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Mixing group for relativistic two-particle quantum states
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Within the framework of relativistic Schdinger theory(RST), the problem of bound two-particle states is
studied and compared to the analogous results of conventional quantum theory. The standard dichotomy of
symmetric and antisymmetric quantum states finds its RST analog in the form of the positive and negative
mixtures. Similarly the conventional exchange degeneracy has its RST counterpart in the form of a certain
mixture degeneracy which, however, is not broken by the interparticle interactions as in the standard quantum
theory. The corresponding group of quasilinear mixing transformations turns out to be confimucoistrast
to the discrete operations @antjsymmetrization in the conventional thedrgind is closely related to the
Lorentz group S@.,1) in two dimensions. The group properties can be exploited to generate exact solutions
for the mixture dynamics from the pure-state configurations where, however, certain physical quantities remain
invariant: scalar densities, currents, energy eigenvalues.
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I. INTRODUCTION AND SURVEY OF RESULTS but rather some kind of consistency requireméRar a sur-
vey of the research for violations of the Pauli principle see
Ref.[7].)

Though nearly a century has passed since the invention of |5 gny case, the two prerequisites of the spin-statistics
quantum theory, there still are arising certain controversiesheorem[namely, (i) the occurrence of many-particle sys-
about the right interpretation of this theory. However, despitaems in either symmetric or antisymmetric states éndn-
the persistence of some controversial viewpoints referringegrity or half-integrity of the particle spjrstand on a safe
mainly to the right understanding of the decoherence pheground. Thus, any conceivable form of quantum theory
nomenor(1,2], there is general agreement about certain feasurely must take account of these two facts which are experi-
tures of the quantum world which are believed to be cor-mentally well established. The present paper also deals with
rectly described by the conventional quantum theory. One opn€ Of these two fundamental prerequisites, namely, the mat-
these points of general agreement refers to the well-knowff" dichotomy in form of the symmetric and antisymmetric

spin-statistics theorerfia]. This theorem saysin popular states, but not within the framework of the conventional
P : y&in pop guantum theory but rather within the relativistic Saftirger

language that particles with half-integer spin are to be de- theory (RST) recently establishef8—10] (for a RST treat-
scribed by antisymmetric wave functions and therefore obeynent of Dirac particles see, e.g., Refé1,17). Especially

the Fermi-Dirac statisticsfermionsg whereas particles with e shall be concerned here with the phenomenon of mixture
integer spin occur in form of symmetric wave functions anddegeneracy as the RST counterpart of the well-known
obey the Bose-Einstein statisti¢gboson$. Obviously the exchange degeneracy in the conventional theory, see, e.g.,
crucial point with the spin-statistics theorem lies in that spe-Ref.[13].

cific way in which the particle permutation symmetry of the ~ The essential difference between the conventional theory
wave functions(or the commutation relations of the field and RST consists in the specific kinematical setting for the
operatorsis combined with the particle spin. This logic link treatment of many-particle systertia the present paper we

is nontrivial only if the notions of symmetry of the wave restrict ourselves to two-particle systefis, 19 but the gen-

functions and of particle spin are first introduced inde en_eralization to many particles is self-evideritvhereas in the
P P PENConventional theory(as a probabilistic theojythe many-

dently. However, this independent occurrence of both conpaicle Hilbert space is taken as the tensor product of the

cepts actually did occur during the historical course of thesingle-particle spaces, in R$as a fluid-dynamic theopythe
development of quantum theory: namely, Pauli first had tomany-particle fibre bundle of possible wave functions is the
introduce the concept of spin in order to be able to explainvhitney sum of the single-particle bundles over pseudo-
the fine structure of the atomic spectral lingg and then Riemannian space-time. For instance, the RST counterpart of
Heisenberd5] and Dirac[6] independently established the a simple product stat&(1,2) for independent particles with
doubling of the atomic energy level schem@stho- and  individual wave functionsj,, ¢ in the conventional theory
para_\-hellum) as a consequence of the nonobservability _of a W(1,2)= (1) iy (2) (1.1)
particle permutation operation upon the wave functions

which immediately led to their symmetry and antisymmetryis now aC?-valued bundle sectiot

property. The subsequent unification of both aspects into the (%)
spin-statistics theorem has been the concern of many brilliant \p(x):( !
theoreticiang 3] but even today the status of this theorem i (X)
seems not completely clear; the general belief seems to Iurthermore, the RST counterpart of the conventional Schro
that it is not the true origin of the Pauli exclusion principle dinger equation

. (1.2
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inW(1,2=F(1,2¥ (1,2 (1.3 AE.=(V.|V|¥.)
is now the relativistic Schidinger equatiofRSE =(h(1) iy (2) V(1,2 (1) by (2))
iheD,V="H,V (1.4 (DL Vy(D(2))  (1.10

where the relativistic Hamiltoniart/,, is a gl2,C)-valued =Ec*Eg

one-form to be determined by its field equatidsee Egs. ] ) )

(2.2) and (2.3) below]. Here, the first parEc is an energy shift common for both
kind of states, e.g., for the electrostatic Coulomb interactions
(1.9

A. Exchange degeneracy

Z |2 2 \|2
The solutions¥(1,2) of the conventional Schdinger E =e2f f d3F1d3F2|¢/'(rl)| | (F2)] (1.19)
equation(1.3) will in general not be of that simple product ¢ |F1— 1 ’

form (1.1), not even when the two-particle Hamiltonian .

- ) o ) ] and thus does not yet break the degeneracy. This term could
H(1,2) is the sum of the individual one-particle Hamilto- have been obtained also by use of the simple product form
nans, 1.e., (1.1). The breaking of degeneracy occurs via the second term
Eg in Eq. (1.10, e.g., for the Coulomb potentiél.9)

H(1,2=H(1)+H(2). (1.5
o WD) (M) P (T2) ¢ (T2)
It is true, for this situation the simple product staké1,2) Eezezf f d3F, d3F ,——— |||F1— FH| 227 112
(1.1) could represent a solution of the conventional energy L2
eigenvalue problem and this results in the well-known energy shift of tho-
N states relative to th@ara-states(e.g., in the helium atom
A(1,2W¥(1,2=E;;¥(1,2 (1.6 [13).
in the form B. Relativistic Schrodinger theory
H(1) (1) =E (1), (1.7a How does this conventional picture of exchange degen-
eracy reappear within the quite different framework of RST?
A(2) iy (2) = Epihy (2) (1.79 Remember here that the conventional quantum theory of

relativistic two-particle systems is plagued with many seri-
with the total energye; =E,+E,) being the sum of both ous difficulties(see, e.g., Ref16-18) which spoil the im-
individual eigenvalue€,; andE,; but the entangled states mediate transcription of those nonrelativistic results to the

V., being defined through relativistic domain. Therefore it becomes highly instructive
to see how the alternative approach of RST deals with these
1 notorious two-body problems.
V.= 5[¢|(1)¢u(2)i (L) (2)], (1.9 First, one has to find the RST counterpart of the conven-

tional (antjsymmetrization procesél.8). This is done by
would equally well solve the eigenvalue probléme),(1.7)  t@king the step from the pure RST staté¢x) (1.2) to the
with the same energy eigenvalu®, , (exchange degen- mixtures which are to be des_crlbed by the intensity mafrix
eracy. And additionally the latter stat¢&.8) would obey the (& Hermitian 2<2 matrix,Z=7). A pure RST statel’ (1.2)
requirement of permutation symmetiy (1,2)=+W¥(2,1)]  May then be understood as a degenerate fory oamely,

for indistinguishable particles which is mandatory for physi-the tensor product o¥ (i.e., Z=¥ ®W¥). Correspondingly,
cal reasons. the RSE(1.4) for the pure two-particle stat# (x) (1.2 has

The present exchange degeneracy will be broken by som@ be generalized to the relativistic von Neumann equation

interparticle interactioW(1,2)[ =V(2,1)] which is not of the  (RNE) for the intensity matrixZ, see Eq.2.4) below. The

additive form(1.5 e.g., the Coulomb interaction latter equation is considered as the RST counterpart of the
5 conventional 2-particle Schdinger equation(1.3). The en-
c e tangling effect of the conventional Hamiltoni&h(1,2), for-
V(1,2= =——=. (1.9 . - o .
|F1— > bidding association of an individual one-particle wave func-

o ) ) tion to anyone of the two particles, is transcribed to RST via
For such a situation, the sqluthﬂs(l,Z) of the conventional  the action of the nondiagonal elemetiéxchange fieldsof
eigenvalue problent1.6) will still obey the symmetry re- ihe relativistic HamiltoniarH,,, see the Hamiltonian decom-
quirement with respect to particle permutation albeit theygsition (2.25),(2.26 below. Thus the use of the simply en-
eigenfunctions will not be found to be of that simple en- tangled state$1.8) of the conventional theorfin place of
tanglement form(1.8). Nevertheless the latter for(@.8) may e product staté1.1)] would correspond to using an RST
be used for obtaining lowest-order perturbative results foinixture 7 in place of a pure RST statk (1.2), together with
the splittinngf the degenerate levels due to the interparticlgne assumption of vanishing exchange fields. The general
interactionsV(1,2) form of an RST mixture is specified by E(R.21) below.
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Zr s cretely, for a general two-particle mixture there exist two

osiive g amplitude fieldsL, (a=1,2); but it isonly for the degener-

_/mixtures ate case (déf=0) that they can be used to construct a two-
S o= particle RST wave functiod’ (1.2) as the unification of two
one-particle wave functiong, (a=1,2), see Eq(2.53 be-

< uegative low. However, for a true RST mixture (dé#0) the two

e . o amplitude fieldd_, do not integrate to two one-particle wave
statcs functions ¢, ; this is the RST analog of the fact that a con-
AP ventional two-particle statd’, , (1.3) cannot in general be

specified in terms of two one-particle wave functiopg.
Nevertheless the two amplitude fieltlg provide us with a
common parametrization of both mixtures and pure states
which thus can be continuously connected by a mixing trans-
formation of the amplitude pairl(;,L,), see Eq(3.23 be-

low.

Clearly, the properties of the mixing group are crucial for
both the effects of fusion and separation and also for the
existence of the mixture degeneracy. In contrast to the con-
ventional theory, where the tendency of fermions to recede
from one another and the tendency of bosons to conglomer-
ate (Bose-Einstein condensatiprcannot be explained in

FIG. 1. Mixtures and pure states. The relativistic von Neumannerms of real, existing forces, the separating and fusing RST
equation(2.4) subdivides the density configuration space into threeforces can be clearly identified in form of the mixture poten-
subsets: the pure states occupy the Fierz cang=<0), positive  tig|s (Figs. 4, 5. In this context, the interesting point with the
mixtures (‘_7* =1) are geome_trlcall)_/ represented by the two-partedmixing group is its close relationship with the group of Lor-
hyperboloid and the negative mixtures,(=—1) by the one- on; fransformations S@,1) of a (1+ 1)-dimensional space-
parted hyperboloid. The mlxtures approach the pure stategf for time, see Eq(3.26 below. Indeed, both groups consist of
—. The general RST dynamics forbids a change of the mixtre,, . <inear transformations, share the same orbits, and leave
type, see Eq(2.33. The positive(negative mixtures may be con- the light-cones invariantFig. 2). However, the decisive dif-
zyni:ﬁgtriisstizs F;fs ;ecé)::\::;ﬁ%r;; (;L;:zm? );hmen;?;rlc and amt'fergnce lies in the specific way in which the points within t_he

orbits are transformed: whereas the Lorentz transformations
are of translational character, with no nontrivial fix points,
rt_he mixing transformations are of either expansive thfig.
2(a)] or of contractive typdFig. 2(b)] which explains the
fusion and separation effectfig. 3) brought about in the
conventional theory by the symmetrization and antisymme-
trization processe€l.9).

Perhaps the most interesting property of the mixing trans-
formations refers to the fact that they do preserve the physi-

figuration spac@utomaticallyinto two subsets: positive and cal quantities carried by the field configurations such as the

negative mixturegFig. 1), with the pure states as the sepa- scr:]alar ﬁensnppa, cu:jrentsl ap and_ mass ilgenv;:]lluma.
rating limit for both mixture configurations. Just as the sym- 1 Nus the positive and negative mixtures have the same en-

metric and antisymmetric stateE. (1.8 of the conven- ergy ejgenvalugs as .the pure RST sFates th.OUQh thg corre-
tional theory induce a certain tendency of the particles tospondlng amplitude f|elds. look Very different in sha(pég.
come close togethdrV , (x,x)#0] or to recede from one 3) (mixture degeneragyThis result is the RST analog of the

anothe ¥ _(x,x)=0], the RST amplitude fields of positive conventional excha_nge degeneracy. The existence of suc_h an
and negative mixtures exhibit the effects of fusion and sepa(?x""ct deggneracy ”? RST could be guessed on the basis of
ration (Fig. 3. some earlle_r results: . .

(i) The first-order perturbation results for the energy ei-
genvalues suggested the existence of a mixture degeneracy
in the vicinity of the pure state@ig. 3 of Ref.[14]. (i) A

However, a difference of both theories exists with respectigorous perturbative computatiofbased on the Lewis-
to the kinematical generation of the matter dichotomy:Dalgarno method actually yielded an asymptotic mixture
whereas in the conventional theory tf@nt)symmetrization degeneracy in the vicinity of the pure stafé$§]; the present
procedureleading from the simple produeb(1,2) (1.1) to  mixing transformations convert now these asymptotic results
v.,(1,2) (1.8)] is a discrete operation, the correspondinginto exact ones.
transition from the RST pure staté€k2) to the RST mixtures The final point to be left for future clarification refers to
is a continuous set of operations which additionally owns theghe breaking of the mixture degeneracy. Contrary to the con-
properties of constituting a groumixing group. More con-  ventional exchange degeneracy, which is broken by the in-

Iy

The next step must now refer to the emergence of a ce
tain matter dichotomy which arises in the conventional
theory as a consequence of the Dirac-Heisenkemt) sym-
metrization postulatg5,6]. Such a dichotomy exists in RST
in a very natural way(and thus is of far less postulative
character as in the conventional theprgamely, the RNE
(2.4) as the basic matter equation divides the density con

C. Mixture degeneracy
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FIG. 2. Expansive and contractive mixing transformation. Fu- Sell- -7
sion and separation of amplitudes. The group of mixing transforma- © 0 2 4 6 8 y
tions[A] (3.22 divides into the expansive\, >1, (a)] and con-
tractive [\, <1, (b)] semigroups. The invariant set of points is  FIG. 3. Expansive and contractive mixing transformation. Fu-
constituted by the light coned {=L3%) and by the axeéL,=0 or  sjon and separation of amplitudes. The mixing transformafidds
L,=0). Both invariant sets are approached by the transformed3.22) deform the originaldimensionlessamplitudes(®L, (3.33
points: the light cones for an expansive transformafieading to  (a), in such a way that for the expansive case 1) the ampli-
amplitude fusion, see Fig(13) below] and the axes for a contractive tudes are adopting the same shépe to sign: fusion (L;=L,) or
transformationleading to amplitude separation, see Figc)de-  antifusion ;= —L,), (b); whereas the contractive cask,(<1)

low]. But the orbits as a whole are the same[idi (3.23 as for the  |ets the amplitudes recede from one another: separétjon
Lorentz group S@.,,1) (3.26.

terparticle interaction§see Eq.(1.10], the present mixture importa_nt features of RST in a concise form. F'or the sg_ke of
degeneracy isot broken by this type of interactions. How- 9€nerality, we want to demonstrate the theory’s capability of
ever, such a breaking is expected when the exchange fieldacluding also the gravitational interactions. Thus all the in-

(neglected in the present papare fully taken into account. teraption for(;es are incqrporated into the theory via the gen-
eralized equivalence principlge., minimal coupling. This

Il GENERAL TWO-PARTICLE THEORY means that we work over a pseu_do-_Rlemann!an space-time

with the coordinate-covariant derivativé referring to the

In order to make the subsequent elaborations sufficientlj.evi-Civita connectionl” of the Riemannian metrig in the
self-contained, it seems adequate to first display the mogangent bundle; the gauge-plus coordinate-covariant deriva-
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tive is denoted byD, andd is as usual the ordinary derivative which can easily be deduced from the R&®) by means of

to be applied to gauge-plus coordinate-invariant objects.

A. Matter dynamics

The basic RST objects are the Hamiltoniafy , the in-
tensity matrixZ which is taken to be HermitiariZE& 7), fur-
thermore the gauge potentiad (= —Zﬂ) and its field
strengthZ, (= — F,,):

Fur=V, A=V, A +[A, Al (2.7

These objects are bound together by the RST dynamics,

namely, the integrability condition for the Hamiltoniad,

[ .
DM, =DM, + 5 [Hy HI=1hCF,,,

(2.2
(DMHViVMHV_}—[‘AM’HV])H
the conservation equation
; I " Mc)\? .
DH#—%H H,=—1 CT ) 2.3

and finally the relativistic von Neumann equatidRNE) for
the intensity matrixZ

i —
D I= 5 [TH,~H,1]. (2.4

Here the mass operatdr! is taken to be covariantly constant

D, M=0, 2.5

the conservation equatio2.3. Thus the Hamiltoniar#,
acquires the status of a hidden variable from the point of
view of the Klein-Gordon theory. However if the intensity
matrix Z does not obey the Fierz conditid@.7), one has to
deal with a(RST) mixture in place of a pure state.

B. Gauge forces

The field strengthF,, is generated by the curreqf,
according to theégeneralizegl Maxwell equations
DtF,=4ma, J, (2.1)
where «, is the electromagnetic coupling constant,(
=e?/hc). This arrangement implies that the curresif is
sourceless

D*7,=0. (2.12
Thus the final problem for the construction of a matter theory
is to find the right form of the curreny,. In RST, this
problem is solved by decomposing first the gauge objects
with respect to the generatorg(= —'7,) of the gauge group
as usual

A=A, ™, (2.133
v =Fau ™ (2.13h
NV P (2.130

and then constructing the currerjtg, by means of certain
velocity operators ,,(=v,,) in the following way:

Jau=t(Zvg,). (2.19

especially for the present situation of identical particles we

simply take M to be of the self-suggesting form

M=M"-1, (2.9

The source equatiof2.12) reads now in component form

VHja,=0 (2.19

whereM is the invariant rest mass of the particles. For speand the right choice of the velocity operators is given in

cial matter distributiongthe pure statgsthe intensity matrix
7 obeys the Fierz identit{8]

T>~Ttr7=0 2.7

terms of the Hamiltoniari{,, as

i _
vaMZW(HMTa'F TaHp,)- (2.16

and thus can be written as the tensor product of some wav@ne can shov9] that this choice closes the dynamical sys-

function ¥

I=VeW. (2.9

The wave function? then obeys the relativistic Schitimger
equation(RSE

ihcD,V=H,¥,
(2.9
(D,¥=9,¥+A,7)
and also the Klein-Gordon equatigi{GE)
c 2

tem and thus provides us with the possibility of normalizing
the currentg,, to unity (z;=2,=1):

Z,= ja,dS",
a j(s)]a,u

where the integral runs over some three-dimensional hyper-
surface(S).

(2.17

C. Reference frames

Both for practical computations and a deeper understand-
ing of RST, it is convenient to select an adequate operator
basis for the decomposition of the operator-valued objects.
Here the first possibility refers to the single-particle basis
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(SPB which for the case of two particlesa(b|=1,2) con-  projectorsP, (2.18 or with their combinations, Q. Thus

sists of two projectorg,(=P,) the RTB form of the intensity matrix reads
PaPo= abPa, (2.183 I=1(p-1+qQ+sIl). (2.24
Pt P=1 (2.180 Actually the RTB formalism turns out to be the most con-
_ venient one for our subsequent discussions. To give an ex-
and of two permutator$l ,(=11,) such that ample, consider the Hamiltoniak,, which we first split up
_ into its Hermitian partiC,(=/C,) (kinetic field and anti-
{Tla, Po} =11, (2.193 Hermitian parti £, (localization fieldZ,=L,) as follows:
- _ i b
[P1 I = =[P IF]=ie%0I%, - (2.19 H,=he(K,+iL,). (2.29
{1, 1o} =264p- 1, (2199 The RTB decomposition of these objects then reads
[, 11,]=2i€,,Q, (2.190 IC;L:KaMPaJr(”)QMﬁvL(“QMﬁ, (2.263
=P1—P,). 2.19 - ~
(Q=Pi=72) (2199 L£,=Lg, P+ N, IT+ NI (2.26b
Evidently, the generators, of the two-particle gauge group . . , i
U(1)XU(1) are then given by imnarly, the RTB form of the currentg,, (2.14 is found
Ta= —1P,. (2.20

)
i 1 () 1o(L)
An alternative choice of frame refers to the extended- J1u Mc(’)1K1"+2 $7Qu+zsTN,), (2273

particle basiSEPB) which is still based upon the two per-
mutatorslIl, (2.19 but relies upon the operatods(2.18b ] h L) 1 (L)
and Q (2.199 in place of the projector®, (2.18. Thus, any Jou=pyc (PK2uT287Q, =2 87N, (2.27D
operator-valued object can be decomposed either in the SPB
or in the EPB formalism, e.g., for the intensity matfix _ _
D. Density dynamics
pa PP+ 5 s 112 (SPB), The general matter dynami¢2.2—(2.4 must now be
1=y, . (2.2)  specialized to the present two-particle situation. First con-
2 (p-1+qQ+s,lI%) (EPB). sider the integrability conditiori2.2) which yields for both
localization componentk,,, of the Hamiltonian, (2.25,

Obviously the single-particle densitigg, (a=1,2) are re- ; ; )
lated to their EPB counterpargs(total density andq (inter- (2.2 the following curl relationg 10]

nal density via V,.(Li,+Ly,)—V,(Ly,+Ly,)=0. (2.28
p=p1tp2, (2228 Thus the sum of both localization vectdrs,, is revealed to
be a gradient field
q=p1—p2- (2.220
Two further possibilities for the choice of a reference sys- Ly=byutloy=—7 =2~ (2.29

tem arise with the emergence of the overlap densgie&

=1,2) in connec;ion with the two former reference SYStemsthis new gradient field.(x) (amplitude field plays an im-
(2.21). More precisely, one may choose also the rotating pefportant part when considering now the density dynamics

mutatorslI,IT: which is given in abstract form by the RNR.4).
. Indeed the latter equation is nothing else than a dynamical
IM=38,112, (2.233 system for the densitiggq,s as the RTB components of the
intensity matrixZ (2.24). This density dynamics is most ef-
T _aba fectively discussed in terms of the renormalization factors
1= €55, (2.239 Z+1,Zr,Zo Which are introduced now through the following
S definitions:
a . Ta, - a
S,=—; s=ys% 2.23
a’ s a (2.230 p=27Z:L2 (2.308
in place of the original permutatold, (2.19. Clearly the q=2ZxL2 (2.30b
new permutatordI,II may now be combined into a com-
plete basigrotating basis(RTB)] either together with the s=ZoL2 (2.300
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The meaning of this construction of renormalization vari- Z,=cosh/, (2.39h
ables is as usual, namely, that the physical densitigs as
the true observables of the theory remain invariant with re- (o,=—1).

spect to a renormalization transformation of flumobserv-

able auxiliary variablesZ;,Zg,Zo,L which, however, are Clearly, for {—c both mixtures(2.38,(2.39 approach the
better suited to specify the dynamical equatiph8]. Actu-  pure stateg2.37), or in geometric terms, the hyperboloids
ally, the RNE(2.4) is transcribed to the renormalization fac- come close to the Fierz cor€ig. 1).

tors as follows: The field equations for the new variablésand &, are
easily deduced from the original renormalization dynamics
9, Zv=Zrl ,+2Z5""N,,, (2.31a (2.3) as
9,20=2(Zt "N, +ZzQ,). 2.31 Zy
&0 (Z1 m R Q#) ( Q t7,u§o=2 (L)QM—’_Z_”QM ; (2.40b
Here we have introduced the EPB variabjein a similar
way as was done far, (2.29, i.e., where the vector fieldé, and g, stand for certain linear
combinations of the localization componets (2.32 and
=L, Lo,. (232 ON, (2.26b:
~ Now the crucial point with the renormalization dynamics h,=2N, sing,+1, cosé,, (2.41a
is that it admits a first integral in the forfd0]
=2)N  cosé,— 1, sing,. 2.41
72— (22+7%) =0, , (2.33 9 n 0S80~ 1, SN, (241
where the integration constaet, (mixture indey can be E. Curl relations
taken(without loss of generalityas 0:-1. Putting The present parametrizations may now be used in order to
) conveniently transcribe the abstract Hamiltonian dynamics
Zy=NZgt Lo (2.34 (2.2),(2.3 to the equations of motion for the remaining com-

ponent fields. First consider the integrability conditi@?2)

the constraint2.33 reads which yields for the Kinetic field,, (2.26a [10]

2_ 52 _
ZT Z” (O (2-35) V,LLK].V_VVK].M: Fl,uV+ G/.LV’ (2.423

and thus it is suggestive to parametrize the three renormal-
ization factors by only two variables, the mixture variable
and the overlap anglg,, in the following way:

V/J,KZV_VVKZ,M:FZ[LV_G (2420

v

where the exchange field streng®),, is composed of the
; [} @) () 1) i
Ze=2,({)c0st,, 2.36a  former exchange field<IN, N, Q. Q. in the

Zo=Z sing, . 2.36

o=Zy({)sin&, (2.36b G,,=2(1Q,*Q,~1Q,-)Q,~ N, *)N,
The pure states have mixture index =0 and therefore oc- + N LIN ). (2.43
cupy the Fierz cone in density configuration spéEwgy. 1) v
being specified by Here it is easy to prove that the two-for@,, obeys the

N identity
Z7=2,=3 ¢,
(2.37 V.G\+V.,G\,tV,\G,,=0 (2.44
(04, =0).

and thus can be generated bygauge invariantexchange
Similarly the positive mixturesd, = +1) are geometrically vector potentialG,,
characterized by the two-parted hyperboloid

G,.=V,G,—V,G,. (2.45
Z1=*cosh{, (2.383
Furthermore such an exchange potential can easily be found
Z,,=sinh{, (2.38h as
z z
=+1), —ZRq _
(04 ) GM—ZO hQ, 7 N, . (2.46

and the negative mixtures by the one-parted hyperboloid
In order to verify that the present propositith46) actu-

Zr=sinh{, (2.393 ally is a possible solution of the curl relati¢®.45 one must

022112-7



S. RUPP AND M. SORG PHYSICAL REVIEW 43 022112

know also the curl relations for the other exchange fieldd. Now, when the conservation equati¢h3) is transcribed
which, however, are easily deduced from the integrabilityto the amplitudes , (2.49), there arise wave equations of the

condition(2.2):

V,u(”)Qv_ Vv(“)Q,u: I M(l)Nv_ I V(l)NM

+2(Q,G6,-"Q,G,),
(2.473
VM(L)QV_ Vv(i)QM: _ |M(H)Nv+ I V(”)N,u.
-2("Q,6,-""Q,6,),
(2.479H
V,u(”)NV_ Vu(”)N,u: _ |M(L)Qv+ | V(i)QM
+2(“N,G,-“N,G,),
(2.479
Vﬂ(i)NV_ VV(L)NM: |M(H)Qv_ | v(H)QM
-2("N,G,—N,G,).
(2.470

Clearly in place of the field$,, (’N, one can also work
with the new vectorg, ,h, (2.41) whose curl relations are

V,h,~V,h,=0 (2.483

Vudr= V8, =7 (hMQV h,9,)

+4{"IN,[(cos&,)G,+ (sin&,)"Q,]

—@IN,[(cos&) G, +(sin&,) VQ,T}.
(2.48b

Here, the first curl relatio2.483 is trivial because the vec-

following form (amplitude equations

Mc)\?
DL1+L1 T _KlMK/f+X0+Wl

=Xqly,
(2.50a

OL,+L,

Mc)\?
T _KZ,U,K/éL_FXO—i_WZ =X2L1.
(2.50H

If both the mixture potentialdV, and the(scalaj ex-
change potential¥X, and X, (a=1,2) (to be explained be-
low) would vanish:W,=X,=X,=0, then we would be left
with two uncoupled wave equationa1,2)

Mc)?
T —KaMKg ZO.

These are equivalent to the two conventional Klein-Gordon
equations

OL,+L, (2.51)

Mc)\?
D#DM(/Ia"r T l/fazo,

| (2.52
(Dﬂlﬁa#aﬂdla_ |Aaﬂ‘//a)v

where theC-valued single-particle wave functiong, are
built up by the amplitude fields, and phaseg, in the usual
way

(2.53
with the (gauge dependenphasesx, being given through

Ya= Laeiiaa

ag(X)= JX(KaM—AaM)dX", (2.54

tor h,, has already been found to be a gradient field, see Eq.

(2. 406)

F. Source equations

see Refs[19,20. Clearly, the two Klein-Gordon equations
(2.52 are nothing else than the component version of the
abstract KGE(2.10. Thus, this system describes two indi-
vidual Klein-Gordon particles which may be thought to be

Whereas the meaning of the curl relations mainly is ofcoupled through the ordinary gauge forces inherent in the

kinematical nature, namely, to guarantee (lbeal) existence

of solutions, the proper field equations are specified by th@otentials A,
conservation equatiof2.3). Here the most important ones scribed in RST by the kinetic fieldk,

are the wave equation@mplitude equationsfor the two
single-particle amplitude fields ,(x) (a=1,2) which are
defined as follows:

L1¢<COS%) JZ,L= (cosé> L,

(2.493

(2.49b

L2—<sm )FL (sm 0)’L

conventional quantum theory via the electromagnetic vector
These conventional gauge forces are de-
« coupling to the
electromagnetic field strengtlfs, ,,, in the usual way apart
from the presence of the exchange field stren@ihs in the
Maxwell equationg2.42].

However, the presence of the mixture potentllg and
exchange potentialX, in the amplitude equation@.50 as
well asG,, in the Maxwell equation$2.42) signals the oc-
currence of unconventional nongauge interactions among the
two particles which we take as the RST counterpart of the
entanglement phenomenon in the conventional theory.
Clearly, the physical implications of such an RST entangle-

au "

where L(x) is the amplitude field introduced through Eq. ment of both particles will strongly depend upon the nature
(2.29. For the sake of convenience one may refer also to thef the mixture and exchange potentisilg andX, . Concern-

modified amplitude field L= \/Z,L in place of the original

ing the mixture case, one findl$4,15

022112-8
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Wy——Z*_ L heh — gig. — 2g¢h, =2
1(22) _ggu_g ML_l

—0s(K1, KT =Ky, K5), (2.553
Ly
W,= (ZZ) [h h,—g*g,+2g*h, ]
+9s(Kq, KE=K5,K5), (2.55h
and similarly for the(scalaj exchange potentials
Xo=N,HN#—1Q, hQH (2.550

Z
X1=—T((”)QMK’L+ (L)

Z N,u ’k'“)-i—((”)Q” 'k”+(L)NMK“)

(2.550

Zy
XZZZ_”((\I)QMKM+(L)NM 'k”)—((”)QM 'k”+(L)NMK“).
(2.55¢
Here, for the representation of the mixture potentidly
(2.55 we have made use of the structure functgnbeing
defined in terms of the renormalization factors thro{ig|

Z7 )
T
ZII

L1
9=3

(2.56

PHYSICAL REVIEW A 63022112

configuration of the mixtures, namely, when the dynamics
guides the mixture variablgasymptotically to its limit value
{=0e.

In order to close the dynamical system, one must specify
the dynamical equations of all the other fields emerging in
the amplitude equation®.50. First consider the case of the
mixture variable/ whose field equation is obtained by com-
ta:)mng the source equations of the exchange fi¢ldsand

N,

VA, + LM, — KK, =0, (2.608

VAN, =N, "ke+ N LE—NQ K~ =0, (2.60b

into the source equatiorV{‘h ,=[1¢) for the gradient field
h, (2.40a:

2 2
O+ Lo g——{aﬂw {+9%g,)= Lz(K K,)
(L) LiL, (I (LN !
+24Q,04+ 45— ("Q K*+ "IN, k). (2.61)

Li+L5

Here the modified localization vectdi , is related to the
modified amplitude field' L(x) (2.49 just in the same way
as for the corresponding unmodified obje@<29), i.e.,

J'L
' _ M
L#_ZT

(2.62

For later purposes it is convenient to complement this by an a similar way, one finds the source equation for the vector

further structure functiomny,, to be defined through

;lz—kl
Jw EZ_”

=g.+1 (2.57

such that both structure functions have their characteristic

pure-state limits

lim gs=0, (2.58a
{—oo
lim g,=1. (2.58h

{—x

Furthermore it is convenient also to use the EPB forms

K ,,k, of the SPB kinetic field¥

M aw
KM:K1M+K2M’ (2.593
k/,L:Kl/,L_KZ,u! (259[:)
'K, =k,~2G, . (2.599

It is important to remark that those mixture potentisig

(2.553,(2.55h vanish W,=0) for the pure states, namely,

either by directly putting the mixture index to z€f@, =0,
see EQq.(2.37] or by letting tend the mixture variablé to
infinity [{—w<Z,—x, see Eqs(2.39,(2.39]. Thus the

field g, as

Lal,
Vig,+ L“gM+2m(K”k )=—24Q,h*
2

|_2—

(u N, Kek#+0Q KH). (2.63

Next, one computes the source equations for the remaining
exchange field§")N,, *)Q,, and 'Q, as[10]

veQ,+1Q, "kH+Q, LH+ N K-=0 (2.643
vehQ,—MQ, 'k#+1Q,L#+ N K#=0 (2.640
VAHON,+ N, "k#+EIN LA~ QK =0. (2.649

G. Conservation laws

Finally, the source equations for the kinetic fields must be
specified. The significance of these equations becomes im-
mediately obvious from the conservation laws for the cur-
rentsj,, (2.19 which are essentially built up by the kinetic
fieldsK,, , see Eq(2.27); especially this applies to the situ-
ation of vanishing exchange field$"Q,=®*Q,="N,

=WIN,=0), a situation to be considered subsequently in
great detall The desired source equations are deduced again
from the conservation equatiof2.3) and look as follows

pure states may also be reached dynamically as the lim{ta=1,2):
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VHK g, +2LEK = —2(VQ,IN#+1)Q INH).  (2.65 @A =N —3,a(x), (3.33

w=

Here it is now an instructive exercise to explicitly verify the a,(X) = aa(x) +a(x). (330
conservation law$2.15 by computing the sources of both

currentsj,, with the help of all the preceding source equa-lea\/eS the k_lnetlc_: f|el(_j$(aM (as some O.f the Hamiltonian
tions. component fieldsinvariant. The reason is that the external

Thus our dynamical two-particle system is now closed92u9€ groug3.3) is abelian and the Hamiltoniak, as well

and evidently comprises the following dynamical variables. &S its Hermitian parfC, (2.263 transform homogeneously

(i) Two amplitude field<, obeying the amplitude equa- Under a change of gaug0]. . .
tions (2.50. Next, observe that our assumption of vanishing exchange

(i) Two kinetic fieldsK,, obeying the Maxwell equa- fields gives rise to introduce a new scalar fiejdsay which
tions (2.42 and the sourcealrtelatior(Q.GS). generates the vector fielf, (2.41b in a way similar to the

(iii) The mixture variablel to be determined from its '@ itS companiorh, (2.41a is generated by the mixture
wave equatior2.61). variable ¢, see Eq.2.409. This claim is immediately veri-

(iv) The vector fieldg, whose source is determined by fied by reconsidering the general curl relation @or (2.48h

Eq. (2.63 and its curl by Eq(2.48b. which now simplifies to
(v) The exchange field$Q,, “)Q,, N, and “)N, .
obeying the curl relation$2.47) and the source equations VMgV_VVgM:Z_:(hMgV_thM). (3.9

(2.64) together with Eq(2.60).

However, this truncated form admits the formal solution for
I1l. MIXTURE DEGENERACY du

The preceding list of dynamical variables demonstrates 9,=Z1d,X 3.5
that the most general situation comprehends two distinct w0 '

phenomena(i) the mixture effect andii) the action of the |\ hich proves our claim. Once the scajaiis at hand, one

exchange forces lying beyond the gauge interactions. Therg;q 4 like to transcribe the source equation fgr (2.63
fore it seems advisable to consider both effects separatelyy 4 wave equation for the new scalar figld

i.e., we study now the mixture effect alone by putting all the

exchange fields to zero"Q,=®qQ,=0N, =N, =0.

Furthermore we first neglect also the gauge interaction§lx+'L*d,x+
among the two particles and retain exclusively some external

force ¥F «v N order to either hold both particles together

(bound solutions, e.g., electrons around a nugleudo let
them freely move over some background force fiéloh-

bound solutions Thus we will be able to study the mixture

Lil, K#k,

Zr 0. (3.6
Li+L5 Zy ‘ ‘

M

Z, J Zﬂﬂ)(-f-Z
With these presumptions, the wave equation for the mixture
variable{ (2.61) adopts a similar form, namely,

N . z
effect in its pure form and we shall find here the phenom{J;+ "LH,0— il
enon of (continuoug mixture degeneracy as the RST coun- Zy
terpart of the(discretg exchange degeneracy in conventional 2 2
2 1 ~2 —
quantum theory. X| 9#Ld, L+ 2y 0 xd, x— m(KMk“) =0. 3.9
A. Mixture dynamics Now a pleasant property of the mixture configurations con-

For cutting down the general two-particle dynamics to theSists in the fact that both wave equatici3s6),(3.7) are not
exclusive mixture caséi.e., for vanishing exchange fields needed at alll The reason is that both scajaesid{ can be
and interparticle interactionmne first observes that the ex- €xpressed by the amplitudés and L, so that the wave
change field strengtts,,, (2.43 vanishes and therefore the €guations fory (3.6) and ¢ (3.7) are automatically satisfied
modified Maxwell equation&2.42 adopt their ordinary form Whenever the corresponding amplitude equations are valid,

(a=1,2): see(2.50
V Ka=V,Ka=F . 3.1 Mc)?
par van e 39 OLytLa) | 7| —KyKi+Wy =0, (389
Here the formal solution in terms dfauge dependensca- Ml 2
. . ) C
lar fields @,(x) and external gauge potentléféAﬂ reads Oyt L, - ) K o Kb+ W, =0. (3.80)

= (ex)
Kap=dpaat ™Ay 32 The origin of this nice result traces back to the renormaliza-
tion dynamics(2.319 which requires the renormalization
Observe that a gauge transformation factor Zg to be a constant over space-time
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Zo=const (=C,). (3.9

However, wher¥ is constant, the overlap angig is linked
rigidly to the mixture variable’, see Eq(2.36h:

Zy()=

:* % g‘
. 3.1@
| (

[sing,|  ~*|2L,L,

Thus the mixture variabl€ is uniquely determined by the

amplituded. , and the mixture indeC, . On the other hand,
the vanishing of both exchange fiell&N,, and )Q,, yields
the following system for the scalafsand y, see Eqs(2.40b
and(2.41):

PHYSICAL REVIEW A 63022112

tions are obtainable from the solutions for the pure-state limit
C, — (2.51) by a transformation which we are now going
to work out in detail.

B. Mixing group

So far we were mainly concerned with the amplitude
fields L, but the key for finding their exact form leads us
back to the SPB densitigs, (2.21). Observe here that, for
our present assumption of vanishing exchange fields, these
densities essentially build up the currefts, (2.27) alone,
ie.,

h

. J1,= = PiKi, (3.159
N, =3 [((COSE)Zyd,x +(siNE)d,0)]=0, (3113 Me
_ _ h
2MQ,=d,£,—21d,x=0, (3.11b jzﬂ:WPZKzﬂ- (3.15h
the solution of which is easily found as . ) ) o .
However, the crucial point with the densities is now their
'—i_ L% */Ci +1siNy—xs), Ox=+1 relationship with the amplitude fields, [14] which looks as
COSép=—5—5=— . follows:
fo= 2112 JCZTsinHy—x,), ox=—1
(3.12 p1=tr(TP1)=guLi+0gel5, (3.163
Thus, also the scalay is determinedup to an integration p2=tr(IP;)=gylL5+gsL %, (3.16h

constanty, ) by the amplitude field& ,. As a consequence, - .

one can do away completely with the wave equationsyfor From the pure-state limi2.58 of the structure functiongs

(3.6) and ¢ (3.7) and one can concentrate exclusively lJIOOnandgW it is concluded that both objects coincide in that limit,

the amplitude equation@.8). i.e.,pa—>(°)L§1 (a=1,2) forC, — . Here the pure-state am-
In order that these amplitude equations form a manifesthP”tUdeS as solutions of the ordinary decoupled KI_ein-Gordon

covariant system, it remains to express the mixture potential8ystem(2.51),(2.52 have been denoted bY)L,. Since for

W, (2.55 in terms of just those amplitude fields, : the present case of vanishing exchange fields, the structure
functionsgs andg,, become functions of the amplitude fields

LE—3L5 (L19,Lo—Ld,L1)(L1d#Ly—Lyd Ly) alone, see Eq(3.14), the relationship(3.16 acquires the

Wi=o, 7772 2 2L 22 status of a(highly nonlineay transformation[R(®)] of the
+ + +
— 04 K1, KI =Kz, K5 ], (3.133
e [R®]:(Ly,Lo)—(p1.p2), (3.17)
W,= o, ng_?’l‘:; (Ll‘;MLZ_L2‘9ML1)(L21‘W2‘2'L§‘9ML1) i.e., in detail
(L1+L3) 0, (2L1L,)?+Cy(LT+L3) )
u . p1="Ry(Ly,L,)
+ 94 K1, Kf—K5,K5]. (3.13h
=0guw(L1,Lp)LT+9g4(Lq,Lo)L3, 3.18
Finally, the structure functiogs (2.56) must also be written Gu(la L)Lt os(laba)ls ( ?
exclusively in terms of the amplitude fields p2=@Ry(Ly,L,)
22
gS:%( \/1+ S 1]. (3.149 ¢QW(L1,L2)L§+93(L1,Lz)l-f- (3.18h

C; (Li+L)?
Defining here two new amplitude fieldap to sign as
In this way the mixture dynamics is actually a closed system

for the amplitude fields, since the kinetic fields contain only (LD)?=p4, (3.19a
the external potential when the electromagnetic interactions
between both particles are neglected, see(B¢). Clearly (Ly)2=p,, (3.19n

the mixture potential®V, (3.13 are highly nonlinear func-

tions of the amplitudek, and their derivatives and therefore one can rewrite the density transformatigR®] (3.17) as
it may seem absolutely hopeless to find exact solutions to than amplitude transformatidiiR]

coupled amplitude systei(8.8) for a given mixture param-

eterC, . However, as we shall readily show, the exact solu- [RI:(Ly,Lp)—(Ly,Ly),

(3.20
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i.e.,
Li=Rq(L1,L2)=\0uLi+0sL3, (3.21a
Ly=Ra(Ly,Lo)=1guL5+gsL?. (3.21h

[By taking the roots, the signs of the new amplituti¢shave
to be chosen in such a way thaf remain continuously

differentiable over space-time if the original amplitudes

PHYSICAL REVIEW 43 022112

(4N, )Y, for [A] (3.23

Le= ] et for QLY (326, 27

Furthermore, the orbit of some poirlt {,L,) is the same for
both group actions and is given by the hyperbola

"L2—'L3=const=L2—L3),

(3.28

La(x) are of the corresponding class; observe that the solusee Fig. 2. But clearly, points are shifted within the orbits in

tions L,(x) of the quasilinear Klein-Gordon systen(3.8)
are determined only up to sign.

The transformation$R] (3.20 have an interesting prop-
erty, namely, the effects of fusidmq(x)~p,(x)] for posi-
tive mixtures @, =-+1) and separatio{(p;(X)p,(x)~0)
for negative mixtures &, =—1). This phenomenon was
studied extensively in a preceding pagé#] but will be
considered here for the inverse transformatioh4 ]
=[R™1], i.e., we put

[A]:(Ly,Lo)—("L1,"Ly), (3.22
or in detail
"Ly=A4(Lq,Ly)
=B L3+ (L L)%+, (2L1L,)%,
(3.233
/L2:A2(|—1:|—z)
=\-3(L2-L)+ 3 (LZ-13)7+n, (2L1L,)%
(3.23h

The most striking feature of the set of transformati®22
is here that they form a group with the group paramater

1
A= 3.2
* T 14(0, IC2) 3.29
obeying the simple composition rule
@G, =Dy, @), (3.25

for two successive transformations parametrized (b,
and )\, . Thus the group element ! due tox ! is the
inverse of that element which is parametrized by, ; and
the identity is given by, =1(<C, =x).

The mixing group[A] (3.22 has some striking similari-
ties with the Lorentz group S@,1) in 1+ 1 dimensions

"Ly=coshg, L;+sinhg, L, (3.263

"Lo=sinhB, L,+coshB,L,. (3.26h

Indeed, in both cases the light conés € = L,) remain in-
variant as a whole and some point=_L,(=L;) on acone s
shifted within the cone according to

a different way for both transformation groups. For instance
the “space” and “time” axis(L;=0 or L,=0) are trans-
formed to a new axis system for the Lorentz group(50Q
in such a way that the well-known effects of Lorentz con-
traction and time dilatation will arise. In contrast to this, the
points on the axes are kept fixed by a transformation of the
mixing group[A], i.e.,
Aq1(L1,0=Ly,

A,(L4,00=0, (3.293

Al(o,Lz):o, Az(O,Lz):Lz. (329b

Let us remark also that the product of the amplitudes trans-
forms under the mixing group in the following way:

(L1 "Lo)?=Ny(LsLp)? (3.30
which has no counterpart for the Lorentz group but preserves
here the orthogonality of the amplitude fieldee Eq(3.395
below]. Thus the important similarities of both groups
mainly refer to the vicinity of the light cones. This becomes
especially clear when considering the pullback meizjg of

the Lorentz metricy,,=diag1,—1]

J'Lc 0 Ly

Yab= gL oL, Ted: (3.31)

Indeed one finds here for the mixing group by direct compu-
tation

L3(Li-L))

’}’11:1_()\*_1)m, (3.323
LI(LI-L))

722—_1_()\*_1)m, (3.32h
Lila(Li-L3)

Y21= Y12= (A — 1) (3.329

Thus in the vicinity of the light coned §=L3) the pullback
metric y,, coincides with the Lorentz metrigy,, for any
value of the group parametar, .

It is just this behavior of the mixing group around the
light cones and the axes which is responsible for the effects
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of fusion and separation. Indeed following the orbit of some(o, =+ 1<\, <1) the amplitudes are separatirgrig.
point (L1,L,) during a group transformation with increasing 3(c)]. Thus the amplitudek, do react in the opposite sense
group parametefexpansive transformationn, >1, Fig.  when compared with the charge densifigg3.18 which are
2(a)], the light cone (2=L3) is approached by the orbit fusing for the positive mixtures and separating for the nega-
more and more and this means nothing else than that théve mixtures[14]. Clearly the reason for this is that the
values of both amplitude fields,(x) become identicalup  densitiesp, are connected with the inverse mixing transfor-
to sign: this is the effect of amplitude fusiofiL;(X)  mations[R] (3.20 in place of the present\] (3.22 for the
~Ly(X)], Fig. 3b). Since these expansive transformationsamplitudes., .
have\, >1 which meansr, = — 1, see Eq(3.24), the fu-
sion effect for the amplitudes does occur for the negative
mixtures only. The opposite effect of amplitude separation C. Exact solutions
[Fig. 3(c)] occurs for the positive mixturess{, =+1) be- ) ) )
cause here the mixing transformations act in a contractive YVith all these preparations, it has now become easy to
mannerFig. 2b)] due tox, <1. This contractive group ac- f!nd exact solufuons_a(x) for the cou_pled amplltu.de equa-
tion lets the smaller one of both amplitudes decay to zero  tions (3.8) despite the fact that the mixture potentislig [as
but leaves the larger amplitude with a finite value. Thus if9iven by Eq.(3.13] are highly nonlinear functions of the
both amplitudes , are considered as fields over some regiondesired amplitudek, . The reason is that the solutions of the
of space-time they must become separated in the sense thatricate amplitude syster8.8) are connected with the solu-
they are forming space-time cells which are carrying onlytions of the simple uncoupled Klein-Gordon syst¢2n51)
one of the two amplitudes with the other one having decayeglist by an appropriate mixing transformatipf] (3.22. On
to zero. The geometric shape of these cells is determined e other hand, exact solutioh®’L ,(x), say] of the simple
the surfaces carrying zero values of the amplitudes, e.g., byne-particle Klein-Gordon equatior(2.51) are known for
the two-spheres in three-dimensional space when the fielghany situations of physical intere€or the exact solutions
configuration is spherically symmetric. of the static relativistic Coulomb force problem see, e.g.,
As an example for such a static and spherically symmetriQef. [10]). Therefore the corresponding solutiohg(x) of
two-particle configuration consider the nonrelativistic groundipe fyl| amplitude equationé3.8) are also known exactly. In
(‘L) and first excited staté(()Lz) of the one-particle Cou-  thjs sense, the amplitude fieltlg pictured in Fig. 3 represent
lomb force problen|14] which together form a pure two- he exact two-particle solutions of the full amplitude system
particle state in RST: (3.9) for that time-independent two-patrticle state in the Cou-
(0) —ay lomb field which refers to the ground and first excited one-
Li(y)=e™, (3.333 ) ) .
particle states; and it was merely for the sake of convenience
1 that we restricted ourselves to their nonrelativistic limit form
OL,(y)=—=(1-y/2)e V2. (3.33h (3.33 (differring from the exact relativistic form only in or-
V8 der o2 [10]).
) ) In order to verify our claim, we first have to show that the
Here the radial coordinate(=[x'x|) has been rescaled mixing transformations[A] (3.22 actually leave form-
into the dimensionless variabje invariant the amplitude equatior(8.8) which then defines
the transformation law for the mixture potentiddg,. This
y:Zexa_ (3.349 gqa_l can be achiev_ed by exploiting _the group property of the
B mixing transformations. More precisely, one composes the
general transformatioN:L,— 'L, by first passing over from
the original amplitudes , to the pure-state solutiorf®)L , of
the simple Klein-Gordon systel2.51) which has vanishing
mixture potentials; and then one transforms these pure-state
- amplitudes L, into the desired new amplitudes
J dyy*OLa(y) OLp(Y) =% Sap "Ly:L,=OL,="L,. Obviously the desired proof is ac-
0 complished by this composition if the final mixture poten-
tials "W,, expressed in terms of the final amplitudés,,
are just of the form3.13 being prescribed by RST. Carry-
ing now through this line of arguments, we shall extensively
benefit from thequasilinearity of the mixing transforma-
tions.
First observe that the d’Alembertian of the new ampli-
La(y)=Aa(OL1(y), OL,(y)), (3.36 tudesd'L, reads in terms of the old variablég (a=1,2)

r

by means of the Bohr radiwgs=7#%%Me? and the numbez,,
of nuclear charge units. Both one-particle states are orthono
mal in the following sense:

(a,b|=1,2. (3.3

Now one takes the pure two-particle sté&de33 as the start-
ing point for a mixing transformatio(8.23 and looks for the
resulting amplitudes ,(y) (a=1,2)

2 21 2 ’
see Fig. 3. Obviously for negative mixtures (= — 1<\, O/L.= 'Ly d'Lag
- S L= “L Ly + OLp .
>1) the amplitudes ,(y) are(anti) fusing into one another Y e aLbaLC(& a) (Fulp) ,)21 dLy, b

[L2(x)~L3(x), Fig. 3b)] whereas for the positive mixtures (3.37
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Thus if the old amplitudek , obey the systen(3.8), the new
amplitudes’L, must obey the following equationsl¢ a):

, ' d'Ly\ [[Mc\? L
O'La+|{Li—— &L 2(9_|_2 7 _Ka,uKa+ W,
2
Iy 0L, J'L,
=\ b gL, Tl aLZ) Wa_bgl Lo Ly,
'L,
tlag— [K1MK1 K2,K5]

. 2 2L,
;—1(?L dL.

Now in order that these new amplitudék, obey the same
equations as the old on€3.9), i.e.,

(0*Lp)(d,Lc). (3.39

Mc)?
O'Lat'Laf [ 57| —KauKE+ Wa1 =0, (3.39

one requires quasilinearity of the mixing transformatioas (
=1,2):

PHYSICAL REVIEW 43 022112

2

L _E 'L, 'L, u u
Lo "Wa= 2 Lz Wo— Loy [K1,Ki ~ KoK
2 az,L L L 34
bglaLbﬁL (9*Lp)(,Lc). (3.4

Here, for our proof we imagine now that the old ampli-
tudesL , coincide with the pure-state amplitudé8L , obey-
ing the ordinary Klein-Gordon systef2.51) with vanishing
mixture potentials \V,=0) and the new amplituded., are
thought to be just the desired solutions of the amplitude sys-
tem (3.8) ('"L,—L,). The corresponding mixture potentials
are then obtained from E@3.41) as b+ a)

I

(- 1>aL T K, KE =K, K]

2 21

1
Lak}_l Lyl

As explained above, our proof requires now to identify the
present mixture potentialg/, (3.42 with their RST form
(3.13. Thus it remains for us to prove the following two
identifications, where the first one refers to the kinetic part of

L(0"Lp)(9,Le).  (3.42

9Ly d'L, the mixture potentials
L +L ="L,, (3.40
Yok, oL, @ Ly o'L, Ly d'L, o
Tl L ol - 9Ly L) (3438
and furthermore one lets the mixture potentlig transform 2 7t 1 o2
in the following way @d+#a): and the second one to their derivative part
|
2 27 ’ ’ ’ ’ ’ ’ ’ ’
1 T ( L10-' L2_ Lza Ll)( Llﬁ'“ L2_ Lzl?’u Ll)
e 2 (0"Lp)| dule= 0T = TR I T AR (3.430
Lab e dlydl. Li+'L5 04, (2'Ly"Ly)"+CL('LI+"LY)
|
with the functionsT,=T,('L,,’L,) being given by d'Ly L,
- L9 (3.45h
T,='L2-3'L3, (3.443 2 2
Ja'L 'L
T,='L2-3'L2 (3.44b 2o 2., (3.459
dLq L,
The desired proof for the equatio(®43, (3.44 strongly , ,
relies now upon the property of quasilineari®.40 of the J L2 ng (3.459
mixing transformations. Indeed this property is the definition L, W '

for the homogeneous functions of the first degree and it is

self-evident that our mixing transformatiofa] (3.22 are

Here the functiong,,(L4,L,) andgg(L4,L,) must be homo-

just of this type[together with the Lorentz transformations geneous of degree zero
(3.26)]. But this observation leads us also immediately to the

desired verification of the first requiremei®433. The rea-
son is that the homogeneous functidids40 could be de-
fined equally well as the solutions of the following system of
partial differential equations:

JL, Ly
=7 0w
1

LT (3.453

Gy e

Ly "ZaLz -0, (3.463
d9s . 99s

Ll5_|_l 207_|_2 =0, (3465

and must obey the constraint
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Ow—9s=1. (3.47)
But clearly our structure functiong,, and g5 (2.56),(2.57)
are just of the required type.45—(3.47) and thus the first
condition(3.433 is satisfied almost trivially.

On the other hand, the second conditi@®3b involves

the second-order derivatives of the homogeneous functions
"L, which suggests to consider the second-order counterpart

of the first-order relatiori3.40:

21 192/

0

J*'L

2 a a 2 a
_

LGzt o, e,

(a=1,2) (3.48

PHYSICAL REVIEW A 63022112

2L, )
W:SaL y (3493
2L,
aLlﬁLzz_SaLlLZ’ (3496
aZ/ I—a )
W = Sal-l- (349@

For the special case of our mixing gropf] (3.22 the func-

tionsS,('L4,’L,) are found by direct computation as

Ta

Sa=(\e— 1) 'Lara 23,
a ( * ) a(,Li"',LS)S

(3.50

with the functionsT, being already specified through Eq.

which holds quite generally for all quasilinear functions. But(3.44). However, the special shape of the second-order de-
this forces the second-order derivatives of the new amplirivatives(3.49 together with the present res(®.50 recasts

tudes into the following formg=1,2):

O

now the second requireme(8.43h into the form

('Li+'LY)?

(LlauLz_LzaﬂLl)(LlaMLZ_ LZ&“L1)= -

X ("Lyd" Ly—"Lyd" Ly).

Fortunately this is rather a triviality since it is again the ho-

Ne—1o,(2

Ll/L2)2+C2(/L§+/L§) )2'(,L1(9,LL,L2_,L2£;,U,,L1)
*

(3.5)

the framework of the nonrelativistic limit where the relativ-

mogeneity of the mixing transformations which lets the de-istic system (3.8) in its time-independent specialization

rivative terms transform in the following pleasant way:

1
L1&ML2— LZ&MLl:D_L(,LlaM,LZ_ 'LZ&M’Ll)
(3.52

with D being the determinant of the Jacobian
a'L,
Ly |°

For our special case of mixing gro@ip] (3.22) one finds by
direct computation

o _ Lk Li+L5
oLk, LI+LY

(3.59

which then immediately validates the remaining claBrb1)
[observe here also the relationship between the mixture i
dex o, and group parametex, (3.24 and the kinematical
invariant(3.30].

Thus the proof is perfect and the mixing grofp] has

n_

adopts the well-known Schdinger eigenvalue formi15]
ﬁZ
_WAL1+(EB,1+VC+V1)L1:01 (BSSa
2

h
_mAL2+(EB,2+VC+V2)L2:0' (355[:)

Here one imagines the external electromagnetic potential
A, (3.2 to be given in form of some binding potenthk
(e.g., Coulomb potentialconfining the two particles to the
vicinity of an attractive force centde.g., the nucleys fur-
thermore the mixing potentialg, are defined simply by

ﬁ2

“om

Vv, (3.56

andEg , are the binding energies. According to the present
results, the exact solutioris, (1) of the coupled Schidinger
system(3.55 can be obtained by first solving the ordinary
Schralinger equations with vanishing mixture potentials
(Va=0)

been actually identified as the invariance group of the ampli- 2

tude systen(3.8) with the invariant form of the mixing po-
tentials being given by Eq3.13. The presence of the mix-
ing potentials in the amplitude syste8.8) is necessary in
order to achieve the effects @intifusion and separation as

pictured in Fig. 3. This becomes immediately evident within

h
_mA(O)Ll+(EB,l+VC)(O)Ll:O1 (3573

2

B (0) (0)
— o AOLo+ (Ep ot Vo) OL,=0,  (357b
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FIG. 4. Separation potentiale-{ = +1). For positive mixtures
(o, =+1) the amplitudeseparation[see Fig. &)] is achieved by
the specific shape of the mixture potentidlé, (3.13 or [V,
(3.56], which act as repulsive walls confining the first amplitlide
to the left of the wall and the second amplitudgto its right. The

amplitude field is confined to that side of the repulsive wall where
the mixture potential becomes attractive just in front of the wall

(choice of mixing parameteC, =0.02, potentiald/, measured in
atomic energy units 0é%/2az=13.61[eV]).

which is the nonrelativistic limit of the ordinary Klein-
Gordon systent2.51),(2.52), and then applying an appropri-
ate mixing transformation of the kind described abdve.,
O _,=L,). The resulting solutionk 4(F) must then be sub-
stituted into the mixture potentiald/,(f) [or V,(F),] and
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FIG. 5. Fusion potentialso, =—1). For negative mixtures
(o, =—1), the fusion of amplitudes comes about through the at-
tractive and repulsive actions of the mixture potentis, which
cause the amplitudes to deform into a common sh@iféering
only in sign:L2~L3). The mixture potentiaV/, for the first ampli-
tudel, (a) acts similar as aepulsived function and thus generates
the corresponding salient point bf, [Fig. 3(b)]. The second mix-
ture potentialV, (b) acts as arattractive § function but does not
generate a salient point fdr, [Fig. 3(b)] because the second am-
plitude L, is zero at the point wher¥, attains its minimal value

this yields the appropriate mixture forces to be applied for(choice of mixture paramete€, = 1.0002.

the fusion and separation effe¢t&gs. 4 and b Clearly it is

suggestive here to consider these latter effects as the RST
counterparts of the analogous effects in conventional quanmnixing transformations which thus turn out to be of the iso-

tum theory where they are brought about (ayt)symmetri-
zation of the two-particle wave functions.

D. Degeneracy

spectral type being frequently considered in soliton theory
[21].

Thus, e.g., for a static bound two-particle system, the
present mixture degeneracy is not broken in the analogous
way as the exchange degeneracy of the conventional quan-

It is important to remark that up to now we did neglect thetum theory is broken by the interparticle interactidasl0).

interelectronic interactiongof electromagnetic naturesee

This astonishing phenomenon is due to the fact that the ki-

Eq. (3.1). This, however, is not mandatory for the presentnetic fieldskK,, remain invariant under the mixing transfor-
mechanism of generation of exact solutions by means of theiations, just as is the case for the currepfs and scalar
mixing group; quite on the contrary: even if we take into densitiesp, [otherwise the relationshif8.15 would be in-
account the electromagnetic interparticle forces, the puresonsistent The mixture invariance of the densitigg fol-

state solutions of the Klein-Gordon systg@51) are still

lows directly from the fact that the mixing grodp] (3.22

connected with the corresponding solutions of the coupleds, by its very definition, the inverse of the groLiR] (3.20).

amplitude systen(3.8) by a mixing transformation. Surpris-

Therefore if the pure-state solutiod§)L, of the Klein-

ingly enough even if the interelectronic forces are taken intadGordon systent2.51) generate the densitié9p, according

account, the mass eigenvalukk, are not changed by the

to the prescription(3.16), then these same densitiéand
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therefore also the currents,,) are generated also by the It seems that in RST the mixture degeneracy cannot be
transformed solution ,:p,[L1,L,]=p[“L,,©L,]. The  broken until the exchange fields,, ,Q,, are taken into ac-
only difference to the situation with neglected interparticlecount. The reason is that the latter are able to modify the
forces (3.2 is that the kinetic fields contain now also the RST current§compare the simplified current3.15 to their
potential 'A,,, generated by the other particle, i.e., one hasgeneral form(2.27] and this may be understood as the true
now in place of Eq(3.2) RST analog of the redistribution of probability densities in
conventional quantum theorpccurring by means of sym-
metrization and antisymmetrization of the two-particle wave

Kau:%“aJr(ex)Au_ Ay functiong. Such a dichotomic redistribution of the densities
is not observabléwithin the framework of the conventional
(a#b), (3.58 theory) as long as the interparticle interactions remain

switched off. However this dichotomy becomes observable

where the single-particle potential#\,, are generated by when the interparticle interactions are switched(ew., via

ap

the single-particle currents,, (3.19 in the usual way: the observation of different frequencies of spectral lines due
to the atomicortho- and para-states.
O Aau =470y oy (3.59 Analogous results do hold also in RST: Here the mixture

degree of freedonfas being quantified by the value of the

Especially for a static bound system one introduces the mas;gmture parameteC, , or better\, (3.24] will not be ob-

cigenvaluesM.- throuah specifving the aauae scal ervable as long as the exchange interactions are switched
(:;958)vthrli)ugha ugh specifying gaug g off. In fact, in such a situation all mixtures share the same

single-particle densitiep, (2.21), current densitiesj,,
(3.15, and mass eigenvaluds, (3.60, which must be con-
i :MaCAt (3.60 ceived as the observable objects also in RST. It is true, the
L ' single-particle amplitudels, would be different for mixtures
with different mixing parametex, , see Fig. 3, but the am-
a A plitudesL , themselves are not counted as observable objects
(ty=d,t 14, =+1) in RST [recall here that the amplitude fieldmust be mul-
tiplied with an appropriate renormalization fac@in order
and thus the eigenvaluds, are seen to inherit their mixture to get an “observable” density,q,s (2.30]. However, when
invariance directly from the invariance of the kinetic fields the exchange fields are excited nontrivially, there no longer
under the mixing transformations. This invariance of the rel-exists such a nice integration const&t for parametrizing
evant physical variablesuch as densities, , currentsj,,,, the continuously degenerate mixtures. But what still remains
eigenvaluedV ;) with respect to the mixing transformations is the dynamical separation of mixtures of the positive and
[A] is what one may understand to be a kind of mixturenegative kind which are expected to be equipped now with
degeneracy. Thus we arrive at the result that this degeneracifferent mass eigenvalueM ,, densitiesp,, and currents
of the mixtures in RST survives the switching on of thej,, . This then is of course an observable effect, namely,
electromagnetic interparticle interactionsA(,) which, the RST counterpart of the breaking of the conventional
however, break the exchange degeneracy in conventionalkchange degeneracy by switching on the interparticle inter-
guantum theory. actions.
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