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Mixing group for relativistic two-particle quantum states

S. Rupp and M. Sorg
II. Institut für Theoretische Physik der Universita¨t Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany

~Received 9 August 2000; published 17 January 2001!

Within the framework of relativistic Schro¨dinger theory~RST!, the problem of bound two-particle states is
studied and compared to the analogous results of conventional quantum theory. The standard dichotomy of
symmetric and antisymmetric quantum states finds its RST analog in the form of the positive and negative
mixtures. Similarly the conventional exchange degeneracy has its RST counterpart in the form of a certain
mixture degeneracy which, however, is not broken by the interparticle interactions as in the standard quantum
theory. The corresponding group of quasilinear mixing transformations turns out to be continuous@in contrast
to the discrete operations of~anti!symmetrization in the conventional theory# and is closely related to the
Lorentz group SO~1,1! in two dimensions. The group properties can be exploited to generate exact solutions
for the mixture dynamics from the pure-state configurations where, however, certain physical quantities remain
invariant: scalar densities, currents, energy eigenvalues.
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I. INTRODUCTION AND SURVEY OF RESULTS

Though nearly a century has passed since the inventio
quantum theory, there still are arising certain controvers
about the right interpretation of this theory. However, desp
the persistence of some controversial viewpoints referr
mainly to the right understanding of the decoherence p
nomenon@1,2#, there is general agreement about certain f
tures of the quantum world which are believed to be c
rectly described by the conventional quantum theory. One
these points of general agreement refers to the well-kno
spin-statistics theorem@3#. This theorem says~in popular
language! that particles with half-integer spin are to be d
scribed by antisymmetric wave functions and therefore o
the Fermi-Dirac statistics~fermions! whereas particles with
integer spin occur in form of symmetric wave functions a
obey the Bose-Einstein statistics~bosons!. Obviously the
crucial point with the spin-statistics theorem lies in that s
cific way in which the particle permutation symmetry of th
wave functions~or the commutation relations of the fiel
operators! is combined with the particle spin. This logic lin
is nontrivial only if the notions of symmetry of the wav
functions and of particle spin are first introduced indep
dently. However, this independent occurrence of both c
cepts actually did occur during the historical course of
development of quantum theory: namely, Pauli first had
introduce the concept of spin in order to be able to expl
the fine structure of the atomic spectral lines@4# and then
Heisenberg@5# and Dirac@6# independently established th
doubling of the atomic energy level schemes~ortho- and
para-helium! as a consequence of the nonobservability o
particle permutation operation upon the wave functio
which immediately led to their symmetry and antisymme
property. The subsequent unification of both aspects into
spin-statistics theorem has been the concern of many bril
theoreticians@3# but even today the status of this theore
seems not completely clear; the general belief seems t
that it is not the true origin of the Pauli exclusion princip
1050-2947/2001/63~2!/022112~17!/$15.00 63 0221
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but rather some kind of consistency requirement.~For a sur-
vey of the research for violations of the Pauli principle s
Ref. @7#.!

In any case, the two prerequisites of the spin-statis
theorem@namely, ~i! the occurrence of many-particle sy
tems in either symmetric or antisymmetric states and~ii ! in-
tegrity or half-integrity of the particle spin# stand on a safe
ground. Thus, any conceivable form of quantum theo
surely must take account of these two facts which are exp
mentally well established. The present paper also deals
one of these two fundamental prerequisites, namely, the m
ter dichotomy in form of the symmetric and antisymmet
states, but not within the framework of the convention
quantum theory but rather within the relativistic Schro¨dinger
theory ~RST! recently established@8–10# ~for a RST treat-
ment of Dirac particles see, e.g., Refs.@11,12#!. Especially
we shall be concerned here with the phenomenon of mix
degeneracy as the RST counterpart of the well-kno
exchange degeneracy in the conventional theory, see,
Ref. @13#.

The essential difference between the conventional the
and RST consists in the specific kinematical setting for
treatment of many-particle systems~in the present paper we
restrict ourselves to two-particle systems@14,15# but the gen-
eralization to many particles is self-evident!. Whereas in the
conventional theory~as a probabilistic theory! the many-
particle Hilbert space is taken as the tensor product of
single-particle spaces, in RST~as a fluid-dynamic theory! the
many-particle fibre bundle of possible wave functions is
Whitney sum of the single-particle bundles over pseu
Riemannian space-time. For instance, the RST counterpa
a simple product stateC~1,2! for independent particles with
individual wave functionsc I ,c II in the conventional theory

C~1,2!5c I~1!c II~2! ~1.1!

is now aC2-valued bundle sectionC

C~x!5S c I~x!

c II~x! D . ~1.2!

Furthermore, the RST counterpart of the conventional Sch¨-
dinger equation
©2001 The American Physical Society12-1
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S. RUPP AND M. SORG PHYSICAL REVIEW A63 022112
i\Ċ~1,2!5Ĥ~1,2!C~1,2! ~1.3!

is now the relativistic Schro¨dinger equation~RSE!

i\cDmC5HmC ~1.4!

where the relativistic HamiltonianHm is a gl~2,C!-valued
one-form to be determined by its field equations@see Eqs.
~2.2! and ~2.3! below#.

A. Exchange degeneracy

The solutionsC~1,2! of the conventional Schro¨dinger
equation~1.3! will in general not be of that simple produc
form ~1.1!, not even when the two-particle Hamiltonia
Ĥ(1,2) is the sum of the individual one-particle Hamilt
nians, i.e.,

Ĥ~1,2!⇒Ĥ~1!1Ĥ~2!. ~1.5!

It is true, for this situation the simple product stateC~1,2!
~1.1! could represent a solution of the conventional ene
eigenvalue problem

Ĥ~1,2!C~1,2!5E1,2C~1,2! ~1.6!

in the form

Ĥ~1!c I~1!5E1c I~1!, ~1.7a!

Ĥ~2!c II~2!5E2c II~2! ~1.7b!

with the total energyE1,2(5E11E2) being the sum of both
individual eigenvaluesE1 and E2 ; but the entangled state
C6, being defined through

C67
1

&
@c I~1!c II~2!6c II~1!c I~2!#, ~1.8!

would equally well solve the eigenvalue problem~1.6!,~1.7!
with the same energy eigenvalueE1,2 ~exchange degen
eracy!. And additionally the latter states~1.8! would obey the
requirement of permutation symmetry@C(1,2)56C(2,1)#
for indistinguishable particles which is mandatory for phy
cal reasons.

The present exchange degeneracy will be broken by s
interparticle interactionV̂(1,2)@5V̂(2,1)# which is not of the
additive form~1.5! e.g., the Coulomb interaction

V̂~1,2!⇒ e2

urW12rW2u
. ~1.9!

For such a situation, the solutionsC~1,2! of the conventional
eigenvalue problem~1.6! will still obey the symmetry re-
quirement with respect to particle permutation albeit
eigenfunctions will not be found to be of that simple e
tanglement form~1.8!. Nevertheless the latter form~1.8! may
be used for obtaining lowest-order perturbative results
the splitting of the degenerate levels due to the interpart
interactionsV̂(1,2)
02211
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5^c I~1!c II~2!uV̂~1,2!uc I~1!c II~2!&

6^c I~1!c II~2!uV̂~1,2!uC II~1!c I~2!& ~1.10!

7EC6EG

Here, the first partEC is an energy shift common for bot
kind of states, e.g., for the electrostatic Coulomb interacti
~1.9!

EC5e2E E d3rW1d3rW2

uc I~rW1!u2uc II~rW2!u2

urW12rW2u
, ~1.11!

and thus does not yet break the degeneracy. This term c
have been obtained also by use of the simple product f
~1.1!. The breaking of degeneracy occurs via the second t
EG in Eq. ~1.10!, e.g., for the Coulomb potential~1.9!

EG5e2E E d3rW1d3rW2

c I* ~rW1!c II~rW1!c II* ~rW2!c I~rW2!

urW12rW2u
, ~1.12!

and this results in the well-known energy shift of theortho-
states relative to thepara-states~e.g., in the helium atom
@13#!.

B. Relativistic Schrödinger theory

How does this conventional picture of exchange deg
eracy reappear within the quite different framework of RS
Remember here that the conventional quantum theory
relativistic two-particle systems is plagued with many se
ous difficulties~see, e.g., Ref.@16–18#! which spoil the im-
mediate transcription of those nonrelativistic results to
relativistic domain. Therefore it becomes highly instructi
to see how the alternative approach of RST deals with th
notorious two-body problems.

First, one has to find the RST counterpart of the conv
tional ~anti!symmetrization process~1.8!. This is done by
taking the step from the pure RST statesC(x) ~1.2! to the
mixtures which are to be described by the intensity matrixI
~a Hermitian 232 matrix,I5Ī!. A pure RST stateC ~1.2!
may then be understood as a degenerate form ofI, namely,

the tensor product ofC ~i.e., I⇒C ^ C̄!. Correspondingly,
the RSE~1.4! for the pure two-particle stateC(x) ~1.2! has
to be generalized to the relativistic von Neumann equat
~RNE! for the intensity matrixI, see Eq.~2.4! below. The
latter equation is considered as the RST counterpart of
conventional 2-particle Schro¨dinger equation~1.3!. The en-
tangling effect of the conventional HamiltonianĤ(1,2), for-
bidding association of an individual one-particle wave fun
tion to anyone of the two particles, is transcribed to RST
the action of the nondiagonal elements~exchange fields! of
the relativistic HamiltonianHm , see the Hamiltonian decom
position ~2.25!,~2.26! below. Thus the use of the simply en
tangled states~1.8! of the conventional theory@in place of
the product state~1.1!# would correspond to using an RS
mixtureI in place of a pure RST stateC ~1.2!, together with
the assumption of vanishing exchange fields. The gen
form of an RST mixture is specified by Eq.~2.21! below.
2-2
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MIXING GROUP FOR RELATIVISTIC TWO-PARTICLE . . . PHYSICAL REVIEW A 63 022112
The next step must now refer to the emergence of a
tain matter dichotomy which arises in the convention
theory as a consequence of the Dirac-Heisenberg~anti! sym-
metrization postulate@5,6#. Such a dichotomy exists in RS
in a very natural way~and thus is of far less postulativ
character as in the conventional theory!, namely, the RNE
~2.4! as the basic matter equation divides the density c
figuration spaceautomaticallyinto two subsets: positive an
negative mixtures~Fig. 1!, with the pure states as the sep
rating limit for both mixture configurations. Just as the sy
metric and antisymmetric statesC6 ~1.8! of the conven-
tional theory induce a certain tendency of the particles
come close together@C1(x,x)Þ0# or to recede from one
another@C2(x,x)50#, the RST amplitude fields of positiv
and negative mixtures exhibit the effects of fusion and se
ration ~Fig. 3!.

C. Mixture degeneracy

However, a difference of both theories exists with resp
to the kinematical generation of the matter dichotom
whereas in the conventional theory the~anti!symmetrization
procedure@leading from the simple productC~1,2! ~1.1! to
C6(1,2) ~1.8!# is a discrete operation, the correspondi
transition from the RST pure states~1.2! to the RST mixtures
is a continuous set of operations which additionally owns
properties of constituting a group~mixing group!. More con-

FIG. 1. Mixtures and pure states. The relativistic von Neuma
equation~2.4! subdivides the density configuration space into th
subsets: the pure states occupy the Fierz cone (s* 50), positive
mixtures (s* 51) are geometrically represented by the two-par
hyperboloid and the negative mixtures (s* 521) by the one-
parted hyperboloid. The mixtures approach the pure states fz
→`. The general RST dynamics forbids a change of the mixt
type, see Eq.~2.33!. The positive~negative! mixtures may be con-
sidered as the RST counterparts of the symmetric and a
symmetric states of the conventional quantum theory.
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cretely, for a general two-particle mixture there exist tw
amplitude fieldsLa (a51,2); but it isonly for the degener-
ate case (detI50) that they can be used to construct a tw
particle RST wave functionC ~1.2! as the unification of two
one-particle wave functionsca (a51,2), see Eq.~2.53! be-
low. However, for a true RST mixture (detIÞ0) the two
amplitude fieldsLa do not integrate to two one-particle wav
functionsca ; this is the RST analog of the fact that a co
ventional two-particle stateC1,2 ~1.3! cannot in general be
specified in terms of two one-particle wave functionsca .
Nevertheless the two amplitude fieldsLa provide us with a
common parametrization of both mixtures and pure sta
which thus can be continuously connected by a mixing tra
formation of the amplitude pair (L1 ,L2), see Eq.~3.23! be-
low.

Clearly, the properties of the mixing group are crucial f
both the effects of fusion and separation and also for
existence of the mixture degeneracy. In contrast to the c
ventional theory, where the tendency of fermions to rece
from one another and the tendency of bosons to conglom
ate ~Bose-Einstein condensation! cannot be explained in
terms of real, existing forces, the separating and fusing R
forces can be clearly identified in form of the mixture pote
tials ~Figs. 4, 5!. In this context, the interesting point with th
mixing group is its close relationship with the group of Lo
entz transformations SO~1,1! of a (111)-dimensional space
time, see Eq.~3.26! below. Indeed, both groups consist
quasilinear transformations, share the same orbits, and l
the light-cones invariant~Fig. 2!. However, the decisive dif-
ference lies in the specific way in which the points within t
orbits are transformed: whereas the Lorentz transformat
are of translational character, with no nontrivial fix poin
the mixing transformations are of either expansive type@Fig.
2~a!# or of contractive type@Fig. 2~b!# which explains the
fusion and separation effects~Fig. 3! brought about in the
conventional theory by the symmetrization and antisymm
trization processes~1.8!.

Perhaps the most interesting property of the mixing tra
formations refers to the fact that they do preserve the ph
cal quantities carried by the field configurations such as
scalar densitiesra , currentsj am , and mass eigenvaluesMa .
Thus the positive and negative mixtures have the same
ergy eigenvalues as the pure RST states though the c
sponding amplitude fields look very different in shape~Fig.
3! ~mixture degeneracy!. This result is the RST analog of th
conventional exchange degeneracy. The existence of suc
exact degeneracy in RST could be guessed on the bas
some earlier results:

~i! The first-order perturbation results for the energy
genvalues suggested the existence of a mixture degene
in the vicinity of the pure states~Fig. 3! of Ref. @14#. ~ii ! A
rigorous perturbative computation~based on the Lewis-
Dalgarno method! actually yielded an asymptotic mixtur
degeneracy in the vicinity of the pure states@15#; the present
mixing transformations convert now these asymptotic res
into exact ones.

The final point to be left for future clarification refers t
the breaking of the mixture degeneracy. Contrary to the c
ventional exchange degeneracy, which is broken by the
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S. RUPP AND M. SORG PHYSICAL REVIEW A63 022112
terparticle interactions@see Eq.~1.10!#, the present mixture
degeneracy isnot broken by this type of interactions. How
ever, such a breaking is expected when the exchange fi
~neglected in the present paper! are fully taken into account

II. GENERAL TWO-PARTICLE THEORY

In order to make the subsequent elaborations sufficie
self-contained, it seems adequate to first display the m

FIG. 2. Expansive and contractive mixing transformation. F
sion and separation of amplitudes. The group of mixing transfor
tions @L# ~3.22! divides into the expansive@l* .1, ~a!# and con-
tractive @l* ,1, ~b!# semigroups. The invariant set of points
constituted by the light cones (L1

25L2
2) and by the axes~L1[0 or

L2[0!. Both invariant sets are approached by the transform
points: the light cones for an expansive transformation@leading to
amplitude fusion, see Fig. 3~b! below# and the axes for a contractiv
transformation@leading to amplitude separation, see Fig. 3~c! be-
low#. But the orbits as a whole are the same for@L# ~3.23! as for the
Lorentz group SO~1,1! ~3.26!.
02211
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important features of RST in a concise form. For the sake
generality, we want to demonstrate the theory’s capability
including also the gravitational interactions. Thus all the
teraction forces are incorporated into the theory via the g
eralized equivalence principle~i.e., minimal coupling!. This
means that we work over a pseudo-Riemannian space-
with the coordinate-covariant derivative¹ referring to the
Levi-Civita connectionG of the Riemannian metricg in the
tangent bundle; the gauge-plus coordinate-covariant der

-
-

d

FIG. 3. Expansive and contractive mixing transformation. F
sion and separation of amplitudes. The mixing transformations@L#
~3.22! deform the original~dimensionless! amplitudes(0)La ~3.33!
~a!, in such a way that for the expansive case (l* .1) the ampli-
tudes are adopting the same shape~up to sign!: fusion (L15L2) or
antifusion (L152L2), ~b!; whereas the contractive case (l* ,1)
lets the amplitudes recede from one another: separation~c!.
2-4
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MIXING GROUP FOR RELATIVISTIC TWO-PARTICLE . . . PHYSICAL REVIEW A 63 022112
tive is denoted byD, and] is as usual the ordinary derivativ
to be applied to gauge-plus coordinate-invariant objects.

A. Matter dynamics

The basic RST objects are the HamiltonianHm , the in-
tensity matrixI which is taken to be Hermitian (I5Ī), fur-
thermore the gauge potentialAm(52Ām) and its field
strengthFmn(52F̄mn):

Fmn5¹mAn2¹nAm1@Am ,An#. ~2.1!

These objects are bound together by the RST dynam
namely, the integrability condition for the HamiltonianHm

DmHn2DnHm1
i

\c
@Hm ,Hn#5 i\cFmn ,

~2.2!
~DmHn7¹mHn1@Am ,Hn#!,

the conservation equation

DmHm2
i

\c
HmHm52 i\cS Mc

\ D 2

, ~2.3!

and finally the relativistic von Neumann equation~RNE! for
the intensity matrixI

DmI5
i

\c
@I H̄m2HmI#. ~2.4!

Here the mass operatorM is taken to be covariantly constan

DmM[0, ~2.5!

especially for the present situation of identical particles
simply takeM to be of the self-suggesting form

M5M•1, ~2.6!

whereM is the invariant rest mass of the particles. For s
cial matter distributions~the pure states!, the intensity matrix
I obeys the Fierz identity@8#

I22I tr I50 ~2.7!

and thus can be written as the tensor product of some w
function C

I⇒C ^ C̄. ~2.8!

The wave functionC then obeys the relativistic Schro¨dinger
equation~RSE!

i\cDmC5HmC,
~2.9!

~DmC7]mC1AmC!

and also the Klein-Gordon equation~KGE!

DmDmC1S Mc

\ D 2

C50 ~2.10!
02211
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which can easily be deduced from the RSE~2.9! by means of
the conservation equation~2.3!. Thus the HamiltonianHm
acquires the status of a hidden variable from the point
view of the Klein-Gordon theory. However if the intensit
matrix I does not obey the Fierz condition~2.7!, one has to
deal with a~RST! mixture in place of a pure state.

B. Gauge forces

The field strengthFmn is generated by the currentJm
according to the~generalized! Maxwell equations

DmFmn54pa* Jn ~2.11!

where a* is the electromagnetic coupling constant (a*
5e2/\c). This arrangement implies that the currentJm is
sourceless

DmJm[0. ~2.12!

Thus the final problem for the construction of a matter the
is to find the right form of the currentJm . In RST, this
problem is solved by decomposing first the gauge obje
with respect to the generatorsta(52 t̄a) of the gauge group
as usual

Am5Aamta, ~2.13a!

Fmn5Famnta, ~2.13b!

Jm5 j amta, ~2.13c!

and then constructing the currentsj am by means of certain
velocity operatorsvam(5 v̄am) in the following way:

j am5tr~I vam!. ~2.14!

The source equation~2.12! reads now in component form

¹m j am[0 ~2.15!

and the right choice of the velocity operators is given
terms of the HamiltonianHm as

vam5
i

2Mc2 ~H̄mta1taHm!. ~2.16!

One can show@9# that this choice closes the dynamical sy
tem and thus provides us with the possibility of normalizi
the currentsj am to unity (z15z251):

za5E
~S!

j amdSm, ~2.17!

where the integral runs over some three-dimensional hy
surface~S!.

C. Reference frames

Both for practical computations and a deeper understa
ing of RST, it is convenient to select an adequate opera
basis for the decomposition of the operator-valued obje
Here the first possibility refers to the single-particle ba
2-5
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~SPB! which for the case of two particles (a,bu51,2) con-
sists of two projectorsPa(5P̄a)

PaPb5dabPa , ~2.18a!

P11P251 ~2.18b!

and of two permutatorsPa(5P̄a) such that

$Pa ,Pb%5Pa , ~2.19a!

@P1 ,Pa#52@P2 ,Pa#5 i ea
bPb, ~2.19b!

$Pa ,Pb%52dab•1, ~2.19c!

@Pa ,Pb#52i eabQ, ~2.19d!

~Q7P12P2!. ~2.19e!

Evidently, the generatorsta of the two-particle gauge grou
U~1!3U~1! are then given by

ta52 iPa . ~2.20!

An alternative choice of frame refers to the extende
particle basis~EPB! which is still based upon the two pe
mutatorsPa ~2.19! but relies upon the operators1 ~2.18b!
andQ ~2.19e! in place of the projectorsPa ~2.18!. Thus, any
operator-valued object can be decomposed either in the
or in the EPB formalism, e.g., for the intensity matrixI

I5H raPa1 1
2 saPa ~SPB!,

1
2 ~r•11qQ1saPa! ~EPB!.

~2.21!

Obviously the single-particle densitiesra (a51,2) are re-
lated to their EPB counterpartsr ~total density! andq ~inter-
nal density! via

r5r11r2 , ~2.22a!

q5r12r2 . ~2.22b!

Two further possibilities for the choice of a reference s
tem arise with the emergence of the overlap densitiessa (a
51,2) in connection with the two former reference syste
~2.21!. More precisely, one may choose also the rotating p

mutatorsP̂,P̃:

P̂7 ŝaPa, ~2.23a!

P̃7eabŝaPb , ~2.23b!

S ŝa7
sa

s
; s7AsasaD ~2.23c!

in place of the original permutatorsPa ~2.19!. Clearly the

new permutatorsP̂,P̃ may now be combined into a com
plete basis@rotating basis~RTB!# either together with the
02211
-
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-

s
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projectorsPa ~2.18! or with their combinations1, Q. Thus
the RTB form of the intensity matrix reads

I5 1
2 ~r•11qQ1sP̂!. ~2.24!

Actually the RTB formalism turns out to be the most co
venient one for our subsequent discussions. To give an
ample, consider the HamiltonianHm which we first split up
into its Hermitian partKm(5K̄m) ~kinetic field! and anti-
Hermitian partiLm ~localization fieldLm5L̄m! as follows:

Hm5\c~Km1 iLm!. ~2.25!

The RTB decomposition of these objects then reads

Km5KamPa1 ~ i !QmP̂1 ~' !QmP̃, ~2.26a!

Lm5LamPa1 ~ i !NmP̂1 ~' !NmP̃. ~2.26b!

Similarly, the RTB form of the currentsj am ~2.14! is found
as

j 1m5
\

Mc
~r1K1m1 1

2 s~ i !Qm1 1
2 s~' !Nm!, ~2.27a!

j 2m5
\

Mc
~r2K2m1 1

2 s~ i !Qm2 1
2 s~' !Nm!. ~2.27b!

D. Density dynamics

The general matter dynamics~2.2!–~2.4! must now be
specialized to the present two-particle situation. First c
sider the integrability condition~2.2! which yields for both
localization componentsLam of the HamiltonianHm ~2.25!,
~2.26! the following curl relations@10#:

¹m~L1n1L2n!2¹n~L1m1L2m!50. ~2.28!

Thus the sum of both localization vectorsLam is revealed to
be a gradient field

Lm7L1m1L2m5
]mL2

L2 52
]mL

L
. ~2.29!

This new gradient fieldL(x) ~amplitude field! plays an im-
portant part when considering now the density dynam
which is given in abstract form by the RNE~2.4!.

Indeed the latter equation is nothing else than a dynam
system for the densitiesr,q,s as the RTB components of th
intensity matrixI ~2.24!. This density dynamics is most ef
fectively discussed in terms of the renormalization fact
ZT ,ZR ,ZO which are introduced now through the followin
definitions:

r5ZTL2, ~2.30a!

q5ZRL2, ~2.30b!

s5ZOL2. ~2.30c!
2-6
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The meaning of this construction of renormalization va
ables is as usual, namely, that the physical densitiesr,q,s as
the true observables of the theory remain invariant with
spect to a renormalization transformation of the~unobserv-
able! auxiliary variablesZT ,ZR ,ZO ,L which, however, are
better suited to specify the dynamical equations@10#. Actu-
ally, the RNE~2.4! is transcribed to the renormalization fa
tors as follows:

]mZT5ZRl m12ZO
~ i !Nm , ~2.31a!

]mZR5ZTl m22ZO
~' !Qm , ~2.31b!

]mZO52~ZT
~ i !Nm1ZR

~' !Qm!. ~2.31c!

Here we have introduced the EPB variablel m in a similar
way as was done forLm ~2.29!, i.e.,

l m7L1m2L2m . ~2.32!

Now the crucial point with the renormalization dynami
is that it admits a first integral in the form@10#

ZT
22~ZR

21ZO
2 !5s* , ~2.33!

where the integration constants* ~mixture index! can be
taken~without loss of generality! as 0,61. Putting

ZII7AZR
21ZO

2 ~2.34!

the constraint~2.33! reads

ZT
22ZII

25s* ~2.35!

and thus it is suggestive to parametrize the three renorm
ization factors by only two variables, the mixture variablez
and the overlap anglejo , in the following way:

ZR5ZII~z!cosjo , ~2.36a!

ZO5ZII~z!sinjo . ~2.36b!

The pure states have mixture indexs* 50 and therefore oc-
cupy the Fierz cone in density configuration space~Fig. 1!
being specified by

ZT5ZII5
1
2 ez,

~2.37!
~s* 50!.

Similarly the positive mixtures (s* 511) are geometrically
characterized by the two-parted hyperboloid

ZT56coshz, ~2.38a!

ZII5sinhz, ~2.38b!

~s* 511!,

and the negative mixtures by the one-parted hyperboloid

ZT5sinhz, ~2.39a!
02211
-

-

l-

ZII5coshz, ~2.39b!

~s* 521!.

Clearly, for z→` both mixtures~2.38!,~2.39! approach the
pure states~2.37!, or in geometric terms, the hyperboloid
come close to the Fierz cone~Fig. 1!.

The field equations for the new variablesz and jo are
easily deduced from the original renormalization dynam
~2.31! as

]mz5hm , ~2.40a!

]mjo52S ~' !Qm1
ZT

ZII
gmD , ~2.40b!

where the vector fieldshm and gm stand for certain linear
combinations of the localization componentsl m ~2.32! and
(i)Nm ~2.26b!:

hm52~ i !Nm sinjo1 l m cosjo , ~2.41a!

gm52~ i !Nm cosjo2 l m sinjo . ~2.41b!

E. Curl relations

The present parametrizations may now be used in orde
conveniently transcribe the abstract Hamiltonian dynam
~2.2!,~2.3! to the equations of motion for the remaining com
ponent fields. First consider the integrability condition~2.2!
which yields for the kinetic fieldsKam ~2.26a! @10#

¹mK1n2¹nK1m5F1mn1Gmn , ~2.42a!

¹mK2n2¹nK2m5F2mn2Gmn , ~2.42b!

where the exchange field strengthGmn is composed of the
former exchange fields(i)Nm , (')Nm , (i)Qm , (')Qm in the
following way:

Gmn52~ ~ i !Qm
~' !Qn2 ~ i !Qn

~' !Qm2 ~ i !Nm
~' !Nn

1 ~ i !Nn
~' !Nm!. ~2.43!

Here it is easy to prove that the two-formGmn obeys the
identity

¹mGnl1¹nGlm1¹lGmn[0 ~2.44!

and thus can be generated by a~gauge invariant! exchange
vector potentialGm

Gmn5¹mGn2¹nGm . ~2.45!

Furthermore such an exchange potential can easily be fo
as

Gm5
ZR

ZO

~ i !Qm2
ZT

ZO

~' !Nm . ~2.46!

In order to verify that the present proposition~2.46! actu-
ally is a possible solution of the curl relation~2.45! one must
2-7
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know also the curl relations for the other exchange fie
which, however, are easily deduced from the integrabi
condition ~2.2!:

¹m
~ i !Qn2¹n

~ i !Qm5 l m
~' !Nn2 l n

~' !Nm

12~ ~' !QmGn2 ~' !QnGm!,

~2.47a!

¹m
~' !Qn2¹n

~' !Qm52 l m
~ i !Nn1 l n

~ i !Nm

22~ ~ i !QmGn2 ~ i !QnGm!,

~2.47b!

¹m
~ i !Nn2¹n

~ i !Nm52 l m
~' !Qn1 l n

~' !Qm

12~ ~' !NmGn2 ~' !NnGm!,

~2.47c!

¹m
~' !Nn2¹n

~' !Nm5 l m
~ i !Qn2 l n

~ i !Qm

22~ ~ i !NmGn2 ~ i !NnGm!.

~2.47d!

Clearly in place of the fieldsl m , (i)Nm one can also work
with the new vectorsgm ,hm ~2.41! whose curl relations are

¹mhn2¹nhm50 ~2.48a!

¹mgn2¹ngm5
ZT

ZII
~hmgn2hngm!

14$~' !Nm@~cosjo!Gn1~sinjo!~ i !Qn#

2 ~' !Nn@~cosj0!Gm1~sinjo!~ i !Qm#%.

~2.48b!

Here, the first curl relation~2.48a! is trivial because the vec
tor hm has already been found to be a gradient field, see
~2.40a!.

F. Source equations

Whereas the meaning of the curl relations mainly is
kinematical nature, namely, to guarantee the~local! existence
of solutions, the proper field equations are specified by
conservation equation~2.3!. Here the most important one
are the wave equations~amplitude equations! for the two
single-particle amplitude fieldsLa(x) (a51,2) which are
defined as follows:

L17S cos
jo

2 DAZIIL[S cos
jo

2 D 8L, ~2.49a!

L27S sin
j0

2 DAZIIL[S sin
jo

2 D 8L, ~2.49b!

where L(x) is the amplitude field introduced through E
~2.29!. For the sake of convenience one may refer also to
modified amplitude field8L5AZIIL in place of the original
02211
s
y

q.

f

e

e

L. Now, when the conservation equation~2.3! is transcribed
to the amplitudesLa ~2.49!, there arise wave equations of th
following form ~amplitude equations!:

hL11L1H S Mc

\ D 2

2K1mK1
m1Xo1W1J 5X1L2 ,

~2.50a!

hL21L2H S Mc

\ D 2

2K2mK2
m1X01W2J 5X2L1 .

~2.50b!

If both the mixture potentialsWa and the ~scalar! ex-
change potentialsX0 and Xa (a51,2) ~to be explained be-
low! would vanish:Wa5Xa5X0[0, then we would be left
with two uncoupled wave equations (a51,2)

hLa1LaH S Mc

\ D 2

2KamKa
mJ 50. ~2.51!

These are equivalent to the two conventional Klein-Gord
equations

DmDmca1S Mc

\ D 2

ca50,

~2.52!
~Dmca7]mca2 iAamca!,

where theC1-valued single-particle wave functionsca are
built up by the amplitude fieldsLa and phasesaa in the usual
way

ca5Lae2 iaa ~2.53!

with the ~gauge dependent! phasesaa being given through

aa~x!5E
x
~Kam2Aam!dxm, ~2.54!

see Refs.@19,20#. Clearly, the two Klein-Gordon equation
~2.52! are nothing else than the component version of
abstract KGE~2.10!. Thus, this system describes two ind
vidual Klein-Gordon particles which may be thought to
coupled through the ordinary gauge forces inherent in
conventional quantum theory via the electromagnetic vec
potentials Aam . These conventional gauge forces are d
scribed in RST by the kinetic fieldsKam coupling to the
electromagnetic field strengthsFamn in the usual way@apart
from the presence of the exchange field strengthsGmn in the
Maxwell equations~2.42!#.

However, the presence of the mixture potentialsWa and
exchange potentialsXa in the amplitude equations~2.50! as
well as Gm in the Maxwell equations~2.42! signals the oc-
currence of unconventional nongauge interactions among
two particles which we take as the RST counterpart of
entanglement phenomenon in the conventional theo
Clearly, the physical implications of such an RST entang
ment of both particles will strongly depend upon the natu
of the mixture and exchange potentialsWa andXa . Concern-
ing the mixture case, one finds@14,15#
2-8
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W15
s*

~2ZII !
2 H hmhm2gmgm22gmhm

L2

L1
J

2gs~K1mK1
m2K2mK2

m!, ~2.55a!

W25
s*

~2ZII !
2 H hmhm2gmgm12gmhm

L1

L2
J

1gs~K1mK1
m2K2mK2

m!, ~2.55b!

and similarly for the~scalar! exchange potentials

X05 ~' !Nm
~' !Nm2 ~ i !Qm

~ i !Qm ~2.55c!

X15
ZT

ZII
~ ~ i !QmKm1 ~' !Nm 8km!1~ ~ i !Qm 8km1 ~' !NmKm!

~2.55d!

X25
ZT

ZII
~ ~ i !QmKm1 ~' !Nm 8km!2~ ~ i !Qm 8km1 ~' !NmKm!.

~2.55e!

Here, for the representation of the mixture potentialsWa
~2.55! we have made use of the structure functiongs being
defined in terms of the renormalization factors through@14#

gs7
1

2 S ZT

ZII
21D . ~2.56!

For later purposes it is convenient to complement this b
further structure functiongw to be defined through

gw7
1

2 S ZT

ZII
11D5gs11 ~2.57!

such that both structure functions have their character
pure-state limits

lim
z→`

gs50, ~2.58a!

lim
z→`

gw51. ~2.58b!

Furthermore it is convenient also to use the EPB for
Km ,km of the SPB kinetic fieldsKam , i.e.,

Km5K1m1K2m , ~2.59a!

km5K1m2K2m , ~2.59b!

8km5km22Gm . ~2.59c!

It is important to remark that those mixture potentialsWa
~2.55a!,~2.55b! vanish (Wa⇒0) for the pure states, namely
either by directly putting the mixture index to zero@s* 50,
see Eq.~2.37!# or by letting tend the mixture variablez to
infinity @z→`⇔ZII→`, see Eqs.~2.38!,~2.39!#. Thus the
pure states may also be reached dynamically as the
02211
a

ic
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configuration of the mixtures, namely, when the dynam
guides the mixture variablez asymptotically to its limit value
z5`.

In order to close the dynamical system, one must spe
the dynamical equations of all the other fields emerging
the amplitude equations~2.50!. First consider the case of th
mixture variablez whose field equation is obtained by com
bining the source equations of the exchange fieldsl m and
(i)Nm

¹ml m1Lml m2Kmkm50, ~2.60a!

¹m~ i !Nm2 ~' !Nm 8km1 ~ i !NmLm2 ~ i !QmKm50, ~2.60b!

into the source equation (¹mhm[hz) for the gradient field
hm ~2.40a!:

hz1 8Lm]mz2
ZT

ZII
$]mz]mz1gmgm%5

L1
22L2

2

L1
21L2

2 ~Kmkm!

12~' !Qmgm14
L1L2

L1
21L2

2 ~ ~ i !QmKm1 ~' !Nm 8km!. ~2.61!

Here the modified localization vector8Lm is related to the
modified amplitude field8L(x) ~2.49! just in the same way
as for the corresponding unmodified objects~2.29!, i.e.,

8Lm52
]m8 L

8L
. ~2.62!

In a similar way, one finds the source equation for the vec
field gm as

¹mgm18Lmgm12
L1L2

L1
21L2

2 ~Kmkm!522~' !Qmhm

12
L1

22L2
2

L1
21L2

2 ~ ~' !Nm8kmkm1 ~ i !QmKm!. ~2.63!

Next, one computes the source equations for the remain
exchange fields(')Nm , (')Qm , and (i)Qm as @10#

¹m~' !Qm1 ~ i !Qm 8km1 ~' !QmLm1 ~' !NmKm50 ~2.64a!

¹m~ i !Qm2 ~' !Qm 8km1 ~ i !QmLm1 ~ i !NmKm50 ~2.64b!

¹m~' !Nm1 ~ i !Nm 8km1 ~' !NmLm2 ~' !QmKm50. ~2.64c!

G. Conservation laws

Finally, the source equations for the kinetic fields must
specified. The significance of these equations becomes
mediately obvious from the conservation laws for the c
rents j am ~2.15! which are essentially built up by the kineti
fieldsKam , see Eq.~2.27!; especially this applies to the situ
ation of vanishing exchange fields ((i)Qm5 (')Qm5 (i)Nm

5 (')Nm[0), a situation to be considered subsequently
great detail. The desired source equations are deduced a
from the conservation equation~2.3! and look as follows
(a51,2):
2-9
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¹mKam12La
mKam522~ ~ i !Qm

~ i !Nm1 ~' !Qm
~' !Nm!. ~2.65!

Here it is now an instructive exercise to explicitly verify th
conservation laws~2.15! by computing the sources of bot
currentsj am with the help of all the preceding source equ
tions.

Thus our dynamical two-particle system is now clos
and evidently comprises the following dynamical variable

~i! Two amplitude fieldsLa obeying the amplitude equa
tions ~2.50!.

~ii ! Two kinetic fieldsKam obeying the Maxwell equa
tions ~2.42! and the source relations~2.65!.

~iii ! The mixture variablez to be determined from its
wave equation~2.61!.

~iv! The vector fieldgm whose source is determined b
Eq. ~2.63! and its curl by Eq.~2.48b!.

~v! The exchange fields(i)Qm , (')Qn , (i)Nm , and (')Nm
obeying the curl relations~2.47! and the source equation
~2.64! together with Eq.~2.60!.

III. MIXTURE DEGENERACY

The preceding list of dynamical variables demonstra
that the most general situation comprehends two dist
phenomena:~i! the mixture effect and~ii ! the action of the
exchange forces lying beyond the gauge interactions. Th
fore it seems advisable to consider both effects separa
i.e., we study now the mixture effect alone by putting all t
exchange fields to zero:(i)Qm5 (')Qm5 (i)Nm5 (')Nm[0.
Furthermore we first neglect also the gauge interacti
among the two particles and retain exclusively some exte
force ~ex!Fmn in order to either hold both particles togeth
~bound solutions, e.g., electrons around a nucleus! or to let
them freely move over some background force field~un-
bound solutions!. Thus we will be able to study the mixtur
effect in its pure form and we shall find here the pheno
enon of~continuous! mixture degeneracy as the RST cou
terpart of the~discrete! exchange degeneracy in convention
quantum theory.

A. Mixture dynamics

For cutting down the general two-particle dynamics to
exclusive mixture case~i.e., for vanishing exchange field
and interparticle interactions! one first observes that the ex
change field strengthGmn ~2.43! vanishes and therefore th
modified Maxwell equations~2.42! adopt their ordinary form
(a51,2):

¹mKan2¹nKam5 ~ex!Fmn . ~3.1!

Here the formal solution in terms of~gauge dependent! sca-
lar fieldsaa(x) and external gauge potentials~ex!Am reads

Kam5]maa1 ~ex!Am . ~3.2!

Observe that a gauge transformation
02211
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~ex!Am8 5 ~ex!Am2]ma~x!, ~3.3a!

aa8~x!5aa~x!1a~x!. ~3.3b!

leaves the kinetic fieldsKam ~as some of the Hamiltonian
component fields! invariant. The reason is that the extern
gauge group~3.3! is abelian and the HamiltonianHm as well
as its Hermitian partKm ~2.26a! transform homogeneousl
under a change of gauge@10#.

Next, observe that our assumption of vanishing excha
fields gives rise to introduce a new scalar field~x, say! which
generates the vector fieldgm ~2.41b! in a way similar to the
ray its companionhm ~2.41a! is generated by the mixture
variablez, see Eq.~2.40a!. This claim is immediately veri-
fied by reconsidering the general curl relation forgm ~2.48b!
which now simplifies to

¹mgn2¹ngm5
ZT

ZII
~hmgn2hngm!. ~3.4!

However, this truncated form admits the formal solution f
gm

gm5ZII]mx ~3.5!

which proves our claim. Once the scalarx is at hand, one
would like to transcribe the source equation forgm ~2.63!
into a wave equation for the new scalar fieldx:

hx18Lm]mx1
ZT

ZII
]mz]mx12

L1L2

L1
21L2

2

Kmkm

ZII
50. ~3.6!

With these presumptions, the wave equation for the mixt
variablez ~2.61! adopts a similar form, namely,

hz18Lm]mz2
ZT

ZII

3F ]mz]mz1ZII
2]mx]mx2

L1
22L2

2

L1
21L2

2 ~Kmkm!G50. ~3.7!

Now a pleasant property of the mixture configurations co
sists in the fact that both wave equations~3.6!,~3.7! are not
needed at all! The reason is that both scalarsx andz can be
expressed by the amplitudesL1 and L2 so that the wave
equations forx ~3.6! and z ~3.7! are automatically satisfied
whenever the corresponding amplitude equations are va
see~2.50!

hL11L1H S Mc

\ D 2

2K1mK1
m1W1J 50, ~3.8a!

hL21L2H S Mc

\ D 2

2K2mK2
m1W2J 50. ~3.8b!

The origin of this nice result traces back to the renormali
tion dynamics~2.31c! which requires the renormalizatio
factor ZO to be a constant over space-time
2-10
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ZO5const ~7C* !. ~3.9!

However, whenZO is constant, the overlap anglej0 is linked
rigidly to the mixture variablez, see Eq.~2.36b!:

ZII~z!5
C*

usinjou
5C* UL1

21L2
2

2L1L2
U. ~3.10!

Thus the mixture variablez is uniquely determined by the
amplitudesLa and the mixture indexC* . On the other hand
the vanishing of both exchange fields(i)Nm and (')Qm yields
the following system for the scalarsz andx, see Eqs.~2.40b!
and ~2.41!:

~ i !Nm[ 1
2 @~~cosjo!ZII]mx1~sinjo!]mz!#50, ~3.11a!

2~' !Qm[]mjo2ZT]mx50, ~3.11b!

the solution of which is easily found as

cosjo5
L1

22L2
2

L1
21L2

2 52H AC
*
2 11 sin~x2x* !, s* 511

AC
*
2 21 sinh~x2x* !, s* 521

.

~3.12!

Thus, also the scalarx is determined~up to an integration
constantx* ! by the amplitude fieldsLa . As a consequence
one can do away completely with the wave equations fox
~3.6! and z ~3.7! and one can concentrate exclusively up
the amplitude equations~3.8!.

In order that these amplitude equations form a manife
covariant system, it remains to express the mixture poten
Wa ~2.55! in terms of just those amplitude fieldsLa :

W15s*
L1

223L2
2

~L1
21L2

2!

~L1]mL22L2]mL1!~L1]mL22L2]mL1!

s* ~2L1L2!21C
*
2 ~L1

21L2
2!2

2gs@K1mK1
m2K2mK2

m#, ~3.13a!

W25s*
L2

223L1
2

~L1
21L2

2!

~L1]mL22L2]mL1!~L1]mL2-L2]mL1!

s* ~2L1L2!21C
*
2 ~L1

21L2
2!

1gs@K1mK1
m2K2mK2

m#. ~3.13b!

Finally, the structure functiongs ~2.56! must also be written
exclusively in terms of the amplitude fields

gs5
1

2 SA11
4s*
C

*
2

L1
2L2

2

~L1
21L2

2!2 21D . ~3.14!

In this way the mixture dynamics is actually a closed syst
for the amplitude fields, since the kinetic fields contain on
the external potential when the electromagnetic interacti
between both particles are neglected, see Eq.~3.2!. Clearly
the mixture potentialsWa ~3.13! are highly nonlinear func-
tions of the amplitudesLa and their derivatives and therefor
it may seem absolutely hopeless to find exact solutions to
coupled amplitude system~3.8! for a given mixture param-
eterC* . However, as we shall readily show, the exact so
02211
ly
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tions are obtainable from the solutions for the pure-state li
C* →` ~2.51! by a transformation which we are now goin
to work out in detail.

B. Mixing group

So far we were mainly concerned with the amplitu
fields La but the key for finding their exact form leads u
back to the SPB densitiesra ~2.21!. Observe here that, fo
our present assumption of vanishing exchange fields, th
densities essentially build up the currentsj am ~2.27! alone,
i.e.,

j 1m⇒ \

Mc
r1K1m , ~3.15a!

j 2m⇒ \

Mc
r2K2m . ~3.15b!

However, the crucial point with the densities is now the
relationship with the amplitude fieldsLa @14# which looks as
follows:

r15tr~IP1!5gwL1
21gsL2

2, ~3.16a!

r25tr~IP2!5gwL2
21gsL1

2, ~3.16b!

From the pure-state limit~2.58! of the structure functionsgs
andgw it is concluded that both objects coincide in that lim
i.e.,ra→ (0)La

2 (a51,2) forC* →`. Here the pure-state am
plitudes as solutions of the ordinary decoupled Klein-Gord
system~2.51!,~2.52! have been denoted by(0)La . Since for
the present case of vanishing exchange fields, the struc
functionsgs andgw become functions of the amplitude field
alone, see Eq.~3.14!, the relationship~3.16! acquires the
status of a~highly nonlinear! transformation@R(2)# of the
amplitudes

@R~2!#:~L1 ,L2!→~r1 ,r2!, ~3.17!

i.e., in detail

r15 ~2!R1~L1 ,L2!

7gw~L1 ,L2!L1
21gs~L1 ,L2!L2

2, ~3.18a!

r25 ~2!R2~L1 ,L2!

7gw~L1 ,L2!L2
21gs~L1 ,L2!L1

2. ~3.18b!

Defining here two new amplitude fields~up to sign! as

~L18!27r1 , ~3.19a!

~L28!27r2 , ~3.19b!

one can rewrite the density transformation@R(2)# ~3.17! as
an amplitude transformation@R#

@R#:~L1 ,L2!→~L18 ,L28!, ~3.20!
2-11
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i.e.,

L185R1~L1 ,L2!7AgwL1
21gsL2

2, ~3.21a!

L285R2~L1 ,L2!5AgwL2
21gsL1

2. ~3.21b!

@By taking the roots, the signs of the new amplitudesLa8 have
to be chosen in such a way thatLa8 remain continuously
differentiable over space-time if the original amplitud
La(x) are of the corresponding class; observe that the s
tions La(x) of the quasilinear Klein-Gordon systems~3.8!
are determined only up to sign.#

The transformations@R# ~3.20! have an interesting prop
erty, namely, the effects of fusion@r1(x)'r2(x)# for posi-
tive mixtures (s* 511) and separation„r1(x)r2(x)'0…
for negative mixtures (s* 521). This phenomenon wa
studied extensively in a preceding paper@14# but will be
considered here for the inverse transformations@L#
5@R21#, i.e., we put

@L#:~L1 ,L2!→~8L1 ,8L2!, ~3.22!

or in detail

8L15L1~L1 ,L2!

7A 1
2 ~L1

22L2
2!1 1

2 A~L1
22L2

2!21l* ~2L1L2!2,

~3.23a!

8L25L2~L1 ,L2!

7A2 1
2 ~L1

22L2
2!1 1

2 A~L1
22L2

2!21l* ~2L1L2!2.

~3.23b!

The most striking feature of the set of transformations~3.22!
is here that they form a group with the group parameterl*

l* 7
1

11~s* /C
*
2 !

~3.24!

obeying the simple composition rule

~3!l* 5 ~1!l*
~2!l* ~3.25!

for two successive transformations parametrized by(1)l*
and (2)l* . Thus the group elementL21 due tol

*
21 is the

inverse of that elementL which is parametrized byl* ; and
the identity is given byl* 51(⇔C* 5`).

The mixing group@L# ~3.22! has some striking similari-
ties with the Lorentz group SO~1,1! in 111 dimensions

8L15coshb* L11sinhb* L2 ~3.26a!

8L25sinhb* L11coshb* L2 . ~3.26b!

Indeed, in both cases the light cones (L156L2) remain in-
variant as a whole and some pointL15L2(7Lc) on a cone is
shifted within the cone according to
02211
u-

8Lc5H ~4l* !1/4Lc for @L# ~3.23!

eb
* Lc , for SO~1,1! ~3.26!.

~3.27!

Furthermore, the orbit of some point (L1 ,L2) is the same for
both group actions and is given by the hyperbola

8L1
228L2

25const~5L1
22L2

2!, ~3.28!

see Fig. 2. But clearly, points are shifted within the orbits
a different way for both transformation groups. For instan
the ‘‘space’’ and ‘‘time’’ axis ~L1[0 or L2[0! are trans-
formed to a new axis system for the Lorentz group SO~1,1!
in such a way that the well-known effects of Lorentz co
traction and time dilatation will arise. In contrast to this, t
points on the axes are kept fixed by a transformation of
mixing group@L#, i.e.,

L1~L1,0!5L1 , L2~L1,0!50, ~3.29a!

L1~0,L2!50, L2~0,L2!5L2 . ~3.29b!

Let us remark also that the product of the amplitudes tra
forms under the mixing group in the following way:

~8L1 8L2!25l* ~L1L2!2 ~3.30!

which has no counterpart for the Lorentz group but preser
here the orthogonality of the amplitude fields@see Eq.~3.35!
below#. Thus the important similarities of both group
mainly refer to the vicinity of the light cones. This becom
especially clear when considering the pullback metricgab of
the Lorentz metrichab5diag@1,21#

gab5
]8Lc

]La

]8Ld

]Lb
hcd . ~3.31!

Indeed one finds here for the mixing group by direct comp
tation

g11512~l* 21!
L2

2~L1
22L2

2!

~8L1
218L2

2!2 , ~3.32a!

g225212~l* 21!
L1

2~L1
22L2

2!

~8L1
218L2

2!2 , ~3.32b!

g215g125~l* 21!
L1L2~L1

22L2
2!

~8L1
218L2

2!2 . ~3.32c!

Thus in the vicinity of the light cones (L1
25L2

2) the pullback
metric gab coincides with the Lorentz metrichab for any
value of the group parameterl* .

It is just this behavior of the mixing group around th
light cones and the axes which is responsible for the effe
2-12
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of fusion and separation. Indeed following the orbit of som
point (L1 ,L2) during a group transformation with increasin
group parameter@expansive transformation:l* .1, Fig.
2~a!#, the light cone (L1

25L2
2) is approached by the orb

more and more and this means nothing else than that
values of both amplitude fieldsLa(x) become identical~up
to sign!: this is the effect of amplitude fusion@L1(x)
'L2(x)#, Fig. 3~b!. Since these expansive transformatio
havel* .1 which meanss* 521, see Eq.~3.24!, the fu-
sion effect for the amplitudes does occur for the nega
mixtures only. The opposite effect of amplitude separat
@Fig. 3~c!# occurs for the positive mixtures (s* 511) be-
cause here the mixing transformations act in a contrac
manner@Fig. 2~b!# due tol* ,1. This contractive group ac
tion lets the smaller one of both amplitudesLa decay to zero
but leaves the larger amplitude with a finite value. Thus
both amplitudesLa are considered as fields over some reg
of space-time they must become separated in the sense
they are forming space-time cells which are carrying o
one of the two amplitudes with the other one having deca
to zero. The geometric shape of these cells is determine
the surfaces carrying zero values of the amplitudes, e.g.
the two-spheres in three-dimensional space when the
configuration is spherically symmetric.

As an example for such a static and spherically symme
two-particle configuration consider the nonrelativistic grou
((0)L1) and first excited state ((0)L2) of the one-particle Cou-
lomb force problem@14# which together form a pure two
particle state in RST:

~0!L1~y!5e2y, ~3.33a!

~0!L2~y!5
1

A8
~12y/2!e2y/2. ~3.33b!

Here the radial coordinater (5Auxixi u) has been rescale
into the dimensionless variabley

y5zex

r

aB
~3.34!

by means of the Bohr radiusaB5\2/Me2 and the numberzex
of nuclear charge units. Both one-particle states are ortho
mal in the following sense:

E
0

`

dyy2~0!La~y!~0!Lb~y!5 1
4 dab

~a,bu51,2!. ~3.35!

Now one takes the pure two-particle state~3.33! as the start-
ing point for a mixing transformation~3.23! and looks for the
resulting amplitudesLa(y) (a51,2)

La~y!5La„
~0!L1~y!,~0!L2~y!…, ~3.36!

see Fig. 3. Obviously for negative mixtures (s* 521⇔l*
.1) the amplitudesLa(y) are~anti! fusing into one anothe
@L1

2(x)'L2
2(x), Fig. 3~b!# whereas for the positive mixture
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(s* 511⇔l* ,1) the amplitudes are separating@Fig.
3~c!#. Thus the amplitudesLa do react in the opposite sens
when compared with the charge densitiesra ~3.18! which are
fusing for the positive mixtures and separating for the ne
tive mixtures @14#. Clearly the reason for this is that th
densitiesra are connected with the inverse mixing transfo
mations@R# ~3.20! in place of the present@L# ~3.22! for the
amplitudesLa .

C. Exact solutions

With all these preparations, it has now become easy
find exact solutionsLa(x) for the coupled amplitude equa
tions ~3.8! despite the fact that the mixture potentialsWa @as
given by Eq.~3.13!# are highly nonlinear functions of the
desired amplitudesLa . The reason is that the solutions of th
intricate amplitude system~3.8! are connected with the solu
tions of the simple uncoupled Klein-Gordon system~2.51!
just by an appropriate mixing transformation@L# ~3.22!. On
the other hand, exact solutions@ (0)La(x), say# of the simple
one-particle Klein-Gordon equations~2.51! are known for
many situations of physical interest~for the exact solutions
of the static relativistic Coulomb force problem see, e.
Ref. @10#!. Therefore the corresponding solutionsLa(x) of
the full amplitude equations~3.8! are also known exactly. In
this sense, the amplitude fieldsLa pictured in Fig. 3 represen
the exact two-particle solutions of the full amplitude syste
~3.8! for that time-independent two-particle state in the Co
lomb field which refers to the ground and first excited on
particle states; and it was merely for the sake of convenie
that we restricted ourselves to their nonrelativistic limit for
~3.33! ~differring from the exact relativistic form only in or
der a

*
2 @10#!.

In order to verify our claim, we first have to show that th
mixing transformations@L# ~3.22! actually leave form-
invariant the amplitude equations~3.8! which then defines
the transformation law for the mixture potentialsWa . This
goal can be achieved by exploiting the group property of
mixing transformations. More precisely, one composes
general transformationL:La→8La by first passing over from
the original amplitudesLa to the pure-state solutions(0)La of
the simple Klein-Gordon system~2.51! which has vanishing
mixture potentials; and then one transforms these pure-s
amplitudes (0)La into the desired new amplitude
8La :La⇒ (0)La⇒8La . Obviously the desired proof is ac
complished by this composition if the final mixture pote
tials 8Wa , expressed in terms of the final amplitudes8La ,
are just of the form~3.13! being prescribed by RST. Carry
ing now through this line of arguments, we shall extensiv
benefit from thequasilinearity of the mixing transforma-
tions.

First observe that the d’Alembertian of the new amp
tudesh8La reads in terms of the old variablesLa (a51,2)

h8La5 (
b,cu51

2
]28La

]Lb]Lc
~]mLa!~]mLb!1 (

b51

2
]8La

]Lb
hLb .

~3.37!
2-13
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Thus if the old amplitudesLa obey the system~3.8!, the new
amplitudes8La must obey the following equations (dÞa):

h8La1S L1

]8La

]L1
1L2

]8La

]L2
D H S Mc

\ D 2

2KamKa
m18WaJ

5S L1

]8La

]L1
1L2

]8La

]L2
D 8Wa2 (

b51

2

Lb

]8La

]Lb
Wb

1Ld

]8La

]Ld
@K1mK1

m2K2mK2
m#

1 (
b,cu51

2
]28La

]Lb]Lc
~]mLb!~]mLc!. ~3.38!

Now in order that these new amplitudes8La obey the same
equations as the old ones~3.8!, i.e.,

h8La18LaH S Mc

\ D 2

2KamKa
m18WaJ 50, ~3.39!

one requires quasilinearity of the mixing transformationsa
51,2):

L1

]8La

]L1
1L2

]8La

]L2
58La , ~3.40!

and furthermore one lets the mixture potentialsWa transform
in the following way (dÞa):
on
it

s
th

o

02211
8La 8Wa5 (
b51

2

Lb

]8La

]Lb
Wb2Ld

]8La

]Ld
@K1mK1

m2K2mK2
m#

2 (
b,cu51

2
]28La

]Lb]Lc
~]mLb!~]mLc!. ~3.41!

Here, for our proof we imagine now that the old amp
tudesLa coincide with the pure-state amplitudes(0)La obey-
ing the ordinary Klein-Gordon system~2.51! with vanishing
mixture potentials (Wa[0) and the new amplitudes8La are
thought to be just the desired solutions of the amplitude s
tem ~3.8! (8La→La). The corresponding mixture potentia
are then obtained from Eq.~3.41! as (bÞa)

8Wa52~21!a
Lb

La

]8La

]Lb
@K1mK1

m2K2mK2
m#

2
1

8La
(

b,cu51

2
]28La

]Lb]Lc
~]mLb!~]mLc!. ~3.42!

As explained above, our proof requires now to identify t
present mixture potentialsWa ~3.42! with their RST form
~3.13!. Thus it remains for us to prove the following tw
identifications, where the first one refers to the kinetic par
the mixture potentials

L1

8L2

]8L2

]L1
5

L2

8L1

]8L1

]L2
52gs~8L1 ,8L2! ~3.43a!

and the second one to their derivative part
2
1

8La
(

b,cu51

2
]28La

]Lb]Lc
(]mLb)S ]mLc5s*

Ta

8L1
218L2

2

~8L1]m8L228L2]m8L1!~8L1]m8L228L2]m8L1!

s* ~28L18L2!21C
*
2 ~8L1

218L2
2!2 ~3.43b!
with the functionsTa5Ta(8L1 ,8L2) being given by

T158L1
2238L2

2, ~3.44a!

T258L2
2238L1

2. ~3.44b!

The desired proof for the equations~3.43!, ~3.44! strongly
relies now upon the property of quasilinearity~3.40! of the
mixing transformations. Indeed this property is the definiti
for the homogeneous functions of the first degree and
self-evident that our mixing transformations@L# ~3.22! are
just of this type@together with the Lorentz transformation
~3.26!#. But this observation leads us also immediately to
desired verification of the first requirement~3.43a!. The rea-
son is that the homogeneous functions~3.40! could be de-
fined equally well as the solutions of the following system
partial differential equations:

]8L1

]L1
5

8L1

L1
gw , ~3.45a!
is

e

f

]8L1

]L2
52

8L1

L2
gs , ~3.45b!

]8L2

]L1
52

8L2

L1
gs , ~3.45c!

]8L2

]L2
5

8L2

L2
gw . ~3.45d!

Here the functionsgw(L1 ,L2) andgs(L1 ,L2) must be homo-
geneous of degree zero

L1

]gw

]L1
1L2

]gw

]L2
50, ~3.46a!

L1

]gs

]L1
1L2

]gs

]L2
50, ~3.46b!

and must obey the constraint
2-14
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gw2gs51. ~3.47!

But clearly our structure functionsgw and gs ~2.56!,~2.57!
are just of the required type~3.45!–~3.47! and thus the first
condition ~3.43a! is satisfied almost trivially.

On the other hand, the second condition~3.43b! involves
the second-order derivatives of the homogeneous funct
8La which suggests to consider the second-order counter
of the first-order relation~3.40!:

L1
2 ]28La

~]L1!2 12L1L2

]28La

]L1]L2
1L2

2 ]28La

~]L2!2 50

~a51,2! ~3.48!

which holds quite generally for all quasilinear functions. B
this forces the second-order derivatives of the new am
tudes into the following form (a51,2):
o
e

i
l

pl

-

s
in

02211
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t
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]2 8La

~]L1!2 5SaL2
2, ~3.49a!

]2 8La

]L1]L2
52SaL1L2 , ~3.49b!

]28La

~]L2!2 5SaL1
2. ~3.49c!

For the special case of our mixing group@L# ~3.22! the func-
tions Sa(8L1 ,8L2) are found by direct computation as

Sa5~l* 21!8La

Ta

~8L1
218L2

2!3 , ~3.50!

with the functionsTa being already specified through Eq
~3.44!. However, the special shape of the second-order
rivatives~3.49! together with the present result~3.50! recasts
now the second requirement~3.43b! into the form
~L1]mL22L2]mL1!~L1]mL22L2]mL1!52
s*

l* 21

~8L1
218L2

2!2

s* ~28L18L2!21C
*
2 ~8L1

218L2
2! . . . )2 .~8L1]m8L228L2]m8L1!

3~8L1]m8L228L2]m8L1!. ~3.51!
v-
n

tial

ent

ry
ls
Fortunately this is rather a triviality since it is again the h
mogeneity of the mixing transformations which lets the d
rivative terms transform in the following pleasant way:

L1]mL22L2]mL15
1

DL
~8L1]m8L228L2]m8L1!

~3.52!

with DL being the determinant of the Jacobian

DL5detS ] 8La

]Lb
D . ~3.53!

For our special case of mixing group@L# ~3.22! one finds by
direct computation

DL5
8L18L2

L1L2

L1
21L2

2

8L1
218L2

2 , ~3.54!

which then immediately validates the remaining claim~3.51!
@observe here also the relationship between the mixture
dex s* and group parameterl* ~3.24! and the kinematica
invariant ~3.30!#.

Thus the proof is perfect and the mixing group@L# has
been actually identified as the invariance group of the am
tude system~3.8! with the invariant form of the mixing po-
tentials being given by Eq.~3.13!. The presence of the mix
ing potentials in the amplitude system~3.8! is necessary in
order to achieve the effects of~anti!fusion and separation a
pictured in Fig. 3. This becomes immediately evident with
-
-

n-

i-

the framework of the nonrelativistic limit where the relati
istic system ~3.8! in its time-independent specializatio
adopts the well-known Schro¨dinger eigenvalue form@15#

2
\2

2M
DL11~EB,11VC1V1!L150, ~3.55a!

2
\2

2M
DL21~EB,21VC1V2!L250. ~3.55b!

Here one imagines the external electromagnetic poten
~ex!Am ~3.2! to be given in form of some binding potentialVC
~e.g., Coulomb potential! confining the two particles to the
vicinity of an attractive force center~e.g., the nucleus!, fur-
thermore the mixing potentialsVa are defined simply by

Va5
\2

2M
Wa , ~3.56!

andEB,a are the binding energies. According to the pres
results, the exact solutionsLa(rW) of the coupled Schro¨dinger
system~3.55! can be obtained by first solving the ordina
Schrödinger equations with vanishing mixture potentia
(Va[0)

2
\2

2M
D~0!L11~EB,11Vc!

~0!L150, ~3.57a!

2
\2

2M
D~0!L21~EB,21Vc!

~0!L250, ~3.57b!
2-15
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which is the nonrelativistic limit of the ordinary Klein
Gordon system~2.51!,~2.52!, and then applying an appropr
ate mixing transformation of the kind described above~i.e.,
(0)La⇒La!. The resulting solutionsLa(rW) must then be sub
stituted into the mixture potentialsWa(rW) @or Va(rW),# and
this yields the appropriate mixture forces to be applied
the fusion and separation effects~Figs. 4 and 5!. Clearly it is
suggestive here to consider these latter effects as the
counterparts of the analogous effects in conventional qu
tum theory where they are brought about by~anti!symmetri-
zation of the two-particle wave functions.

D. Degeneracy

It is important to remark that up to now we did neglect t
interelectronic interactions~of electromagnetic nature!, see
Eq. ~3.1!. This, however, is not mandatory for the prese
mechanism of generation of exact solutions by means of
mixing group; quite on the contrary: even if we take in
account the electromagnetic interparticle forces, the pu
state solutions of the Klein-Gordon system~2.51! are still
connected with the corresponding solutions of the coup
amplitude system~3.8! by a mixing transformation. Surpris
ingly enough even if the interelectronic forces are taken i
account, the mass eigenvaluesMa are not changed by th

FIG. 4. Separation potentials (s* 511). For positive mixtures
(s* 511) the amplitudeseparation@see Fig. 3~c!# is achieved by
the specific shape of the mixture potentialsWa ~3.13! or @Va

~3.56!#, which act as repulsive walls confining the first amplitudeL1

to the left of the wall and the second amplitudeL2 to its right. The
amplitude field is confined to that side of the repulsive wall wh
the mixture potential becomes attractive just in front of the w
~choice of mixing parameter:C* 50.02, potentialsVa measured in
atomic energy units ofe2/2aB513.61@eV#!.
02211
r
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mixing transformations which thus turn out to be of the is
spectral type being frequently considered in soliton the
@21#.

Thus, e.g., for a static bound two-particle system,
present mixture degeneracy is not broken in the analog
way as the exchange degeneracy of the conventional q
tum theory is broken by the interparticle interactions~1.10!.
This astonishing phenomenon is due to the fact that the
netic fieldsKam remain invariant under the mixing transfo
mations, just as is the case for the currentsj am and scalar
densitiesra @otherwise the relationship~3.15! would be in-
consistent#. The mixture invariance of the densitiesra fol-
lows directly from the fact that the mixing group@L# ~3.22!
is, by its very definition, the inverse of the group@R# ~3.20!.
Therefore if the pure-state solutions(0)La of the Klein-
Gordon system~2.51! generate the densities(0)ra according
to the prescription~3.16!, then these same densities~and

e
l

FIG. 5. Fusion potentials (s* 521). For negative mixtures
(s* 521), the fusion of amplitudes comes about through the
tractive and repulsive actions of the mixture potentialsWa , which
cause the amplitudes to deform into a common shape~differing
only in sign:L1

2'L2
2!. The mixture potentialV1 for the first ampli-

tudeL1 ~a! acts similar as arepulsived function and thus generate
the corresponding salient point ofL1 @Fig. 3~b!#. The second mix-
ture potentialV2 ~b! acts as anattractive d function but does not
generate a salient point forL2 @Fig. 3~b!# because the second am
plitude L2 is zero at the point whereV2 attains its minimal value
~choice of mixture parameter:C* 51.0001!.
2-16
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therefore also the currentsj am! are generated also by th
transformed solutionsLa :ra@L1 ,L2#[ra@ (0)L1 , (0)L2#. The
only difference to the situation with neglected interpartic
forces ~3.2! is that the kinetic fields contain now also th
potential 8Aam generated by the other particle, i.e., one h
now in place of Eq.~3.2!

Kam5]maa1 ~ex!Am28Abm

~aÞb!, ~3.58!

where the single-particle potentials8Aam are generated by
the single-particle currentsj am ~3.15! in the usual way:

h8Aam54pa* j am . ~3.59!

Especially for a static bound system one introduces the m
eigenvaluesMa through specifying the gauge scalarsaa
~3.58! through

]maa5
Mac

\
t̂m , ~3.60!

~ t̂m7]mt, t̂m t̂m511!

and thus the eigenvaluesMa are seen to inherit their mixtur
invariance directly from the invariance of the kinetic fiel
under the mixing transformations. This invariance of the r
evant physical variables~such as densitiesra , currentsj am ,
eigenvaluesMa! with respect to the mixing transformation
@L# is what one may understand to be a kind of mixtu
degeneracy. Thus we arrive at the result that this degene
of the mixtures in RST survives the switching on of t
electromagnetic interparticle interactions (8Aam) which,
however, break the exchange degeneracy in conventi
quantum theory.
e

s

02211
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It seems that in RST the mixture degeneracy cannot
broken until the exchange fieldsNam ,Qam are taken into ac-
count. The reason is that the latter are able to modify
RST currents@compare the simplified currents~3.15! to their
general form~2.27!# and this may be understood as the tr
RST analog of the redistribution of probability densities
conventional quantum theory~occurring by means of sym
metrization and antisymmetrization of the two-particle wa
functions!. Such a dichotomic redistribution of the densiti
is not observable~within the framework of the conventiona
theory! as long as the interparticle interactions rema
switched off. However this dichotomy becomes observa
when the interparticle interactions are switched on~e.g., via
the observation of different frequencies of spectral lines d
to the atomicortho- andpara-states!.

Analogous results do hold also in RST: Here the mixtu
degree of freedom@as being quantified by the value of th
mixture parameterC* , or betterl* ~3.24!# will not be ob-
servable as long as the exchange interactions are swit
off. In fact, in such a situation all mixtures share the sa
single-particle densitiesra ~2.21!, current densitiesj am
~3.15!, and mass eigenvaluesMa ~3.60!, which must be con-
ceived as the observable objects also in RST. It is true,
single-particle amplitudesLa would be different for mixtures
with different mixing parameterl* , see Fig. 3, but the am
plitudesLa themselves are not counted as observable obj
in RST @recall here that the amplitude fieldL must be mul-
tiplied with an appropriate renormalization factorZ in order
to get an ‘‘observable’’ densityr,q,s ~2.30!#. However, when
the exchange fields are excited nontrivially, there no lon
exists such a nice integration constantC* for parametrizing
the continuously degenerate mixtures. But what still rema
is the dynamical separation of mixtures of the positive a
negative kind which are expected to be equipped now w
different mass eigenvaluesMa , densitiesra , and currents
j am . This then is of course an observable effect, name
the RST counterpart of the breaking of the conventio
exchange degeneracy by switching on the interparticle in
actions.
ts
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