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Nonlinear quantum evolution with maximal entropy production
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We derive a well-behaved nonlinear extension of the nonrelativistic Liouville—von Neumann dynamics
driven by maximal entropy production with conservation of energy and probability. The pure-state limit
reduces to the usual Scldiager evolution, while mixtures evolve toward maximum entropy equilibrium states
with canonical-like probability distributions on energy eigenstates. The linear, near-equilibrium limit is found
to amount to an essentially exponential relaxation to thermal equilibrium; a few elementary examples are
given. In addition, the modified dynamics is invariant under the time-independent symmetry group of the
Hamiltonian, and also invariant under the special Galilei group provided the conservation of total momentum
is accounted for as well. Similar extensions can be generated for, e.g., nonextensive systems better described
by a Tsallisq entropy.
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I. INTRODUCTION tion, of a form closely related to the ansatz of R (but
not in the Lie-Poisson clagswhich features a number of
A number of recent, independent experimeft$ have rather intriguing properties. In particular, pure states still
provided impressive bounds on possible deviations from g@ropagate unitarily into pure states according to the usual
linear and unitary propagation of pure quantum states, atime-reversiblg Hamiltonian dynamics. The same is true of
least on a laboratory accessible space-time scale. The limitaixed states characterized by an initial equiprobable distri-
imposed in this way on potential generalizations of the stanbution on a(finite) set of uncorrelatedorthogonal states.
dard unitary quantum equations of motions, as sought in reNonpure states evolve so as to maximize the entropy produc-
lation to Hawking’s blackhole evaporation procd®4, are  tion at each moment in time, and to reach stationary states of
likewise severe. Certainly, there always remains the possibilmaximum entropyor minimum entropy production, accord-
ity of modified dynamical laws on thénaccessiblePlanck ing to Prigogine’s nonequilibrium principl&]) on the short-
scale[3], as well as under the extreme physical environmengst path in the appropriate state space. Precisely, mixed states
characteristic of singular cosmological phenomena. Relatedrbitrarily distributed on a finite set of uncorrelated states
models of open system dynamics due to alleged statisticavolve into mixed states distributed on an equal number of
perturbations, e.g., from the space-time foam, have enjoyedncorrelated states, have a time-dependent eigenspectrum,
considerable attention latefy#]. But if the unitarity of pure-  and eventually attain stationarity on a subset of energy eigen-
state propagation holds under universal conditions, one istates. A similar statement can be inferred, by extension, for
necessarily led to a quest for genuine nonlinear extensionsixtures of an infinite set of uncorrelated pure states. It fol-
for isolated systems, possibly involving an explicit arrow of lows as well that the probability distribution at equilibrium,
time. Indeed, it was pointed out in a fairly general ansatzon (a subset ofenergy eigenstates, has a canonical-like de-
[5,6] that if the pure states happen to be attractors of a norpendence on the energy eigenvalues. For mixtures with an
linear evolution, then testing the unitary propagation of purenfinite energy range, the corresponding temperature is, of
states alone cannot rule out a nonlinear propagation of mixeourse, strictly positive, whereas for mixtures of a finite set
tures. This situation was noted recently in the context ofof pure states the stationary state may display a “negative-
certain nonlinear Lie-Poisson dynamif8], wherein pure temperature” distribution, in analogy to systems with a
states still propagate in the usual Hamiltonian way, whilefinite-dimensional state space. The above-mentioned proper-
density matrices evolve nonlinearly, but preserving a timeties are endorsed by the positivity of the underlying evolu-
independent spectrum. Unfortunately, the underlying physicéion equation, which ensues by construction despite the high
remains rather obscure in these theories, and the selection dégree of nonlinearity involved. The nature of this essen-
particular realizations relevant to various experimental settially irreversible propagation becomes evident in the close-
ups is, in general, a matter of guesswork. to-equilibrium limit, when the matrix elements of the density
In the following we show that a physically meaningful operator between energy eigenstates are found to undergo
nonlinear extension emerges when the fundamental postgimple exponential decays to the canonical equilibrium val-
lates of quantum mechanics are supplemented by the firstes. Finally, propefnonrelativisti¢ invariance and conser-
and second principles of thermodynamics, at the sole exvation properties under the symmetry group of the Hamil-
pense of ignoring the constraint of a linear, unitary evolutiontonian are also accounted for. However, in the absence of an
in time. The result is a largely irreversible, highly nonlinear explicit general law of entropy increase, the time scale for
generalization of the nonrelativistic quantum Liouville equa-thermal relaxation is set by one multiplication factor, a scalar
functional, which is yet to be given a specific expression.
Unlike the nonlinear Lie-Poisson dynamid$], our
*Email: hnmg@soa.com framework apparently challenges the notion of separability
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of isolated, noninteracting systems, the lack of which hadt can be immediately verified that the superopera@tanaps

long been thought to be unacceptaf8é We argue, never- Hermitian operatorst=a' into Hermitian operatorg= 8"
theless, that in a nonlinear theory it is necessary to refine the a| 4) if and only if it is tilde symmetric, A=A. For a
operational definition of isolation, and to acknowledge thatsyperoperator generated by a linear operator, such as in Eq.
the mutual isolation of two noninteracting systems prohibits4) apove, the tilde conjugate is given by

entanglement, if individual time-translation invariance is to

be preserved. When this restriction is properly taken into f&|a)=|aAT). (6)
account in the formulation of the corresponding equation of

motion, separability can be easily recovered. On the othein particular, for the Hermitian observab® it reads

hand, the case where noninteracting subsystems are allowed

to develop correlations spontaneously and eventually ex- 6|a)=|a0). !
change energgheaj is shown to correspond in our ansatz to

the phenomenon of ideal thermal contact. From a preciséhe tilde operation is distributive against the addition and
technical perspective, the effect has its origin in that the seamultiplication of superoperators, AG-B)=A+B, AB

ond principle applies, as usual, to the total entropy of a cOm=AB, and is antilinear against multiplication by scalars,
pound system and not to the entropies of individual SUb'(f’aI)=a*Z\

system_s.._Thls necessarily results n .SUCh a redistribution o Let us now consider a massive isolated system character-
probabilities and energy as to maximize the overall entropylZe

In physical terms, an ideal gas is allowed to relax spontane: d by an energy operatgamiltonian H and a state op-
phy » an laeal g P erator y (density matrixp=yy'), in an inertial reference
ously to thermal equilibrium.

system where its center of mass is at rest. We wish to find an

The formalism can be adapted straightforwardly to COVerequation of motion for this system which is first order dif-

non_standa_rd forms for the entropy and energy fur.“:t'on"ils'ferential in time and such that the following hold.
As immediate examples, we construct a generalization of the (1) Probability is conserved:

Lie-Poisson dynamics with maximal entropy production and
a nonlinear extension of the standard von Neumann evolu- d d
tion with maximal increase of the nonextensive Tsatiis a(ﬂ 7)=aTr(p)=0 (8
entropy[9].

or
II. MODIFIED EQUATION OF MOTION

. . . . . . d
Following an earlier suggestidi.0], the state of a quan- (Yly)+(y|y)=0, y=-—1. (8a)
tum system will be represented by a generalized ‘“square dt

root” y of the density matrixp, defined by (2) Energy is conserve(first principle of thermodynam-

p=r7" (1 o9
In analogy to the common terminology, here the operator E _E _
(not necessarily Hermitiarwill be called a state operator. dt(7’|H|NY)_dtTr(Hp)_0 ©)
Note that the above decomposition is always well defined,
although not unique, for any Hermitian and positive definiteor
p. On the other hand, to any given there corresponds a ) .
unique Hermitian and positively defingd We also adopt (y|H|y)+(y|H|y)=0. (9a)
the standard inner product on the associated Hilbert space of o N
operators, (3) The entropy production is always positiysecond
principle of thermodynamics in nonequilibrium foym
(Bly)=Tr(B"y), ¥y
such that fory normalized, ¢|y)=Tr(y"y)=1, the average gt S(0=0. (10
of an observabl® becomes the bilinear form
or
(7|0l y)=(y"0y)=Tr(Op), 3
with O the superoperator defined &) S ==[Tr(pInp)+Tr(p)]
0ly)=|07). @) = =[Ny M+ lIn(yyH])
It is further convenient to define the tilde conjugdteof T+ ()]
an arbitrary, and not necessarily linear, superoperadrl], =0. (108

by
5 where we adopt the standard entropy expression for a nor-
(Ala))T=A]a"). (5)  malized statd Tr(p)=1]
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S(t)=—kgTr{ p()In p(t)] hence inequality10g is satisfied provided
= —kg(y(O[IN[ ¥ () ¥ (DT (1)), (11) 0=0. (17)
with kg the Boltzmann constant. In deriving expressiofil5) we used the fact that fg®) as in

In order to construct the desired equation of motion, WeE(q. (16), and Ref and & given by Eqgs.(14), it is also true
find it convenient to consider a stronger form of the secongnat

principle, by requiring that the entropy, as a functional of
y, increase in time along a path of maximum ascent. In other (yIH|6)=0, (y|6)=0. (18)
words, let the entropy productiditg. (10a] be maximized,
for any given statey, against variations of the time deriva- Let us stress at once that, unlike the usual stationary action
tive y, under constrainté8a) (of conservation of probabilify ~ Principle, our variational principl¢Eq. (17)] does not in-
and(9a) (of conservation of energyNote that the variation Volve variations of functionals over an extended interval of
of y must avoid the simple multiplication by a positive sca- time, but only variations againstwhich are local in time, at
lar, i.e., a trivial norm increase, sincg(t) increases then €ach given instartt As a result, the Lagrange parametgys
unconditionally. Hence the entropy production must be’ and o need only be constants against these.sam'e varia-
maximized against the “direction” of, that is, against de- tions of y andnot constants of time ov itself. Likewise,
rivatives y of equal, but otherwise arbitrary norm. This condition (17) fo_r o only guarantees the. positivity of the
amounts to deriving the equation of motion from the follow- €Ntropy production, but doesot make S independent of
ing variational principle with constraints time. Hence all parameters in the equatlon of motit®) fo_r
v, as well as the entropy production and the entropy itself,
) ) ) are time dependent through their dependence .oRurther-
S LYINCyyDy1+[HIn(y ¥ y1+ 24 yIH| ¥] more, note that R& and ¢ are really functionals op andH
only, and therefore are invariant under transformations of the

) . . 2 .. form
20 (y[Hy) + (VI + (Vn]+ (vl =0.

(12

y—yU, UuT=uTu=1, (19

) . which leave the density matrix unchanged:
The variation refers tgs andy" only, and the form of the
Lagrange multipliers;, £, ando has been chosen for later p—p=yUUTy =yy". (20)
convenienceos and & are real scalars on account of their
corresponding real functionals, whilgis allowed to span Equation(13) will be invariant in its entirety under transfor-

complex values. Upon taking the variation ofand y', one mation (20) provided o and Im{ are likewise invariant as
is left with functionals ofp andH . In this case the entropy production

Eq. (15 will also be invariant under transformati@f0), as

_ 1 & should be expected on physical grounds.

ly)=-0 E[In(y'yT)]|y)+§H|7)+§| v) (13 Now let us introduce the equivalent equation of motion
for the density matrix, starting from

and the Hermitian conjugate. Using E@.3) in conditions

(8) and (9) immediately gives p=yy'+yy". (21)
1 (y|HIn(yy")|y)+E(Skg) It follows at once that
Re{=—-7 — , (14a :
2 AH? p=—o[pinp+Re{H-E,p}—pTr(pinp)]
S +io(Im{)[p,H], (22
é=+————2RelE, (14b _
ks(vly) where{,} denotes the anticommutator, as usual. The commu-

, tator on the right-hand side of E€R2) obviously provides
with (y|y) =1,E=(y|H|7)/(v|v) the average energy of the tho ynitary Hamiltonian limit, and the standard Liouville
SyStem,SBO the entropy, andAH2=(y|H2|y)—E2 the equation Suggests

squared energy deviation. One can also check condition

(10a and find that 1
o(lm¢)= 7 (23
S
—=0(66), 15 . TR :
kg o (6]0) (19 Setting now, for simplicity, Ré— ¢, the final form of our
equation of motion for the density matrix is found to be, in
16)=In(yy")|y)+2¢H|y) + &l y); (16)  common notation,
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_ Tr(pInp)
p=—0 p|np+§(p,H_E){H_E1p}_p%

M1, (29

where

_ _1T(H=E)pinp]
T )

o(p,H—E)=0,
Tr(p)=const (=1),

_ Tr(Hp)
~ Tr(p)

=const,

. d
S= —kB&TI‘(p Inp)=0.

The scale setting parameteremains unspecified so far, and

will be regarded in the following as a functional pfand

H. In order to secure that E¢R4) is invariant under a scaling

p—ap, it must be assumed that(ap,H)=0c(p,H), Iin

which case scaling invariance is verified straightforwardly.

PHYSICAL REVIEW 43 022105

servableO which commutes wittH, [H,0]=0, is not, in
general, an integral of motion. More details on the problem
follow in Sec. IV.

It is convenient to absorb the Hamiltonian commutator
term by setting, in analogy to the usual Heisenberg represen-
tation,

i = i
p(t)ZGXF{—%Ht}p(t)eX[{gHt . (25)
Upon substituting expressid5), Eq. (24) becomes
p=—0lpInp+{H-E.p}—pTr(plnp)l. (26

Now note that for; corresponding to a pure statE
=;2= |W)(W¥|, the entropy operator vanishes together with
the coefficient, i.e., pInp—0,(H—E)—0, such that
p()=0 andp(t)=p(0)=|¥)(¥|, if o is also finite in this
limit. From Eq.(25) it then follows that a pure state evolves
into a pure state according to the usual Hamiltonian law:

. (27

p(t)=p?(t)= exp{ —;,L— Ht |\P><\If|exr{;i—Ht

Another situation where the nonlinear evolution reduces to
the Hamiltonian law is found for uniforrtequiprobablgdis-

Moreover, since Eq(24) should not show a dependence Ontributions_pumf! when the gigenvalues of the density.matr.ix
the zero point of the energy, it may also be assumed, a@® @l identical. In this case one has the identity

above, thatr=o(p,H—E). For simplicity, it will be under-
stood throughout the following that Taj=1.

It is interesting to note that Eq24) can be recovered
from a modified form of the nonlinear ansatz proposed in

Ref. [5],

Tr(f(p))}

Lo a
p=zlpHl=F f(p)_pr)

with the obvious substitutions

a
70 fp)=pinp+{{H,p}.

IIl. FUNDAMENTAL PROPERTIES OF THE NONLINEAR
EVOLUTION

Equation(24) secures the Hermiticity and positivity of the
density matrix by construction, since it has been generated

from an equation for the state operatpr Conversely, Eq.

Punifln Punif:__punifTr(Emi_fln Hjnif) and {(pynis,H—E)—0,
from which pypif(t) = 0,punit(t) = punit(0), and

pumfm:exp[ = %Ht}pum«mex;{;—Ht}. (29

Recall that under unitary propagation the cardinality of
the set of nonzero eigenvalues of the density matrix is pre-
served in time. The same holds true if the density matrix
evolves according to Eq24). In order to see this, leP,
=|¢,){(¢#,|] be the projector on some eigenstate of

;(t),p~PV=pVPV, WherepV=Tr(PV;) denotes the corre-
sponding eigenvalue. Since BrP,)=p,, multiplying Eq.
(26) by P, and taking the trace yields

p,=—0olp,np,+a,p,Hp,l, (293

_ _ S(t)
a,(p,H)=2{(p,H)TIP,()(H-E)]+ IS (29b)

(24) can be easily decomposed into the corresponding equa-

tions for y and y' by using the substitutiop=y7': hence
the equations of motion fgs and y are indeed equivalent.
Assuming again a well-behaved Eq.(24) is seen to be

covariant under time-independent unitary transformations,

p—p=UTpU, H—-H=UTHU,

and, in particular, invariant under th@ime-independent
symmetry group of the HamiltoniaplJ,H]=0. But an ob-

Taking p,In p,—0 for p,=0 givesp,=0 andp,(t)=0, i.e.,
a zero eigenvalue evolves into a zero eigenvalue.

As an immediate corollary, density matrices with a finite
number of “occupied” state vector@.e., a finite number of
nonzero eigenvalugsire necessarily driven toward a station-
ary state with a thermal-like distribution on a finite set of
energy eigenstates. Indeed, in this case the entropy, as a
functional of the eigenvalues, and under the constraint of
conserved energy and probability, has a finite absolute maxi-
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mum. For this reason, and becaL'S(e)zo at all times, it

PHYSICAL REVIEW A 63 022105

sinceX, 7,6 7=3,p,=0. Also, Eqs.(29) give

can only evolve toward a stationary value less than or equal

to that maximum. But, as will be show8(t)=0 implies in
fact p=0 and[p,H]=0, and the stationary version of Eq.

(29 gives then the thermal-like distribution. Let us now

prove thatS(t)=0 implies stationarity. We begin by making
a change of variableg,=e™ 7», with ,=0, such as to
write

S
—=> ne (30)
ke 4

and

S_

=2 (o mm)e ==X e (3D

>

14

> [a,n,—a’le "=
14

_ 2 Ve s ap Ceve-ma | S
> 1 4HTH{P,(H-E)]}%e +4¢ TP (H-E)]e "+
v B B

—2{T{(H=E)pInp]+

01

where we have used the explicit expressiord ¢Eg. (143)].
Accounting for Eq.(34) in Eq. (33) shows that

S 1@ -,
_;2 7]Ve 77”'

ks (39

from which it follows thatS=0 if and only if ,=0 or,
equivalently,p,=0. Now consider that the system is evolv-
ing in an asymptotic region whers(t)—0 for all t>0.
Since necessarily,—0, ;must be driven by a unitary evo-
lution, p(t=t,)=U(t)p(to)UT(t). But for p,—0, Eq.(31)
gives Inp,=—a,,, which in turn shows that

P|np:_2 pvavpv
v

S
—2§2V pVPVTr[PxH—E)]—EV PP

_ S
—2{{Hp—E,p}~ 1, (36)
B
whereHD=EV_PVTr(Pi-|) is the diagonal part oH in the
eigenbasis ofp, [Hp,p]=0. Introducing the above result
into Eq. (26), one is led to

S
[zmTr[PxH—EneM e
B

S\2 S S
k—) —4Ti[(H— E)zp]—4€k—Tr[(H— E)p]l— (k—)
B B B

n,=—oln,—a,], (32

which taken into Eq(31) produces

" o> [n2—a,n,le
B v

1 .
=02 [a,n,~ajle 7+ =2 (n))e 7. (33

Further, use of the explicit expression fey [Eq. (29)], will
show that

2
e 7

2

(34

—a¢{Hnp 0}, (37)

with Hyp=H —Hp the nondiagonal part dfl relative top.
But Eqg. (37) cannot generate a unitary evolution unless
Hyp=0, which implies that stationary entropy over an ex-
tended period of time is equivalent to

p=

Hp=H; (38)
hence[ p,H]=0 andp=0. In other words, the density ma-
trix of the system{also see Eq(25)] is stationary, and also
diagonal over energy eigenstates. The explicit form of the
occupation probability corresponding to &occupied en-
ergy state of energi, follows from Egs.(29),

q

pSi= exp[ ~20°4E,~E)~ —|, (39
B

and can be brought to the recognizable thermal form

1
PiqZZe PEy,

(40)
with B=2¢%9andz= — BE+ (S*¥kg). Surprisingly, the pa-
rameter{ is seen to become at equilibrium, up to a factor of
2, the reciprocal temperatugg=1/kgT. It should be noted,
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nevertheless, that according to our initial assumptions Egmaximum, to be attained on a local maximum or a ridge of
(40) applies only to a finite number of energy eigenstatesthe entropy(hypepsurface in state space.

and therefore does not refer to a canonical equilibrium dis-

tribution. More pTECiSB|y, the sign @Fq, and of the gener- IV. LINEAR NEAR-EQUILIBRIUM LIMIT

alized temperaturel, is not necessarily positive. For in-

stance, let the occupied energy eigenstates be labeledrby It is natural to anticipate a linear limit for any nonlinear

order of their increasing enerdy,, and let their total num- dynamics evolving sufficiently close to a canonical thermal

ber beN. If the conserved average enerﬁys such that equilibrium state, at least in the high—temperature limit. For
the modified equation of motion proposed here, the linear-

ization process essentially entails the approximation of the

N — -
1 i i N
E= 2 E,, (41) entropy operator- p In p to first order inA(p—p®9) around
N ;=1 the target equilibrium state
1 <
a simple calculation will verify that the entropy will have an peq=ze_ﬁH, InZ=—pBE+ e (42

(absolutg¢ maximum, corresponding to the equilibrium state,
on a distribution characterized by a negatiff€, and hence
a “negative temperature.”

At this point, let us examine more closely the restrictive
assumption of a finite number of nonvanishing eigenvalues =
for the density matrix. It can be noted that this entered the ~Inp=2, =(1—p)", (43)
argument developed above solely by way of the related as- n=1N
sumption of a finite absolute maximum for the entropy, at the
given valuek for the average energy. However, there is goodwhich gives for;: pea+ AE in symmetrized form,
reason to assume that such an absolute maximum exists, at
least for a large class of distributions over in.fin‘ft'e sets of —(p®9+Ap)In(peo+Ap)
(orthogonal state vectors. If we can extend this “finite ab-

with a given average enerdyand reciprocal temperatu
We proceed from the exact expansion

]

solute maximum” conjecture to all distributions with a finite 1 _ 1 _
average energy, it becomes possible to generalize the results =51 (P Ap), nZl S(I=p®=4p)".

in Egs. (38)—(40) and state that the nonlinear dynamics de-

scribed by Eqgs(24) and (26) drives the system toward an (44)

equilibrium state on energy eigenstates, with thermal-like oc- o
cupation probabilities. Of course, when the range of occuSeparation of the zero- and first-order termg\ip yields
pied energy eigenvalues extends to infinity, relatiéh) can

no longer be satisfied for any fini&g and the corresponding —(p®9+ Ap)IN(p®9+Ap) = — p&9n p&9—1{Ap,In p&%
temperature can only be positive. B
Finally, we wish to clarify the consistency of the present +3{p°9A(Ap)}, (45

nonlinear dynamics, which follows a path ofaximal en-

tropy production, with Prigogine’s celebrated principle of \yhereA (A p) represents the collection of all terms first order
m|n|mumentropy production. Let us recall that, apcordmg toin Ap from the infinite sum on the right hand side of Eq.
the latter, physical systems evolve toward stationary states = . :
which have minimum entropy production compared to(44). In order to calcula'fe\(.Ap), it |§ Conllenlent to define
slightly displaced neighboring states. Given that the entropyhe superoperatdR and its tilde conjugat® by

is a convex functional on the stateonfiguration space,

bounded from above for any finite average energy, this im- RA;:(I —peq)A; (463
plies that the physical evolution will take the system toward
a local maximum of the entropy or at least toward a ridge. ﬁA;: AF(I —p%9) (46b)

Indeed, in a small enough vicinity of a maximum of the
entropy, or of a ridgeany evolution with positive entropy

production will eventually enter a regime wheBalecreases
in time until it vanishes in the equilibrium state or is mini- ) — ) )
mized for the stationary states corresponding to a ridge. Th&n€ expression oA (Ap) can now be obtained in the com-
variational principle[Eq. (12)] only complements this pic- Pact form

ture by stating that the evolution should follow thkortest "

routeto a state of maximum entropy, i.e., theection of the 1

n—1
N - mpnN—-m—1A -
physical path is selected from among all directions satisfying A(ap)= z‘l n mZ‘O RTR Ap. (47)

S=0 by the requirement that the increase in entropy be
maximized at each point in time. In this case it can be saidBut R has a well-defined inverse, and the superoperator sum
that the entropy production evolves toward a minimum of thein the above expression can be rewritten as

[R,R]=0.
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* BHn-1n-1

- > (RR7H™

n=1 N m=o

n—-1
(I—(RR™HM

=(I-RR™H71 2,

n

=(R-R) " In(I-R)—In(I-R)]. (48

Also taking into account that
Ap-p®i=(1-R)Ap

pd-Ap=(1-R)Ap, (49)

and

In(l-R)=—BH—(InZ)l, In(I-R)=-BH—(In2)I,

(50)
where
HAp=Ap-H,

HAp=H-Ap, (51)

we are led to
%{peq,AmF)}:—%H—%coﬂ?(H—H)}AE
(52

Returning to Eq(45), the first-order im;approximation
to the entropy operator now reads

—(p®9+Ap)In(p9+Ap)
=—p®n p®9— g{A;H —E}

q
S B B

e E(H—H)cotr{E(H—H)}Ap.
(53

Note that taking the trace in E¢3) givesS(t)~S*9in this
regime. Similarly, a simple calculation shows that 3/2.
Assuming also thatr~ ¢°%= constE,8), and inserting ev-

erything into Eq.(26), yields the linearized equation of mo-

tion
p= —oqu(H—ﬁ)cotr{g(H—ﬁ)}A; (54)
or
Ap= —oqu(H—ﬁ)cotr{g(H—ﬁ)}A; (55)
The general solution of Eq54) is given by

p(t)y=e " Ble=ClH(0)+(1—e 7 BYped  (56)

PHYSICAL REVIEW A 63 022105

where

G=aeq(,8)§(H—F|)cotr{§(H—ﬁ)}—I. (57)

We observe immediately th& is tilde symmetric; hence it
maps any Hermitian operator into a Hermitian operator, and
that it preserves probability, since [Gp]=0,
Tre % p(0)]=Tr{p(0)]=1. This is entirely sufficient to
secure the Hermiticity op and the overall conservation of
probability. Unfortunately, the action @& does not always
preserve positivity, an@® cannot be identified as a generator
of Lindblad type[12]. But the positive domain o6 does
include the small neighborhood pf?identified as the near-
equilibrium domain. Indeed, note first that in the diagonal
representation of the Hamiltonian, the matrix elements of

?’(t)=e‘Gt;(0) obey the simple damping law

PO ()=e Bl (0), (58)

where thetemperature-dependgmelaxation coefficient,,
is given by

yﬂy<ﬂ>=aeQ<ﬂ>[§(Eﬂ—E»cot{?(EM—Evﬁ—1},
(59

Yr=0, Y= Vur-

If we now consider an arbitrary state vectdi’)
=37_«E,|¥) E,) and the matrix element

(UIpPOI¥)= 2, (VIE,)p,(0)(E,|V)

[

+M;=0 RE(V|E,)p,,(0)(E,|W)]e T,
m=v

(60)

it is easily seen thap(t) remains positive fot>0 if the

initial off-diagonal matrix elementg,,,(0) (u# v) are suf-
ficiently small, as expected for the near-equilibrium regime.
On the other hand, one can resort to the equation of motion
for the state operatoy [Eg. (13)], and derive a linear ap-
proximation inAy=y—°% and Ay'=y"—(4*9" by the
same procedure as above. The resulting expressions read

Ay=—|| oB+ ;,L— (H-H)Y(R-R)!
X(vquv“rAV(veq)T)}yeq, (619
MT:—(UE—,L— (¥ TH-FR-R)™*
X (y*IA YT+ Ay(y2H )], (61b
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and show that, up to first-order terms Any, ergy [Eq. (63)] is seen to be just a particular realization of
. . oot ; this feature. Furthermore, for operators satisfying commuta-
p(1)=p i+ Ap~[y*H+Ay][(¥*H'+Ay'],  (62)  tion relations of the forniH,A]=¢A, Egs.(64) lead to

such thatA p=A y(y°% "+ y#9A ' evolves according to Eq. _ Be i
(55) derived above. Furthermore, the conservation of energy As(t)=—|a®*4(B)(GC - |1 7e|A), (66a
follows from
- _ Be i
Tr(HAp) = — o®9Tr(HAp), 63) AA(t)=exp{— aeqw)(e(7 +1)—g8HAA(0),

upon recalling that, according to the original equation of mo- (66h)

tion, the initial state necessarily has the same average energyhere G(x) + 1=x coth().

E as the asymptotic equilibrium state. The initial conditions  Equations(65) and (66) allow us to provide a handful of
for Eq. (56) are so restricted to THAp(0))=0, which of instant examples.

course implies TiHp(0))=E. (1) A two-level atom, with the Hamiltonian

As a general feature of the underlying physics, it follows _
from Egs.(56), (58), and(59) that the greater the energy gap H=E4|1)(1]+E2l2)(2],
between two energy eigenstates, the faster the quantum cqind the occupation numbers
relation between them is destroyed as the system evolves
towards equilibrium. On the other hand, the relaxation of the ni=(1lp|1), ny=(2[p|2), ni+n,=1,
occupation probabilities for each of the energy states pro-

ceeds at a common rate, independent of the correspondir%’eys a simple relaxation law which follows from Eg5):

energy level, since P (D)=[e FEZ](1—e "B hy=— o4 B)(n,—nSY B)), (673
+e "B, (0). As acorollary, the same holds true for
the average of any observallBewhich commutes with the n,=—o®4B)(n,— S B)). (670

Hamiltonian, [H,0]=0, since (O(t))=Tr[Op(t)]
iTr[Oe*(”")H‘p(t)e(”ﬁ)'“] [see Eq(26)] will involve only  If Eds. (67) are rearranged into the kinetic form
p.,’S. The same result can be obtained in a formal manner

from a generalized Heisenberg representation for(&4), in Ny = ke + Koz, (683
which the observables evolve in time according to -
Ny =KyaNg—Kaay, (680
OL()=— Ueq(ﬁ)(G(é(H_ A) +|) the corresponding (therma) transition rates Kj;
2 =4 B)N5YB) andk,= Y B)nTYB), are seen to have,
i _ up to the factor o&r®9, an Arrhenius-like dependence on the
- %(H—H) Oa(D), (648  temperature.
(2) For a harmonic oscillator of unit mass and frequency
8 w, described by
OA(t)=eXp{— (req(,B)(G(—(H—ﬁ) +I) 2 2.2
2 g p—+ ®~q
i ~ :| 2 2 ’
— —(H—H) |t O,(0). 64b
FH- {0y (e (Pea=0. (@eq=0,

Here (H—H)O=[H,0], and the lower labeh means that ©N€ can apply Eq(66) to the annihilation and creation op-

all averages are to be calculated wilp(0)=p(0)—ped. ~ erators
From Eg. (64) above, it is immediate thafH,O]=(H ° D ° D
—H)0=0 yields a=\/ﬁ qa+i—|, al= VE a=i—|.
O,(t)=—0®90,(1), (658 to recover a coupled system of equations for the average
momentum and the average coordinate,
O, (t)=exd — a°%]0,(0), (65b) .
(p)=—¥(,B)(p)— w*q), (693

in agreement with the observation above. An unexpected

outcome of this result is that the average of an observable Nl — 690
which commutes with the Hamiltonian is conserved through- (@=(p)=w.A)a), (699

out the evolution, provided the initial average value is iden-where y(w,B) =c®*%B)[1+ G(BAhw/2)]. We recognize a
tical to the equilibrium average. In other word$),(0))  typical damped motion, driven by the classical Langevin
=0 implies{O)(t)=(0)°% In fact the conservation of en- equation
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a)+ 2 BN+ [ 02+ y2( o, -0, 70 and proves to be a Burnett-typ@r generalized Fokker-
(@+2y(@.p) )+ o™+ y(@.p) K@) (70 Planck equation. Note further that the dependencé obn

which is obtained by elimination of the momentum variablesmomentum and coordinate variables can be separated in Eq.

from Egs.(69). (76), and one can integrate over momentum to obtain an
(3) For the nonrelativistic free-particle Hamiltonian exact equation in coordinate space. It can also be safely as-
sumed that the momentum distribution does not deviate sig-
p? nificantly from equilibrium, such that one can write
H=om fa(p,r,)~na(r,0)fe%|pl),  where  ny(r,t)=n(r,t)

—neY(r t) is the deviation from the equilibrium value of the

localization probability, and®%(|p|) is the equilibrium mo-
i mentum distribution. In this case, in the high-temperature
(py=—0°Y(p)—(P)°], (71 limit, when only contributions to leading order j survive,

_ o _ _ integration over momentum leads apparently to a diffusion-
which shows &therma) friction force linear in momentum.  |ike equation,

When the initial momentum average coincides with the final
thermal average, one obviously obtains conservation of the o eq

' , ny,=D(B)An,— o Ny, 7
average momentum. More details can be extracted from the 2=D(A)AN, (BIns 70
Wigner function

Eq. (65 gives the relaxation law

with the diffusion coefficient

-

GGID=3 e<~ﬁ>d-f‘<5—g
q

. q 52
p+§>- (72 D(8)=0"YB) 5. (79

pa(t)

Differentiation of Eq.(71) on time and use of Eq$56), (58),  where it is taken into account th&k(2)= 72/6. But let us

and (59) yields recall thathy=(%2B)/(3m) is just the de Broglie wave-
length corresponding to the root-mean-square momentum

al

q

T

—oeq(ﬂ)(G<,8— _\/(52>eq, such that in fact_)(,B)=cre_q(B)()\T)2. It necessar-
m ily follows that the diffusion term in Eq(77) can give sig-
o . ~ nificant contributions only if the localization probability var-
i p-ql/- ¢ - ies substantially on the scale of the thermal de Broglie
+ % mlI\P™3 p+ 2/ (73 wavelength\ 1, regardless of the specific value af9(g).
But since states with such variations do not belong to the
But note that high-temperature, near-equilibrium regime, we are forced to
recognize that Eq(77) actually reduces to

fa(p.r )= e (mar
q

pa(t)

o
o)

A ERCIRIEDD e‘(”’”‘i'F( - ) fy=— o9 B)n, . (79

3 h

. q
X<p—§

and rewrite the right-hand side of E(73) in differential
form to obtain

3o
3|

. g The linearization procedure developed in this section can
p+ E> , (74  be extended without significant modifications to equilibrium

states other than the thermal canonical distribution. It can be
shown that the relaxation laws for the elements of the density
matrix in the diagonal representation of the Hamiltonian are
similar to those found here for the canonical case. A detailed
account of this issue will be given elsewhere.

pa(t)

T+EV*f =—¢g®d G'ﬁ—B”V*
Am'rA_U(B) |mp‘r

+1)f . (75)
V. SYMMETRY INVARIANCE, CONSERVATION LAWS,

. . . . . AND SEPARABILITY
The operatorial expression on the right-hand side is to be

understood in terms of the power expansi@(x)-+1 It was pointed out in Sec. Il that Eq24) is invariant
=xcoth®)=1+257_,(—1)" x@2n)(¥m? [13], where under any time-independent unitary transformations that
{r(s)=2y_,k % is the Riemann zeta function. Hence Eq. leave the Hamiltonian unchanged. It is also obviously invari-
(75) reads, in explicit form, ant against time translations, albeit this operation can no
longer be associated with a unitary transformation. The same

_ 5 * is not true, in this form, of time-dependent transformations
fat+ —-Vifa=0%4B)| — 1+22 Zr(2N) relating different observers in relative motion. But at least in
m n=1 the nonrelativistic case, this deficiency can be easily cor-
1B 2n rected so that invariance under the complete dynamical
X —5'Vr‘> }fA (76) group of the system is recovered. Indeed, let us rewrite Eq.

Tm (24) in the form
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E'=Tr{Hp'(t)]=E+iAa TLUM)UT(t)p’ ()]

) i
p=—alpnp+{D(p).pi=pTr(pInp)]+ [p,H], _
(80) =E—-a/(Cj)'—b (87
where D(p) replacesi(p,H—E)(H—E), and let us con- that a conservation law is required for eaCh. Unfortu-
sider the invariance conditions for E6B0) under a time- Nately, Eq.(24) does not account for such supplementary
dependent unitary transformationU(t), U (t)UT(t) constants of motion, and S|mple.algebra .reveals ings)
=UT(t)U(t)=1. As usual, the density matrix becomes = 4(p,H—E)(H—E) does not satisfy the first of Eqe84),

p'()=U(t)p()UT(1); hence despite an invariant Hamiltonian, since
UMI&(pH-E)H-E)JUT(D)

={(p' ,H-iaU(HU'(1)—E)

p' (H)=Ut)p(HUT(t)—[p"(1),UMUN(1)], (8D

while multiplication of Eq.(80) by U(t) on the left and

UT(t) on the right, followed by use of E481), gives X[H—iZU(H)UT(t)—E]
p'=—0olp Inp'+{U(t)D(p)UT(t),p'}—p'Tr(p" Inp’)] #{(p" H-E")(H-E'). (88)
i + o . Let us examine now whether modifying E(O) to in-
+ I, UHU (O +iAU(HU (D], (82 clude conservation of the quantiti€ brings about the de-

sired invariance under the transformations of the given Lie

Itis eas”y seen that E(ﬁ82) will regain the form of Eq(so) group. Let the conservation of eaﬂ? be added to the set of

providedH is invariant undetJ(t) in the customary sense, Cconstraints accounted for in the original variational principle,
such that Eq(12) is brought into the form

UHUT() +izUt)UT(t) =H, (83

; T ] - N
and it. in addition. 8 (YInCyyH 9+ (YIIn(yy") | ¥)+2Z(yIH[y)

UMD(p)UT(t)=D(p"), (843 +20% (yH[ ) + &yl ) + (MY +27(7|C)| v)

o(p.H=E)=0o(p’,H-E"). (84b) +<y|cj|'y>)+§('yl'w =0, (89)

In the absence of any evidence to the contrary, the functional . J. _

o will be assumed in the following to have all necessaryWith the new parameterg’ assumed real, since the corre-

invariance properties. sponding terms will not contribute to the Hamiltonian part of
From Eq.(83) it follows in the customary way that if the equation of motion. Taking again the variation with re-

U(t) spans a Lie group of orden, such thatU(t)  specttoy and y' yields

=exd (i/A)NK(t)], with \J,j=1,2, ... n, the group param- . :

eters and summation over repeated indices being understood, |:,__ | + -

» =—o|5[In +{H|y)+7'Ci|ly) + 5
then the corresponding infinitesimal, Hermitian generators 7 7 2[ (ry)IIn+ Ry +7 CJ|7) 2|7)
Ki(t),j=1,2,... n satisfy the familiar commutation rela- (90
tions

and the corresponding equation of motion for the density
i d matrix,
#[Kj(0),H]=—K; () =0. (85) _ |
p=—olpnp+{{(H-E)+ 7 (C;—(C))).p}
Note that a conservation law is not yet implied. But let us

i
assume further that the transformatidét) are such that —pTr(plnp)]+ %[p,H]. 91
. i .
U(t)UT(t)zg(aJCj(t)va), (863 Here(Cj>='_I'r[ij] is the conserved average ©f, ¢, and
7' are solutions of
U(t)Cj(t)UT(t)=c}C|(t)+fj, (86b) TH(H—E)plnp]+2Z Tr[(H—E)?p]
where all parametera), b, cj, andf; are real functions of + 7 Ti{{H—E,C;—(C)}p]=0, (929

the group parameteid and time, and th€;’s are Hermitian .
operators(observables In this case, if the conservation of TI(Cj=(Cj))pInp]—(i/fio) TH[C;—(C;),H~E]p]

energy is to be invariant under all transformatidngt), it + ¢ TI{C;—(C)),H—E}p]+ #'Ti{{C;—(C}),C,
follows from the expression of the transformed average en- J 17 ] 17
eray —(C)tpl=0, j=12,...n, (92b)
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and we have identifiedo(Im{)=(1/4), Re{—¢, & forj=12,...n,1=1,and?2,...n. We conclude that Eq.
=—[Tr(pInp)+2(Ref)E+27'(C;j)]. Equations (92) al-  (91) is invariant if and only if Eqs(83), (97), and(98) are
ways have solution, as the matrix of coefficients for the un-simultaneously verified, in which case the parameteand
knowns¢ and 7' is recognized to be the positively defined »' transform according to Eq$93). The generating varia-
covariance matrix for the Hamiltonian and the operays  tional principle,[Eq. (89)], is invariant, of course, under the
If we presume the invariance of the Hamiltonian as definedame conditions.

by Eq. (83), in accordance with the discussion above, it is Let us now substitute fdd (t) the special Galilei boost of
now straightforward to verify thatD=¢(H—-E)+ nj(Cj velocity 50,
—(C;)) is invariant as well in the sense of E@44a), pro-

i j - i NN
vided ¢ and %' change as U(t;vo)=exr{g(P-t—m-X)-vo , (99
{'=¢, (933 R
o , wherem is the total mass of the systei,is the position of
n''=nci+ial. (93D the center of mass, arfdl denotes the total momentum. Ex-

pression(99) obviously prompts the identificatiors; =P,
al=1, b=(mvy)/2, ¢;=5;, and f;=mv,, which, intro-
duced into Eqs(97) and(998), lead to the recognizable com-

<CJ>ETI’[CJp]=Tr[U(t)CjUT(t)p']:C}<Cj>’+fj . mutation relations

In deriving Egs.(93) use is made of Eq$86), and the fol-
lowing transformation of C;) under the action ob(t):

The complete invariance of E¢91) requires, of course,
that{’ and;y’ defined in Eqs(93) be solutions of the trans-
formed equationg92), obtained upon substituting’, E’
and(P)’ for p, E, and(P), respectively. But substitution p=—olpInp+{{(H=E)+ 71(P;—(P,)).p}
of p(t)=U(t)p’ (t)U(t), followed by rearrangement df
andUT over observables, and use of the relations

Subsequent substitution in E(1) gives the corresponding
equation of motion in the form

i
—pTi(pInp)]++[p.H]. (10D
U(tHUT(tH)-E=H—-E'+al(C;—(C;)"), (95a
Remarkably, we recover the celebrated result that the Galilei
U(t)CJUT(t)—<CJ—>=c}(C,—(C,)), i=1,2,...n, invariance of the appropriate nonrelativistic equation of mo-
(95b  tion is equivalent to the corresponding invariance of the
Hamiltonian, the conservation of total momentum, and the

obtained from Eqs(83), (86), (87), and(94), leads to commutation of the Hamiltonian and the total momentum
N . vo operators.
TI(H=E")p"Inp"]+2¢{ T (H-E")%p'] Equation (101) reduces to the original Eq24) in the
4 (n'cl+ za)TI{H—E’.C;—(C)'}p’ center-c_mf-mass referential, where only states corresponding
(mei+¢ahTi i=(C)'te'] to an eigenstate of zero total momentum for the center-of-
+ (i/ha)ajTr[[Cj —(Cj)",H=E"]p']=0, mass coordinates need be considered, and the dissipative mo-

(969 mentum terms vanish. It also retains the fundamental fea-
tures previously outlined for Eq24). In particular, it can be
checked that pure states evolve according to the usual Hamil-

TG =(Cy))p" Inp’ ]= (i) TALC;—(Cp), tonian dynamics, the entropy of mixed states increases, and

XH—E']p'1+{T{C;—(C;)' \H—-E'}p'] the nature of the asymptotic equilibrium states is preserved,
| | up to a slight change of form which accounts for the conser-
+(7"Cn+ @) TI{C;—(C;)".C,—=(C) }p’] vation of momentum. It is also evident that EG.01) is

invariant under time-independent symmetry transformations

which leave the Hamiltonian and the dissipaibiinvariant,
(96b) provided the time-scale parameterhas the same property.
In particular, if the Hamiltonian commutes with the total

The first of these equations displays the required invarianc@ngular momentum, Eq101) is invariant under finite rota-

only if the last term vanishes identically, which demands ~tions. However, as for the linear momentum, rotational in-
variance alone does not imply, in general, a conservation law

[Ci(t),H]=0 (97)  for the angular momentum. The latter can be brought into

view by requiring that the equation of motion for the density

for j=1,2,...pn, while the second equation is seen to bematrix be covariant with respect to all reference frames
invariant provided where the conservation of energy is a valid physical law. In
particular, we should consider translations to observers in

[C;(1),Ci(1)]=0, (98 uniform rotational motion around an axis at rest in some

—(ilho)a Tr[[C;—(C;)",C;—(C})']p']=0,

i=12,...n
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inertial frame. The rather cumbersome details of adding thisng or rejecting the conjecture that an isolated, perfectly ideal

supplementary constraint will be left aside, since nothinggas can undergo relaxation toward equilibrium.

new will be gained for the formalism. We can provide formal support toward the positive as-
A more interesting lack of symmetry for Eq101), or  sumption by pointing out that the effect of entropic entangle-

better, the simpler Eq(24), lies concealed in the apparent ment does not necessarily interfere with the concept of sepa-

absence of separability. Indeed, let the system described byble evolution for mutually isolated systems. First let us

the HamiltonianH be composed of two noninteracting sub- note that explicitly specifying an adiabatic separationthe

systems, such that =H;+H, and[H;,H,]=0, and con- thermodynamic sengeof the noninteracting systems, and

sider the situation of a separable initial stapg0) hence allowing for separate conservation of energy, removes

=p1(0)p,(0), of energyE=E;+E,. Direct inspection of most of the entropic entanglement. In this case the resulting

Eq. (24) shows that the energies of the two subsystems carequation of motion will display distinct’s for each of the

not be separately conserved, and a completely separable ssystems, but a common time-scale parameter, i.e.,

lution is thus prohibited. But we also observe that lifting the _

constraint of separate conservation of energy allows a pseu-  p=—o[plnp+{{H;—E;,p}+{{H,—E,,p}

doseparable solutiop(t) = p41(t) po(t) given by the coupled

i
system —pTr(pInp)]++[p,HitHal, (103
- Tr(Hipy) Tr(palnpy)
p1=—0o|pilnpy+{ Hl_Tpl)-pl TP T T ) with
LTS (1023 £ =) onst, =1, 2
7 Lp1,Hal, o Tr(p) LT

As before, it proves possible to extract a pseudoseparable

pr=—0 solution p(t) = p4(t) p,(t), but Egs.(102) are replaced by

Tr(Hzp2) ] Tr(paln py)
Y P2

p2ln pa+ §| Ho—

Tr(p2) Tr(p,)
! o Tr(pslnpy)
+g[p2,H2]. (102b p1=—0 pllnpl+§l{Hl_El1pl}_plTpl)
. S i
In this case probab_lllty is |nd§pendently_conserved for each +g[P1,H1], (1043
subsystem, since Tp() =0, while energy is only conserved
globally,
o= — 0| poln o+ Lo Hy— Epopa}— Tr(pzln p2)
Tr(Hypy)  Tr(Hgpy) _E p2=—0| paIn pr+{xH—E5,p21—p> Tr(oa)
Tr(p1) Tr(p2) i
. , ) i _
The coupling between théoninteracting subsystems ap- ﬁ[pz’HZ] (104b

pears to be as instantaneous and nonlocal as usual quantum

entanglement, but, unlike the latter, it involves an unortho-where this time the; parametersi,=1, 2, will be found to
dox exchange of energy. The significance of this unusuaflepend only on the correspondipgandH;, in exactly the
outcome follows from the observation that, according to Eqsmanner obtained for a single isolated system. Yet the two
(102), the equilibrium of the compound system is attainedevolutions remain tethered by the time-scale parameter
for values ofc and{ common to both subsystems, hence forthus retaining a weaker form of entropic entanglement. The
a common generalized temperature. Imagine now that theimple presence of other noninteracting, adiabatically sepa-
initial states for the two subsystems are chosen as individuahted systems appears to alter the time scale of dissipative
equilibrium states with different corresponding temperaturestelaxation for any given system. & is assumed variable in

It follows that the dynamics given by E¢R4) will drive the  time, e.qg., through a dependencemnthis influence will be
total system toward a new state of equilibrium, with a tem-time dependent unless all other systems have reached equi-
perature common to both components. We cannot but coribrium. But since o does not affect the nature of the
cede the obvious similarity of this unconventional effect withasymptotic equilibrium state, the equilibrium of any one sys-
the classical process of equilibration by thermal contact. Iltdem will not be disturbed by other systems, and will display
origin lies in the very assumption of a maximal entropy in-an individual temperature determined solely by the corre-
crease on which Ed24) was derived. Indeed, even when the sponding energy content.

entropy of each subsystem is already maximal under indi- A careful examination will trace the above type of non-
vidual isolation, if states of larger total entropy are availableseparability to the fact that the corresponding variational
probabilities and energghea) will be necessarily redistrib- principle selects the direction of maximum entropy increase
uted so as to enforce a further increase of the overall entropyay referring to the time derivative of the toténtanglegl
Whether this entropic entanglement, or ideal thermal contacstate operator, and not to disentangled, individual state op-
is or not an element of reality appears equivalent to accepterators separately. However, this pitfall can be avoided if it is
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recognized that true mutual isolation precludes entanglement 1 TH{(H;—E)piIn pi]
on invariance grounds. Indeed, regardless of the nature of the o,=0(p;,H;)=0, ¢(=—= 5
underlying dynamics, the evolution of two mutually isolated 2 T(Hi—E)?pi]
systems should remain invariant unaaferytransformation

pertaining to the individual symmetry groups. In particular, it Tr(H,p;)

should be invariant under individual time translations. Since i:Tpi):COHSt.

entangled states certainly do not possess this invariance, they

do not describe truly isolated systems. In other words, th@pviously, the invariance of the nonlinear dynamics under
restricted subspace of the state space that can be spannedth¥ symmetry group of each component subsystem is so re-
the dynamics of mutually isolated systems should contairstored, provided ther;’s are also invariant.
only nonentangled states, and the evolution of each of the
factor states should be driven independently. In our nonlinear
setting, where this subspace is selected by means of the gen-
erating variational principle, this restriction has to be cor-
rectly built into the variational functional itself. Hence one  The framework developed in the previous sections can be
has to account both for individual conservation laws, excludeasily expanded to accommodate nonstandard entropy func-
ing thus any energy exchange, as well as for vanishing enionals and/or energy forms with a nonlinear dependence on
tanglement. The latter imposes a separable state operat@fe density matrixp. This generalized formalism can then
¥(t)=y1(t) 72(1), and also requires that the entropy produc-provide nonlinear extensions for, e.g., the Lie-Poisson dy-
tion be maximized separately with respect to variationg,of namics or a standard Hamiltonian evolution supplemented by
andy,, i.e., theo term in the variational principle should be @ nonextensive Tsallis entrofi@], appropriate for systems
replaced according to with fractal properties. Here we sketch only the derivation of
the generalized equation of motion, since a detailed analysis
2 . ) ) 2 ) ) exceeds the purpose of the present work.
—=(YY)—=—(yrval v1v2) +—(v172l v172), To this end, let us recall a Lie-Poisson equation of motion
7 o1 72 of the form

VI. GENERALIZATION TO ARBITRARY ENTROPY
AND ENERGY FUNCTIONAL FORMS

with eacho; a functional only ofy; andH;. But then the

o - . i N
variational principle takes the form p=— %[p,H(p)], (107
8 (v2l v2)F1+ (y1lv1)F2}=0, (1053 A
_ . _ whereH(p) is in general a Hermitian, nonlinear functional
Fi= ilIn(yiyD v+ ilinCyiyD v + 28 (il Hil ) of p. The energy conservation law is now replaced by
+208 ([ Hil y) + L&) + & (il )] T A(p)p]=0,
+E('7i| v, i=1, 2, (105p  or, in terms of the state operatgr
O
where (y[H(p)[ )+ (¥IH(p)|7)=0. (108
B S, The law of probability conservation, on the other hand, re-
E =&+ | & E,— —) mains unchanged since Bi=0 or
Kg( 72|7’2)
B s, (¥ly)+(vly)=0. (109
E=6+ §+gE——>.
2o T ke(yalm) Let us search now for a nonlinear evolution that observes

) ) the above conservation constraiftsgs. (108 and (109],
Independent variation of;, and y, followed by extraction and is also subject to a second principle based on some un-
of the Lagrange parameters from the corresponding consegpecified, positive definite entropy functionaB/kg
v_ation cond!tions, now IeTads to the desired separate equa:Ty[3()], such thatS=Tr[(83/6p)p]=0 or
tions of motion forp;= v,y ,

Tr(piln p;) |2 )+< 5§") 0 (110
. iin p; — —|v|=0.
pi=—0i| piln pi+ {i{Hi —Eq pi} = pi ——— Y5 Y T\ Y60 Y
Tr(pi)
i ] Here the operatof(p) is assumed to be Hermitian, and
+—[p;,Hi], i=1.2, (106 2 . " : o .
f (6S/ 6p) denotes its Hermitian functional derivative with re-
spect top. The corresponding variational principle is now

with written
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{5

+27 (Y)Y + EL (Yl + (¥ )]

59
Sp

y —|v|+2L(A(p)|y)

Y5,

2 ..
and can be verified to generate the equation of motion

p=o

sS . . 8S
~ oo P TR = (RpDpi ) 50

+ o (p)], (112

where

Tr(Ap)
A=)

and

_ LR —(H(p)))(55 3p))
2 (A~ (AN

a=a(p,H(p)—(H(p)))=0.

We note that if §S/8p)p=0 for pure statesp=p?, then

PHYSICAL REVIEW 43 022105

for given realq, the result will be a nonlinear extension of
the von Neumann dynamics under Tsatjithermostatistics,
which reads, after a few elementary manipulations,

q g Tr(p9 [
g—1P TAH-Bpl - o e T le L

(114

p=-o

where

1 g T(H-E)pY
20 1T{(H-E)%]

Situations where the standard averages have to be replaced
by q averages can be approached in the same fashion, by
appropriately redefining the conserved functionals.

VII. CONCLUSION

We have constructed and analyzed a nonrelativistic non-
linear extension of the quantum law of evolution, which ac-
counts for the second principle of thermodynan@aoslis not
at odds with the factual linearity of pure-state propagation.
The theoretical existence of such an extension confirms that
the linear and unitary evolution of pure states is not in itself
sufficient proof for the general linearity of quantum mechan-
ics [5,6]. One must conclude that the linear propagation of
mixed states also has to be corroborated experimentally, to a
comparable precision, before a definitive conclusion can be

drawn. It is hoped that the formal study developed here pro-
Sides a meaningful benchmark in this sense.
Our main result is Eq(24), which defines the modified

(5§/5p>=0 and/=0, and the pure-state dynamics reduce
to that prescribed by Eq107).
When the energy functional reduces to the Hamiltonian

H(p)=H, and the entropy is given the standard von Neu

mann expression, such thaS(p)=—pInp,(855p)p
=—plnp—p, we recover the basic equatiof24). A

time evolution of the density matrix. The equation of motion

‘was extracted from a variational principle on the space of

state operators, rather than the space of density matrices, as a
trajectory of maximal entropy production under the con-

p-dependenfi(p), complemented by the standard entropy,Straint of energy and probability conservation, augmented
leads to a nonlinear extension of the Lie-Poisson dynamicsgventually by the requirement of Galilei invariancee Eq.

Tr(pinp)

p=—o|pInp+{H(p)—(H(p)).p}— TH(p)

+=lp AP, (113

with

L THE=(A(p))pnp]
2 T (H(p)—(H(p)))’p]

If I:|(p) is reduced to the standard Hamiltonigk but the
entropy is given a Tsallis form, with

. p—p*
S  p—qp?
sph g-1

(101)]. Should we drop the requirement of entropy increase,
the parameters Reand¢ vanish, and the equation of motion
reduces automatically to the common Hamiltonian form. The
outlined procedure may not be unique, but is encouraging in
its consistency. In addition, it also applies to alternate theo-
ries which use nonstandard energy or entropy forms. It is
notable that the variational principle has sense only in terms
of state operators, whereas the equation of motion can be
stated simply in terms of the conventional density matrix.

A peculiar and unexpected idea brought forth in our an-
satz is that a maximal increase of entropy does not necessar-
ily result in maximal decoherence, to the effect that a pure
state of a perfectly isolated system is not allowed to evolve
into a mixed state. Conversely, the proposed quantum
equivalent of the second principle of thermodynamics is seen
to introduce only a limited degree of decoherence, in the
sense that the cardinality of the set of nonzero eigenvalues of
the density matrix is preserved. As already mentioned, for
the particular case of a pure initial state this leads to the usual
unitary evolution. The same property also supports, aside
from canonical equilibrium states, a rich class of “negative-
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temperature” equilibrium states, which bring to mind the account for classical phenomenological irreversibility sug-
notion of thermal coherence. Furthermore, the ideal thermajests a rather unified picture of both reversibility and irre-
contact phenomenon discussed in Sec. V abides by the sarersibility, as well as coherence and decoherence, while pre-
rule and, according to Eq$102), a system in an initially ~Serving such fundamental features as symmetry invariance.
pure state will remain in a pure state even if it is in contactHowever, the self-consistency of the theory is limited at this
with, but not necessarily interacting with, other systemspoint by the need for an explicit expression for the entropy
However, in that case the pure state undergoes relaxatidgdroduction, which means that the equation of motion remains
according to a dynamics of Gisin typ@4], as seen by tak- determined up to the scale setting functiomalMWe leave the
ing, e_g_,plzp?ll,plm p1=0, in Eq.(1023: resolution of this problem for future consideration, although

a definite expression fos~ certainly conditions the consis-
Tr(Hipy1) tency of our results. For instance, E(2) for the near-

Tr(py)

equilibrium damping constants of the density-matrix ele-
ments between energy eigenstates shows an acceptable

Depending on the sign d@f, the asymptotic stationary state is dependence on the energy gap between the states, but the

an energy eigenstate for the lowggt {>0) or highest(if wrong temperature dependence,(—0 asf—0 andy,,

{<0) energy level contributing to the initial state(0). As —o asB—x) if ¢ is assumed to be temperature indepen-

detailed in Sec. V, the state of thermal contact is not to belent. At least, this observation serves to hint thashould

mistaken for a state of mutual isolation, despite the absendsehave likeB~(?*9,5>0, in the vicinity of canonical equi-

of explicit interactions. librium, which in turn can be used, of course, as a theoretical

We find it promising that bending quantum dynamics to benchmark.

. i
p1=—0l{H;— P1 +g[P1:H1]- (119
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