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Stochastic resonance in quantum trajectories for an anharmonic oscillator
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We demonstrate that the stochastic resonance phenomenon can occur in a pure quantum regime for a wider
class of microscopic systems described by a dissipative anharmonic oscillator driven by two periodic forces.
We apply a quantum-state diffusion method, and display the synchronization of quantum trajectories by the
stochastic resonance process. The model proposed is accessible for experiments, and results in the formation of
guantum states of the anharmonic oscillator, namely sub- and super-Poissonian statistics for time intervals
exceeding the relaxation rate. We show that stochastic resonance phenomenon can be described in terms of the
minimization of the quantum von Neuman entropy, and demonstrate the possibility of controlling both the
dissipative dynamics and quantum statistics of anharmonic oscillator by two external periodic forces.
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[. INTRODUCTION for experiments. It can be implemented, at least for the dy-
namics of strongly interacting photons, in optical cavity in-
The interplay between noise and coherent driving in nonvolved Kerr nonlinearity, and for a cyclotron oscillations of a
linear dynamical systems gives rise to a variety of intriguingsingle electron in a Penning trap.
behaviors. The most extraordinary and counterintuitive ex- A driven anharmonic oscillatofDAO) is a well-known
ample is the phenomenon of stochastic resona(&®, and archetypal model for dealing with nonlinearities in quan-
whereby the response of the system to a coherent externelm mechanics, and was widely used to describe various
signal can be enhanced by the assistance of noise. First prphysical phenomengl1-15. The DAO gives guantum in-
posed in 19811], SR was first experimentally verified by terference even when coupled to a thermal reserjis,
Fauve and Hesldt2], and since then this phenomenon wasand describes a self-modulation of electromagnetic modes in
demonstrated in sensory neurons, lasers, tunnel diodes, com-<avity filled by ay(®) nonlinear mediungsee, for example,
munication devices, etqSee Refs[3,4] for an extensive Ref.[13], and references therginrhe DAO is also related to
review and complete list of referenceg.he most known a description of Bose-Einstein condensdtb4| and to hys-
mechanism leading to SR concerns nonlinear bistable syseresis in atomic systenj&5].
tems driven by a weak periodic signal, which in itself is  With dissipation included, the DAO model was exactly
insufficient to induce deterministic transitions between twosolved by Drummond and Wal[d.1] in the steady-state re-
metastable states. Then, in the presence of additional extegime, and in terms of the Fokker-Plank equation in a com-
nal noise, this system exhibits almost periodic transitiongplex P representation. An exact quantum theory for a para-
from one state to the other, for certain optimal noise intensimetrically driven anharmonic oscillator was given by
ties. It was shown that, as a consequence of the systemkryuchkyan and Kheruntsyafl6]. A characteristic feature
nonlinear intrinsic dynamics, SR can also occur in mono-of a dissipative DAO is the appearance of bistability and
stable system$§5] as well as in the absence of a periodic hysteresis effects. We exploit this feature by considering a
drive [6]. Recently, SR was proposed for a quantum regimenodel of a dissipative anharmonic oscillaf&O) driven by
where additional routes to quantum tunneling occur to overtwo periodic forces at different frequencies. As we show, this
come a potential barrier between two metastable states of gystem exhibits remarkable nonlinear and quantum features,
guantum double well7]. Some developments and other ap-and displays both nonclassical, sub- and super-Poissonian
plications and examples of quantum stochastic resonancdatistics of elementary excitations. As to SR, it occurs in a
(QSR were given in Refs[8,9]. regime where one of the two applied forces is weak com-
The question was posed whether QSR can be realized ipared to the other. This is an example of a quantum system
microscopic simple quantum systems where interactions ari@ contact with its environment, where the controlling of dis-
considered as quantum by quantum. One such scheme wsaipative dynamics as well as quantum statistics can be real-
proposed by Buchleitner and Manteght0], where QSR ized through an external time-dependent force. The model
was demonstrated in a micromaser. proposed cannot be described analytically. Our analysis is
The goal of this paper is twofold: first, we show that QSRbased on a quantum-state diffusi6QSD) approach[17],
can occur in a wider class of microscopic systems describedhich naturally unravels a mixed state of open quantum sys-
by an anharmonic oscillator driven by two periodic forces;tem into component stochastic pure states. Thus it is ex-
and second, we demonstrate SR in pure quantum regime qgrected that this approach will also be useful in obtaining
guantum trajectories, as well as on ensemble-averaged raisights into the problem of SR at the level of time-
sults for the mean oscillatory number, variance of oscillatorydependent quantum trajectories. As we show, it is possible to
number quantum fluctuations, and von Neuman entropy. Thachieve SR in a deep quantum regime for strong anharmo-
model of nonlinear oscillator we present here is accessiblaicity, when a corresponding coupling constant is compa-
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rable with a dissipation decay rate. We suppose that such a Hine=h{[ Q1+ Qzexq_i(st)]a‘r
model can, in particular, be realized in two experimental . . _ o
schemes. One of the candidates may be a scheme based on a +[QT+Q5 explidot)Jaj+hx(a'a)®. (3

model of anharmonic oscillator in a cavity, proposed in Ref. _

[18], which utilizes atomic dark resonances and allows one Here A=wo—w; and 6=w;~ w, are the detuningd.;
to achieve giant optical nonlinearities. The photon-photor@re the Lindblad operators,

interaction coefficient in such a nonlinear cavity, describing

the anharmonicity coefficient, could easily be much larger Li=V(N+1)ya, L,=\Nya', (4)

than the cavity decay rate. We propose to use a modified ) o
version of such a DAO, whereby the high-finesse cavity isvhere v is the spontaneous decay rate of the dissipation

pumped by two coherent fields. Other proposal involves £70CesS, andl denotes the mean number of quanta of a heat
single electron in a Penning trap under two Iow-frequenqbath- . . .
periodic drivings. Its anharmonicity comes from a nonlinear N the case of single drivind),#0 and Q,=0, this
relativistic correction to an electron motion, while stochasticodel describes a dissipative DAO, which in the semiclassi-
and dissipative effects arise from the spontaneous emissidi2! @PProach and the steady-state regime exhibits bistability
of synchrotron radiation, as predicted theoretically byVersus either the detuning or the strength of drivind2,
Kaplan[19]. The trapped electron driven by a single coher-[111. HO\{rvever, the _hysteresns of th_e mean oscillatory number
ent field was experimentally realized and studied by Gabril(t) =(a'(t)a(t)) is destroyed in the exact quantum-
else and co-worker20). mechanical treatment as a consequence of ensemble averag-
The paper is organized as follows: In Sec. II, the model of"d [16]. Nevertheless, hysteresis manifests itself on indi-
a dissipative anharmonic oscillator driven by two periodicVidual quantum trajectories as noise-induced transitions
forces is presented, and the relevant QSD method is ddetween two possible metastable std@H. When two ex-
scribed. In Sec. 1ll we demonstrate the SR phenomenon in tgrnal forces are both present, we analyze the master equa-
pure quantum regime of DAO from the point of view of tion numerically using the QSD methcﬁdl?].. According to
QSD. The variance of the oscillatory excitation and thethis method, the reduced density operator is calculated as the

second-order correlation function are also calculated. Sectiofnsemble mean,
IV is devoted to study of an information aspects of a DAO
on the basis of quantum von-Neuman entropy. Finally, Sec.

1o
V presents our conclusion. p(= M(|W§><Wf|):,\lllinx N 2; (W O)T L], )

Il. ANHARMONIC OSCILLATOR DRIVEN over the stochastic pure staf@l;(t)) describing the evolu-
BY TWO FORCES tion along a quantum trajectory. The corresponding equation
of motion is

Let us discuss the proposed system in more detail. An
anharmonic oscillator driven by two periodic forces at fre-

i 1
guenciesw; and , is described by the Hamiltonian |dW )= =+ (HotHin) [ ¥ )dt—3 > (LT —2(L0L
|
H=fwia'a+%y(a'a)?
+
+A{[Q, exp(—iwyt) + Qp exp(— i wot)Jal+ H.cl. FLXLDIW s 2 (Li=(L) ¥ Hdéi . (6)
@

Here¢ indicates the dependence on the stochastic process,

Herea anda' are boson annihilation and creation opera-the complex Wiener variablesé; satisfy the fundamental
tors, wg is an oscillatory frequency, and is the strength of properties
the anharmonicity. The intensity of two driving forces is
given by Rabi frequencie®, and,. We incorporate the M(d¢)=0, M(d§dg)=0, M(d¢ dE)=g;dt,
dissipation by coupling the AO to a heat bath. The reduced (7)
density operator within the framework of the rotating-wave
approximation and in a frame rotating with frequeney is
governed by the master equation

and the expectation valug )= (W |L;| V).
Below we shall give the results of numerical analysis of a
dissipative anharmonic oscillator driven by two forces using

ap i an expansion of the state vectbﬂg) in Fock’s number
St~ 7 [HotHinepl states of a harmonic oscillator:
e Loy W)= al(v)n) ®
+ 2 |Lisk = SLLp= el L) @) d0)=2 ay’()ln).
where In the following we consider the regime of strong anharmo-
nicity x/vy~2 andy/vy~0.7, but not the strong coupling of
Ho=#%Aa'a, AO to a reservoir, so that the Born-Markov approximation is
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valid. This regime is strongly quantum mechanical, as in theve present here describes the interaction of a trapped elec-

region of bistability, where SR occurs, the maximum numbeitron moving in a magnetic field, with two coherent fields at

of oscillator states is less than 10. different frequencies. The corresponding Hamiltonian is
Moreover, as we already noted, this regime is accessiblgiven by Eq.(1), where operatora anda' describe cyclo-

on the practice. In the end of the section we briefly discussron quantized motion at a modified cyclotron frequeagy

this point, showing the conformity of the model proposed toThe parametey is the strength of the anharmonicity due to

the two above-mentioned physical schemes. the relativistic effects, and refers to the detuning between
the eigenfrequency of the oscillator and the frequency of one
A. Anharmonic oscillator in a nonlinear cavity of the driving fields. The parametefk, and(), characterize

the amplitudes of the microwave driving fields. The interac-

It is well known that a single mode of the lossy cavity, tion of the electron with its environment is the radiative cou-

involving third-order nonlinearity under coherent driving,

resents an examole of a dissinative DAO. In this model th ling of the cyclotron motion with the thermal radiation
P o P pative ' ) ield. Its radiative damping is described by the two Lindblad
anharmonicity of the mode dynamics comes from its self-

; i ; Co operatorg Egs. (4)] with the spontaneous decay rate of the
phase modulation due to photon-photon interaction in the yclotron motiony and the mean number of quartzof the

3) i issipati i
x " medium. Dissipative effects arise from the leakage 01L’[chermal radiation field. In principle, this scheme is easy to

photons through the cavity mirrors, which damps the rad'a’mplement, as it generalizes a single-field case. It is impor-

:jlcr)i?/i::ek?i.elltjlss t?]?ssystost(c:er;?cil; tg:;(l;?itt)gfj Cbaszgzmgnﬁg‘nss'calant that a one-electron cyclotron oscillator allows one to
9 Y y '’ achieve a relatively strong cubic nonlinearityy=1. We

-1- g . . _

\évrg?gfs(;g?:ﬁgogﬁ]alr:rﬁoc?ereoft?]rgryg;f na??rg curzano?hgp use typical experimental values of the parameters to illustrate

ingie-m . Y queney tt this property. It is easy to check that the nonlinear coupling
photon-phpton mteracthn.t.erpr; is proportional to the thqu- x in Hamiltonian (1) equals one-half of the relativistic an-
order nonlinear susceptibility®), and(); andQ; are Rabi £ 01 level shift, i.e.y = w./2. Although this shift is ex-
frequencies corresponding to two classical coherent fleld:irernely smallw, /o ,:hw /m&=10-2 however. since the
respeptlvely. The damp_lng of this osqllator with the cavity spontaneous d;ca§ ratesC are also ex’tremely sl,ow the transi-
damping ratey I described by the Lindblad operatﬁ_:‘sq. tions between lowest levels are well resolved withw,
(4)], whereN is the mean number of thermal reservoir pho'lefz. This gives an experimentally attainable value of

tons. /=50
We reiterate that the nonlinear cavity model described b)}( Y '

the Hamiltonian of Eq(1) in the case of one driving field
was previously analyzed by several authg¢sse, for ex-
ample, Refs[11-16). An important development in this
area, including cavity QED, is the emerging capability for |p this section we address the question of how SR is dis-
investigation both of atom-photon strong coupling and modeyjayed in quantum trajectories in the pure quantum regime at
dynamics in a regime of strong photon-photon interactiony zero temperature of the heat bath=0, in the Lindblad
(i.e., reducedy and increaseg) [23]. In particular, Ref[18]  operatorg4)]. The difficulty in the realization of this process
demonstrated a large resonant enhancem_ent in_nonlinearify obviously connected with the low level of quantum noise.
for a low-density four-level atomic medium. A strong- Tq avoid this problem, we use a dissipative nonlinear system
coupling regimey/y=20 was predicted for typical experi- with a multiplicative noise, in which the noise level increases

Ill. CONTROLLING QUANTUM TRAJECTORIES
AND QUANTUM STATISTICS

mental parameters. with the nonlinearity. In doing so, we first consider a model
of DAO in the absence of periodic drivin@,;#0 and(Q,
B. One-electron cyclotron oscillator in a Penning trap =0, for the values of parametets/y and y/y, leading to

As we noted, a single electron in a Penning trap wadistable hysteresis depending &1 /y. The exact quantum

suggested as the realization of a quantum DAO interactingnalysis of this system is based on the well-known steady-
with a thermal reservoif19—24. Let us explain this state- State solution of the Fokker-Plank equation in the complex

ment in more detail. In fact, an electron stored in a penningepresentatioﬁll]. Such a consideration leads, in particular,
trap containing a magnetic field is a real quantum cyclotrorf® the ensemble mean of the quantum-mechanical expecta-
oscillator, the anharmonicity of which comes from nonlineartion number which is of interest here

effects that are caused by the relativistic motion of an elec-

tron in a trap. Furthermore, in such a system the dissipation 02 F(c+1c*+12)
effect arises from the spontaneous emission of the synchro- (aTa)z 5 5 " , (9)
tron radiation and thermal fluctuations of the cyclotron mo- (A+x)°+(v2) F(c,c*.2)

tion. The energy eigenstates of an AO are the number states,

which are spaced in enerdy, 1 —E,=%[w.—(n+1)we], whereF=,F, is the generalized Gauss hypergeometric se-
where w. is the cyclotron frequencyw, is the relativistic ries:

anharmonic level shift, anch=0,1,... . It wasdemon-

strated that in the presence of an external periodic field, this = 0 (e

system is described by a model of a dissipative DAO. The F,(c,d,z)= E z (©)I'(d) _ (10)
details of calculation can be found in R¢22]. The model or A= T = nl T(c+n)l(d+n)
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5 o very long time, compared to the characteristic dissipative
time ~1/y. As expected, the analysis of the time-dependent
@ stochastic trajectories for an expectation numivg(t)

=(W¥a'a|V,) shows that the system spends most of its

cess, including the residence-time distribut{@&). Here we
concentrate on the escape-time distributiy(t) of the time
intervals it takes for the system to reach on upper state. The
results are depicted on Fig. 2. In the absence of modulation
or— , forcing, 2,=0, the distributionP4(t) has the expected ex-
0 2 4 6 8 10 12 ponential form[Fig. 2(a)], because quantum interstate tran-
Q. /y sitions are statistically independent. The mean time of quan-
tum noise-induced transitions follows from the formula

@ . . ; . : .
-g time close to one of the semiclassical bistable solutions with
S 3r guantum interstate transitions, occurring at random intervals.
% One of the possibilities for characterizing SR concerns sta-
S ol tistical distributions of switching times of the stochastic pro-
©

:‘(;J‘

>

i

FIG. 1. Excitation numbers in quantufh) and semiclassicdP)
regimes for a single driven AO coupled with a vacuum reservoir vs — fm
=

the Rabi frequency, for the parametgisy=2 andA/y=—15. TPe(7)dT, (13

0
The coefficients andz depend on the physical parameters in
the following ways: c=(A+x)/x—ivy/(2x) and z
=2(Q1/x)%.

In the semiclassical limit and in the steady-state regime
the oscillatory excitation numbew|?, wherea is the mean-
field amplitudea=(a), can be obtained by solving the equa-

and equals=314y ! for the parameters used. It is interest-
ing to note that the mean time interval of the quantum tran-
sitions greatly exceeds the characteristic dissipation time
~y 1 for y/y=1, and increases as this ratio decreases.

To observe SR phenomenon, we add a second driving
force, which is kept weak enouglilo<() ;) so that dynami-

tion cal deterministic interstate transitions never occur, when the
02 anharmonic oscillator is isolated from the bath. For conve-

|a|?= = ) (11 nience, we choose a Rabi frequeriy in the center of the

(Y12)%+ (A + x+2x|a|?)? bistability range shown on Fig. 1, i.€);=5.8y. In this case

the transition rates from one state to the other become ap-
As shown in Ref[21], the bistability and hysteresis behav- proximately equal.

iors take place for parameters satisfying the following con-  Returning to the full QSD equations with modulation
ditions: terms [Eq. (6)], we assume that the pericB=27/|4| is
close to twice the mean time of the quantum transitions 2
deduced from Fig. @). This means that the frequency dif-
ference should be close to the characteristic frequetgy

>3, (12 =7, ie. =05 The numerical results for th@(t)

X(A+x)<0,

’A-I—)(

vI2 distribution obtained from an analysis of quantum trajecto-

5 5 ries are presented in Figs(l? and 2c). This simulation

27x Q7 3yl2\? yi2 \?]? shows that in the presence of a modulation forcidg+0,
(A+y)3 A+y <|1-3 A+y distribution P.(t) exhibits a peak structure. The resonance

condition is achieved by varying the modulation frequency

Outside of this range, the system has a monostable behaviot: @nd a resonantlike process is identified with a separate

We will use these results in order to choose parametergeak of the distribution. This is the case when a maximal
which are suitable for the SR process. Examples of Es. strength of the first peak is reachgéig. 2b)].
and(11) for the discussed parameters are represented in Fig. In Fig. 3 we show the effect of varying the modulation
1. As we see, the quantum result does not show any hysteftequencys in quantum trajectories for oscillatory excitation
esis. The other peculiarity that can be concluded from resultgumbersn,(t). Here QSR is displayed as a strict synchroni-
(9) and (11) is the increase of the quantum noise strengthzation of quantum trajectories, when the period of modula-
with the relative nonlinearityy/y. As a consequence, the tion of the driving force is close to2 i.e., §= dsg= /7. In
characteristic threshold behavior, determined by a drastic inthis case the ensemble-averaged oscillatory nunibéa)
crease o(a*a} in the transition region, disappears for large exhibits a periodic modulation. The modulation is approxi-
values ofy/ y. It is clear that this effect of the quantum noise mately sinusoidal with a period+® § of the driving force, as
increase will also be displayed in quantum trajectories. depicted in Fig. 4curve 1. At large and small values aof

Analyzing quantum trajectories, we set the system ini-compared with the characteristic frequendyg, the syn-
tially to the vacuum state of the corresponding harmonicchronization of quantum trajectories is violated. This effect
oscillator, and integrate E¢6) for (1,=0 andN=0 over a is well known for various nonlinear systems in the presence
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FIG. 2. Histograms for the
0.00 0.00 residence times of the quantum
) 100 200 300 400 500 100 200 300 400 500 T jumps, (a) without time modula-

@) L) Y tion; (b) with two drivings,
p(T) provided that SR occurs, for
6= 6gr; (c) with two drivings
for 6=56sgr. The parameters
are xly=2, Aly=-15, Qq/y
:58, 92/7:12, and 5SR/’)/

=0.01.

0.06 1

0.04 1

0.02
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of thermal noise. The novelty here is that we demonstrate &he Fano factor is larger than unity if the statistics of el-
manifestation of SR due only to quantum fluctuations. Theementary excitations are super-Poissonian, equal to unity if
obtained result can also be interpreted as controlling the stdhe statistics are Poissonian, and smaller than unity if the
chastic dynamics of the quantum system by an external timestatistics are sub-Poissonian.
dependent force. The means over an ensemble of QSD trajectories is cal-

Other information about controlled stochastic dynamicsculated in formulag5)—(8). In particular, for the variance,

can be obtained from an analysis of the quantum statistics dhis method gives
elementary oscillatory excitations. This decision can be

made with the help of the Fano factor, which describes the "

2 i 12)2
excitation number uncertainty and is equal to the variance ((An) >*,\|"mx N Eg [(V¢l(a'a)® W)
((An)?)=((a'a)?)—(a'a)?, normalized to the level of fluc- N
tuations for coherent states of the harmonic oscillgtor — (W (@)W )] (15)
=(a'a), i.e.,

) The result for the time evolution of the Fano factor aver-
_((an)) (14  @ged over quantum trajectories is depicted in Figcutve 2
(n) - for parameters leading to the SR-like process. In this case the
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8_

Excitation Number
<n>, F, g(z)
n

W A A
J Af \/A \

L L L 1 Il n 1 2 1 L 1
(a) 0 200 400 600 800 1000 yt 0 500 1000 1500 2000 vyt

8r FIG. 4. Time evolution of the ensemble-averaged photon num-
ber (curve 1) and Fano factofcurve 2 for a doubly driven AO,

6l coupled with a vacuum reservoir. The parameters gles

=2, Aly=-15, O,/y=5.8, Q,/y=1.2, andSsg/ y=0.01. The
averaging is over 1500 trajectories.

with a physical mechanism leading to elementary excitations
of the DAO. In analogy with quantum-electromagnetic pro-
A A cesses, where super-Poissonian photon statistics is stipulated
or / \ / \ ] \J \ / / x/ \ by two-photon emissions into the resonance fluorescence
- V vV [24], we connect the super-Poissonian statistics here with the
- contribution of the two-boson excitation process in our
vt model. The contribution of these processes will be dominant
in the second-order correlation functigt?)(7). In order to
elucidate this situation, analogous calculations are performed
for the normalized second-order correlation functigt?
=(a'a'aa)/(a'a)? for zero delay time, i.e.7=0. The re-
sult is shown in Fig. 4curve 3 for the same parameters as
for the photon number and Fano factor in Figcarves 1,2
As we see, the correlation function of the states of anhar-
monic oscillator exhibits both antibunching®<1) and
superbunching ¥>2) effects, which alternate with one
another for definite time intervals. It is shown that the anti-
J h \ correlation of excitationsg(?)< 1) arises for time intervals

Excitation Number

2 I L I N 1 L I L I N 1
(b) 0 1000 2000 3000 4000 5000

Excitation Number

N

T V.

2 I 1 1
() 0 5000 10000 15000 20000 25000 YT

where F<1. For other times, the correlation function
reaches its maximal valug(?=2.67, if the Fano factor is
equal toF=1.42. The large superbunching effect is the re-
FIG. 3. Single quantum trajectories for a doubly driven dissipa-Sult Of super-Poissonian statistics of the DAO, and can be
tive AO for decreasings: (@) 6=56sr, (b) d=3Jsg, and (c) 6  understood only by the quantum nature of oscillatory excita-
=0.20sz. The parameters arey/y=2, Aly=—15 Q,/y tions. Note that these conclusions are in conformity with the
=5.8, 0,/y=12, andssp/y=0.01. The time-dependent driving formula F=(n)(g®—1), connecting the Fano factor and

on the modulation frequenc§, shown below trajectories, is in ar- the correlation function.
bitrary units. Interestingly, there is a possibility to change the statistics

of oscillatory excitation from super- to sub-Poissonian peri-
Fano factor also shows a time-dependent modulation, witledically depending on the parameters of the driving forces.
the phase shifted approximately enrelative to the excita- Thus one of the interesting conclusions which can be made
tion number curvégFig. 4 (curve 1]. Surprisingly, the oscil- from these studies is the possibility of controlling the quan-
latory excitation number fluctuations of our DAO model aretum dynamics, as well as the quantum statistics, of a dissi-
squeezed below the coherent ley€An)?)<(n). This non-  pative system by an external time-dependent force.
classical effect of reduction of quantum fluctuations, i.e., the For the purpose of illustration we studied the QSR phe-
formation of sub-Poissonian statistics, occurs for stronglynomenon for very slow oscillations at a frequency difference

definite time intervalg =360y %,1000y %, ..., when the & in comparison with the relaxation rate, i.8s<y, and for
mean oscillatory number reaches its maximal values. Thetrong anharmonicityy/ y=2. However, analogous results
minimum of the Fano factdiEqg. (14)] is F=0.46. can be obtained for other ranges of the parameters:

It is quite obvious to explain super-Poissonian statisticsy/y, Alvy, Qq/vy, Q,/vy, and 6/y. As mentioned above,
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the applicability of this model for a realization of SR in a > 02
pure quantum regime is restricted only to the case of strong@' I
anharmonicity. E oor
= 02

IV. ENTROPIC DESCRIPTION OF QSR S i

The challenge we want to address next concerns the quarg
tum information aspects of the problem. Information-theory 8§ °°[
concepts, such as entropy and mutual information, were pre I
viously used in the study of SR5]. We expand these stud-
ies, and present quantitative analysis of SR in the quantun -1.0}
range on the basis of von Neuman entropy. This quantity is ¢ I . . . . .
measure of dissipation, quantum entanglement, and the p. %, 500 1000 1500 2000 2500 yr
rity of quantum state$26], and is defined through the re-
duced density operator as FIG. 5. Conditional von Neumann entropy in the presence of

external noise for a doubly driven AO, coupled with thermal reser-
S=—Tr(pInp). (16)  voir: (curve ) N=0.1,(curve 3 N=0.3, and(curve 3 N=0.6. SR
is realized for N=0.3. The parameters arg/y=0.7, A/y=

In doing this, we consider the caseTo# 0 temperature of —15 0,/y=6.8, Q,/y=1.2, anddsg/ y=0.005. The averaging
the reservoir, but in a deep quantum regime, when the meas over 1500 trajectories.
photon number of the reservoir is smaller than the mean
oscillatory numbeN<1, N<(n). The stochastic resonance
condition in this case can be achieved by varying either th?. L ent ith mini IUEFia. 5
frequencyd or the temperature noise intensky We expect ional entropy with minimum va-uéF|g. (gurve 2] .
to manifest QSR as an optimal ordering degree of the sys- It should be noted that the time ordering of the dissipa-

tem, due to its quantum evolution and quantum diffusiontive' stochastic dynamics by the external periodic force is

processes. We calculate the time evolution of the entropy b isplayed as a synchronization of quantum trajectories in the
formula (16) for different levels of noise, using the results ramework of the QSD approach. We have' above demon-
for the reduced density matrix, expressed by the ensemble §frated this effect in the pure quantum regime of a DAO.
the trajectories. The calculations are performed by a diagotlowever, it is easy to check that such synchronization takes
nalization of the matrixp,,=(n|p(t)|m) in the Fock-state place much more often in the presence of thermal noise.
basis. This simulation shows that for timedarger than the Below, we show the other interesting consequence of the
time scale of the transient dynamics, the entropysynchronization of quantum trajectories, which concerns the
S(N,Q4,Q,) of the full system acquires the periodicity of €Xcitation number uncertainty. For this goal the mean values
the external drivingQ),. As expected, the entropy exhibits ((An)?) and(n) are calculated by averaging over an en-
maximum deviations from its time-independent valuesemble of 4000 trajectories. In Fig. 6 we report the time
S(N,Q,,0) at an optimal noise pump rate. The entropyevolution of the Fano factor for three valuesNfwhich is
S(N,,,0) corresponds to the usual anharmonic oscillatoincreased from low values up to large values, crossing the
driven by the single force2;#0, Q,=0. Both entropies resonance valudl=0.3. These results, when plotted in de-
S(N,Q;,0Q,) andS(N,Q,,0) depend on the system’s param- pendence on time, display the periodic behavior of the Fano
etersy/y and A/vy, and increase with intensity of external

noise N. To clearly identify QSR, we demonstrate the nu- 141
merical results for the quantum conditional entropy, whichis 43
defined as the difference

0.8

oscillations. Here QSR is observed Mt 0.3 as the condi-

1.2

S(N,Ql|92):S(N,QlyQZ)_S(Nvﬂlro)! (17) — 1;

o 1.

and we express the residual information of the system. Theg 0.9
time evolution of the conditional entropy, starting from time 2 o
intervals exceeding the transient regime, itg=50, is pre- @ o7

sented in Fig. 5 for three values bf
We observe that the quantum entropy of a subsyg@m 05

dissipative anharmonic oscillator with no modulation force ' . . . . . . .

(Q,#0, Q,=0)], dominates over the entropy of a full sys- 0'40 ' 500 1000 1500 2000

tem, and therefore, the quantum conditional entropy is nega-

tive. Such a behavior indicates the effective time ordering of FiG. 6. Time evolution of an ensemble-averaged Fano factor of

the dissipative AO by an external time-dependent force. The doubly driven AO coupled with a thermal reservolr#0). The

small irregular positive regions @&(N,{1|Q),) appear to be effect of varying the external noise strength éearve 3 N=0.1,

due to an insufficient number of averaged stochastic trajedcurve 2 N=0.3, and(curve 3 N=0.6. The parameters ang y

tories. For simplicity, we show only two periods of entropy =0.7, A/y=-15, Q,/y=6.8, Q,/y=1.2, anddsr/y=0.005.

0.6
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107 wave[32,33. In addition to these results, here we demon-
1 strated the possibility of controlling the dynamics as well as
8 \'\_ the statistics and entropy of a nonlinear dissipative oscillator
T~ driven by two forces.
5 6 .\-
. V. CONCLUSION

) Our work demonstrates that the SR phenomenon can be
5 realized in a pure quantum regime for a model of an anhar-

] monic oscillator driven by two periodic forces. We are sure
ol o that the possibility of QSR, as a result of correlation between
. ' . ' . ' . ' . ' 1 quantum noise and nonlinear evolution, contains a potential

0.0 0.2 04 N 0.6 0.8 10 for applications. As an illustration of the possible potential of

this model, we have demonstrated the synchronization of
FIG. 7. The stochastic resonant behavior Ah=(n).., quantum trajectories by SR which leads to the controlling

—(Nmin VS the noise strength for the parameters in Fig. 6. evolution of the quantum open system. From the perspective

of quantum optics, the investigations suggest the nonclassi-
factor. The modulation with maximum and minimum valuescal effect of sub- and super-Poissonian statistics of the oscil-
of F, which are equal toF,,=1.29 andF,=0.48, is latory excitation number. These effects become maximal
reached when the resonance condition is achieved. The pethen SR occurs. We have also described the SR phenom-
odic modulation also exhibits the ensemble-averaged oscillsgnon from the point of view of quantum information on the
tory number(n). We have not shown this result; however, in basis of von Neuman entropy. The QSR phenomenon was
Fig. 7 we plot, for an illustration, the difference betweenillustrated in the regime of strong anharmonicity when the
maximal and minimal values ofn) during one period of anharmonicity parameter is comparable to a dissipative de-
modulation, i.e., the quantitn=(n).—(Mmin, versus the ~cay rate. In addition to the fundamental interest in the explo-
external noise strengtN. This result shows the stochastic ration of the QSD method for an estimation of QSR, the
resonance behavior. investigation of a double driven anharmonic oscillator seems

The analysis above also indicates that it is possible tdnteresting for various applications. Although the primary

control the behavior of a quantum system by an externamotivation for this study was theoretical, results may be ob-
time-dependent force even when the system is coupled to $€rvable experimentally. As candidates we suggest two ex-
thermal reservoir. In this spirit, we emphasize that the idea operimental schemes, which operate with a nonlinear cavity or
controlling the dynamics of a quantum system in the presa single electron in a Penning trap.
ence of dissipation and decoherence by an external periodic
driving was exploited by many authofsee, for example,
Refs.[27-33). We note the effect of coherent destruction of
tunneling[27], the control of decoherence and relaxation of It is a pleasure to acknowledge stimulating discussions
frequency modulation of heat bafi8], examples of long- with G. Alber, J. Bergou, H. Carmichael, S. Fauve, A.
lived Schralinger cat states in the context of superradiancekaplan, N. T. Muradyan, and W. P. Schleich. This work was
[29], the suppression of decoherence by the specific separtially supported by INTAS Grant No. 97-1672 and by
qguences of radio-frequency puld&9,31] and dynamical lo- Grant No. 96771 awarded by the Armenian Science Founda-
calization for two-level atom interacting with a standing tion.
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