~rW,pW,t!

m~rW,pW!
, ~9!

where a background measurem(rW,pW ) is an additional ingredient tha
has to be added to the formalism to ensure invariance under ch
of variables when we consider continuous probability distributio
The conservation ofHtotal in time for a system with no information
exchange with an environment is implied by the Hamiltonian e
lution of a point in phase space.

7In full analogy with Eq. ~8! we may write Htotal5H(rW)

1H(pW urW)5H(pW )1H(rWupW ).
8For agivendensity matrixr̂ the von Neumann entropy

S~r̂!52Tr~ r̂ log r̂! ~10!

is widely accepted as a suitable definition for the information c
tent of a quantum system. For a system described inN-dimensional
Hilbert space this ranges from lnN for a completely mixed state to
0 for a pure state. The von Neumann entropy has the impor
property to be invariant under unitary transformations. Howev

we observe that any function of the form Tr@ f ( r̂)# @the operator

f ( r̂) is identified by having the same eigenstates asr̂ and the ei-
genvaluesf (wj ), equal to the function values taken at the eigenv

ueswj of r̂# possesses this invariance property. We also obse
that the von Neumann entropy is a property of the quantum sta
a whole without explicit reference to information contained in in
vidual measurements.
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there is no information exchange with an environment. T
latter precisely means that if we perform the optimal expe
ments both at timet0 and at some future timet, Shannon’s
information measures associated with the optimal exp
ments at the two times will be the same, i.e.,

H~ t !52(
i

wi~ t !logwi~ t !52(
i

wi logwi5H~ t0!.

~12!

Here, the eigenvalues of the density matrix at timet are
wi(t)5wi .

However, without theadditionalknowledge of the eigen-
basis of the density matrixr̂ we cannot find the optima
experiment and therefore we cannot obtain directly
Shannon information associated. Also, all the statistical p
dictions that can be made for the optimal measurement
the same as if we had an ordinary~classical! mixture, with
fractionswi of the systems each giving with certainty resu
that are associated with the eigenvectorsu i &. In this sense the
optimal measurement is a classical type measurement
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FIG. 5. Dependence of information on the order of its acqu
tion in successive quantum measurements. A spin-1/2 particle
the stateuz1& spin up along thez axis. Spin along thex axis and
spin along the direction in thex-z plane tilted at an anglea from
thez axes are successively measured, in one order in~a! and in the
opposite order in ~b!. Whereas we obtain an equal portio
H„cos2(p/42a/2),sin2(p/42a/2)… of information in the condi-
tional ~subsequent! measurement both in~a! and in~b!, the amounts

of informationH(cos2a/2,sin2a/2) andH( 1
2 , 1

2 )51 we gain in the
first measurement in~a! and in the first measurement in~b!, respec-
tively, can be significantly different. Specifically fora→0 we have
complete knowledge about spin along the direction at the anglea in
~a! but absolutely no knowledge about the spin along thex axis in
~b!. We emphasize that we do not assume any specific functio
dependence for the measure of informationH.
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therefore in this particular case, and only then, does Sh
non’s measure define the information gain in a measurem
appropriately.9 Considering also our previous discussion it
therefore not surprising that Shannon’s measure is us
only when applied to measurements which can be un
stood as classical measurements.

Which set of individual measurements should we perfo
and how to combine individual measures of information o
tained in the set in order to arrive at the information cont
of a quantum system if we do not know the eigenbasis of
density matrix? Quantum complementarity implies that
total information content of the system might be partia
encoded in different mutually exclusive~complementary!
observables. These have the property that complete kn
edge of the eigenvalue of any one of the observables
cludesany knowledge about the eigenvalues of all other o
servables. Such a set of observables for a spin-1/2 par
can for example be spin components along orthogonal di
tions.

We consider now a quantum system described
n-dimensional Hilbert space and we denote a complete se
m mutually complementary observables10 by $Â,B̂, . . . %.
The property of mutual expansiveness implies that if the s
tem is in an eigenstate of one of the observables, for
ample, in the eigenstateuaj& of the observableÂ, and we
measure any other observable from the set, say,B̂, projecting
the system onto states$ub1&, . . . ,ubi&, . . . ,ubn&%, the indi-

9Consider a situation where instead of using single system
send information to the receiver a sender uses a sequenceN
systems where each individual system is drawn from an ensem
of pure states$uc1&, . . . ,ucn&%, with frequency of occurrence
$w1 , . . . ,wn%, respectively. It was shown in@18# that for suffi-

ciently largeN there are 2NS( r̂) highly distinguishable sequences
pure states which become mutually orthogonal asN→`. Here

S( r̂)52Tr( r̂ log r̂) is the von Neumann entropy andr̂
5( i

nwi uc i&^c i u. This means that if the sender uses a sequence
sisting of a choice of states that respects thea priori frequencies
wi , and the receiver distinguishes whole sequences rather tha
dividual states, then the~Shannon! information transmitted per sys

tem can be made arbitrarily close toS( r̂). Here again the tota

density matrixr̂N of N systems can be made arbitrarily close to t

one for a classical mixture of the 2NS( r̂) sequences of states.
10To specify a system described by an3n density matrix com-

pletely one needsn221 independent real numbers. Any individua
complete measurement~we consider here only complete measu
ments, i.e., where operators associated with the measuremen
without degeneracy! with n possible outcomes definesn21 inde-
pendent probability values~the sum of all probabilities for all pos
sible outcomes in an individual experiment is 1!. Therefore, just on
the basis of counting the number of independent variables, we
pect that the number of different measurements we need in ord
determine the density matrix completely is (n221)/(n21)5n
11. Ivanovic@19# and Wootters and Fields@20# demonstrated the
existence of exactlyn11 mutually complementary observables b
an explicit construction in the cases wheren is a power of a prime
number.
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vidual outcome is completely random~all measurement re
sults are equally probable!:

u^aj ubi&u25
1

n
; i , j . ~13!

It was shown in@19# that the density matrix of the system
can fully be reconstructed if one performs a complete se
mutually complementary observations. This suggest that
total information content of a quantum system represen
by a density matrixr̂ is all obtainable from a complete set o
mutually complementary measurements. To obtain the t
information one, however, cannot perform the set of m
surements successively because, unlike the classical cas
information obtained in successive quantum measurem
depends on the order of its acquisition~see Fig. 5 and dis-
cussion above!. Instead it seems that any attempt to obta
the total information content of a quantum system has to
related to the complete set of mutually complementary
periments performed on systems that are all in the sa
quantum state.

Concluding this discussion, we therefore suggest that
natural to require that the total information content in a s
tem in the case of quantum systems is thesumof the indi-
vidual amounts of information over a complete set ofm mu-
tually complementary observables. As already mention
above, for a spin-1/2 particle these are three spin project
along orthogonal directions. If we define the informatio
gain in an individual measurement by the Shannon meas
the total information encoded in the three spin component
given by

HtotalªH1~px
1 ,px

2!1H2~py
1 ,py

2!1H3~pz
1 ,pz

2!.
~14!

Here, e.g.,px
1 is the probability to find a particle with spin

up along the directionx.
Considering now an explicit example we will show th

the total informationHtotal based on the Shannon measure
in generalnot invariant under unitary transformations. W
calculate Eq.~14! for a spin-1/2 particle in the stateuc&
5cosu/2uz1&1sinu/2uz2& and we find that

Htotal52
12sinu

2
log

12sinu

2
2

11sinu

2
log

11sinu

2

2cos2
u

2
logS cos2

u

2D2sin2
u

2
logS sin2

u

2D11 ~15!

depends on the parameteru, thus being not invariant unde
unitary transformations. This associates a number of hig
counterintuitive properties toHtotal : ~1! it can be different
for states of the same purity~e.g., it takes its maximal value
of 2 bits of information foru50 and it takes its minimal
value of 1.36 bits foru5p/4), ~2! it changes in time even
for a system completely isolated from the environme
where no information can be exchanged with environme
and ~3! it can take different values for different sets of th
three orthogonal spin projections. These unnatural prope

to

le

n-

in-

-
are

x-
to
3-8



t
d

it
um
o
a
hi
tio
er
ea
on

a
o

n
th

1

-
v

a
is

io

em
or,

in a
in-
ter-
s it
no

or-
not
or-
ble
m
ely
of

ns
es
ary
f the
en-

de-
he
x-

r-
led
tion
ten-
ber
nd

o
f
en-

ties
to
ar-
’s

ea-
ion
on’s
. We
in
for-

the

be-
in
rma-
nd

s-
al

CONCEPTUAL INADEQUACY OF THE SHANNON . . . PHYSICAL REVIEW A63 022113
we see as another strong indication of the inadequacy of
Shannon measure to define the information gain in an in
vidual quantum measurement.

V. SUGGESTED ALTERNATIVE MEASURE
OF INFORMATION

Generalizing our above suggestion, we propose that
natural to require that the information content of the quant
system defined as a sum of individual measures over a c
plete set of mutually complementary measurements is inv
ant under unitary transformations. Having shown that t
cannot be achieved with the Shannon measure of informa
we now introduce a new measure of information that diff
both mathematically and conceptually from Shannon’s m
sure of information and according to which the informati
content has the required invariance property.

The new measure of information for an individual me
surement withn possible outcomes is a quadratic function
probabilities11

I ~p1 , . . . ,pn!5(
i 51

n S pi2
1

nD 2

, ~17!

and it takes into account that for quantum systems the o
features known before an experiment is performed are
probabilities for various events to occur@see@4# for discus-
sion; there a specific normalization factor in expression~17!
was used, resulting in maximallyk bits for n52k possible
outcomes#. This new measure fulfills Shannon’s postulate
and is in agreement with 2, considering that the term 1/n in
Eq. ~17! is just ann-dependent zero offset. But it is in con
flict with postulate 3, whose inadequacy we showed abo
In particular, the measureI (p1 , . . . ,pn) is continuous inpi
and takes its maximal value of (n21)/n if one pi51 and it
takes its minimal value of 0 when allpi are equal.

The important property of the new measure of inform
tion is that the total information defined with respect to it
invariant under unitary transformations. Using Eq.~13! one
obtains that the sum over individual measures of informat
of mutually complementary observations results in@24#

I totalª(
j 51

m

I ~p1
j , . . . ,pn

j !5(
j 51

m

(
i 51

n S pi
j2

1

nD 2

5Tr r̂22
1

n
,

~18!

11Expressions of the general type of Eq.~17! were studied in
detail by Hardy, Littlewood, and Po´lya @21#. They introduced a
general class of mathematical expressions

Ma5S(
i51

n

pi
aDa21

for 0<a<` ~16!

that from the point of view of information theory all can be a
sumed to quantify information properly. These expressions are
closely related to Tsallis’s@22# nonextensive entropySa5@1/(1
2a)#( i 51

n (pi
a21) and Re´nyi’s @23# entropy Ha5@1/(1

2a)ln (i51
n pi

a .
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for a system described by the density matrixr̂. Here pi
j

denotes the probability to observe thei th outcome of thej th
observable. The total information content of the syst
therefore might all be encoded in one single observable
alternatively, it might be partially encoded in allm mutually
complementary observables. For a composite system
product state the total information can all be encoded in
dividual systems constituting the composite system or, al
natively, in the extreme case of maximally entangled state
can all be encoded in joint properties of the systems with
information left in individual systems@4#.

Independent of the various possibilities to encode inf
mation the total information content of the system can
fundamentally exceed the maximal possible amount of inf
mation that can be encoded in an individual observa
@5(n21)/n#. This upper limit is reached when the syste
is in the pure state. When the system is in a complet
mixed state the total information takes its minimal value
0.

The property of invariance under unitary transformatio
implies that the total information content of the system do
not depend on the particular set of mutually complement
observables chosen; it is a characterization of the state o
system alone, not of the specific reference set of complem
tary observables. Furthermore, since evolution in time is
scribed by a unitary operation, the total information of t
system is conserved in time if there is no information e
change with the environment.

We would like to note that the total information~18! was
used in@25# to study the transfer of entanglement and info
mation for quantum teleportation of an unknown entang
state through noisy quantum channels. The total informa
~18! belongs to the set of quantum counterparts of nonex
sive entropies finding its application in an increasing num
of problems in quantum physics, e.g., the description a
controlling of laser cooling@26#, a nonextensive approach t
the decoherence problem@27#, description and quantifying o
entanglement, and deducing criteria for separability of d
sity matrices@28,29#.

VI. CONCLUSIONS

In this work we have stressed some conceptual difficul
arising when Shannon’s notion of information is applied
define information gain in a quantum measurement. In p
ticular we find that the axiomatic derivation of Shannon
measure of information is not applicable in quantum m
surements in general. We also show that the informat
content of a quantum system defined according to Shann
measure possesses some strongly nonphysical properties
argue that these difficulties in defining the information ga
in quantum measurement by the Shannon measure of in
mation arise whenever it is not possible, not evenin prin-
ciple, to assume that attributes observed are assigned to
quantum system before the observation is performed.

Having critized Shannon’s measure of information as
ing not appropriate for identifying the information gain
quantum measurement we proposed a measure of info
tion in quantum mechanics that both mathematically a

so
3-9
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conceptually differs from Shannon’s measure of informati
While Shannon’s information is applicable when the me
surement reveals a preexisting property, our measure o
formation takes into account that for quantum systems
only features known before an experiment is performed
the probabilities for various events to occur. In gene
which specific event occurs is objectively random.

The total information content of a quantum system d
fined according to our new measure of information as
sum of the individual measures of information for mutua
complementary observations is invariant under unitary tra
formations. This implies that the total information content
u/
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te

ty
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t
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the system is invariant under transformation from one co
plete set of complementary variables to another and is c
served in time if there is no information exchange with
environment.
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