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Stochastic resonance in quantum trajectories for an anharmonic oscillator
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We demonstrate that the stochastic resonance phenomenon can occur in a pure quantum regime for a wider
class of microscopic systems described by a dissipative anharmonic oscillator driven by two periodic forces.
We apply a quantum-state diffusion method, and display the synchronization of quantum trajectories by the
stochastic resonance process. The model proposed is accessible for experiments, and results in the formation of
quantum states of the anharmonic oscillator, namely sub- and super-Poissonian statistics for time intervals
exceeding the relaxation rate. We show that stochastic resonance phenomenon can be described in terms of the
minimization of the quantum von Neuman entropy, and demonstrate the possibility of controlling both the
dissipative dynamics and quantum statistics of anharmonic oscillator by two external periodic forces.
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I. INTRODUCTION

The interplay between noise and coherent driving in n
linear dynamical systems gives rise to a variety of intrigu
behaviors. The most extraordinary and counterintuitive
ample is the phenomenon of stochastic resonance~SR!,
whereby the response of the system to a coherent exte
signal can be enhanced by the assistance of noise. First
posed in 1981@1#, SR was first experimentally verified b
Fauve and Heslot@2#, and since then this phenomenon w
demonstrated in sensory neurons, lasers, tunnel diodes,
munication devices, etc.~See Refs.@3,4# for an extensive
review and complete list of references.! The most known
mechanism leading to SR concerns nonlinear bistable
tems driven by a weak periodic signal, which in itself
insufficient to induce deterministic transitions between t
metastable states. Then, in the presence of additional e
nal noise, this system exhibits almost periodic transitio
from one state to the other, for certain optimal noise inten
ties. It was shown that, as a consequence of the syste
nonlinear intrinsic dynamics, SR can also occur in mon
stable systems@5# as well as in the absence of a period
drive @6#. Recently, SR was proposed for a quantum regi
where additional routes to quantum tunneling occur to ov
come a potential barrier between two metastable states
quantum double well@7#. Some developments and other a
plications and examples of quantum stochastic resona
~QSR! were given in Refs.@8,9#.

The question was posed whether QSR can be realize
microscopic simple quantum systems where interactions
considered as quantum by quantum. One such scheme
proposed by Buchleitner and Mantegna@10#, where QSR
was demonstrated in a micromaser.

The goal of this paper is twofold: first, we show that QS
can occur in a wider class of microscopic systems descr
by an anharmonic oscillator driven by two periodic force
and second, we demonstrate SR in pure quantum regim
quantum trajectories, as well as on ensemble-averaged
sults for the mean oscillatory number, variance of oscillat
number quantum fluctuations, and von Neuman entropy.
model of nonlinear oscillator we present here is access
1050-2947/2001/63~2!/022102~9!/$15.00 63 0221
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for experiments. It can be implemented, at least for the
namics of strongly interacting photons, in optical cavity i
volved Kerr nonlinearity, and for a cyclotron oscillations of
single electron in a Penning trap.

A driven anharmonic oscillator~DAO! is a well-known
and archetypal model for dealing with nonlinearities in qua
tum mechanics, and was widely used to describe vari
physical phenomena@11–15#. The DAO gives quantum in-
terference even when coupled to a thermal reservoir@12#,
and describes a self-modulation of electromagnetic mode
a cavity filled by ax (3) nonlinear medium~see, for example,
Ref. @13#, and references therein!. The DAO is also related to
a description of Bose-Einstein condensates@14# and to hys-
teresis in atomic systems@15#.

With dissipation included, the DAO model was exact
solved by Drummond and Walls@11# in the steady-state re
gime, and in terms of the Fokker-Plank equation in a co
plex P representation. An exact quantum theory for a pa
metrically driven anharmonic oscillator was given b
Kryuchkyan and Kheruntsyan@16#. A characteristic feature
of a dissipative DAO is the appearance of bistability a
hysteresis effects. We exploit this feature by considerin
model of a dissipative anharmonic oscillator~AO! driven by
two periodic forces at different frequencies. As we show, t
system exhibits remarkable nonlinear and quantum featu
and displays both nonclassical, sub- and super-Poisso
statistics of elementary excitations. As to SR, it occurs in
regime where one of the two applied forces is weak co
pared to the other. This is an example of a quantum sys
in contact with its environment, where the controlling of di
sipative dynamics as well as quantum statistics can be r
ized through an external time-dependent force. The mo
proposed cannot be described analytically. Our analysi
based on a quantum-state diffusion~QSD! approach@17#,
which naturally unravels a mixed state of open quantum s
tem into component stochastic pure states. Thus it is
pected that this approach will also be useful in obtain
insights into the problem of SR at the level of tim
dependent quantum trajectories. As we show, it is possibl
achieve SR in a deep quantum regime for strong anhar
nicity, when a corresponding coupling constant is com
©2001 The American Physical Society02-1
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rable with a dissipation decay rate. We suppose that su
model can, in particular, be realized in two experimen
schemes. One of the candidates may be a scheme based
model of anharmonic oscillator in a cavity, proposed in R
@18#, which utilizes atomic dark resonances and allows o
to achieve giant optical nonlinearities. The photon-pho
interaction coefficient in such a nonlinear cavity, describ
the anharmonicity coefficient, could easily be much larg
than the cavity decay rate. We propose to use a modi
version of such a DAO, whereby the high-finesse cavity
pumped by two coherent fields. Other proposal involve
single electron in a Penning trap under two low-frequen
periodic drivings. Its anharmonicity comes from a nonline
relativistic correction to an electron motion, while stochas
and dissipative effects arise from the spontaneous emis
of synchrotron radiation, as predicted theoretically
Kaplan @19#. The trapped electron driven by a single coh
ent field was experimentally realized and studied by Ga
else and co-workers@20#.

The paper is organized as follows: In Sec. II, the mode
a dissipative anharmonic oscillator driven by two period
forces is presented, and the relevant QSD method is
scribed. In Sec. III we demonstrate the SR phenomenon
pure quantum regime of DAO from the point of view o
QSD. The variance of the oscillatory excitation and t
second-order correlation function are also calculated. Sec
IV is devoted to study of an information aspects of a DA
on the basis of quantum von-Neuman entropy. Finally, S
V presents our conclusion.

II. ANHARMONIC OSCILLATOR DRIVEN
BY TWO FORCES

Let us discuss the proposed system in more detail.
anharmonic oscillator driven by two periodic forces at fr
quenciesv1 andv2 is described by the Hamiltonian

H5\v0a†a1\x~a†a!2

1\$@V1 exp~2 iv1t !1V2 exp~2 iv2t !#a†1H.c.%.

~1!

Herea anda† are boson annihilation and creation ope
tors,v0 is an oscillatory frequency, andx is the strength of
the anharmonicity. The intensity of two driving forces
given by Rabi frequenciesV1 and V2. We incorporate the
dissipation by coupling the AO to a heat bath. The redu
density operator within the framework of the rotating-wa
approximation and in a frame rotating with frequencyv1 is
governed by the master equation

]r

]t
52

i

\
@H01Hint,r#

1 (
i 51,2

S LirLi
12

1

2
Li

1Lir2
1

2
rLi

1Li D , ~2!

where

H05\Da†a,
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Hint5\$@V11V2 exp~2 idt !#a†

1@V1* 1V2* exp~ idt !#a%1\x~a†a!2. ~3!

Here D5v02v1 and d5v12v2 are the detunings.Li
are the Lindblad operators,

L15A~N11!ga, L25ANga†, ~4!

where g is the spontaneous decay rate of the dissipat
process, andN denotes the mean number of quanta of a h
bath.

In the case of single drivingV1Þ0 and V250, this
model describes a dissipative DAO, which in the semiclas
cal approach and the steady-state regime exhibits bistab
versus either the detuningD or the strength of drivingV1
@11#. However, the hysteresis of the mean oscillatory num
n(t)5^a†(t)a(t)& is destroyed in the exact quantum
mechanical treatment as a consequence of ensemble av
ing @16#. Nevertheless, hysteresis manifests itself on in
vidual quantum trajectories as noise-induced transiti
between two possible metastable states@21#. When two ex-
ternal forces are both present, we analyze the master e
tion numerically using the QSD method@17#. According to
this method, the reduced density operator is calculated as
ensemble mean,

r~ t !5M ~ uCj&^Cju!5 lim
N→`

1

N (
j

N

uCj~ t !&^Cj~ t !u, ~5!

over the stochastic pure statesuCj(t)& describing the evolu-
tion along a quantum trajectory. The corresponding equa
of motion is

udCj&52
i

\
~H01Hint!uCj&dt2

1

2 (
i

~Li
1Li22^Li

1&Li

1^Li&^Li
1&!uCj&dt1(

i
~Li2^Li&!uCj&dj i . ~6!

Herej indicates the dependence on the stochastic proc
the complex Wiener variablesdj i satisfy the fundamenta
properties

M ~dj i !50, M ~dj i dj j !50, M ~dj i dj j* !5d i j dt,
~7!

and the expectation valuêLi&5^CjuLi uCj&.
Below we shall give the results of numerical analysis o

dissipative anharmonic oscillator driven by two forces us
an expansion of the state vectoruCj& in Fock’s number
states of a harmonic oscillator:

uCj~ t !&5(
n

an
(j)~ t !un&. ~8!

In the following we consider the regime of strong anharm
nicity x/g;2 andx/g;0.7, but not the strong coupling o
AO to a reservoir, so that the Born-Markov approximation
2-2
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valid. This regime is strongly quantum mechanical, as in
region of bistability, where SR occurs, the maximum num
of oscillator states is less than 10.

Moreover, as we already noted, this regime is access
on the practice. In the end of the section we briefly disc
this point, showing the conformity of the model proposed
the two above-mentioned physical schemes.

A. Anharmonic oscillator in a nonlinear cavity

It is well known that a single mode of the lossy cavit
involving third-order nonlinearity under coherent drivin
presents an example of a dissipative DAO. In this model
anharmonicity of the mode dynamics comes from its s
phase modulation due to photon-photon interaction in
x (3) medium. Dissipative effects arise from the leakage
photons through the cavity mirrors, which damps the rad
tion field. It is easy to check that in the case of two classi
driving fields this system is described by Hamiltonian~1!,
where operatorsa and a† are annihilation and creation op
erators for the single-mode of the cavity at frequencyv0, the
photon-photon interaction termx is proportional to the third-
order nonlinear susceptibilityx (3), andV1 andV2 are Rabi
frequencies corresponding to two classical coherent fie
respectively. The damping of this oscillator with the cav
damping rateg is described by the Lindblad operator@Eq.
~4!#, whereN is the mean number of thermal reservoir ph
tons.

We reiterate that the nonlinear cavity model described
the Hamiltonian of Eq.~1! in the case of one driving field
was previously analyzed by several authors~see, for ex-
ample, Refs.@11–16#!. An important development in this
area, including cavity QED, is the emerging capability f
investigation both of atom-photon strong coupling and mo
dynamics in a regime of strong photon-photon interact
~i.e., reducedg and increasedx) @23#. In particular, Ref.@18#
demonstrated a large resonant enhancement in nonline
for a low-density four-level atomic medium. A strong
coupling regimex/g520 was predicted for typical exper
mental parameters.

B. One-electron cyclotron oscillator in a Penning trap

As we noted, a single electron in a Penning trap w
suggested as the realization of a quantum DAO interac
with a thermal reservoir@19–22#. Let us explain this state
ment in more detail. In fact, an electron stored in a Penn
trap containing a magnetic field is a real quantum cyclot
oscillator, the anharmonicity of which comes from nonline
effects that are caused by the relativistic motion of an e
tron in a trap. Furthermore, in such a system the dissipa
effect arises from the spontaneous emission of the sync
tron radiation and thermal fluctuations of the cyclotron m
tion. The energy eigenstates of an AO are the number st
which are spaced in energyEn112En5\@vc2(n11)ve#,
where vc is the cyclotron frequency,ve is the relativistic
anharmonic level shift, andn50,1, . . . . It wasdemon-
strated that in the presence of an external periodic field,
system is described by a model of a dissipative DAO. T
details of calculation can be found in Ref.@22#. The model
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we present here describes the interaction of a trapped e
tron moving in a magnetic field, with two coherent fields
different frequencies. The corresponding Hamiltonian
given by Eq.~1!, where operatorsa and a† describe cyclo-
tron quantized motion at a modified cyclotron frequencyvc .
The parameterx is the strength of the anharmonicity due
the relativistic effects, andD refers to the detuning betwee
the eigenfrequency of the oscillator and the frequency of
of the driving fields. The parametersV1 andV2 characterize
the amplitudes of the microwave driving fields. The intera
tion of the electron with its environment is the radiative co
pling of the cyclotron motion with the thermal radiatio
field. Its radiative damping is described by the two Lindbl
operators@Eqs. ~4!# with the spontaneous decay rate of t
cyclotron motiong and the mean number of quantaN of the
thermal radiation field. In principle, this scheme is easy
implement, as it generalizes a single-field case. It is imp
tant that a one-electron cyclotron oscillator allows one
achieve a relatively strong cubic nonlinearityx/g*1. We
use typical experimental values of the parameters to illust
this property. It is easy to check that the nonlinear coupl
x in Hamiltonian ~1! equals one-half of the relativistic an
harmonic level shift, i.e.,x5ve/2. Although this shift is ex-
tremely small,ve /vc5\vc /mc2.1029; however, since the
spontaneous decay rates are also extremely slow, the tr
tions between lowest levels are well resolved withg/ve
.1022. This gives an experimentally attainable value
x/g.50.

III. CONTROLLING QUANTUM TRAJECTORIES
AND QUANTUM STATISTICS

In this section we address the question of how SR is d
played in quantum trajectories in the pure quantum regim
a zero temperature of the heat bath@N50, in the Lindblad
operators~4!#. The difficulty in the realization of this proces
is obviously connected with the low level of quantum nois
To avoid this problem, we use a dissipative nonlinear sys
with a multiplicative noise, in which the noise level increas
with the nonlinearity. In doing so, we first consider a mod
of DAO in the absence of periodic drivingV1Þ0 andV2
50, for the values of parametersD/g and x/g, leading to
bistable hysteresis depending onV1 /g. The exact quantum
analysis of this system is based on the well-known stea
state solution of the Fokker-Plank equation in the compleP
representation@11#. Such a consideration leads, in particula
to the ensemble mean of the quantum-mechanical expe
tion number which is of interest here

^a†a&5
V1

2

~D1x!21~g/2!2

F~c11,c* 11,z!

F~c,c* ,z!
, ~9!

whereF50F2 is the generalized Gauss hypergeometric
ries:

0F2~c,d,z!5 (
n50

`
zn

n!

G~c!G~d!

G~c1n!G~d1n!
. ~10!
2-3
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The coefficientsc andz depend on the physical parameters
the following ways: c5(D1x)/x2 ig/(2x) and z
52(V1 /x)2.

In the semiclassical limit and in the steady-state regim
the oscillatory excitation numberuau2, wherea is the mean-
field amplitudea5^a&, can be obtained by solving the equ
tion

uau25
V1

2

~g/2!21~D1x12xuau2!2
. ~11!

As shown in Ref.@21#, the bistability and hysteresis beha
iors take place for parameters satisfying the following co
ditions:

x~D1x!,0,

UD1x

g/2 U.A3, ~12!

F 27xV1
2

~D1x!3
111S 3g/2

D1x D 2G 2

,F123S g/2

D1x D 2G3

.

Outside of this range, the system has a monostable beha
We will use these results in order to choose parame

which are suitable for the SR process. Examples of Eqs.~9!
and~11! for the discussed parameters are represented in
1. As we see, the quantum result does not show any hy
esis. The other peculiarity that can be concluded from res
~9! and ~11! is the increase of the quantum noise stren
with the relative nonlinearityx/g. As a consequence, th
characteristic threshold behavior, determined by a drastic
crease of̂ a†a& in the transition region, disappears for larg
values ofx/g. It is clear that this effect of the quantum nois
increase will also be displayed in quantum trajectories.

Analyzing quantum trajectories, we set the system
tially to the vacuum state of the corresponding harmo
oscillator, and integrate Eq.~6! for V250 andN50 over a

FIG. 1. Excitation numbers in quantum~1! and semiclassical~2!
regimes for a single driven AO coupled with a vacuum reservoir
the Rabi frequency, for the parametersx/g52 andD/g5215.
02210
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very long time, compared to the characteristic dissipat
time ;1/g. As expected, the analysis of the time-depend
stochastic trajectories for an expectation numbernj(t)
5^Cjua†auCj& shows that the system spends most of
time close to one of the semiclassical bistable solutions w
quantum interstate transitions, occurring at random interv
One of the possibilities for characterizing SR concerns s
tistical distributions of switching times of the stochastic pr
cess, including the residence-time distribution@3#. Here we
concentrate on the escape-time distributionPe(t) of the time
intervals it takes for the system to reach on upper state.
results are depicted on Fig. 2. In the absence of modula
forcing, V250, the distributionPe(t) has the expected ex
ponential form@Fig. 2~a!#, because quantum interstate tra
sitions are statistically independent. The mean time of qu
tum noise-induced transitions follows from the formula

t̄5E
0

`

tPe~t!dt, ~13!

and equalst̄.314g21 for the parameters used. It is interes
ing to note that the mean time interval of the quantum tr
sitions greatly exceeds the characteristic dissipation t
;g21 for x/g&1, and increases as this ratio decreases.

To observe SR phenomenon, we add a second driv
force, which is kept weak enough (V2!V1) so that dynami-
cal deterministic interstate transitions never occur, when
anharmonic oscillator is isolated from the bath. For con
nience, we choose a Rabi frequencyV1 in the center of the
bistability range shown on Fig. 1, i.e.,V155.8g. In this case
the transition rates from one state to the other become
proximately equal.

Returning to the full QSD equations with modulatio
terms @Eq. ~6!#, we assume that the periodT52p/udu is
close to twice the mean time of the quantum transitionst̄
deduced from Fig. 2~a!. This means that the frequency di
ference should be close to the characteristic frequencydSR

5p/ t̄, i.e., d.dSR. The numerical results for thePe(t)
distribution obtained from an analysis of quantum trajec
ries are presented in Figs. 2~b! and 2~c!. This simulation
shows that in the presence of a modulation forcingV2Þ0,
distribution Pe(t) exhibits a peak structure. The resonan
condition is achieved by varying the modulation frequen
d, and a resonantlike process is identified with a sepa
peak of the distribution. This is the case when a maxim
strength of the first peak is reached@Fig. 2~b!#.

In Fig. 3 we show the effect of varying the modulatio
frequencyd in quantum trajectories for oscillatory excitatio
numbersnj(t). Here QSR is displayed as a strict synchro
zation of quantum trajectories, when the period of modu
tion of the driving force is close to 2t̄, i.e.,d.dSR5p/ t̄. In
this case the ensemble-averaged oscillatory number^a†a&
exhibits a periodic modulation. The modulation is appro
mately sinusoidal with a period 2p/d of the driving force, as
depicted in Fig. 4~curve 1!. At large and small values ofd
compared with the characteristic frequencydSR, the syn-
chronization of quantum trajectories is violated. This effe
is well known for various nonlinear systems in the presen

s

2-4
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FIG. 2. Histograms for the
residence times of the quantum
jumps, ~a! without time modula-
tion; ~b! with two drivings,
provided that SR occurs, fo
d5dSR; ~c! with two drivings
for d55dSR. The parameters
are x/g52, D/g5215, V1 /g
55.8, V2 /g51.2, and dSR/g
50.01.
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of thermal noise. The novelty here is that we demonstra
manifestation of SR due only to quantum fluctuations. T
obtained result can also be interpreted as controlling the
chastic dynamics of the quantum system by an external ti
dependent force.

Other information about controlled stochastic dynam
can be obtained from an analysis of the quantum statistic
elementary oscillatory excitations. This decision can
made with the help of the Fano factor, which describes
excitation number uncertainty and is equal to the varia
^(Dn)2&5^(a†a)2&2^a†a&2, normalized to the level of fluc-
tuations for coherent states of the harmonic oscillator^n&
5^a†a&, i.e.,

F5
^~Dn!2&

^n&
. ~14!
02210
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The Fano factor is larger than unity if the statistics of
ementary excitations are super-Poissonian, equal to uni
the statistics are Poissonian, and smaller than unity if
statistics are sub-Poissonian.

The means over an ensemble of QSD trajectories is
culated in formulas~5!–~8!. In particular, for the variance
this method gives

^~Dn!2&5 lim
N→`

1

N (
j

N

@^Cju~a†a!2uCj&

2 z^Cju~a†a!uCj& z2#. ~15!

The result for the time evolution of the Fano factor ave
aged over quantum trajectories is depicted in Fig. 4~curve 2!
for parameters leading to the SR-like process. In this case
2-5
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Fano factor also shows a time-dependent modulation, w
the phase shifted approximately onp relative to the excita-
tion number curve@Fig. 4 ~curve 1!#. Surprisingly, the oscil-
latory excitation number fluctuations of our DAO model a
squeezed below the coherent level^(Dn)2&,^n&. This non-
classical effect of reduction of quantum fluctuations, i.e.,
formation of sub-Poissonian statistics, occurs for stron
definite time intervalst5360g21,1000g21, . . . , when the
mean oscillatory number reaches its maximal values.
minimum of the Fano factor@Eq. ~14!# is F.0.46.

It is quite obvious to explain super-Poissonian statis

FIG. 3. Single quantum trajectories for a doubly driven dissi
tive AO for decreasingd: ~a! d55dSR, ~b! d5dSR, and ~c! d
50.2dSR. The parameters arex/g52, D/g5215, V1 /g
55.8, V2 /g51.2, anddSR/g50.01. The time-dependent drivin
on the modulation frequencyd, shown below trajectories, is in ar
bitrary units.
02210
th
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s

with a physical mechanism leading to elementary excitati
of the DAO. In analogy with quantum-electromagnetic pr
cesses, where super-Poissonian photon statistics is stipu
by two-photon emissions into the resonance fluoresce
@24#, we connect the super-Poissonian statistics here with
contribution of the two-boson excitation process in o
model. The contribution of these processes will be domin
in the second-order correlation functiong(2)(t). In order to
elucidate this situation, analogous calculations are perform
for the normalized second-order correlation functiong(2)

5^a†a†aa&/^a†a&2 for zero delay time, i.e.,t50. The re-
sult is shown in Fig. 4~curve 3! for the same parameters a
for the photon number and Fano factor in Fig. 4~curves 1,2!.
As we see, the correlation function of the states of anh
monic oscillator exhibits both antibunching (g(2),1) and
superbunching (g(2).2) effects, which alternate with on
another for definite time intervals. It is shown that the an
correlation of excitations (g(2),1) arises for time intervals
where F,1. For other times, the correlation functio
reaches its maximal valueg(2).2.67, if the Fano factor is
equal toF.1.42. The large superbunching effect is the
sult of super-Poissonian statistics of the DAO, and can
understood only by the quantum nature of oscillatory exc
tions. Note that these conclusions are in conformity with
formula F5^n&(g(2)21), connecting the Fano factor an
the correlation function.

Interestingly, there is a possibility to change the statist
of oscillatory excitation from super- to sub-Poissonian pe
odically depending on the parameters of the driving forc
Thus one of the interesting conclusions which can be m
from these studies is the possibility of controlling the qua
tum dynamics, as well as the quantum statistics, of a di
pative system by an external time-dependent force.

For the purpose of illustration we studied the QSR ph
nomenon for very slow oscillations at a frequency differen
d in comparison with the relaxation rate, i.e.,d!g, and for
strong anharmonicityx/g52. However, analogous result
can be obtained for other ranges of the paramet
x/g, D/g, V1 /g, V2 /g, and d/g. As mentioned above

-

FIG. 4. Time evolution of the ensemble-averaged photon nu
ber ~curve 1! and Fano factor~curve 2! for a doubly driven AO,
coupled with a vacuum reservoir. The parameters arex/g
52, D/g5215, V1 /g55.8, V2 /g51.2, anddSR/g50.01. The
averaging is over 1500 trajectories.
2-6
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the applicability of this model for a realization of SR in
pure quantum regime is restricted only to the case of str
anharmonicity.

IV. ENTROPIC DESCRIPTION OF QSR

The challenge we want to address next concerns the q
tum information aspects of the problem. Information-theo
concepts, such as entropy and mutual information, were
viously used in the study of SR@25#. We expand these stud
ies, and present quantitative analysis of SR in the quan
range on the basis of von Neuman entropy. This quantity
measure of dissipation, quantum entanglement, and the
rity of quantum states@26#, and is defined through the re
duced density operator as

S52Tr~r ln r!. ~16!

In doing this, we consider the case ofTÞ0 temperature of
the reservoir, but in a deep quantum regime, when the m
photon number of the reservoir is smaller than the m
oscillatory numberN!1, N!^n&. The stochastic resonanc
condition in this case can be achieved by varying either
frequencyd or the temperature noise intensityN. We expect
to manifest QSR as an optimal ordering degree of the s
tem, due to its quantum evolution and quantum diffus
processes. We calculate the time evolution of the entropy
formula ~16! for different levels of noise, using the resul
for the reduced density matrix, expressed by the ensemb
the trajectories. The calculations are performed by a dia
nalization of the matrixrnm5^nur(t)um& in the Fock-state
basis. This simulation shows that for timest, larger than the
time scale of the transient dynamics, the entro
S(N,V1 ,V2) of the full system acquires the periodicity o
the external drivingV2. As expected, the entropy exhibi
maximum deviations from its time-independent val
S(N,V1,0) at an optimal noise pump rate. The entro
S(N,V1,0) corresponds to the usual anharmonic oscilla
driven by the single forceV1Þ0, V250. Both entropies
S(N,V1 ,V2) andS(N,V1,0) depend on the system’s param
etersx/g and D/g, and increase with intensity of extern
noise N. To clearly identify QSR, we demonstrate the n
merical results for the quantum conditional entropy, which
defined as the difference

S~N,V1uV2!5S~N,V1 ,V2!2S~N,V1,0!, ~17!

and we express the residual information of the system.
time evolution of the conditional entropy, starting from tim
intervals exceeding the transient regime, i.e.,tg*50, is pre-
sented in Fig. 5 for three values ofN.

We observe that the quantum entropy of a subsystem@a
dissipative anharmonic oscillator with no modulation for
(V1Þ0, V250)#, dominates over the entropy of a full sy
tem, and therefore, the quantum conditional entropy is ne
tive. Such a behavior indicates the effective time ordering
the dissipative AO by an external time-dependent force. T
small irregular positive regions ofS(N,V1uV2) appear to be
due to an insufficient number of averaged stochastic tra
tories. For simplicity, we show only two periods of entrop
02210
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oscillations. Here QSR is observed atN50.3 as the condi-
tional entropy with minimum value@Fig. 5 ~curve 2!#.

It should be noted that the time ordering of the dissip
tive, stochastic dynamics by the external periodic force
displayed as a synchronization of quantum trajectories in
framework of the QSD approach. We have above dem
strated this effect in the pure quantum regime of a DA
However, it is easy to check that such synchronization ta
place much more often in the presence of thermal no
Below, we show the other interesting consequence of
synchronization of quantum trajectories, which concerns
excitation number uncertainty. For this goal the mean val
^(Dn)2& and ^n& are calculated by averaging over an e
semble of 4000 trajectories. In Fig. 6 we report the tim
evolution of the Fano factor for three values ofN, which is
increased from low values up to large values, crossing
resonance valueN50.3. These results, when plotted in d
pendence on time, display the periodic behavior of the F

FIG. 5. Conditional von Neumann entropy in the presence
external noise for a doubly driven AO, coupled with thermal res
voir: ~curve 1! N50.1, ~curve 2! N50.3, and~curve 3! N50.6. SR
is realized for N50.3. The parameters arex/g50.7, D/g5
215, V1 /g56.8, V2 /g51.2, anddSR/g50.005. The averaging
is over 1500 trajectories.

FIG. 6. Time evolution of an ensemble-averaged Fano facto
a doubly driven AO coupled with a thermal reservoir (TÞ0). The
effect of varying the external noise strength are~curve 1! N50.1,
~curve 2! N50.3, and~curve 3! N50.6. The parameters arex/g
50.7, D/g5215, V1 /g56.8, V2 /g51.2, anddSR/g50.005.
2-7
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factor. The modulation with maximum and minimum valu
of F, which are equal toFmax51.29 and Fmin50.48, is
reached when the resonance condition is achieved. The
odic modulation also exhibits the ensemble-averaged osc
tory number̂ n&. We have not shown this result; however,
Fig. 7 we plot, for an illustration, the difference betwe
maximal and minimal values of̂n& during one period of
modulation, i.e., the quantityDn5^n&max2^n&min , versus the
external noise strengthN. This result shows the stochast
resonance behavior.

The analysis above also indicates that it is possible
control the behavior of a quantum system by an exter
time-dependent force even when the system is coupled
thermal reservoir. In this spirit, we emphasize that the idea
controlling the dynamics of a quantum system in the pr
ence of dissipation and decoherence by an external peri
driving was exploited by many authors~see, for example
Refs.@27–33#!. We note the effect of coherent destruction
tunneling@27#, the control of decoherence and relaxation
frequency modulation of heat bath@28#, examples of long-
lived Schrödinger cat states in the context of superradian
@29#, the suppression of decoherence by the specific
quences of radio-frequency pulses@30,31# and dynamical lo-
calization for two-level atom interacting with a standin

FIG. 7. The stochastic resonant behavior ofDn5^n&max

2^n&min vs the noise strength for the parameters in Fig. 6.
v.

y-
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wave @32,33#. In addition to these results, here we demo
strated the possibility of controlling the dynamics as well
the statistics and entropy of a nonlinear dissipative oscilla
driven by two forces.

V. CONCLUSION

Our work demonstrates that the SR phenomenon can
realized in a pure quantum regime for a model of an anh
monic oscillator driven by two periodic forces. We are su
that the possibility of QSR, as a result of correlation betwe
quantum noise and nonlinear evolution, contains a poten
for applications. As an illustration of the possible potential
this model, we have demonstrated the synchronization
quantum trajectories by SR which leads to the controll
evolution of the quantum open system. From the perspec
of quantum optics, the investigations suggest the noncla
cal effect of sub- and super-Poissonian statistics of the os
latory excitation number. These effects become maxim
when SR occurs. We have also described the SR phen
enon from the point of view of quantum information on th
basis of von Neuman entropy. The QSR phenomenon
illustrated in the regime of strong anharmonicity when t
anharmonicity parameter is comparable to a dissipative
cay rate. In addition to the fundamental interest in the exp
ration of the QSD method for an estimation of QSR, t
investigation of a double driven anharmonic oscillator see
interesting for various applications. Although the prima
motivation for this study was theoretical, results may be o
servable experimentally. As candidates we suggest two
perimental schemes, which operate with a nonlinear cavit
a single electron in a Penning trap.
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