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Nonlinear quantum evolution with maximal entropy production

S. Gheorghiu-Svirschevski*
1087 Beacon Street, Suite 301, Newton, Massachusetts 02459

~Received 28 July 2000; published 12 January 2001!

We derive a well-behaved nonlinear extension of the nonrelativistic Liouville–von Neumann dynamics
driven by maximal entropy production with conservation of energy and probability. The pure-state limit
reduces to the usual Schro¨dinger evolution, while mixtures evolve toward maximum entropy equilibrium states
with canonical-like probability distributions on energy eigenstates. The linear, near-equilibrium limit is found
to amount to an essentially exponential relaxation to thermal equilibrium; a few elementary examples are
given. In addition, the modified dynamics is invariant under the time-independent symmetry group of the
Hamiltonian, and also invariant under the special Galilei group provided the conservation of total momentum
is accounted for as well. Similar extensions can be generated for, e.g., nonextensive systems better described
by a Tsallisq entropy.
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I. INTRODUCTION

A number of recent, independent experiments@1# have
provided impressive bounds on possible deviations from
linear and unitary propagation of pure quantum states
least on a laboratory accessible space-time scale. The li
imposed in this way on potential generalizations of the st
dard unitary quantum equations of motions, as sought in
lation to Hawking’s blackhole evaporation process@2#, are
likewise severe. Certainly, there always remains the poss
ity of modified dynamical laws on the~inaccessible! Planck
scale@3#, as well as under the extreme physical environm
characteristic of singular cosmological phenomena. Rela
models of open system dynamics due to alleged statis
perturbations, e.g., from the space-time foam, have enjo
considerable attention lately@4#. But if the unitarity of pure-
state propagation holds under universal conditions, on
necessarily led to a quest for genuine nonlinear extens
for isolated systems, possibly involving an explicit arrow
time. Indeed, it was pointed out in a fairly general ans
@5,6# that if the pure states happen to be attractors of a n
linear evolution, then testing the unitary propagation of p
states alone cannot rule out a nonlinear propagation of m
tures. This situation was noted recently in the context
certain nonlinear Lie-Poisson dynamics@6#, wherein pure
states still propagate in the usual Hamiltonian way, wh
density matrices evolve nonlinearly, but preserving a tim
independent spectrum. Unfortunately, the underlying phy
remains rather obscure in these theories, and the selectio
particular realizations relevant to various experimental s
ups is, in general, a matter of guesswork.

In the following we show that a physically meaningf
nonlinear extension emerges when the fundamental po
lates of quantum mechanics are supplemented by the
and second principles of thermodynamics, at the sole
pense of ignoring the constraint of a linear, unitary evolut
in time. The result is a largely irreversible, highly nonline
generalization of the nonrelativistic quantum Liouville equ
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tion, of a form closely related to the ansatz of Ref.@5# ~but
not in the Lie-Poisson class!, which features a number o
rather intriguing properties. In particular, pure states s
propagate unitarily into pure states according to the us
~time-reversible! Hamiltonian dynamics. The same is true
mixed states characterized by an initial equiprobable dis
bution on a~finite! set of uncorrelated~orthogonal! states.
Nonpure states evolve so as to maximize the entropy prod
tion at each moment in time, and to reach stationary state
maximum entropy~or minimum entropy production, accord
ing to Prigogine’s nonequilibrium principle@7#! on the short-
est path in the appropriate state space. Precisely, mixed s
arbitrarily distributed on a finite set of uncorrelated sta
evolve into mixed states distributed on an equal numbe
uncorrelated states, have a time-dependent eigenspec
and eventually attain stationarity on a subset of energy eig
states. A similar statement can be inferred, by extension,
mixtures of an infinite set of uncorrelated pure states. It f
lows as well that the probability distribution at equilibrium
on ~a subset of! energy eigenstates, has a canonical-like
pendence on the energy eigenvalues. For mixtures with
infinite energy range, the corresponding temperature is
course, strictly positive, whereas for mixtures of a finite
of pure states the stationary state may display a ‘‘negat
temperature’’ distribution, in analogy to systems with
finite-dimensional state space. The above-mentioned pro
ties are endorsed by the positivity of the underlying evo
tion equation, which ensues by construction despite the h
degree of nonlinearity involved. The nature of this ess
tially irreversible propagation becomes evident in the clo
to-equilibrium limit, when the matrix elements of the dens
operator between energy eigenstates are found to und
simple exponential decays to the canonical equilibrium v
ues. Finally, proper~nonrelativistic! invariance and conser
vation properties under the symmetry group of the Ham
tonian are also accounted for. However, in the absence o
explicit general law of entropy increase, the time scale
thermal relaxation is set by one multiplication factor, a sca
functional, which is yet to be given a specific expression

Unlike the nonlinear Lie-Poisson dynamics@6#, our
framework apparently challenges the notion of separab
©2001 The American Physical Society05-1
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of isolated, noninteracting systems, the lack of which h
long been thought to be unacceptable@8#. We argue, never-
theless, that in a nonlinear theory it is necessary to refine
operational definition of isolation, and to acknowledge th
the mutual isolation of two noninteracting systems prohib
entanglement, if individual time-translation invariance is
be preserved. When this restriction is properly taken i
account in the formulation of the corresponding equation
motion, separability can be easily recovered. On the o
hand, the case where noninteracting subsystems are allo
to develop correlations spontaneously and eventually
change energy~heat! is shown to correspond in our ansatz
the phenomenon of ideal thermal contact. From a pre
technical perspective, the effect has its origin in that the s
ond principle applies, as usual, to the total entropy of a co
pound system and not to the entropies of individual s
systems. This necessarily results in such a redistribution
probabilities and energy as to maximize the overall entro
In physical terms, an ideal gas is allowed to relax sponta
ously to thermal equilibrium.

The formalism can be adapted straightforwardly to co
nonstandard forms for the entropy and energy function
As immediate examples, we construct a generalization of
Lie-Poisson dynamics with maximal entropy production a
a nonlinear extension of the standard von Neumann ev
tion with maximal increase of the nonextensive Tsallisq
entropy@9#.

II. MODIFIED EQUATION OF MOTION

Following an earlier suggestion@10#, the state of a quan
tum system will be represented by a generalized ‘‘squ
root’’ g of the density matrixr, defined by

r5gg†. ~1!

In analogy to the common terminology, here the operatog
~not necessarily Hermitian! will be called a state operator
Note that the above decomposition is always well defin
although not unique, for any Hermitian and positive defin
r. On the other hand, to any giveng there corresponds
unique Hermitian and positively definedr. We also adopt
the standard inner product on the associated Hilbert spac
operators,

~bug!5Tr~b†g!, ~2!

such that forg normalized, (gug)5Tr(g†g)51, the average
of an observableO becomes the bilinear form

~guOug!5~g†Og!5Tr~Or!, ~3!

with O the superoperator defined byO:

Oug)5uOg). ~4!

It is further convenient to define the tilde conjugateÃ of
an arbitrary, and not necessarily linear, superoperatorA @11#,
by

~Aua!)†5Ãua†). ~5!
02210
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It can be immediately verified that the superoperatorA maps
Hermitian operatorsa5a† into Hermitian operatorsb5b†

5Aua) if and only if it is tilde symmetric,A5Ã. For a
superoperator generated by a linear operator, such as in
~4! above, the tilde conjugate is given by

Ãua)5uaA†). ~6!

In particular, for the Hermitian observableO, it reads

Õua)5uaO). ~7!

The tilde operation is distributive against the addition a
multiplication of superoperators, (A1B̃)5Ã1B̃, AB̃
5ÃB̃, and is antilinear against multiplication by scala
(aÃ)5a* Ã.

Let us now consider a massive isolated system charac
ized by an energy operator~Hamiltonian! H and a state op-
erator g ~density matrixr5gg†), in an inertial reference
system where its center of mass is at rest. We wish to find
equation of motion for this system which is first order d
ferential in time and such that the following hold.

~1! Probability is conserved:

d

dt
~gug!5

d

dt
Tr~r!50 ~8!

or

~ ġug!1~guġ !50, ġ5
d

dt
g. ~8a!

~2! Energy is conserved~first principle of thermodynam-
ics!:

d

dt
~guHug!5

d

dt
Tr~Hr!50 ~9!

or

~ ġuHug!1~guHuġ !50. ~9a!

~3! The entropy production is always positive~second
principle of thermodynamics in nonequilibrium form!,

d

dt
S~ t!>0. ~10!

or

Ṡ~ t!52@Tr~ ṙ ln r!1Tr~ ṙ !#

52@„ġu ln~gg†!ug…1„gu ln~gg†!uġ…

1~ ġug!1~guġ !#

>0. ~10a!

where we adopt the standard entropy expression for a
malized state@Tr(r)51#
5-2
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NONLINEAR QUANTUM EVOLUTION WITH MAXIMA L . . . PHYSICAL REVIEW A 63 022105
S~ t !52kBTr@r~ t!ln r~ t !#

52kB„g~ t !u ln@g~ t !g†~ t !#ug~ t !…, ~11!

with kB the Boltzmann constant.
In order to construct the desired equation of motion,

find it convenient to consider a stronger form of the seco
principle, by requiring that the entropy, as a functional
g, increase in time along a path of maximum ascent. In ot
words, let the entropy production@Eq. ~10a!# be maximized,
for any given stateg, against variations of the time deriva
tive ġ, under constraints~8a! ~of conservation of probability!
and~9a! ~of conservation of energy!. Note that the variation
of ġ must avoid the simple multiplication by a positive sc
lar, i.e., a trivial norm increase, sinceṠ(t) increases then
unconditionally. Hence the entropy production must
maximized against the ‘‘direction’’ ofġ, that is, against de
rivatives ġ of equal, but otherwise arbitrary norm. Th
amounts to deriving the equation of motion from the follo
ing variational principle with constraints

dH @ ġu ln~gg†!ug#1@gu ln~gg†!uġ #12z@ġuHug#

12z* ~guHuġ !1j@~ ġug!1~guġ !#1
2

s
~ġuġ !J 50.

~12!

The variation refers toġ andġ† only, and the form of the
Lagrange multipliersz, j, ands has been chosen for late
convenience.s and j are real scalars on account of the
corresponding real functionals, whilez is allowed to span
complex values. Upon taking the variation ofġ and ġ†, one
is left with

uġ)52sF1

2
@ ln~gg†!#ug)1zHug)1

j

2
ug)G ~13!

and the Hermitian conjugate. Using Eq.~13! in conditions
~8! and ~9! immediately gives

Rez52
1

2

„guHln~gg†!ug…1E~S/kB!

DH2
, ~14a!

j5
S

kB~gug!
22 RezE, ~14b!

with (gug)51,E5(guHug)/(gug) the average energy of th
system, S>0 the entropy, andDH25(guH2ug)2E2 the
squared energy deviation. One can also check condi
~10a! and find that

Ṡ

kB
5s~uuu!, ~15!

uu)5 ln~gg†!ug)12zHug)1jug); ~16!
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hence inequality~10a! is satisfied provided

s>0. ~17!

In deriving expression~15! we used the fact that foruu) as in
Eq. ~16!, and Rez and j given by Eqs.~14!, it is also true
that

~guHuu!50, ~guu!50. ~18!

Let us stress at once that, unlike the usual stationary ac
principle, our variational principle@Eq. ~17!# does not in-
volve variations of functionals over an extended interval
time, but only variations againstġ which are local in time, at
each given instantt. As a result, the Lagrange parametersz,
j, and s need only be constants against these same va
tions of ġ and not constants of time org itself. Likewise,
condition ~17! for s only guarantees the positivity of th
entropy production, but doesnot make Ṡ independent of
time. Hence all parameters in the equation of motion~13! for
g, as well as the entropy production and the entropy its
are time dependent through their dependence ong. Further-
more, note that Rez andj are really functionals ofr andH
only, and therefore are invariant under transformations of
form

g→gU, UU†5U†U5I , ~19!

which leave the density matrix unchanged:

r→r5gUU†g†5gg†. ~20!

Equation~13! will be invariant in its entirety under transfor
mation ~20! provideds and Imz are likewise invariant as
functionals ofr andH . In this case the entropy productio
Eq. ~15! will also be invariant under transformation~20!, as
should be expected on physical grounds.

Now let us introduce the equivalent equation of moti
for the density matrix, starting from

ṙ5ġg†1gġ†. ~21!

It follows at once that

ṙ52s@r ln r1Rez$H2E,r%2rTr~r ln r!#

1 is~ Im z!@r,H#, ~22!

where$,% denotes the anticommutator, as usual. The comm
tator on the right-hand side of Eq.~22! obviously provides
the unitary Hamiltonian limit, and the standard Liouvil
equation suggests

s~ Im z!5
1

\
. ~23!

Setting now, for simplicity, Rez→z, the final form of our
equation of motion for the density matrix is found to be,
common notation,
5-3
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S. GHEORGHIU-SVIRSCHEVSKI PHYSICAL REVIEW A63 022105
ṙ52sFr ln r1z~r,H2E!$H2E,r%2r
Tr~r ln r!

Tr~r! G
1

i

\
@r,H#, ~24!

where

z~r,H2E!52
1

2

Tr@~H2E!r ln r#

Tr@~H2E!2r#
,

s~r,H2E!>0,

Tr~r!5const ~51!,

E5
Tr~Hr!

Tr~r!
5const,

Ṡ52kB

d

dt
Tr~r ln r!>0.

The scale setting parameters remains unspecified so far, an
will be regarded in the following as a functional ofr and
H. In order to secure that Eq.~24! is invariant under a scaling
r→ar, it must be assumed thats(ar,H)5s(r,H), in
which case scaling invariance is verified straightforward
Moreover, since Eq.~24! should not show a dependence
the zero point of the energy, it may also be assumed
above, thats5s(r,H2E). For simplicity, it will be under-
stood throughout the following that Tr(r)51.

It is interesting to note that Eq.~24! can be recovered
from a modified form of the nonlinear ansatz proposed
Ref. @5#,

ṙ5
i

\
@r,H#2

a

T F f ~r!2r
Tr~ f ~r!!

Tr~r! G ,
with the obvious substitutions

a

T
→s, f ~r!→r ln r1z$H,r%.

III. FUNDAMENTAL PROPERTIES OF THE NONLINEAR
EVOLUTION

Equation~24! secures the Hermiticity and positivity of th
density matrix by construction, since it has been genera
from an equation for the state operatorg. Conversely, Eq.
~24! can be easily decomposed into the corresponding e
tions for g andg† by using the substitutionr5gg†; hence
the equations of motion forr andg are indeed equivalent.

Assuming again a well-behaveds, Eq. ~24! is seen to be
covariant under time-independent unitary transformations

r→ r̃5U†rU, H→H̃5U†HU,

and, in particular, invariant under the~time-independent!
symmetry group of the Hamiltonian,@U,H#50. But an ob-
02210
.
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servableO which commutes withH, @H,O#50, is not, in
general, an integral of motion. More details on the probl
follow in Sec. IV.

It is convenient to absorb the Hamiltonian commuta
term by setting, in analogy to the usual Heisenberg repres
tation,

r~ t !5expF2
i

\
HtG r̄~ t !expF i

\
HtG . ~25!

Upon substituting expression~25!, Eq. ~24! becomes

ṙ̄52s@r̄ ln r̄1z$H2E,r̄%2 r̄Tr~ r̄ ln r̄ !#. ~26!

Now note that forr̄ corresponding to a pure state,r̄

5 r̄25uC&^Cu, the entropy operator vanishes together w
the coefficient z, i.e., r̄ ln r̄→0,z(H2E)→0, such that

ṙ̄(t)50 andr̄(t)5 r̄(0)5uC&^Cu, if s is also finite in this
limit. From Eq.~25! it then follows that a pure state evolve
into a pure state according to the usual Hamiltonian law:

r~ t !5r2~ t !5expF2
i

\
HtG uC&^CuexpF i

\
HtG . ~27!

Another situation where the nonlinear evolution reduces
the Hamiltonian law is found for uniform~equiprobable! dis-
tributionsruni f , when the eigenvalues of the density matr
are all identical. In this case one has the ident
r̄uni fln r̄unif5r̄unifTr( r̄uni fln r̄unif) and z(runi f ,H2E)→0,

from which ṙ̄uni f(t)50,r̄uni f(t)5runi f(0), and

runi f~ t !5expF2
i

\
HtGruni f~0!expF i

\
HtG . ~28!

Recall that under unitary propagation the cardinality
the set of nonzero eigenvalues of the density matrix is p
served in time. The same holds true if the density ma
evolves according to Eq.~24!. In order to see this, letPn

5ufn&^fnu be the projector on some eigenstate
r̄(t),r̄•Pn5rnPn , where rn5Tr(Pnr̄) denotes the corre

sponding eigenvalue. Since Tr(ṙ̄•Pn)5 ṙn , multiplying Eq.
~26! by Pn and taking the trace yields

ṙn52s@rnln rn1an~ r̄,H !rn#, ~29a!

an~ r̄,H !52z~ r̄,H !Tr@Pn~ t !~H2E!#1
S~ t !

kB
. ~29b!

Takingrnln rn→0 for rn50 givesṙn50 andrn(t)50, i.e.,
a zero eigenvalue evolves into a zero eigenvalue.

As an immediate corollary, density matrices with a fin
number of ‘‘occupied’’ state vectors~i.e., a finite number of
nonzero eigenvalues! are necessarily driven toward a statio
ary state with a thermal-like distribution on a finite set
energy eigenstates. Indeed, in this case the entropy,
functional of the eigenvaluesrn and under the constraint o
conserved energy and probability, has a finite absolute m
5-4
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mum. For this reason, and becauseṠ(t)>0 at all times, it
can only evolve toward a stationary value less than or eq
to that maximum. But, as will be shown,Ṡ(t)50 implies in

fact ṙ̄50 and @ r̄,H#50, and the stationary version of Eq
~29! gives then the thermal-like distribution. Let us no
prove thatṠ(t)50 implies stationarity. We begin by makin
a change of variables,rn5e2hn, with hn>0, such as to
write

S

kB
5(

n
hne2hn ~30!

and

Ṡ

kB
5(

n
~ḣn2hnḣn!e2hn52(

n
hnḣne2hn, ~31!
v-

-

lt

02210
al
since(nḣne2hn5(nṙn50. Also, Eqs.~29! give

ḣn52s@hn2an#, ~32!

which taken into Eq.~31! produces

Ṡ

kB
5s(

n
@hn

22anhn#e2hn

5s(
n

@anhn2an
2#e2hn1

1

s (
n

~ḣn
2!e2hn. ~33!

Further, use of the explicit expression foran @Eq. ~29!#, will
show that
(
n

@anhn2an
2#e2hn5(

n
F2zhnTr@Pn~H2E!#e2hn1

S

kB
hne2hnG

2(
n

F4z2$Tr@Pn~H2E!#%2e2hn14z
S

kB
Tr@Pn~H2E!#e2hn1S S

kB
D 2

e2hnG
522z Tr@~H2E!r ln r#1S S

kB
D 2

24z2Tr@~H2E!2r#24z
S

kB
Tr@~H2E!r#2S S

kB
D 2

50, ~34!
ss
x-

-

the

of
where we have used the explicit expression ofz @Eq. ~14a!#.
Accounting for Eq.~34! in Eq. ~33! shows that

Ṡ

kB
5

1

s (
n

ḣn
2e2hn, ~35!

from which it follows that Ṡ50 if and only if ḣn50 or,
equivalently,ṙn50. Now consider that the system is evol
ing in an asymptotic region whereṠ(t)→0 for all t.0.

Since necessarilyṙn→0, ṙ̄ must be driven by a unitary evo
lution, r̄(t>t0)5U(t) r̄(t0)U†(t). But for ṙn→0, Eq. ~31!
gives lnrn52an , which in turn shows that

r̄ ln r̄52(
n

rnanPn

522z(
n

rnPnTr@Pn~H2E!#2(
n

rnPn

S

kB

522z$HD2E,r̄%2
S

kB
r̄, ~36!

whereHD5(nPnTr(PnH) is the diagonal part ofH in the
eigenbasis ofr̄, @HD ,r̄ #50. Introducing the above resu
into Eq. ~26!, one is led to
ṙ̄52sz$HND ,r̄%, ~37!

with HND5H2HD the nondiagonal part ofH relative tor̄.
But Eq. ~37! cannot generate a unitary evolution unle
HND50, which implies that stationary entropy over an e
tended period of time is equivalent to

HD5H; ~38!

hence@ r̄,H#50 and ṙ̄50. In other words, the density ma
trix of the system@also see Eq.~25!# is stationary, and also
diagonal over energy eigenstates. The explicit form of
occupation probability corresponding to an~occupied! en-
ergy state of energyEn follows from Eqs.~29!,

rn
eq5expF22zeq~En2E!2

Seq

kB
G , ~39!

and can be brought to the recognizable thermal form

rn
eq5

1

Z
e2bEn, ~40!

with b52zeq andZ52bE1(Seq/kB). Surprisingly, the pa-
rameterz is seen to become at equilibrium, up to a factor
2, the reciprocal temperatureb51/kBT. It should be noted,
5-5
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S. GHEORGHIU-SVIRSCHEVSKI PHYSICAL REVIEW A63 022105
nevertheless, that according to our initial assumptions
~40! applies only to a finite number of energy eigenstat
and therefore does not refer to a canonical equilibrium d
tribution. More precisely, the sign ofzeq, and of the gener-
alized temperatureT, is not necessarily positive. For in
stance, let the occupied energy eigenstates be labeled byn in
order of their increasing energyEn , and let their total num-
ber beN. If the conserved average energyE is such that

E>
1

N (
n51

N

En , ~41!

a simple calculation will verify that the entropy will have a
~absolute! maximum, corresponding to the equilibrium sta
on a distribution characterized by a negativezeq, and hence
a ‘‘negative temperature.’’

At this point, let us examine more closely the restricti
assumption of a finite number of nonvanishing eigenval
for the density matrix. It can be noted that this entered
argument developed above solely by way of the related
sumption of a finite absolute maximum for the entropy, at
given valueE for the average energy. However, there is go
reason to assume that such an absolute maximum exis
least for a large class of distributions over infinite sets
~orthogonal! state vectors. If we can extend this ‘‘finite ab
solute maximum’’ conjecture to all distributions with a fini
average energy, it becomes possible to generalize the re
in Eqs. ~38!–~40! and state that the nonlinear dynamics d
scribed by Eqs.~24! and ~26! drives the system toward a
equilibrium state on energy eigenstates, with thermal-like
cupation probabilities. Of course, when the range of oc
pied energy eigenvalues extends to infinity, relation~41! can
no longer be satisfied for any finiteE, and the corresponding
temperature can only be positive.

Finally, we wish to clarify the consistency of the prese
nonlinear dynamics, which follows a path ofmaximal en-
tropy production, with Prigogine’s celebrated principle
minimumentropy production. Let us recall that, according
the latter, physical systems evolve toward stationary st
which have minimum entropy production compared
slightly displaced neighboring states. Given that the entr
is a convex functional on the state~configuration! space,
bounded from above for any finite average energy, this
plies that the physical evolution will take the system towa
a local maximum of the entropy or at least toward a rid
Indeed, in a small enough vicinity of a maximum of th
entropy, or of a ridge,any evolution with positive entropy
production will eventually enter a regime whereṠ decreases
in time until it vanishes in the equilibrium state or is min
mized for the stationary states corresponding to a ridge.
variational principle@Eq. ~12!# only complements this pic
ture by stating that the evolution should follow theshortest
route to a state of maximum entropy, i.e., thedirectionof the
physical path is selected from among all directions satisfy
Ṡ>0 by the requirement that the increase in entropy
maximized at each point in time. In this case it can be s
that the entropy production evolves toward a minimum of
02210
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maximum, to be attained on a local maximum or a ridge
the entropy~hyper!surface in state space.

IV. LINEAR NEAR-EQUILIBRIUM LIMIT

It is natural to anticipate a linear limit for any nonlinea
dynamics evolving sufficiently close to a canonical therm
equilibrium state, at least in the high-temperature limit. F
the modified equation of motion proposed here, the line
ization process essentially entails the approximation of
entropy operator2 r̄ ln r̄ to first order inD( r̄2req) around
the target equilibrium state

req5
1

Z
e2bH, ln Z52bE1

Seq

kB
, ~42!

with a given average energyE and reciprocal temperatureb.
We proceed from the exact expansion

2 ln r̄5 (
n51

`
1

n
~ I 2 r̄ !n, ~43!

which gives forr̄5req1Dr̄, in symmetrized form,

2~req1Dr̄!ln~req1Dr̄!

5
1

2 H ~req1Dr̄!, (
n51

`
1

n
~ I 2req2Dr̄!nJ .

~44!

Separation of the zero- and first-order terms inDr̄ yields

2~req1Dr̄!ln~req1Dr̄!52reqln req2 1
2 $Dr̄, ln req%

1 1
2 $req,L~Dr̄!%, ~45!

whereL(Dr̄) represents the collection of all terms first ord
in Dr̄ from the infinite sum on the right hand side of E
~44!. In order to calculateL(Dr̄), it is convenient to define
the superoperatorR and its tilde conjugateR̃ by

RDr̄5~ I 2req!Dr̄, ~46a!

R̃Dr̄5Dr̄~ I 2req!, ~46b!

@R,R̃#50.

The expression ofL(Dr̄) can now be obtained in the com
pact form

L~Dr̄!52 (
n51

`
1

n (
m50

n21

RmR̃n2m21Dr̄. ~47!

But R has a well-defined inverse, and the superoperator s
in the above expression can be rewritten as
5-6



-

nd

f

or

-
al
of

e.
tion
-

d

NONLINEAR QUANTUM EVOLUTION WITH MAXIMA L . . . PHYSICAL REVIEW A 63 022105
2 (
n51

` R̃n21

n (
m50

n21

~RR̃21!m

5~ I2RR̃21!21(
n51

` R̃n21

n
„I2~RR̃21!n

…

5~R̃2R!21(
n51

` S R̃n

n
2

Rn

n
D

5~R̃2R!21@ ln~ I2R!2 ln~ I2R̃!#. ~48!

Also taking into account that

req
•Dr̄5~ I2R!Dr̄, Dr̄•req5~ I2R̃!Dr̄ ~49!

and

ln~ I2R!52bH2~ ln Z!I , ln~ I2R̃!52bH̃2~ ln Z!I ,
~50!

where

HDr̄5H•Dr̄, H̃Dr̄5Dr̄•H, ~51!

we are led to

1
2 $req,L~Dr̄!%52

b

2
~H2H̃!cothFb2 ~H2H̃!GDr̄.

~52!

Returning to Eq.~45!, the first-order inDr̄ approximation
to the entropy operator now reads

2~req1Dr̄!ln~req1Dr̄!

52reqln req2
b

2
$Dr̄,H2E%

2
Seq

kB
Dr̄2

b

2
~H2H̃!cothFb2 ~H2H̃!GDr̄.

~53!

Note that taking the trace in Eq.~53! givesS(t)'Seq in this
regime. Similarly, a simple calculation shows thatz'b/2.
Assuming also thats'seq5const(E,b), and inserting ev-
erything into Eq.~26!, yields the linearized equation of mo
tion

ṙ̄52seq
b

2
~H2H̃!cothFb2 ~H2H̃!GDr̄ ~54!

or

Dṙ̄52seq
b

2
~H2H̃!cothFb2 ~H2H̃!GDr̄. ~55!

The general solution of Eq.~54! is given by

r̄~ t !5e2seq(b)te2Gtr̄~0!1~12e2seq(b)t!req, ~56!
02210
where

G5seq~b!
b

2
~H2H̃!cothFb2 ~H2H̃!G2I . ~57!

We observe immediately thatG is tilde symmetric; hence it
maps any Hermitian operator into a Hermitian operator, a
that it preserves probability, since Tr@Gr̄ #50,
Tr@e2Gtr̄(0)#5Tr@ r̄(0)#51. This is entirely sufficient to
secure the Hermiticity ofr̄ and the overall conservation o
probability. Unfortunately, the action ofG does not always
preserve positivity, andG cannot be identified as a generat
of Lindblad type@12#. But the positive domain ofG does
include the small neighborhood ofreq identified as the near
equilibrium domain. Indeed, note first that in the diagon
representation of the Hamiltonian, the matrix elements
r̄0(t)5e2Gtr̄(0) obey the simple damping law

r̄mn
0 ~ t !5e2gmn(b)tr̄mn~0!, ~58!

where the~temperature-dependent! relaxation coefficientgmn

is given by

gmn~b!5seq~b!Fb2 ~Em2En!cothFb2 ~Em2En!G21G ,
~59!

gnn50, gnm5gmn .

If we now consider an arbitrary state vectoruC&
5(n50

` ^EnuC&uEn& and the matrix element

^Cur̄0~ t !uC&5 (
n50

`

^CuEn&r̄nn~0!^EnuC&

1 (
m,n50
m.n

`

Re@^CuEm&r̄mn~0!^EnuC&#e2gmnt,

~60!

it is easily seen thatr̄(t) remains positive fort.0 if the
initial off-diagonal matrix elementsr̄mn(0) (mÞn) are suf-
ficiently small, as expected for the near-equilibrium regim
On the other hand, one can resort to the equation of mo
for the state operatorg @Eq. ~13!#, and derive a linear ap
proximation in Dg5g2geq and Dg†5g†2(geq)† by the
same procedure as above. The resulting expressions rea

Ḋg52F S sb1
i

\ D ~H2H̃!~R̃2R!21

3„geqDg†1Dg~geq!†
…Ggeq, ~61a!

Ḋg†52S sb2
i

\ D ~geq!†@~H2H̃!~R̃2R!21

3„geqDg†1Dg~geq!†
…#, ~61b!
5-7
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and show that, up to first-order terms inDg,

r~ t !5req1Dr'@geq1Dg#@~geq!†1Dg†#, ~62!

such thatDr5Dg(geq)†1geqDg† evolves according to Eq
~55! derived above. Furthermore, the conservation of ene
follows from

Tr~HDṙ̄!52seqTr~HDr̄!, ~63!

upon recalling that, according to the original equation of m
tion, the initial state necessarily has the same average en
E as the asymptotic equilibrium state. The initial conditio
for Eq. ~56! are so restricted to Tr„HDr̄(0)…50, which of
course implies Tr„H r̄(0)…5E.

As a general feature of the underlying physics, it follow
from Eqs.~56!, ~58!, and~59! that the greater the energy ga
between two energy eigenstates, the faster the quantum
relation between them is destroyed as the system evo
towards equilibrium. On the other hand, the relaxation of
occupation probabilities for each of the energy states p
ceeds at a common rate, independent of the correspon
energy level, since r̄nn(t)5@e2bEn/Z#(12e2seq(b)t)
1e2seq(b)tr̄nn(0). As a corollary, the same holds true fo
the average of any observableO which commutes with the
Hamiltonian, @H,O#50, since ^O(t)&5Tr@Or(t)#

5Tr@Oe2( i /\)Htr̄(t)e( i /\)Ht# @see Eq.~26!# will involve only
r̄nn’s. The same result can be obtained in a formal man
from a generalized Heisenberg representation for Eq.~54!, in
which the observables evolve in time according to

ȮD~ t !52Fseq~b!XGS b

2
~H2H̃! D1IC

2
i

\
~H2H̃!GOD~ t !, ~64a!

OD~ t !5expH 2Fseq~b!XGS b

2
~H2H̃! D1IC

2
i

\
~H2H̃!G tJ OD~0!. ~64b!

Here (H2H̃)O5@H,O#, and the lower labelD means that
all averages are to be calculated withDr(0)5r(0)2req.
From Eq. ~64! above, it is immediate that@H,O#5(H
2H̃)O50 yields

ȮD~ t !52seqOD~ t !, ~65a!

OD~ t !5exp@2seqt#OD~0!, ~65b!

in agreement with the observation above. An unexpec
outcome of this result is that the average of an observa
which commutes with the Hamiltonian is conserved throu
out the evolution, provided the initial average value is ide
tical to the equilibrium average. In other words,^OD(0)&
50 implies ^O&(t)5^O&eq. In fact the conservation of en
02210
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ergy @Eq. ~63!# is seen to be just a particular realization
this feature. Furthermore, for operators satisfying commu
tion relations of the form@H,A#5«A, Eqs.~64! lead to

ȦD~ t !52Fseq~b!XGS b«

2 D11C2 i

\
«GAD~ t !, ~66a!

AD~ t !5expH 2Fseq~b!XGS b«

2 D11C2 i

\
«G tJ AD~0!,

~66b!

whereG(x)115x coth(x).
Equations~65! and ~66! allow us to provide a handful o

instant examples.
~1! A two-level atom, with the Hamiltonian

H5E1u1&^1u1E2u2&^2u,

and the occupation numbers

n15^1uru1&, n25^2uru2&, n11n251,

obeys a simple relaxation law which follows from Eq.~65!:

ṅ152seq~b!„n12n1
eq~b!…, ~67a!

ṅ252seq~b!„n22n2
eq~b!…. ~67b!

If Eqs. ~67! are rearranged into the kinetic form

ṅ152k12n11k21n2 , ~68a!

ṅ25k12n12k21n2 , ~68b!

the corresponding ~thermal! transition rates k12

5seq(b)n2
eq(b) andk215seq(b)n1

eq(b), are seen to have
up to the factor ofseq, an Arrhenius-like dependence on th
temperature.

~2! For a harmonic oscillator of unit mass and frequen
v, described by

H5
p2

2
1

v2q2

2
,

^p&eq50, ^q&eq50,

one can apply Eq.~66! to the annihilation and creation op
erators

a5A v

2\S q1 i
p

v D , a†5A v

2\S q2 i
p

v D ,

to recover a coupled system of equations for the aver
momentum and the average coordinate,

^ ṗ&52g~v,b!^p&2v2^q&, ~69a!

^q̇&5^p&2g~v,b!^q&, ~69b!

where g(v,b)5seq(b)@11G(b\v/2)#. We recognize a
typical damped motion, driven by the classical Langev
equation
5-8
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^q̈&12g~v,b!^q̇&1@v21g2~v,b!#^q&50, ~70!

which is obtained by elimination of the momentum variab
from Eqs.~69!.

~3! For the nonrelativistic free-particle Hamiltonian

H5
p2

2m
,

Eq. ~65! gives the relaxation law

^ ṗ&52seq@^p&2^p&eq#, ~71!

which shows a~thermal! friction force linear in momentum
When the initial momentum average coincides with the fi
thermal average, one obviously obtains conservation of
average momentum. More details can be extracted from
Wigner function

f D~pW ,rW,t !5(
qW

e2( i /\)qW •rWK pW 2
qW

2
UrD~ t !UpW 1

qW

2L . ~72!

Differentiation of Eq.~71! on time and use of Eqs.~56!, ~58!,
and ~59! yields

ḟ D~pW ,rW,t !5(
qW

e2( i /\)qW •rWF2seq~b!XGS b
pW •qW

m
D 11C

1
i

\

pW •qW

m
G K pW 2

qW

2
UrD~ t !UpW 1

qW

2L . ~73!

But note that

pW

m
•¹ rW f D~pW ,rW,t !5(

qW
e2( i /\)qW •rWS 2

i

\

pW •qW

m
D

3K pW 2
qW

2
UrD~ t !UpW 1

qW

2L , ~74!

and rewrite the right-hand side of Eq.~73! in differential
form to obtain

ḟ D1
pW

m
•¹ rW f D52seq~b!XGS i

\b

m
pW •¹ rWD11Cf D . ~75!

The operatorial expression on the right-hand side is to
understood in terms of the power expansionG(x)11
5x coth(x)5112(n51

` (21)n21zR(2n)(x/p)2n @13#, where
zR(s)5(k51

` k2s is the Riemann zeta function. Hence E
~75! reads, in explicit form,

ḟ D1
pW

m
•¹ rW f D5seq~b!F2112(

n51

`

zR~2n!

3S \b

pm
pW •¹ rWD 2nG f D ~76!
02210
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and proves to be a Burnett-type~or generalized Fokker-
Planck! equation. Note further that the dependence off D on
momentum and coordinate variables can be separated in
~76!, and one can integrate over momentum to obtain
exact equation in coordinate space. It can also be safely
sumed that the momentum distribution does not deviate
nificantly from equilibrium, such that one can writ
f D(pW ,rW,t)'nD(rW,t) f eq(upW u), where nD(rW,t)5n(rW,t)
2neq(rW,t) is the deviation from the equilibrium value of th
localization probability, andf eq(upW u) is the equilibrium mo-
mentum distribution. In this case, in the high-temperat
limit, when only contributions to leading order inb survive,
integration over momentum leads apparently to a diffusi
like equation,

ṅD5D~b!DnD2seq~b!nD , ~77!

with the diffusion coefficient

D~b!5seq~b!
\2b

3m
, ~78!

where it is taken into account thatzR(2)5p2/6. But let us
recall thatlT5A(\2b)/(3m) is just the de Broglie wave-
length corresponding to the root-mean-square momen
A^pW 2&eq, such that in factD(b)5seq(b)(lT)2. It necessar-
ily follows that the diffusion term in Eq.~77! can give sig-
nificant contributions only if the localization probability va
ies substantially on the scale of the thermal de Brog
wavelengthlT , regardless of the specific value ofseq(b).
But since states with such variations do not belong to
high-temperature, near-equilibrium regime, we are forced
recognize that Eq.~77! actually reduces to

ṅD52seq~b!nD . ~79!

The linearization procedure developed in this section
be extended without significant modifications to equilibriu
states other than the thermal canonical distribution. It can
shown that the relaxation laws for the elements of the den
matrix in the diagonal representation of the Hamiltonian
similar to those found here for the canonical case. A deta
account of this issue will be given elsewhere.

V. SYMMETRY INVARIANCE, CONSERVATION LAWS,
AND SEPARABILITY

It was pointed out in Sec. III that Eq.~24! is invariant
under any time-independent unitary transformations t
leave the Hamiltonian unchanged. It is also obviously inva
ant against time translations, albeit this operation can
longer be associated with a unitary transformation. The sa
is not true, in this form, of time-dependent transformatio
relating different observers in relative motion. But at least
the nonrelativistic case, this deficiency can be easily c
rected so that invariance under the complete dynam
group of the system is recovered. Indeed, let us rewrite
~24! in the form
5-9
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ṙ52s@r ln r1$D~r!,r%2r Tr~r ln r!#1
i

\
@r,H#,

~80!

where D(r) replacesz(r,H2E)(H2E), and let us con-
sider the invariance conditions for Eq.~80! under a time-
dependent unitary transformationU(t), U(t)U†(t)
5U†(t)U(t)5I . As usual, the density matrix become
r8(t)5U(t)r(t)U†(t); hence

ṙ8~ t !5U~ t !ṙ~ t !U†~ t !2@r8~ t !,U̇~ t !U†~ t !#, ~81!

while multiplication of Eq. ~80! by U(t) on the left and
U†(t) on the right, followed by use of Eq.~81!, gives

ṙ852s@r8 ln r81$U~ t !D~r!U†~ t !,r8%2r8Tr~r8 ln r8!#

1
i

\
@r8,U~ t !HU†~ t !1 i\U̇~ t !U†~ t !#. ~82!

It is easily seen that Eq.~82! will regain the form of Eq.~80!
providedH is invariant underU(t) in the customary sense

U~ t !HU†~ t !1 i\U̇~ t !U†~ t !5H, ~83!

and if, in addition,

U~ t !D~r!U†~ t !5D~r8!, ~84a!

s~r,H2E!5s~r8,H2E8!. ~84b!

In the absence of any evidence to the contrary, the functio
s will be assumed in the following to have all necessa
invariance properties.

From Eq. ~83! it follows in the customary way that i
U(t) spans a Lie group of ordern, such that U(t)
5exp@(i/\)ljKj(t)#, with l j , j 51,2, . . . ,n, the group param-
eters and summation over repeated indices being unders
then the corresponding infinitesimal, Hermitian generat
K j (t), j 51,2, . . . ,n satisfy the familiar commutation rela
tions

i

\
@K j~ t !,H#2

]

]t
K j~ t !50. ~85!

Note that a conservation law is not yet implied. But let
assume further that the transformationsU(t) are such that

U̇~ t !U†~ t !5
i

\
„ajCj~ t !1b…, ~86a!

U~ t !Cj~ t !U†~ t !5cj
l Cl~ t !1 f j , ~86b!

where all parametersaj , b, cj
l , and f j are real functions of

the group parametersl j and time, and theCj ’s are Hermitian
operators~observables!. In this case, if the conservation o
energy is to be invariant under all transformationsU(t), it
follows from the expression of the transformed average
ergy
02210
al

od,
s

-

E85Tr@Hr8~ t !#5E1 i\ Tr@U̇~ t !U†~ t !r8~ t !#

5E2aj^Cj&82b ~87!

that a conservation law is required for eachCj . Unfortu-
nately, Eq.~24! does not account for such supplementa
constants of motion, and simple algebra reveals thatD(r)
5z(r,H2E)(H2E) does not satisfy the first of Eqs.~84!,
despite an invariant Hamiltonian, since

U~ t !@z~r,H2E!~H2E!#U†~ t !

5z„r8,H2 i\U̇~ t !U†~ t !2E…

3@H2 i\U̇~ t !U†~ t !2E#

Þz~r8,H2E8!~H2E8!. ~88!

Let us examine now whether modifying Eq.~80! to in-
clude conservation of the quantitiesCj brings about the de-
sired invariance under the transformations of the given
group. Let the conservation of eachCj be added to the set o
constraints accounted for in the original variational princip
such that Eq.~12! is brought into the form

dF „ġu ln~gg†!ug…1„gu ln~gg†!uġ…12z~ġuHug!

12z* ~guHuġ !1j„~ ġug!1~guġ !…12h j
„~ ġuCj ug!

1~guCj uġ !…1
2

s
~ġuġ !G50, ~89!

with the new parametersh j assumed real, since the corr
sponding terms will not contribute to the Hamiltonian part
the equation of motion. Taking again the variation with r
spect toġ and ġ† yields

uġ)52sF1

2
@ ln~gg†!#ug)1zHug)1h jCj ug)1

j

2
ug)G

~90!

and the corresponding equation of motion for the dens
matrix,

ṙ52s@r ln r1$z~H2E!1h j~Cj2^Cj&!,r%

2r Tr~r ln r!#1
i

\
@r,H#. ~91!

Here^Cj&5Tr@Cjr# is the conserved average ofCj , z, and
h j are solutions of

Tr@~H2E!r ln r#12z Tr@~H2E!2r#

1h jTr@$H2E,Cj2^Cj&%r#50, ~92a!

Tr@~Cj2^Cj&!r ln r#2~ i /\s!Tr@@Cj2^Cj&,H2E#r#

1z Tr@$Cj2^Cj&,H2E%r#1h lTr@$Cj2^Cj&,Cl

2^Cl&%r#50, j 51,2, . . . ,n, ~92b!
5-10
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and we have identifieds(Im z)5(1/\), Rez→z, j
52@Tr(r ln r)12(Rez)E12h j^Cj&#. Equations ~92! al-
ways have solution, as the matrix of coefficients for the u
knownsz and h j is recognized to be the positively define
covariance matrix for the Hamiltonian and the operatorsCj .
If we presume the invariance of the Hamiltonian as defin
by Eq. ~83!, in accordance with the discussion above, it
now straightforward to verify thatD̄5z(H2E)1h j (Cj
2^Cj&) is invariant as well in the sense of Eq.~84a!, pro-
vided z andh j change as

z85z, ~93a!

h8 j5h lcl
j1zaj . ~93b!

In deriving Eqs.~93! use is made of Eqs.~86!, and the fol-
lowing transformation of̂ Cj& under the action ofU(t):

^Cj&[Tr@Cjr#5Tr@U~ t !CjU
†~ t !r8#5cj

l ^Cj&81 f j .
~94!

The complete invariance of Eq.~91! requires, of course
thatz8 andhW 8 defined in Eqs.~93! be solutions of the trans
formed equations~92!, obtained upon substitutingr8, E8

and ^PW &8 for r, E, and ^PW &, respectively. But substitution
of r(t)5U(t)r8(t)U†(t), followed by rearrangement ofU
andU† over observables, and use of the relations

U~ t !HU†~ t !2E5H2E81aj~Cj2^Cj&8!, ~95a!

U~ t !CjU
†~ t !2^Cj&5cj

l ~Cl2^Cl&!, j 51,2, . . . ,n,
~95b!

obtained from Eqs.~83!, ~86!, ~87!, and~94!, leads to

Tr@~H2E8!r8 ln r8#12z Tr@~H2E8!2r8#

1~h lcl
j1zaj !Tr@$H2E8,Cj2^Cj&8%r8#

1~ i /\s!ajTr@@Cj2^Cj&8,H2E8#r8#50,

~96a!

Tr@~Cj2^Cj&8!r8 ln r8#2~ i /\s!Tr@@Cj2^Cj&8,

3H2E8#r8#1z Tr@$Cj2^Cj&8,H2E8%r8#

1~hmcm
l 1zal !Tr@$Cj2^Cj&8,Cl2^Cl&8%r8#

2~ i /\s!alTr@@Cj2^Cj&8,Cl2^Cl&8#r8#50,

j 51,2, . . . ,n. ~96b!

The first of these equations displays the required invaria
only if the last term vanishes identically, which demands

@Cj~ t !,H#50 ~97!

for j 51,2, . . . ,n, while the second equation is seen to
invariant provided

@Cj~ t !,Cl~ t !#50, ~98!
02210
-

d

e

for j 51,2, . . . ,n, l 51, and 2, . . . ,n. We conclude that Eq
~91! is invariant if and only if Eqs.~83!, ~97!, and ~98! are
simultaneously verified, in which case the parametersz and
h j transform according to Eqs.~93!. The generating varia-
tional principle,@Eq. ~89!#, is invariant, of course, under th
same conditions.

Let us now substitute forU(t) the special Galilei boost o
velocity vW 0,

U~ t;vW 0!5expF i

\
~PW •t2m•XW !•vW 0G , ~99!

wherem is the total mass of the system,XW is the position of
the center of mass, andPW denotes the total momentum. Ex
pression~99! obviously prompts the identificationsCj5Pj ,
aj51, b5(mvW 0)/2, cj

l 5d j l , and f j5mvW 0, which, intro-
duced into Eqs.~97! and~98!, lead to the recognizable com
mutation relations

@H,Pj #5@Pj ,Pl #50. ~100!

Subsequent substitution in Eq.~91! gives the corresponding
equation of motion in the form

ṙ52s@r ln r1$z~H2E!1h j~Pj2^Pj&!,r%

2r Tr~r ln r!#1
i

\
@r,H#. ~101!

Remarkably, we recover the celebrated result that the Ga
invariance of the appropriate nonrelativistic equation of m
tion is equivalent to the corresponding invariance of t
Hamiltonian, the conservation of total momentum, and
commutation of the Hamiltonian and the total momentu
operators.

Equation ~101! reduces to the original Eq.~24! in the
center-of-mass referential, where only states correspon
to an eigenstate of zero total momentum for the center
mass coordinates need be considered, and the dissipative
mentum terms vanish. It also retains the fundamental f
tures previously outlined for Eq.~24!. In particular, it can be
checked that pure states evolve according to the usual Ha
tonian dynamics, the entropy of mixed states increases,
the nature of the asymptotic equilibrium states is preserv
up to a slight change of form which accounts for the cons
vation of momentum. It is also evident that Eq.~101! is
invariant under time-independent symmetry transformati
which leave the Hamiltonian and the dissipatorD̄ invariant,
provided the time-scale parameters has the same property
In particular, if the Hamiltonian commutes with the tot
angular momentum, Eq.~101! is invariant under finite rota-
tions. However, as for the linear momentum, rotational
variance alone does not imply, in general, a conservation
for the angular momentum. The latter can be brought i
view by requiring that the equation of motion for the dens
matrix be covariant with respect to all reference fram
where the conservation of energy is a valid physical law.
particular, we should consider translations to observers
uniform rotational motion around an axis at rest in som
5-11
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inertial frame. The rather cumbersome details of adding
supplementary constraint will be left aside, since noth
new will be gained for the formalism.

A more interesting lack of symmetry for Eq.~101!, or
better, the simpler Eq.~24!, lies concealed in the appare
absence of separability. Indeed, let the system describe
the HamiltonianH be composed of two noninteracting su
systems, such thatH5H11H2 and @H1 ,H2#50, and con-
sider the situation of a separable initial stater(0)
5r1(0)r2(0), of energyE5E11E2. Direct inspection of
Eq. ~24! shows that the energies of the two subsystems c
not be separately conserved, and a completely separabl
lution is thus prohibited. But we also observe that lifting t
constraint of separate conservation of energy allows a p
doseparable solutionr(t)5r1(t)r2(t) given by the coupled
system

ṙ152sFr1ln r11zH H12
Tr~H1r1!

Tr~r1!
,r1J 2r1

Tr~r1ln r1!

Tr~r1! G
1

i

\
@r1 ,H1#, ~102a!

ṙ252sFr2ln r21zH H22
Tr~H2r2!

Tr~r2!
,r2J 2r2

Tr~r2ln r2!

Tr~r2! G
1

i

\
@r2 ,H2#. ~102b!

In this case probability is independently conserved for e
subsystem, since Tr(ṙ i)50, while energy is only conserve
globally,

Tr~H1r1!

Tr~r1!
1

Tr~H2r2!

Tr~r2!
5E.

The coupling between the~noninteracting! subsystems ap
pears to be as instantaneous and nonlocal as usual qua
entanglement, but, unlike the latter, it involves an unorth
dox exchange of energy. The significance of this unus
outcome follows from the observation that, according to E
~102!, the equilibrium of the compound system is attain
for values ofs andz common to both subsystems, hence
a common generalized temperature. Imagine now that
initial states for the two subsystems are chosen as individ
equilibrium states with different corresponding temperatur
It follows that the dynamics given by Eq.~24! will drive the
total system toward a new state of equilibrium, with a te
perature common to both components. We cannot but c
cede the obvious similarity of this unconventional effect w
the classical process of equilibration by thermal contact.
origin lies in the very assumption of a maximal entropy
crease on which Eq.~24! was derived. Indeed, even when th
entropy of each subsystem is already maximal under in
vidual isolation, if states of larger total entropy are availab
probabilities and energy~heat! will be necessarily redistrib-
uted so as to enforce a further increase of the overall entr
Whether this entropic entanglement, or ideal thermal cont
is or not an element of reality appears equivalent to acc
02210
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ing or rejecting the conjecture that an isolated, perfectly id
gas can undergo relaxation toward equilibrium.

We can provide formal support toward the positive a
sumption by pointing out that the effect of entropic entang
ment does not necessarily interfere with the concept of se
rable evolution for mutually isolated systems. First let
note that explicitly specifying an adiabatic separation~in the
thermodynamic sense! of the noninteracting systems, an
hence allowing for separate conservation of energy, remo
most of the entropic entanglement. In this case the resul
equation of motion will display distinctz ’s for each of the
systems, but a common time-scale parameter, i.e.,

ṙ52s@r ln r1z1$H12E1 ,r%1z2$H22E2 ,r%

2r Tr~r ln r!#1
i

\
@r,H11H2#, ~103!

with

Ei5
Tr~Hir!

Tr~r!
5const, i 51, 2.

As before, it proves possible to extract a pseudosepar
solutionr(t)5r1(t)r2(t), but Eqs.~102! are replaced by

ṙ152sFr1ln r11z1$H12E1 ,r1%2r1

Tr~r1ln r1!

Tr~r1! G
1

i

\
@r1 ,H1#, ~104a!

ṙ252sFr2ln r21z2$H22E2 ,r2%2r2

Tr~r2ln r2!

Tr~r2! G
1

i

\
@r2 ,H2#. ~104b!

where this time thez i parameters,i 51, 2, will be found to
depend only on the correspondingr i andHi , in exactly the
manner obtained for a single isolated system. Yet the
evolutions remain tethered by the time-scale parameters,
thus retaining a weaker form of entropic entanglement. T
simple presence of other noninteracting, adiabatically se
rated systems appears to alter the time scale of dissipa
relaxation for any given system. Ifs is assumed variable in
time, e.g., through a dependence onr, this influence will be
time dependent unless all other systems have reached
librium. But since s does not affect the nature of th
asymptotic equilibrium state, the equilibrium of any one sy
tem will not be disturbed by other systems, and will displ
an individual temperature determined solely by the cor
sponding energy content.

A careful examination will trace the above type of no
separability to the fact that the corresponding variatio
principle selects the direction of maximum entropy increa
by referring to the time derivative of the total~entangled!
state operator, and not to disentangled, individual state
erators separately. However, this pitfall can be avoided if i
5-12
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recognized that true mutual isolation precludes entanglem
on invariance grounds. Indeed, regardless of the nature o
underlying dynamics, the evolution of two mutually isolat
systems should remain invariant undereverytransformation
pertaining to the individual symmetry groups. In particular
should be invariant under individual time translations. Sin
entangled states certainly do not possess this invariance,
do not describe truly isolated systems. In other words,
restricted subspace of the state space that can be spann
the dynamics of mutually isolated systems should con
only nonentangled states, and the evolution of each of
factor states should be driven independently. In our nonlin
setting, where this subspace is selected by means of the
erating variational principle, this restriction has to be c
rectly built into the variational functional itself. Hence on
has to account both for individual conservation laws, excl
ing thus any energy exchange, as well as for vanishing
tanglement. The latter imposes a separable state ope
g(t)5g1(t)g2(t), and also requires that the entropy produ
tion be maximized separately with respect to variations ofġ1

andġ2, i.e., thes term in the variational principle should b
replaced according to

2

s
~ġuġ !→ 2

s1
~ ġ1g2uġ1g2!1

2

s2
~g1ġ2ug1ġ2!,

with eachs i a functional only ofg i and Hi . But then the
variational principle takes the form

d$~g2ug2!F11~g1ug1!F2%50, ~105a!

Fi5„ġ i u ln~g ig i
†!ug i…1„g i u ln~g ig i

†!uġ i…12z i~ ġ i uH i ug i !

12z i* ~g i uH i uġ i !1@ j̄ i~ ġ i ug i !1 j̄ i* ~g i uġ i !#

1
2

s i
~ ġ i uġ i !, i 51, 2, ~105b!

where

j̄15j11S j21z2E22
S2

kB~g2ug2! D ,

j̄25j21S j11z1E12
S1

kB~g1ug1! D .

Independent variation ofġ1 and ġ2, followed by extraction
of the Lagrange parameters from the corresponding con
vation conditions, now leads to the desired separate e
tions of motion forr i5g ig i

† ,

ṙ i52s iFr i ln r i1z i$Hi2Ei ,r i%2r i

Tr~r i ln r i !

Tr~r i !
G

1
i

\
@r i ,Hi #, i 51,2, ~106!

with
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s i5s i~r i ,Hi !>0, z i52
1

2

Tr@~Hi2Ei !r i ln r i #

Tr@~Hi2Ei !
2r i #

,

Ei5
Tr~Hir i !

Tr~r i !
5const.

Obviously, the invariance of the nonlinear dynamics und
the symmetry group of each component subsystem is so
stored, provided thes i ’s are also invariant.

VI. GENERALIZATION TO ARBITRARY ENTROPY
AND ENERGY FUNCTIONAL FORMS

The framework developed in the previous sections can
easily expanded to accommodate nonstandard entropy f
tionals and/or energy forms with a nonlinear dependence
the density matrixr. This generalized formalism can the
provide nonlinear extensions for, e.g., the Lie-Poisson
namics or a standard Hamiltonian evolution supplemented
a nonextensive Tsallis entropy@9#, appropriate for systems
with fractal properties. Here we sketch only the derivation
the generalized equation of motion, since a detailed anal
exceeds the purpose of the present work.

To this end, let us recall a Lie-Poisson equation of mot
of the form

ṙ52
i

\
@r,Ĥ~r!#, ~107!

whereĤ(r) is in general a Hermitian, nonlinear function
of r. The energy conservation law is now replaced by

Tr@Ĥ~r!ṙ#50,

or, in terms of the state operatorg,

„ġuĤ~r!ug…1„guĤ~r!uġ…50. ~108!

The law of probability conservation, on the other hand,
mains unchanged since Tr(ṙ)50 or

~ ġug!1~guġ !50. ~109!

Let us search now for a nonlinear evolution that obser
the above conservation constraints@Eqs. ~108! and ~109!#,
and is also subject to a second principle based on some
specified, positive definite entropy functionalS/kB

5Tr@Ŝ(r)#, such thatṠ5Tr@(dŜ/dr) ṙ #>0 or

S ġUdŜ

dr
Ug D 1S gUdŜ

dr
Uġ D>0. ~110!

Here the operatorŜ(r) is assumed to be Hermitian, an
(dŜ/dr) denotes its Hermitian functional derivative with re
spect tor. The corresponding variational principle is no
written
5-13
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dH 2S ġUdŜ

dr
Ug D 2S gUdŜ

dr
Uġ D 12z„ġuĤ~r!ug…

12z* „guĤ~r!uġ…1j@~ ġug!1~guġ !#

1
2

s
~ġuġ !J 50, ~111!

and can be verified to generate the equation of motion

ṙ52sF2
dŜ

dr
r1z$Ĥ~r!2^Ĥ~r!&,r%1K dŜ

drL rG
1

i

\
@r,Ĥ~r!#, ~112!

where

^A&5
Tr~Ar!

Tr~r!

and

z5
1

2

Š„Ĥ~r!2^Ĥ~r!&…~dŜ/dr!‹

Š„Ĥ~r!2^Ĥ~r!&…2‹
,

s5s„r,Ĥ~r!2^Ĥ~r!&…>0.

We note that if (dŜ/dr)r50 for pure states,r5r2, then

^dŜ/dr&50 andz50, and the pure-state dynamics reduc
to that prescribed by Eq.~107!.

When the energy functional reduces to the Hamiltoni
Ĥ(r)5H, and the entropy is given the standard von Ne
mann expression, such thatŜ(r)52r ln r,(dŜ/dr)r
52r ln r2r, we recover the basic equation~24!. A
r-dependentĤ(r), complemented by the standard entrop
leads to a nonlinear extension of the Lie-Poisson dynam

ṙ52sFr ln r1z$Ĥ~r!2^Ĥ~r!&,r%2
Tr~r ln r!

Tr~r!
rG

1
i

\
@r,Ĥ~r!#, ~113!

with

z52
1

2

Tr@„Ĥ2^Ĥ~r!&…r ln r#

Tr@„Ĥ~r!2^Ĥ~r!&…2r#
.

If Ĥ(r) is reduced to the standard HamiltonianH, but the
entropy is given a Tsallis form, with

Ŝ~r!52
r2rq

q21
,

dŜ

dr
r5

r2qrq

q21
02210
s

,
-

,
s,

for given realq, the result will be a nonlinear extension o
the von Neumann dynamics under Tsallisq thermostatistics,
which reads, after a few elementary manipulations,

ṙ52sF q

q21
rq1z$H2E,r%2

q

q21

Tr~rq!

Tr~r!
rG1

i

\
@r,H#,

~114!

where

z52
1

2

q

q21

Tr@~H2E!rq#

Tr@~H2E!2r#
.

Situations where the standard averages have to be repl
by q averages can be approached in the same fashion
appropriately redefining the conserved functionals.

VII. CONCLUSION

We have constructed and analyzed a nonrelativistic n
linear extension of the quantum law of evolution, which a
counts for the second principle of thermodynamicsand is not
at odds with the factual linearity of pure-state propagati
The theoretical existence of such an extension confirms
the linear and unitary evolution of pure states is not in its
sufficient proof for the general linearity of quantum mecha
ics @5,6#. One must conclude that the linear propagation
mixed states also has to be corroborated experimentally,
comparable precision, before a definitive conclusion can
drawn. It is hoped that the formal study developed here p
vides a meaningful benchmark in this sense.

Our main result is Eq.~24!, which defines the modified
time evolution of the density matrix. The equation of motio
was extracted from a variational principle on the space
state operators, rather than the space of density matrices
trajectory of maximal entropy production under the co
straint of energy and probability conservation, augmen
eventually by the requirement of Galilei invariance@see Eq.
~101!#. Should we drop the requirement of entropy increa
the parameters Rez andj vanish, and the equation of motio
reduces automatically to the common Hamiltonian form. T
outlined procedure may not be unique, but is encouragin
its consistency. In addition, it also applies to alternate th
ries which use nonstandard energy or entropy forms. I
notable that the variational principle has sense only in te
of state operators, whereas the equation of motion can
stated simply in terms of the conventional density matrix

A peculiar and unexpected idea brought forth in our a
satz is that a maximal increase of entropy does not neces
ily result in maximal decoherence, to the effect that a p
state of a perfectly isolated system is not allowed to evo
into a mixed state. Conversely, the proposed quan
equivalent of the second principle of thermodynamics is s
to introduce only a limited degree of decoherence, in
sense that the cardinality of the set of nonzero eigenvalue
the density matrix is preserved. As already mentioned,
the particular case of a pure initial state this leads to the u
unitary evolution. The same property also supports, as
from canonical equilibrium states, a rich class of ‘‘negativ
5-14
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temperature’’ equilibrium states, which bring to mind th
notion of thermal coherence. Furthermore, the ideal ther
contact phenomenon discussed in Sec. V abides by the s
rule and, according to Eqs.~102!, a system in an initially
pure state will remain in a pure state even if it is in cont
with, but not necessarily interacting with, other system
However, in that case the pure state undergoes relaxa
according to a dynamics of Gisin type@14#, as seen by tak-
ing, e.g.,r15r1

2,r1ln r150, in Eq. ~102a!:

r 1̇52szH H12
Tr~H1r1!

Tr~r1!
,r1J 1

i

\
@r1 ,H1#. ~115!

Depending on the sign ofz, the asymptotic stationary state
an energy eigenstate for the lowest~if z.0) or highest~if
z,0) energy level contributing to the initial stater1(0). As
detailed in Sec. V, the state of thermal contact is not to
mistaken for a state of mutual isolation, despite the abse
of explicit interactions.

We find it promising that bending quantum dynamics
v.
-
2

B
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s.
.
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nd

02210
al
me

t
.
on

e
ce

account for classical phenomenological irreversibility su
gests a rather unified picture of both reversibility and ir
versibility, as well as coherence and decoherence, while
serving such fundamental features as symmetry invaria
However, the self-consistency of the theory is limited at t
point by the need for an explicit expression for the entro
production, which means that the equation of motion rema
determined up to the scale setting functionals. We leave the
resolution of this problem for future consideration, althou
a definite expression fors certainly conditions the consis
tency of our results. For instance, Eq.~62! for the near-
equilibrium damping constants of the density-matrix e
ments between energy eigenstates shows an accep
dependence on the energy gap between the states, bu
wrong temperature dependence (gmn→0 asb→0 andgmn

→` asb→`) if s is assumed to be temperature indepe
dent. At least, this observation serves to hint thats should
behave likeb2(21d),d.0, in the vicinity of canonical equi-
librium, which in turn can be used, of course, as a theoret
benchmark.
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